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A-1. THEORETICAL RESULTS

A-1.1. Cournot Competition

IN THIS SECTION, I briefly discuss the model for the case where firms compete à la
Cournot. This assumption makes the analysis much less tractable compared to the setup
with Bertrand competition. To see this, consider product i and suppose that there are
Ni potential producers with productivity [qfi]Nif=1. Let [yf i]Nif=1 denote the quantities these
firms optimally set. Given the Cobb–Douglas demand across products, firm f solves the
problem

max
yf
piyf − 1

qf
wyf s.t. pi

(
n∑
j=1

yji

)
= Y�

It is easy to verify that the equilibrium markup of firm f in product i is given by

μfi = pi
1
qf
w

= qi

Γ
([qfi]) �

where Γ ([qfi]) ≡ ( 1
N−1

∑
f

1
qf
)−1. Furthermore, the equilibrium quantities yf and profits

πf are given by

yf =
(1 −μ−1

f i

μf i

)
qi
Y

w
and πf = Y (

1 −μ−1
f i

)2
�

These equations highlight how the assumption of Bertrand competition simplifies the
analysis. To compute profits of firm f for product i, one needs to know the number of
competing firms in product i, Ni, and the distribution of productivity among them, [qfi],
to compute Γ ([qfi]). This complicates the dynamic problem of the firm considerably. In
addition, the mapping between the model and the data is more intricate. For the Bertrand
case, one can treat the productivity of the most productive competitor as a latent variable
as—according to the theory—only a single firm produces each individual product. For the
case of Cournot competition, one has to specify which firms (in the data) are producing a
particular product to compute firm-level markups.

A-1.2. Proof of Proposition 1

I prove Proposition 1 in two steps. I first derive the value function (6). Then I show that
the conditions in Proposition 1 uniquely define the optimal choices for (I�x� z).
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Solving for the Value Function Vt(·) in (6). To derive (6), conjecture first that the value
function takes an additive form1

Vt
(
n� [�i]ni=1

) = V P
t (n)+

n∑
i=1

V M
t (�i)� (A-1)

V P
t and V M

t are therefore defined by the differential equations

rV M
t (�)− V̇ M

t (�)= πt(�)−πt(1)− τV M
t (�)

+ max
I

{
I
[
V M
t (�+ 1)− V M

t (�)
] − cI(I��)wt

}
(A-2)

and

rV P
t (n)− V̇ P

t (n)= nπt(1)+
n∑
i=1

τ
[
V P
t (n− 1)− V P

t (n)
]

+ max
X

{
X

[
V P
t (n+ 1)+ V M

t (1)− V P
t (n)

] − cX(X�n)wt
}
�

Now consider a steady state where both value functions grow at rate g. Then I can write
(A-2) as

(r + τ− g)V M
t (�)= πt(�)−πt(1)+ max

I

{
I
[
V M
t (�+ 1)− V M

t (�)
] − 1

ϕI
λ−�Iζwt

}
�

Conjecture that

V M
t (�)= κt − αtλ−�� (A-3)

Then V M
t (�+ 1)− V M

t (�)= λ−1
λ
αtλ

−� and the optimal innovation rate I solves

It =
(
λ− 1
λ

ϕI

ζ

αt

wt

) 1
ζ−1

� (A-4)

Suppose that αt
wt

is constant along the BGP (which I will verify below). Equation (A-4)
then implies that It(�)= I. Using (A-4), (A-3), and the Euler equation ρ= r − g yields

(ρ+ τ)[κt − αtλ−�] =
(

1
λ

− λ−�
)
Yt + ζ − 1

ϕI
λ−�Iζwt�

so that κt =
1
λ Yt

ρ+τ and αt = Yt− ζ−1
ϕI

Iζwt

ρ+τ . Hence, (A-3) yields

V M
t (�)=

(
1
λ

− λ−�
)
Yt + λ−� ζ − 1

ϕI
Iζwt

ρ+ τ = πt(�)−πt(1)+ (ζ − 1)cI(I��)wt
ρ+ τ �

1The analysis in this section only contains the most important steps. A detailed derivation is contained in
the Supplemental Material.
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Note also that this implies that

V M
t (1)= (ζ − 1)

1
λ

1
ϕI

Iζ

ρ+ τwt� (A-5)

Now turn to V P
t (n). Define X = xn and conjecture that V P

t (n) = nvt , where vt grows at
rate g= r − ρ. Hence,

(ρ+ τ)vt = πt(1)+ max
x

{
x
[
vt + V M

t (1)
] − 1

ϕx
xζwt

}
�

The optimality condition for x reads

vt + V M
t (1)= ζ

ϕx
xζ−1wt� (A-6)

As vt and V M
t (�) both grow at rate g, this implies that x is indeed constant. In particular,

given x, vt is given by

(ρ+ τ)vt = πt(1)+ (ζ − 1)
1
ϕx
xζwt� (A-7)

To solve for vt , let vt = vwt . The unknowns (x� v) are then determined from (A-6), (A-7),
and (A-5) as

ζ

ϕxφ
ζ
e

xζ−1 = v+ V M
t (1)
wt

= v+ (ζ − 1)
1
λ

1
ϕI

Iζ

ρ+ τ �

v =
λ− 1
λ

Yt

wt
+ ζ − 1

ϕx
xζ

ρ+ τ �

The final value function V P
t (n) is given by

V P
t (n)= n

πt(1)+ (ζ − 1)cX(1�x)wt
ρ+ τ �

Substituting into (A-1) yields (6).

Existence and Uniqueness. I now prove existence and uniqueness of the equilibrium.
I need to solve for the tupel (I�x� z). Alternatively, I can solve for (I�x� τ) and then solve
for z = τ − x. From the static allocations, I know that YtΛt = wtL

P
t . Note that Λt is a

known function of τ/I (see Proposition 2) and hence I write it as Λ(τ
I
). To solve for LPt ,

I need the labor market clearing condition. Note that Lzt = 1
ϕI
z, Lxt = 1

ϕx
xζ , and

LIt =
∫ 1

j=0
cI(I��j)dj =

∫ 1

j=0

1
ϕI
Iζλ−�j dj = 1

ϕI
IζΛ

(
τ

I

)
�

Hence, the equilibrium is defined by the four equations

1 = Λ

(
τ

I

)
Yt

wt
+ 1
ϕI
IζΛ

(
τ

I

)
+ 1
ϕz
(τ− x)+ 1

ϕx
xζ� (A-8)
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1
ϕz

=
λ− 1
λ

Yt

wt
+ ζ − 1

ϕx
xζ + ζ − 1

ϕI

1
λ
Iζ

ρ+ τ � (A-9)

Yt

wt
= λ

λ− 1
ζ

ϕI
Iζ−1(ρ+ τ)+ (ζ − 1)

1
ϕI
Iζ� (A-10)

Yt

wt
= ζ

ϕx
xζ−1(ρ+ τ) λ

λ− 1
− λ

λ− 1
ζ − 1
ϕx

xζ − 1
λ− 1

ζ − 1
ϕI

Iζ� (A-11)

To solve for the unknowns (Y
w
� I� τ�x), note first that (A-11) and (A-9) imply that

xζ−1 = ϕx

ϕz

1
ζ
� (A-12)

This determines x in terms of parameters. I can then use (A-9), (A-10), and (A-8) to arrive
at two equations in the two unknowns (τ� I):

1 = Λ

(
τ

I

)(
λ

λ− 1
ζ

ϕI
Iζ−1(ρ+ τ)+ ζ 1

ϕI
Iζ

)
+ 1
ϕz
τ− h(ϕ)� (A-13)

1
ϕz

= ζ

ϕI
Iζ−1 + ζ − 1

ϕI

Iζ

ρ+ τ + h(ϕ)

ρ+ τ � (A-14)

where

h(ϕ)=
(
ζ − 1
ζ

)(
ϕx

ζϕζz

) 1
ζ−1

≥ 0� (A-15)

Given a solution (I� τ) and x from (A-12), I can calculate Y
w

from (A-10) and z = τ − x.
Hence, I only have to show that (A-13) and (A-14) have a unique solution. Rewriting
(A-13) and (A-14) in terms of τ/I =ϑ yields

1 = Λ(ϑ)

(
λ

λ− 1
ζ

ϕI
Iζ−1(ρ+ϑI)+ ζ 1

ϕI
Iζ

)
+ 1
ϕz
ϑI − h(ϕ)� (A-16)

1
ϕz

= ζ

ϕI
Iζ−1 + ζ − 1

ϕI

Iζ

ρ+ϑI + h(ϕ)

ρ+ϑI � (A-17)

It can be shown that (A-16) and (A-17) have a unique solution for (I�ϑ).

A-1.3. Proof of Proposition 2

Consider first the distribution of quality gaps νt(�). In a stationary equilibrium, ν̇t(�)=
0. Equation (9) implies that

ν(�)=
(

I

τ+ I
)�
τ

I
=

⎛
⎜⎝ 1

1 + τ

I

⎞
⎟⎠
�

τ

I
=

(
1

1 +ϑ
)�

ϑ�

Hence, P(� ≤ d) = 1 − ( 1
1+ϑ)

d = 1 − e− ln(1+ϑ)×d . This implies that log markups ln(μ) =
� ln(λ) are exponentially distributed with parameter θ. Similarly, F(μ;x)= P(λ� ≤ μ)=
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1 −μ−θ. To derive (10), note that2

Λ=
∫
μ−1θμ−(θ+1) dμ= θ

θ+ 1
�

M = exp
(−E ln(μ)

)
Λ−1 = e−θ−1 θ+ 1

θ
�

A-1.4. Proof of Proposition 3

The Distribution of Markups as a Function of Product Age. I first show that the distri-
bution of quality gaps � as a function of age conditional on survival, pS�(a), is given by
pS�+1(a) = 1

�!(Ia)
�e−Ia. Let p�(a) denote the probability of the product having a quality

gap � at age a when it was introduced at time 0. The corresponding flow equations are

ṗ�(a)=

⎧⎪⎨
⎪⎩

(
1 −p0(a)

)
τ for �= 0�

−p1(a)(I + τ) for �= 1�
p�−1(a)I −p�(a)(I + τ) for �≥ 2�

The solution to this set of differential equations is given by

p0(a)= 1 − e−τ×a�

pi+1(a)=
(

1
i!

)
Iiai

(
e−(I+τ)a) for i≥ 0�

The distribution of markups conditional on survival is then

pSi+1(a)≡ pi+1(a)

1 −p0(a)
=

(
1
i!

)
Iiai

(
e−Ia)�

This is a Poisson distribution with parameter Ia, so that E[�|a] = Ia. Equation (11) then
follows because ln(μ)= ln(λ)�.

The Expected Log Markup by Age: Equation (12). Firm-level markups are given by
μf = pyf

wlf
= 1

1
n

∑ni
j=1 λ

−�j . Hence,

ln(μf )= − ln

(
1
n

ni∑
j=1

λ−�j
)

≈ ln(λ)×
[

1
Nf

Nf∑
j=1

�j

]
�

so that E[ln(μf )|Age = a] = ln(λ) × En[E[ 1
n

∑n

j=1�j|Age = a�N = n]|Age = a]. Define
the random variable B= {0�1�2� � � � � n} by

B=
{

0 if none of the n products was the initial product of the firm,
k if product k was the initial product of the firm.

2Note that these expression are derived taking the distribution of markups as continuous, even though
the model implies that they are discrete. Taking this discreteness explicitly into account yields ΛDis =∑∞

i=1 λ
−iμ(i) = ϑ

λ(ϑ+1)

∑∞
i=0(

1
λ(ϑ+1) )

i = ϑ
λϑ+λ−1 . Similarly,

∫ 1
0 �(ν)dν = ∑∞

i=1 iμ(i) = ϑ
∑∞

i=1 i(
1

1+ϑ )
i = 1+ϑ

ϑ
, so

that MDis = 1
Λ
λ−∫ 1

0 �(ν)dν = λ− 1+ϑ
ϑ

λ−1+λϑ
ϑ

.
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Then E[ 1
n

∑n

j=1�j|a�n] = ∑n

k=0E[ 1
n

∑n

j=1�j|a�n�k]P(B = k|a�n), where I denoted the
conditioning on age a, the number of products n, and the random variable B as k. Then

E

[∑
j

�j

n

∣∣∣a�n] = E[�|a�n�ni]

+
(
1 − P(B= 0|a�n))(E[�|a�n� i] −E[�|a�n�ni])

n
� (A-18)

where E[�|a�n�ni] denotes the expected value of � conditional on the fact that the prod-
uct is not an initial product and

∑n

k=1P(B = k|a�n)= 1 − P(B = 0|a�n). I now solve for
E[�|a�n�ni], E[�|a�n� i], and P(B= 0|a�n) in turn.

Recovering E[�|a�n�ni] and E[�|a�n� i] . Let U denote the age of the product so that

E[�|a�n�ni] = Eu
{
E[�|U = u]∣∣a�n�ni

} =Eu
{ ∞∑
i=1

i×p(i�u)
∣∣∣a�n�ni

}
� (A-19)

where the second equality uses the fact that, conditional on product age, no other charac-
teristic matters and p(i�u) is the probability of having a quality gap i conditional on the
product having an age of u. As shown above, this distribution follows a Poisson distribu-
tion

p(i�u)=
(

1
(i− 1)!

)
(Iu)i−1 × exp(−Iu)�

Hence,
∑∞

i=1 i×p(i�u)= Iu+ 1. Equation (A-19) therefore implies that

E[�|a�n�ni] = 1 + I ×
∫ a

u=0
ufU |A�ni(u|a�ni)du� (A-20)

where fU |A�ni is the density of the conditional age distribution of a product. In the Supple-
mental Material, I show that this density is given by

fU |A�ni(u|a�ni)= τe−τu + xe−(x+τ)aexu

1 − e−(x+τ)a � (A-21)

From (A-20) and (A-21), one can show that

E[�|a�n�ni] = 1 + I ×
1
τ

(
1 − e−τa) − 1

x
e−τa(1 − e−xa)

1 − e−(x+τ)a � (A-22)

Turning to E[�|a�n� i], it is clear that the initial product of a firm of age a is simply a years
old. Hence,

E[�|a�n� i] = 1 + Ia� (A-23)

Solving for P(B= 0|a�n). Note first that P(B= 0|a�n)= P(B=0�a�n)
P(a�n)

. I am going to con-
struct P(B = 0� a�n). Denote this probability by Q(n� t), where t is the age of the firm.
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This probability evolves according to the differential equation

Q̇(n� t)= x(n− 1)Q(n− 1� t)+ τ(n+ 1)Q(n+ 1� t) (A-24)

− n(x+ τ)Q(n� t)+ τ(p(n+ 1� t)−Q(n+ 1� t)
)
� (A-25)

where p(n� t) denotes the probability of having n products at time t. Note also that
Q̇(0� t)= τp(1� t). Define the function

HQ(z� t)≡
∞∑
n=0

Q(n� t)zn� (A-26)

Then ∂HQ(z�t)

∂z
= ∑∞

n=1 nQ(n� t)z
n−1 and ∂HQ(z�t)

∂t
= Q̇(0� t)+ ∑∞

n=1 Q̇(n� t)z
n. Using (A-24),

it follows that

∂HQ(z� t)

∂t
= τp(1� t)

+
∞∑
n=1

[
x(n− 1)Q(n− 1� t)+ τ(n+ 1)Q(n+ 1� t)− n(x+ τ)Q(n� t)]zn

+ τ
∞∑
n=1

p(n+ 1� t)zn − τ
∞∑
n=1

Q(n+ 1� t)zn

= τ

z

(
HP(z� t)−HQ(z� t)

) + (
xz2 − (x+ τ)z+ τ)∂HQ(z� t)

∂z
�

where, as in (A-26), I defined HP(z� t)≡ ∑∞
n=0p(n� t)z

n. Now define

Ψ(z� t)≡HP(z� t)−HQ(z� t)� (A-27)

Then

Ψ̇ (z� t)= (
xz2 − (x+ τ)z+ τ)∂Ψ(z� t)

∂z
− τ

z
Ψ(z� t)� (A-28)

where ḢP(z� t)= (xz2 − (x+τ)z+τ)∂HP(z�t)
∂z

follows the derivations in Klette and Kortum
(2004). To solve for Ψ(z� t), I need an initial condition. As every firm enters with a single
product, p(1� t)= 1 and p(n� t)= 0 for n �= 1. Similarly,Q(n�0)= 0 for all n. This implies
that

Ψ(z�0)=
∞∑
n=0

p(n�0)zn −
∞∑
n=0

Q(n�0)zn = z� (A-29)

which is the required initial condition. The solution to (A-28) with the initial condition in
(A-29) is given by (see the Supplemental Material for the proof)

Ψ(z� t)= (τ− x)ze−τt

x(z− 1)e−(τ−x)t − (xz− τ) � (A-30)

From Klette and Kortum (2004, p. 1014), I know that HP(z� t) takes a similar form

HP(z� t)= τ(z− 1)e−(τ−x)t − (xz− τ)
x(z− 1)e−(τ−x)t − (xz− τ) �
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Equations (A-27) and (A-26) therefore imply that

HQ(z� t)= Ψ(z� t)−HP(z� t)= τ(z− 1)e−(τ−x)t − (xz− τ)− (τ− x)ze−τt

x(z− 1)e−(τ−x)t − (xz− τ) �

From the definition ofHQ in (A-26), I can recoverQ(n� t) as the coefficients of the Taylor
approximation around z = 0. In the Supplemental Material, I show that

Q(n� t)=
(

1 − τe−xt − xe−τt

τ− x
)

×p(n� t)� (A-31)

where p(n� t) is described by p(0� t) = τ
x
γ(t), p(1� t) = (1 − γ(t))(1 − p(0� t)) and

p(n� t)= γ(t)n−1p(1� t) and the function γ(t) is given in Proposition 3. Equation (A-31)
has the important implication that the conditional probability of not having an initial prod-
uct at time t is independent of n, that is,

P(not initial|t� n)= Q(n� t)

p(n� t)
= 1 − τe−xt − xe−τt

τ− x �

Hence,

1 − P(B= 0|a�n)= τe−xa − xe−τa

τ− x � (A-32)

Note that P(not initial|0� n)= 0 and limt→∞P(not initial|t� n)= 1 as required. Substitut-
ing (A-22), (A-23), and (A-32) into (A-18) yields

E[aP |af ] ≡ En

[
E

[
1
n

n∑
j=1

�j

∣∣∣a�n
]∣∣∣∣a

]

= E[�|a�ni] + (
1 − P(B= 0|a))(E[�|a� i] −E[�|a�ni]) ∞∑

n=1

fN|A(n|a)
n

�

where fN|A(n|a) is the conditional distribution of n conditional on a. This object is given
by fN|A(n|a)= p(n�a)

1−p(0�a) = γ(a)n−1(1 − γ(a)). Hence,

E
[
ln(μ)|a] = lnλ× (

1 + I ×E[aP |af ]
)
�

where

E[aP |af ] =
1
τ

(
1 − e−τa) − 1

x
e−τa(1 − e−xa)

1 − e−(x+τ)a +
⎛
⎜⎝a−

1
τ

(
1 − e−τa) − 1

x
e−τa(1 − e−xa)

1 − e−(x+τ)a

⎞
⎟⎠

×
(
τe−xa − xe−τa

x
(
1 − e−(τ−x)a)

)
ln

(
τ− xe−(τ−x)a

τ− x
)
�

This is the required expression in (12).
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A-1.5. Proofs for Section 2.6

Consider the distribution of firms across the number of products they produce. Let
ω(n) ≡ F × ω̃(n), where ω̃(n) denotes the share of firms producing n products, that is,∑∞

n=1 ω̃(n)= 1. As shown in Klette and Kortum (2004),

ω̃(n)=
1
n

(
x

τ

)n−1

∞∑
j=1

1
j

(
x

τ

)j−1 �

In a stationary equilibrium, the mass of entering and exiting firms has to be equal so that

F = z

τ
×

∞∑
j=1

1
j

(
x

τ

)j−1

= z

x
×

∞∑
j=1

1
j

(
x

τ

)j

= z

x
× ln

(
z+ x
z

)
�

The entry rate is therefore given by

Entry rate = z

F
= z

z

x
× ln

(
z+ x
z

) = x

ln
(
z+ x
z

) � (A-33)

The share of products produced by firms with at most k products is given by

Sk =
k∑
n=1

Fω̃(n)n=
(
z

τ

∞∑
j=1

1
j

(
x

τ

)j−1
) k∑

n=1

1
n

(
x

τ

)n−1

n

∞∑
j=1

1
j

(
x

τ

)j−1 = z

x

k∑
n=1

(
x

τ

)n

= 1 −ϑk
x�

To derive the employment life-cycle, consider first the distribution of sales conditional
on age. Note that E[ln l|a] = E[ln( nY

wμf
)|a] = ln(Y

w
) + E[lnn|a] − E[lnμf |a]. To calcu-

late E[lnn|a], note that the distribution of n conditional on age is given by fN|A(n|a) =
γ(a)n−1(1 − γ(a)). Hence,

E[lnn|a] =
(

1 − γ(a)
γ(a)

) ∞∑
n=1

lnn× γ(a)n�

where γ(t) = x(1−e−(τ−x)t )
τ−xe−(τ−x)t . It can also be shown that ∂E[lnn|a]

∂γ
> 0, that ∂γ(a)

∂τ
< 0 and that

∂γ(a)

∂x
> 0. Hence, ∂E[lnn|a]

∂x
> 0 and ∂E[lnn|a]

∂τ
< 0.

A-1.6. The Model With Stochastic Step Size (Proposition 4)

In this section, I derive the main results for the stochastic step size model. The detailed
derivations are contained in the Supplemental Material. Suppose that, conditional on
an innovation, the step size of the quality increase is stochastic. Let the probability of
climbing k rungs of the ladder be pk with

∑∞
k=1pk = 1.
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The Value Function and Equilibrium Conditions

As I show in the Supplemental Material, the value function is still given by

Vt
(
n� [�i]ni=1

) = V P
t (n)+

n∑
i=1

V M
t (�i)�

where

V M
t (�)=

πt(�)−πt(1)+ (ζ − 1)λ−� 1
ϕI
Iζwt

ρ+ τ
and V P

t (n)= vtn, where

vt =

(
1 − 1

λ

)
Yt + (ζ − 1)

1
ϕx
xζwt

ρ+ τ �

The optimal innovation and expansion rates are given by

I =

⎛
⎜⎜⎝E

[
1 − λ−�]ϕI

ζ

Yt

wt
− (ζ − 1)

1
ϕI
Iζ

ρ+ τ

⎞
⎟⎟⎠

1/(ζ−1)

�

x=
(
ϕx

ϕz

1
ζ

)1/(ζ−1)

�

The free-entry condition is given by

1
ϕz

=
∞∑
j=1

(
V P
t (1)+ V M

t (j)

wt

)
pj = 1

ρ+ τ
(
Yt

wt
+ ζ − 1

ϕx
xζ +

(
ζ − 1
ϕI

Iζ − Yt

wt

)
E

[
λ−�])�

Together with the labor market condition, these equations fully determine the equilib-
rium.

The Distribution of Markups

The distribution of quality gaps ν(�) solves the set of differential equations

ν̇t(�)=

⎧⎪⎨
⎪⎩

−(τ+ I)νt(�)+ I
�−1∑
j=1

νt(�− j)pj + τp� if �≥ 2�

τ
(
p1 − νt(1)

) − νt(1)I if �= 1�

The stationary distribution is therefore given by

ν(j)= 1
1 +ϑ

(
j−1∑
m=1

ν(m)pj−m

)
+ ϑ

1 +ϑpj� (A-34)
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Define the c.d.f. of quality gaps and hence markups as �(k)= ∑k

j=1 ν(j). I now show that

ϑH >ϑL →�(k;ϑH) >�(k;ϑL) for all k�

that is an increase in ϑ reduces the distribution of markups in a first-order stochastic
dominance sense. To see this, define α= ϑ

1+ϑ . α is increasing in ϑ. Write (A-34) as

ν(j)= (1 − α)
(
j−1∑
m=1

ν(m)pj−m

)
+ αpj�

The c.d.f. � can be written as

�(k)=
k∑
j=1

ν(j)= (1 − α)
k∑
j=1

j−1∑
m=1

ν(m)pj−m + α
k∑
j=1

pj

= (1 − α)
k−1∑
m=1

pk−m�(m)+ α
k∑
j=1

pj�

Let �(k;α) denote the c.d.f. as a function of α. Then

�(k;αH)−�(k;αL)

= (1 − αH)
k−1∑
m=1

pm�(k−m;αH)+ αH
k∑
j=1

pj

− (1 − αL)
k−1∑
m=1

pm�(k−m;αL)− αL
k∑
j=1

pj

= (1 − αH)
k−1∑
m=1

pk−m
[
�(m;αH)−�(m;αL)

]

+ (αH − αL)
[
pk +

k−1∑
j=1

pj
(
1 −�(k− j;αL)

)]
�

Now note that �(1;αH)−�(1;αL)= (αH − αL)p1 > 0. Furthermore, this implies that

�(m;αH)−�(m;αL) > 0 for all m< j→�(j;αH)−�(j;αL) > 0

as 1 −�(k− j;αL) > 0 by � being a c.d.f. This shows that �(m;αH)−�(m;αL) > 0 for
all m.

The Case of pn = 1−κ
κ

× κn
Suppose the step size is drawn from pn = 1−κ

κ
× κn. I now show that the distribution of

markups is again a Pareto distribution. The density νj solves the equation

νj = (1 − α)
(
j−1∑
m=1

νm
1 − κ
κ

κj−m
)

+ α1 − κ
κ

κj�
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where α= ϑ
1+ϑ . Conjecture that νj =Aj−1ν1 for j ≥ 2. Substituting above yields

νj = (1 − α)
(
ν1

1 − κ
κ

κj−1 +
j−1∑
m=2

Am−1ν1
1 − κ
κ

κj−m
)

+ α1 − κ
κ

κj�

Aj−1ν1 =
[
(1 − α)1 − κ

κ
κj−1

(
1 +

j−2∑
m=1

(
A

κ

)m
)

+ κj−1

]
ν1�

It is easy to show thatA= 1−(1−κ)α= 1+κϑ
1+ϑ solves this equation. Note that ν1 = ϑ

1+ϑp1 =
(1−κ)ϑ

1+ϑ . Hence,

νj =
(

1 + κϑ
1 +ϑ

)j
ϑ(1 − κ)
1 + κϑ �

The corresponding c.d.f. is given by

�(k)=
k∑

m=1

νm = ν1

k∑
m=1

Am−1 = ν1

k−1∑
m=0

Am = ν1
1 −Ak

1 −A = 1 −
(

1 + κϑ
1 +ϑ

)k

�

Hence, P[�≤ d] = 1 − ek×ln( 1+κϑ
1+ϑ ). The distribution of markups is given by

P[μ≤m] = P
[
λ� ≤m] = P

[
�≤ lnm

lnλ

]
= 1 − e lnm

lnλ ×ln( 1+κϑ
1+ϑ ) = 1 −m− 1

lnλ ln( 1+ϑ
1+κϑ )�

Hence, the distribution is again Pareto with shape parameter θ(κ)= 1
lnλ ln( 1+ϑ

1+κϑ). Because
all aggregate wedges are expressed in terms of the Pareto tail, all other results apply
directly. To derive the expression for the aggregate growth rate g = 1

1−κ(I + τ) lnλ, note
that g= (I + τ) lnλ(

∑∞
n=1 npn) and

∑∞
n=1 npn = ∑∞

n=1 n
1−κ
κ

× κn = 1
1−κ .

A-1.7. The Model With CES Preferences (Proposition 5)

In this section, I prove the main results for the model with CES preferences. For de-
tailed derivations, I refer to the Supplemental Material. The static allocations can be de-
rived by standard arguments. The dynamic environment for own-innovation, entry, and
incumbent creative destruction is the same as in the baseline model. The only difference
with respect to the baseline is that I assume that a fraction (1 − δ) of creative destruction
activities result in a “reset” of the quality of the destroyed product to the level λQt . This
change is necessary to make the productivity distribution stationary. I discuss this in more
detail in the Supplemental Material. All the aggregate implications are independent of
the parameter δ. The need for a stationary distribution of quality only arises when tak-
ing the model to the data. For continuity with the baseline model, I still assume that the
quality gap � after such a reset is equal to unity.
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The payoff-relevant state variable for a firm producing n products is given by [�i�qi].
The value function Vt([�i�qi]) therefore solves the HJB equation

rtVt
([�i�qi]i) − V̇t

([�i�qi]i) (A-35)

=
n∑
i=1

πt
([�i�qi]i) +

n∑
i=1

τt
[
Vt

([�j�qj]j �=i) − V ([�i�qi]i)]

+ max
[Ii]ni=1

{
n∑
i=1

Ii
[
Vt

([�j�qj]j �=i[�i + 1�λqi]
) − Vt

([�i�qi]i)] −
n∑
i=1

cI(Ii� qi)wt

}

+ max
X

{
X

[
δ

∫
q

Vt
([�i�qi]i�1�λq

)
dFt(q)+ (1 − δ)Vt

([�i�qi]i�1�λQt

) − Vt
([�i�qi]i)

]

− cX(X�n)wt
}
� (A-36)

As before, I continue to assume each worker employed in entry activities generates a flow
of ϕz of marketable ideas. For symmetry, a fraction δ of such ideas improve the existing
quality of a randomly selected product by a step size λ, and a fraction 1 − δ “reset” the
productivity to λQt . The free-entry condition is therefore given by

1
ϕz
wt = δ

∫
q

Vt(1�λq)dFt(q)+ (1 − δ)Vt(1�λQt)� (A-37)

Suppose that cX(X�n) is as in the baseline model and that cI(I�q) is given by

cIt (I;��q)= 1
ϕI

(
q

Qt

)σ−1

Iζ� (A-38)

In the Supplemental Material, I show that the value function Vt([�i�qi]ni=1) is given by

Vt
([�i�qi]ni=1

) =
n∑
i=1

ψ(�i)

ρ+ τ+ (σ − 1)g

(
qi

Qt

)σ−1
Yt

E
[
μ1−σ] + 1

ρ+ τ
ζ − 1
ϕx

(
ϕx

ϕz

1
ζ

) ζ
ζ−1

wtn�

where ψ(�i) is implicitly defined and depends only on � (and general-equilibrium vari-
ables). I also show that the optimal innovation rate is given by

I(�)=

⎡
⎢⎢⎣(
ψ(�)− α(�)) 1

(ζ − 1)
1
1
ϕI

(
LP

E
[
μ−σ]

)⎤
⎥⎥⎦

1
ζ−1

�

where α(�)= (1 − 1
min{ σ

σ−1 �λ
�})min{ σ

σ−1 �λ
�}1−σ . Hence, I is independent of q and constant

along the BGP.
Let νt(�) be the mass of products with quality gap �. This distribution satisfies the

differential equation

ν̇t(�)= (
I(�− 1)

)
νt(�− 1)− (

τ+ I(�))νt(�) for �≥ 2�
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The law of motion for the mass of products with a quality gap of 1 is given by

ν̇t(1)= τ− (
I(1)+ τ)νt(1)�

Along a BGP, this distribution is stationary and given by

ν(�)= τ

I(�)

(
�∏
j=1

I(j)

τ+ I(j)

)
�

Note that if I(j)= I, then ν(�)= τ
I
( I
τ+I )

� =ϑ( 1
ϑ+1)

� as in the baseline model. Given that
markups are a one-to-one function of quality gaps, the distribution of markups is also
stationary and only a function of τ and {I(�)}∞

�=1.

A-2. APPENDIX: EMPIRICAL RESULTS

A-2.1. Measuring Markups

To measure markups, I closely follow the approach of De Loecker and Warzynski
(2012). The crucial empirical object is the firms’ labor share sl�f t = wt lf t

pf yf t
. As pointed out by

De Loecker and Warzynski (2012), the level of production yf t might contain both unan-
ticipated shocks and measurement error. Hence, they proposed to consider a regression
of the form

ln yf t =φ(lf t�kf t�mft� zf t)+ εft� (A-39)

where φ(·) is estimated flexibly. Given the estimate φ̂(·), one can recover an estimate of
the measurement error ε̂f t and form sl�f t = wt lf t

pf
yf t

exp(ε̂f t )

(see De Loecker and Warzynski (2012,

Equation 16)). Note that this correction is in terms of physical output. As in their appli-
cation, I only have access to revenue and not physical output and hence I treat deflated
sales as a measure of physical quantity. I therefore measure the cost share sl�f t as

sl�f t = wlft

vaf t/exp(ε̂f t)
�

where vaft is observed value added and ε̂f t is the residual from (A-39) with vaft as the
dependent variable. I treat φ(·) as a second-order polynomial in all (log) inputs and their
interaction terms. For the specification with intermediate inputs instead of labor, the pro-
cedure is analogous.

A-2.2. Robustness for Table II and Additional Results

In Table A-I, I report the robustness of the estimated life-cycle in Table II in various
specifications. In particular, I consider (i) the share of labor in sales and (ii) the share of
intermediate inputs in sales as alternative measures. I also report the results without the
above correction for measurement error. Finally, in the specification for firms’ material
share, I consider the specification

ln(μft)= δt + δs +β× agef t + α× ln(kft/ lf t)+ψ× ln(mft/ lf t)+ x′
f tγ+ uft� (A-40)
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where m/l is the observed material-labor ratio. As seen in Table A-I, the coefficient on
age is always positive and mostly significant unless the dependent variable is the material
share andm/l is not controlled for. The reason is that age is strongly correlated withm/l:
as firms get older (and larger), they shift their resources from labor to materials.

In Table A-II, I report additional cross-sectional correlates of markups. I consider re-
gressions akin to (20) (for the case of measuring markups by the inverse labor share) and
(A-40) (for the case of using the share of material spending) and use a variety of character-
istics other than age. To save space, Table A-II reports (for all the different specifications
of interest) the coefficients on the respective characteristic. Each columns corresponds
to a separate regression. The first four columns correspond to cross-sectional estimates
for the entire sample from 1991 to 1997 (i.e., before the crisis). In particular, I confirm
the result of De Loecker and Warzynski (2012) that exporters have significantly higher

TABLE A-I

THE LIFE-CYCLE OF MARKUPS: ROBUSTNESSa

Measure for μ: Labor Share in Value Added, Uncorrected
Age 0.00901 0.00454 0.00451

(0.00130) (0.00144) (0.00157)

N 76,076 57,281 44,024

Measure for μ: Material Share in Sales, Corrected
Age 0.00715 0.00567 0.00531

(0.000411) (0.000313) (0.000335)

N 55,230 55,230 42,442

Measure for μ: Material Share in Sales, Uncorrected
Age 0.00196 0.00120 0.000781

(0.000718) (0.000787) (0.000850)

N 72,227 55,230 42,442

Measure for μ: Labor Share in Value Added, Corrected, Controlling for ln(m/l)
Age 0.00690 0.00596 0.00614

(0.00109) (0.00108) (0.00116)

N 55,212 55,212 42,434

Measure for μ: Material Share in Sales, Corrected, Not Controlling for ln(m/l)
Age −0.00120 −0.00146 −0.00171

(0.000779) (0.000779) (0.000833)

N 55,230 55,230 42,442

Measure for μ: Material Share in Sales, Uncorrected, Not Controlling for ln(m/l)
Age −0.00569 −0.00568 −0.00611

(0.000897) (0.00104) (0.00112)

N 72,227 55,230 42,442

Industry FE � � �
ln(k/l) � �

aRobust standard errors in parentheses. I focus on the unbalanced sample of firms, who enter the
market after 1990. I use the data from 1991 to 2000. All specifications include year fixed effects and
industry fixed effects at the 5-digit level. Columns 2 and 3 control for ln(k/l). In column 3, I focus on the
balanced panel, that is, only consider firms that survive to the end of my sample period.
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TABLE A-II

DETERMINANTS OF LABOR PRODUCTIVITY: IMPERFECT INPUT MARKETS AND BORROWING CONSTRAINTSa

Cross-Sectional Markup Heterogeneity: lnμf t = δt + δs +β× FirmCharacteristicf t + α×Xft + uf t
Exporter FDI Capital Market Foreign Loan Contrained? Capital Constrained? Financial Growth Barrier?

Measure for μ: Labor Share in Value Added, Corrected
β 0.088 0.012 0.050 0.058 −0.016 −0.011 −0.036

(0.004) (0.012) (0.027) (0.011) (0.008) (0.010) (0.017)

N 134,126 134,126 134,126 134,126 16,375 16,375 16,375
R2 0.33 0.33 0.33 0.33 0.34 0.34 0.34

Measure for μ: Labor Share in Value Added, Uncorrected
β 0.167 0.174 0.065 0.175 −0.055 −0.024 −0.020

(0.005) (0.017) (0.033) (0.014) (0.009) (0.012) (0.023)

N 138,953 138,953 138,953 138,953 16,375 16,375 16,375
R2 0.18 0.17 0.17 0.17 0.20 0.19 0.19

Measure for μ: Material Share in Sales, Uncorrected
β 0.084 0.101 0.008 0.091 −0.020 −0.015 −0.027

(0.001) (0.003) (0.008) (0.003) (0.002) (0.003) (0.005)

N 134,235 134,235 134,235 134,235 16,375 16,375 16,375
R2 0.89 0.88 0.88 0.88 0.89 0.89 0.89

Measure for μ: Material Share in Sales, Corrected
β 0.108 0.198 0.027 0.150 −0.037 −0.013 −0.008

(0.003) (0.009) (0.020) (0.007) (0.005) (0.007) (0.012)

N 134,235 134,235 134,235 134,235 16,375 16,375 16,375
R2 0.61 0.60 0.60 0.60 0.62 0.62 0.62

aRobust standard errors are shown in parentheses. The table reports the results of regressing log markups on various firm charac-
teristics. Each column represents a separate regression and I report the coefficient on the respective firm characteristic. All regressions
include a full set of 5-digit product fixed effects, a set of year fixed effects, and ln( k

l
), that is, the firm’s (log) capital-labor ratio. Cap-

ital is measured as the total value of assets reported in the industrial census. The first two panels measure markups from the inverse
labor share in value added. The last two panels measure markups from the inverse material share in sales. In the last two panels,
I also control for the material-labor ratio ln(m/l) as in (A-40). “Exporter,” “FDI,” “Capital market,” and “Foreign loans” are dummy
variables indicating whether the firm exports and finances its investment through FDI, foreign loans, or funds from the Indonesian
capital market. The last three columns use the special census supplement of the census in 1996. The survey asked whether firms were
facing any constraints, whether this constraint was related to missing capital, and whether missing capital was the main obstacle in firm
expansion.

markups.3 I also explore the information in firms’ financial balance sheets and show that
firms who receive some part of their capital from FDI (column 2), the capital market
(column 3), and from foreign loans (column 4) have higher markups. These patterns are
consistent with these firms being technologically more advanced and hence having more
market power. In contrast, it is harder to reconcile with markups reflecting binding finan-
cial constraints as these firms are arguably less constrained and hence should have low
marginal products.

In the last three columns, I focus on the existence of constraints more directly. In 1996,
the census contained direct questions on the type of constraints different firms are facing.
Columns 5–7 therefore estimate the relative markup of firms who report that they face
a constraint they could not overcome (column 5), that this constraint is particularly re-

3The results reported in Table A-II are also quantitatively consistent with De Loecker and Warzynski (2012).
When they measured markups from the labor elasticity and corrected the output data for measurement error,
they estimated an exporter premium of 0.078.
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lated to capital (column 6), and that they did not plan to expand because of a scarcity of
capital (column 7). While some coefficients are not statistically significant depending on
the specification, Table A-II shows that these firms are estimated to have lower marginal
products. This is consistent with these firms being low productivity producers who post
low markups, but is harder to reconcile with a model of financial constraints.

A-2.3. The Employment Life-Cycle in Indonesia

In the calibration, I use the employment life-cycle in Indonesia as a moment. Focusing
on the unbalanced panel of firms entering the economy after 1991, firms grow by about
8% a year. For the calibration, I therefore use the estimated profile depicted in Figure 4
and target the log difference in employment for 7-year-old firms. In Table A-III, I report
additional regression results predicting firm employment from firm age. The specification
is exactly the same as (20), except that I do not control for firms’ capital intensity. Col-
umn 3 shows that entrants and exiting firms are substantially smaller than the average
firm. Column 4 shows that entrants are not smaller as predicted by their age (in fact, they
are slightly bigger) but that exiting firms are much smaller. This is exactly what the model
predicts, because exiting firms are selected on n conditional on age, while entrants are
not. Column 5 shows that the estimated age profile is quite similar once I condition on
survival until the end of the sample.

A-2.4. The Markup-Size Relationship

To derive the relationship between firm-level markups and size, note that

E
[
ln(μf )|N = n] = ln(λ)×Ea

[
E

[
1
n

n∑
j=1

�j

∣∣∣Age = a�N = n
]∣∣∣∣N = n

]
�

TABLE A-III

THE EMPLOYMENT LIFE-CYCLE IN INDONESIAa

Log Employment

Age 0.0930 0.0814 0.0923 0.0811
(0.00193) (0.00178) (0.00248) (0.00192)

Entry −0.187 0.0466
(0.00821) (0.0101)

Exit −0.359 −0.337
(0.0106) (0.0105)

Industry FE � � � �
Year FE � � � � �
Balanced panel �
N 76,106 76,106 64,958 64,958 59,602
R2 0.035 0.218 0.212 0.231 0.239

aRobust standard errors in parentheses. I focus on the unbalanced panel of firms, who enter the market after 1990. I use the data
from 1991 to 2000. All specifications include year fixed effects and industry fixed effects at the 5-digit level. ’Entry” and “Exit” are
indicator variables for whether the firm enters (exit) the market in a given year. In column 5, I focus on the balanced panel, that is,
only consider firms that survive to the end of my sample period.
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Above, I already showed that

E

[
1
n

n∑
j=1

�j

∣∣∣a�n
]

=E[�j|a�n�ni] + 1 − P(B= 0|a�n)
n

(
E[�j|a�n� i] −E[�j|a�n�ni])�

where E[�j|a�n�ni] is given in (A-22), E[�j|a�n� i] is given in (A-23), and 1 − P(B = 0|
a�n) is given in (A-32). In particular, none of these objects depend on n. Hence,

E[lnμf |n] = ln(λ)
∫
a

[
E[�|a�ni] +

(
1 − P(B= 0|a))

n

(
E[�|a� i] −E[�|a�ni])]f (a|n)da

= ln(λ)
(

1 + I
∫
a

[
g(a�x�τ)+

(
1 − P(B= 0|a))

n

(
a− g(a�x�τ))]f (a|n)da)�

where

g(a�x�τ)=
1
τ

(
1 − e−τa) − 1

x
e−τa(1 − exp(−xa))

1 − exp
(−(x+ τ)a) �

and f (a|n) is the distribution of age conditional on size, which is given by

f (a|n)=
(
1 − γ(a))γ(a)n−1

(
1 − τ

x
γ(a)

)
1
x

1
n

(
x

τ

)n � (A-41)

where γ(a)= γ(a)= x(1−e−(τ−x)a)
τ−xe−(τ−x)a .4

The expressions above fully determine the average log markup as a function of n. In
Figure A-1, I show the results for the calibrated model. The left panel shows the average
markup as a function of size, the right panel shows the stationary firm size distribution.
Average markup is increasing in size—at least for the vast majority of firms. The very
top part of the sales distribution where markups are declining in size is of course closely

4To derive (A-41), note first that the mass of firms with n products is given by

Mn = θ

n

(
1

1 + θ
)n

=
z

x
n

⎛
⎜⎝ 1

1 + z

x

⎞
⎟⎠
n

= z

x

1
n

(
x

τ

)n

�

The probability of having n products at time t when born at time t − a is given by pn(a), where

pn(a)= (
1 − γ(a))γ(a)n−1

(
1 − τ

x
γ(a)

)
�

Each period, z firms enter. Hence, Mn = ∫ ∞
a=0 zpn(a)da. Then conditional distribution is therefore given by

f (a|n)= zpn(a)

Mn

=
(
1 − γ(a))γ(a)n−1

(
1 − τ

x
γ(a)

)
1
x

1
n

(
x

τ

)n �

which is the expression in (A-41).
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FIGURE A-1.—MARKUPS BY SIZE. Notes: In the left panel, I depict the average (log) markup as a function
of lnn. In the right panel, I depict the stationary distribution of sales. The endogenous flow rates (I�x� z) and
the parameter λ correspond to the calibration of the baseline model.

related to the top of the age distribution where markups are declining in age; see Figure 1.
Figure A-1 also shows that the quantitative effect of firm size on the average markup
is very small. Increasing size by one log point (say from 1 to 2) increases the average
markup by 0.6%. This is the elasticity reported in the main text. The firm-level data show
a stronger relationship between markups and size. In Table A-IV, I report the results of
regressions of log markups (columns 1 and 2) and log TFPR (columns 3 and 4) on log
sales. The estimated elasticity is consistently estimated to be around 0.2, that is, much
larger than in the model.

A-2.5. Robustness of the Calibration Results

Sensitivity With Respect to ζ. In Figure A-2, I study the sensitivity of the results with
respect to the elasticity ζ. More specifically, I consider a range of ζ between 1.5 and 3 and
redo the analysis around Table VI. I report three moments: the change in the number of
firms, the change in the share of small firms, and the change in the growth rate. For the
baseline, I assumed a value of ζ = 2. In the left panel of Figure A-2, I report the change

TABLE A-IV

MARKUPS, TFPR AND SIZEa

Dependent Variable

Log Markups (lnμf ) Log TFPR (lnpy/(kαl1−α))

Log sales 0.192 0.168 0.163 0.229
(0.000925) (0.00109) (0.00119) (0.00112)

lnk/l 0.0547 −0.242
(0.00134) (0.00137)

N 176,958 138,953 122,578 122,578
R2 0.306 0.311 0.153 0.354

aRobust standard errors in parentheses. All specifications include year fixed effects
and 5-digit industry fixed effects. lnk/l denotes the (log) capital-labor ratio at the firm
level.
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FIGURE A-2.—SENSITIVITY WITH RESPECT TO ζ. Notes: The figure displays the change in the number of
firms and the share of small firms (left panel) and the change in the growth rate (right panel) for different
values of ζ. Specifically, for each ζ, I recalibrate the model to the U.S. and Indonesian moments contained in
Table VI and calculate the change in the equilibrium outcomes. The baseline specification is ζ = 2.

in the number of firms and the share of small firms. It is seen that this moment is not
substantially affected by the particular value of ζ: as for the baseline case, the number of
firms declines by 74%, the share of small firms by 85%. In the right panel, I depict the
change in the growth rate. Two results stand out: First of all, depending on the value of
ζ, the growth rate can either increase or decrease in response to a reduction of entry and
expansion barriers. Second, the implied changes in the growth rate are relatively small.
Hence, the result that large changes in the firm size distribution are consistent with an
essentially stable distribution of income is robust.

Sensitivity With Respect to the Calibrated Moments. In Figure A-3, I study the sensitiv-
ity of these implications with respect to the underlying calibration moments. In the left
panel, I depict the change in the number of firms as a function of employment growth for
different values of the entry rate. The baseline calibration for the United States assumed
an entry rate of 8% and that employment grows by a factor of 2 during the first 10 years
of a firm’s life-cycle. The effect of the employment life-cycle is quite sizable. If one were
to assume that the extent of life-cycle growth in the U.S. was 2.5 instead of 2, the model
would predict that the number of firms would fall by almost 90% (relative to around 60–
70% in the baseline calibration). The right panel shows the implications for the aggregate
growth rate. In contrast to the firm-level outcomes, the model does not predict sizable
growth implications. Not only is the effect on the growth rate ambiguous in that, for ex-
ample, a rate of life-cycle growth of 2.6 instead of 2 would increase U.S. growth relative
to Indonesia, but even for extremely large differences in firm-dynamics, the differences in
aggregate productivity growth do not exceed 0.2%.

A-2.6. Expansion and Entry Costs in Indonesia: Empirical Evidence

The analysis above suggests that differences in expansion costs could be an important
determinant of firm size, firm growth, and misallocation. In this last section, I provide
suggestive evidence for such frictions. To do so, I exploit regional variation across product
markets in Indonesia. As I do not have direct information on the type of barriers different
firms might face, I use the theory to suggest an empirical strategy based on the joint
patterns of various firm-level outcomes.
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FIGURE A-3.—SENSITIVITY OF RESULTS TO UNDERLYING MOMENTS. Notes: This figure displays the model’s
predictions for the change in the number of firms (left panel) and the equilibrium growth rate (right panel)
as a function of the life-cycle employment growth over 10 years and the equilibrium entry rate. The baseline
results in Table VI refer to the case of a life-cycle growth of 2 and an entry rate of 8%.

The basic intuition is simple. If different regions in Indonesia differed only in their ex-
pansion costs, locations with low frictions should see fewer and bigger firms, lower entry
rates, and a steeper schedule of life-cycle employment growth. Additionally, product mar-
kets in such regions should be characterized by lower markups. If, in contrast, entry costs
were the dominant source of variation, it would also be the case that firm size should be
negatively correlated with regional entry rates and positively correlated with the slope of
life-cycle growth. However, now large firms should reside in regions with high entry costs
and one would expect a positive correlation between firm size and the prevailing markups.

I implement this strategy in the following way. The Indonesian micro-data allow me
to link individual firms to their geographic location. I define a geographical region as a
province, of which there are 27 in the data. Because I do not have information on where
firms sell their products, I need to assume that firms are predominantly active in their own
province. Provinces obviously differ in their industrial composition. As industries differ in
their average size, I conduct the entire analysis at the region-industry level and control
for the common industry component using fixed effects. Hence, the variation of interest
is geographical in nature. I calculate my outcomes of interest, that is, average firm size,
entry and exit rates, average markups, and the employment life-cycle growth rates for
each province-industry-year cell and then consider regressions of the form

yrst = δs + δt +β× AvgSizerst + γ× ln(popr)+ α×Agr + urst�
where δs and δt are industry and time fixed effects, AvgSizerst is the average size of pro-
ducers active in region r, in sector s in time t, and yrst are the different outcome variables
mentioned above. Moreover, I also control for the size of the population in region r and
the regional agricultural share to account for the effects of market size.5 Given the focus
on the regional variation, I cluster all standard errors at the province level, to allow for
correlation in the error term across industries within a province.

5To measure geographical characteristics, I exploit information from the Village Potential Statistics
(PODES) data set in 1996. The PODES data set contains detailed information on all of Indonesia’s 65,000
villages. Using the village-level data, I then aggregate this information to the province level and match these
to the firm-level data. In particular, I measure the size of the population and the share of the population living
in villages, which are predominantly agricultural.



22 MICHAEL PETERS

TABLE A-V

FIRM SIZE, ENTRY, AND MARKUPS ACROSS PRODUCT MARKETS IN INDONESIAa

Markups

Entry Rate Exit Rate LC Empl. Growth Avg. q90

Average firm size −0.019 −0.011 0.132 −0.054 −0.049
(0.004) (0.003) (0.034) (0.014) (0.010)

Controls Local population; Local agricultural share; Industry FE; Year FE

N 455 463 463 462 462
R2 0.369 0.320 0.640 0.378 0.369

aStandard errors are clustered at the level of a province and contained in parentheses. Regressions are run at the province-industry
level, where industries are measured at the 3-digit level. The variables are all measured within these province-industry cells. The entry
and exit rates are measured as the share of entering and exiting firms. The employment life-cycle is measured as the growth of cohort
employment over the 3-year horizon. Log markups are measured as the residual from a regression of log inverse labor shares on
a set of year and 5-digit industry fixed effects, “Avg.” is the mean log markup, and q90 is the 90% quantile. “Average firm size” is
the average log value added within an industry-region-year cell. All regressions contain a full set of industry and year fixed effects
and control for the log of the province population and the share of villages within the province, which are agricultural. I only consider
province-industry cells with at least 50 observations, and all regressions are weighted using the number of observations within each cell.

My preferred measure of size is firm sales (rather then employment), as the theory
predicts that average sales only depend on x/τ. To calculate the employment life-cycle,
I again rely on the panel dimension and adopt the same methodology as for Figure 4.6
To avoid identifying the parameters from sparsely populated region-industry-year cells,
I only consider cells which contain at least 50 observations, and I weight the regression by
the number of observations in each bin.

Table A-V contains the results. In the first three columns, I show that average firm size
in a region is negatively correlated with entry and exit rates and positively correlated with
the extent of life-cycle growth. These correlations hold regardless of whether the source
of variation across regions stems from entry or expansion costs. Columns 4 and 5 show
that average size is negatively correlated with markups as measured by either the average
markup or the 90%-quantile. This is consistent with the model if regional firm size is
driven by differences in expansion costs, but not consistent with an explanation based on
entry costs. While these patterns are consistent with expansion costs potentially playing
an important role, they are of course only suggestive. However, they highlight the need to
directly measure why the costs of entering new product markets might be systematically
related to the level of development and whether these are amenable by policies.
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