
Data and Computational Appendix to
“Leave-out estimation of variance components”

Patrick Kline, Raffaele Saggio, Mikkel Sølvsten

March 14, 2020

1 Data

This Appendix describes construction of the data used in the application of Section 9.

1.1 Veneto Workers History

Our data come from the Veneto Workers History (VWH) file, which provides social security

based earnings records on annual job spells for all workers employed in the Italian region

of Veneto at any point between the years 1975 and 2001. Each job-year spell in the VWH

lists a start date, an end date, the number of days worked that year, and the total wage

compensation received by the employee in that year. The earnings records are not top-coded.

We also observe the gender of each worker and several geographic variables indicating the

location of each employer. See Card, Devicienti, and Maida (2014) and Serafinelli (2019) for

additional discussion and analysis of the VWH.

We consider data from the years 1984–2001 as prior to that information on days worked

tend to be of low quality. To construct the person-year panel used in our analysis, we follow

the sample selection procedures described in Card, Heining, and Kline (2013). First, we

drop employment spells in which the worker’s age lies outside the range 18–64. The average

worker in this sample has 1.21 jobs per year. To generate unique worker-firm assignments in

each year, we restrict attention to spells associated with “dominant jobs” where the worker

earned the most in each corresponding year. From this person-year file, we then exclude

workers that (i) report a daily wage less than 5 real euros or have zero days worked (1.5% of

remaining person-year observations) (ii) report a log daily wage change one year to the next

that is greater than 1 in absolute value (6%) (iii) are employed in the public sector (10%) or

(iv) have more than 10 jobs in any year or that have gender missing (0.1%).

1

2 Computation

This Appendix describes the key computational aspects of the leave-out estimator θ̂, with an

emphasis on the application to two-way fixed effects models with two time periods discussed

in Example 3 and Section 9.

2.1 Leave-One-Out Connected Set

Existence of θ̂ requires Pii < 1 (see Lemma 1) and the following describes an algorithm which

prunes the data to ensure that Pii < 1. In the two-way fixed effects model of Section 9, this

condition requires that the bipartite network formed by worker-firm links remains connected

when any one worker is removed. This boils down to finding workers that constitute cut

vertices or articulation points in the corresponding bipartite network.

The algorithm below takes as input a connected bipartite network G where workers and

firms are vertices. Edges between two vertices correspond to the realization of a match

between a worker and a firm (see Jochmans and Weidner, 2019; Bonhomme, 2017, for dis-

cussion). In practice, one typically starts with a G corresponding to the largest connected

component of a given bipartite network (see, e.g., Card et al., 2013). The output of the al-

gorithm is a subset of G where removal of any given worker does not break the connectivity

of the associated graph.

The algorithm relies on existing functions that efficiently finds articulation points and

largest connected components. In MATLAB such functions are available in the Boost Graph

Library and in R they are available in the igraph package.

Algorithm 1 Leave-One-Out Connected Set

1: function PruningNetwork(G) . G ≡ Connected bipartite network of firms and
workers

2: Construct G1 from G by deleting all workers that are articulation points in G
3: Let G be the largest connected component of G1

4: Return G
5: end function

The algorithm typically completes in less than a minute for datasets of the size considered

in our application. Furthermore, the vast majority of firms removed using this algorithm are

only associated with one mover.

2

2.2 Leave-Two-Out Connected Set

We also introduced a leave-two-out connected set, which is a subset of the original data

such that removal of any two workers does not break the connectedness of the bipartite

network formed by worker-firm links. The following algorithm proceeds by applying the

idea in Algorithm 1 to each of the networks constructed by dropping one worker. A crucial

difference from Algorithm 1 is that two workers who do not break connectedness in the input

network may break connectedness when other workers have been removed. For this reason,

the algorithm runs in an iterative fashion until it fails to remove any additional workers.

Algorithm 2 Leave-Two-Out Connected Set

1: function PruningNetwork2(G) . G ≡ Leave-one-out connected bipartite network
of firms and workers

2: a = 1
3: while a > 0 do
4: Gdel = ∅
5: for g = 1, . . . , N do
6: Construct G1 from G by deleting worker g
7: Add all workers that are articulation points in G1 to Gdel
8: end for
9: a = |Gdel|

10: if a > 0 then
11: Construct G1 from G by deleting all workers in Gdel
12: Let G2 be the largest connected component of G1

13: Let G be the output of applying Algorithm 1 to G2

14: end if
15: end while
16: Return G
17: end function

2.3 Computing θ̂

Our proposed leave-out estimator is a function of the 2n quadratic forms

Pii = x′iS
−1
xx xi Bii = x′iS

−1
xxAS

−1
xx xi for i = 1, ..., n.

The estimates reported in Section 9 of the paper rely on exact computation of these quanti-

ties. In our application, k is on the order of hundreds of thousands, making it infeasible to

compute S−1
xx directly. To circumvent this obstacle, we instead compute the k-dimensional

3

vector zi,exact = S−1
xx xi separately for each i = 1, .., n. That is, we solve separately for each

column of Zexact in the system

Sxx
k×k

Zexact
k×n

= X ′
k×n

.

We then form Pii = x′izi,exact and Bii = z′i,exactAzi,exact. The solution zi,exact is computed via

MATLAB’s preconditioned conjugate gradient routine pcg. In computing this solution, we

utilize the preconditioner developed by Koutis et al. (2011), which is optimized for diagonally

dominant design matrices Sxx. These column-specific calculations are parallelized across

different cores using MATLAB’s parfor command.

2.3.1 Leaving a Cluster Out

Table A.1 applies the leave-cluster-out estimator introduced in Remark 3 to estimate the

variance of firm effects with more than two time periods and potential serial correlation.

The estimator takes the form θ̂cluster =
∑n

i=1 yix̃
′
iβ̂−c(i) where β̂−c(i) is the OLS estimator

obtained after leaving out all observations in the cluster to which observation i belongs. A

representation of θ̂cluster that is useful for computation takes the observations in the c-th

cluster and collect their outcomes in yc and their regressors in Xc. The leave-cluster-out

estimator is then

θ̂cluster = β̂′Aβ̂ −
C∑
c=1

y′cBc(I − Pc)−1(yc −Xcβ̂),

where C denotes the total number of clusters, Pc = XcS
−1
xxX

′
c, and Bc = XcS

−1
xxAS

−1
xxX

′
c.

Since the entries of Pc and Bc are of the form Pi` = x′iS
−1
xx x` and Bi` = x′iS

−1
xxAS

−1
xx x`, com-

putation can proceed in a similar fashion as described earlier for the leave-one-out estimator.

When defining the cluster as a worker-firm match, Table A.1 applies θ̂cluster to the two-

way fixed effects model in (5). When defining the cluster as a worker, the individual effects

can not be estimated after leaving a cluster out. Table A.1 therefore applies θ̂cluster after

demeaning at the individual level. This transformation removes the individual effects so that

the resulting model can be estimated after leaving a cluster out.

4

2.3.2 Johnson-Lindenstrauss Approximation

When n is on the order of hundreds of millions and k is on the order of tens of millions,

the exact algorithm may no longer be tractable. The JLA simplifies computation of Pii

considerably by only requiring the solution of p systems of k linear equations. That is, one

need only solve for the columns of ZJLA in the system

Sxx
k×k

ZJLA
k×p

= (RPX)′

k×p
,

which reduces computation time dramatically when p is small relative to n.

To compute Bii, it is necessary to solve linear systems involving both A1 and A2, leading

to 2p systems of equations when A1 6= A2. However, for variance decompositions like the

ones considered in Section 9, the same 2p systems can be reused for all three variance

components, leading to a total of 3p systems of equations for the full variance decomposition.

This is so because the three variance components use the matrices Aψ = A′fAf , Aα,ψ =
1
2
(A′dAf + A′fAd), and Aα = A′dAd where

A′f = 1√
n

 0 0 0

f1 − f̄ . . . fn − f̄
0 0 0

 and A′d = 1√
n

d1 − d̄ . . . dn − d̄
0 0 0

0 0 0

 .

Based on these insights, Algorithm 3 below takes as inputs X, Af , Ad, and p, and returns P̂ii

and three different B̂ii’s which are ultimately used to construct the corresponding variance

component θ̂JLA as defined in Section 3.

2.3.3 Performance of the JLA

Figure 2.1 evaluates the performance of the Johnson-Lindenstrauss approximation across 4

VWH samples that correspond to different (overlapping) time intervals (2000–2001; 1999–

2001; 1998–2001; 1997–2001). The x-axis in Figure 2.1 reports the total number of person

and firm effects associated with a particular sample.

Figure 2.1 shows that the computation time for exact computation of (Bii, Pii) increases

rapidly as the number of parameters of the underlying AKM model grow; in the largest

dataset considered – which involves more than a million worker and firm effects – exact

computation takes about 8 hours. Computation of JLA complete in markedly shorter time:

in the largest dataset considered computation time is less than 5 minutes when p = 500 and

slightly over 6 minutes when p = 2500. Notably, the JLA delivers estimates of the variance

5

Algorithm 3 Johnson-Lindenstrauss Approximation for Two-Way Fixed Effects Models

1: function JLA(X,Af ,Ad,p)
2: Generate RB, RP ∈ Rp×n, where (RB, RP) are composed of mutually independent

Rademacher entries
3: Compute (RPX)′, (RBAf)

′, (RBAd)
′ ∈ Rk×p

4: for κ = 1, . . . , p do
5: Let rκ,0, rκ,1, rκ,2 ∈ Rk be the κ-th columns of (RPX)′, (RBAf)

′, (RBAd)
′

6: Let zκ,` ∈ Rk be the solution to Sxxz = rκ,` for ` = 0, 1, 2
7: end for
8: Construct Z` = (z1,`, . . . , zp,`) ∈ Rk×p for ` = 0, 1, 2

9: Construct P̂ii = 1
p

∥∥Z ′0xi∥∥2
, B̂ii,ψ = 1

p

∥∥Z ′1xi∥∥2
, B̂ii,α = 1

p

∥∥Z ′2xi∥∥2
, B̂ii,αψ =

1
p
(Z ′1xi)

′(Z ′2xi) for i = 1, . . . , n

10: Return {P̂ii, B̂ii,ψ, B̂ii,α, B̂ii,αψ}ni=1

11: end function

of firm effects almost identical to those computed via the exact method, with the quality

of the approximation increasing for larger p. For instance, in the largest dataset, the exact

estimate of variance of firm effects is 0.028883. By comparison, the JLA estimate equals

0.028765 when p = 500 and 0.0289022 when p = 2500.

In summary: for a sample with more than a million worker and firm effects, the JLA cuts

computation time by a factor of 100 while introducing an approximation error of roughly

10−4.

2.3.4 Scaling to Very Large Datasets

We now study how the JLA scales to much larger datasets of the dimension considered by

Card et al. (2013) who fit models involving tens of millions of worker and firm effects to

German social security records. To study the computational burden of a model of this scale,

we rely on a synthetic dataset constructed from our original leave-one-out sample analyzed

in Column 1 of Table 2, i.e., the pooled Veneto sample comprised of wage observations from

the years 1999 and 2001. We scale the data by creating replicas of this base sample. To

connect the replicas, we draw at random 10% of the movers and randomly exchange their

period 1 firm assignments across replicas. By construction, this permutation maintains each

(replicated) firm’s size while ensuring leave-one-out connectedness of the resulting network.

Wage observations are drawn from a variant of the DGP described in Section 9.5 adapted

to the levels formulation of the model. Specifically, each worker’s wage is the sum of a rescaled

person effect, a rescaled firm effect, and an error drawn independently in each period from

6

a normal with variance 1
2

exp(â0 + â1Bgg + â2Pgg + â3 lnLg2 + â4 lnLg1). As highlighted

by Figure 2.1, computing the exact estimator in these datasets would be extremely costly.

Drawing from a stable DGP allows us to instead benchmark the JLA estimator against the

true value of the variance of firm effects.

Figure 2.2 displays the results. When setting p = 250, the JLA delivers a variance

of firm effects remarkably close to the true variance of firm effects defined by our DGP.

As expected, the distance between our approximation and the true variance component

decreases with the sample size for a fixed p. Remarkably, we are able to compute the AKM

variance decomposition in a dataset with approximately 15 million person and year effects in

only 35 minutes. Increasing the number of simulated draws in the JLA to p = 500 delivers

estimates of the variance of firm effects nearly indistinguishable from the true value. This is

achieved in approximately one hour in the largest simulated dataset considered. The results

of this exercise strongly suggest the leave-out estimator can be scaled to extremely large

datasets involving the universe of administrative wage records in large countries such as

Germany or the United States.

7

Figure 2.1: Performance of the JLA Algorithm

(a) Computation Time

1

3

5

100

200

500
M

in
ut

es
 (L

og
ar

ith
m

ic
 S

ca
le

)

700,000 900,000 1,000,000 1,100,000
Number of Person and Firm Effects

Computation Time - Exact
Computation Time - JLA with p=2500
Computation Time - JLA with p=500

(b) Quality of the Approximation

.02

.025

.03

.035

.04

Va
ria

nc
e

of
 F

irm
 E

ffe
ct

s

700,000 900,000 1,000,000 1,100,000
Number of Person and Firm Effects

Estimate - JLA with p=500
Estimate - JLA with p=2500
Estimate - Exact Computation
Estimate - Plug-in

Note: Both panels consider 4 different samples of increasing length. The four samples contain data from

the years 2000–2001, 1999–2001, 1998–2001, and 1997–2001, respectively. The x-axis reports the number of

person and firm effects in each sample. Panel (a) shows the time to compute the KSS estimate when relying

on either exact computation of {Bii, Pii}
n
i=1 or the Johnson-Lindenstrauss approximation (JLA) of these

numbers using a p of either 500 or 2500. Panel (b) shows the resulting estimates and the plug-in estimate.

Computations performed on a 32 core machine with 256 GB of dedicated memory. Source: VWH dataset.

Figure 2.2: Scaling to Very Large Datasets

(a) Computation Time

0

30

60

90
M

in
ut

es

1M 3M 6M 10M 14M
Number of Person and Firm Effects (in millions)

Computation Time - JLA with p=250
Computation Time - JLA with p=500

(b) Quality of the Approximation

.02

.03

.04

Va
ria

nc
e

of
 F

irm
 E

ffe
ct

s

1M 3M 6M 10M 14M
Number of Person and Firm Effects (in millions)

Estimate - JLA with p=250
Estimate - JLA with p=500
Estimate - Plug-in
True value

Note: Both panels consider synthetic datasets created from the pooled Veneto data in column 1 of Table 2

with T = 2. It considers {1, 5, 10, 15, 20} replicas of this sample while generating random links across replicas

such that firm size and T are kept fixed. Outcomes are generated from a DGP of the sort considered in

Table 5. The x-axis reports the number of person and firm effects in each sample. Panel (a) shows the time

to compute the Johnson-Lindenstrauss approximation θ̂JLA using a p of either 250 or 500. Panel (b) shows

the resulting estimates, the plug-in estimate, and the true value of the variance of firm effects for the DGP.

Computations performed on a 32 core machine with 256 GB of dedicated memory. Source: VWH dataset.

2.4 Split Sample Estimators

Sections 5.2 and 6.2 proposed standard error estimators predicated on being able to construct

independent split sample estimators x̂′iβ−i,1 and x̂′iβ−i,2. This section describes an algorithm

for construction of these split sample estimators in the two-way fixed effects model of Ex-

ample 3. We restrict attention to the case with Tg = 2 and consider the model in first

differences: ∆yg = ∆f ′gψ + ∆εg for g = 1, . . . , N . When worker g moves from firm j to j′,

we can estimate ∆f ′gψ = ψj′ − ψj without bias using OLS on any sub-sample where firms

j and j′ are connected, i.e., on any sample where there exist a path between firm j and

j′. To construct two disjoint sub-samples where firms j and j′ are connected we therefore

use an algorithm to find disjoint paths between these firms and distribute them into two

sub-samples which will be denoted S1 and S2. Because it can be computationally prohibitive

to characterize all possible paths, we use a version of Dijkstra’s algorithm to find many short

paths.1

Our algorithm is based on a network where firms are vertices and two firms are connected

by an edge if one or more workers moved between them. This view of the network is the

same as the one taken in Section 8, but different from the one used in Sections 2.1 and 2.2

where both firms and workers were viewed as vertices. We use the adjacency matrix A to

characterize the network in this section. To build the sub-samples S1 and S2, the algorithm

successively drops workers from the network, so A−S will denote the adjacency matrix after

dropping all workers in the set S.

Given a network characterized by A and two connected firms j and j′ in the network, we

let Ṗjj′(A) denote the shortest path between them.2 If j and j′ are not connected Ṗjj′(A)

is empty. Each edge in the path Ṗjj′(A) may have more than one worker associated with

it. For each edge in Ṗjj′(A) the first step of the algorithm picks at random a single worker

associated with that edge and places them in S1, while later steps place all workers associated

with the shortest path in one of S1 and S2. This special first step ensures that the algorithm

finds two independent unbiased estimators of ∆f ′gψ whenever the network A is leave-two-out

1The algorithm presented below keeps running until it cannot find any additional paths. In our empirical
implementation we stop the algorithm when it fails to find any new paths or as soon as one of the two
sub-samples reach a size of at least 100 workers. We found that increasing this cap on the sub-sample
size has virtually no effect on the estimated confidence intervals, but tends to increase computation time
substantially.

2Many statistical software packages provide functions that can find shortest paths. In R
they are available in the igraph package while in MATLAB a package that builds on the
work of Yen (1971) is available at https://www.mathworks.com/matlabcentral/fileexchange/

35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix-yen-s-algorithm?

focused=3779015&tab=function.

10

https://www.mathworks.com/matlabcentral/fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix-yen-s-algorithm?focused=3779015&tab=function
https://www.mathworks.com/matlabcentral/fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix-yen-s-algorithm?focused=3779015&tab=function
https://www.mathworks.com/matlabcentral/fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix-yen-s-algorithm?focused=3779015&tab=function

connected.

For a given worker g with firm assignments j = j(g, 1), j′ = j(g, 2) and a leave-two-

out connected network A the algorithm returns the {Pg`,1, Pg`,2}N`=1 introduced in Section

5.2. Specifically, ∆̂f ′gψ−g,1 =
∑N

`=1 Pg`,1∆y` and ∆̂f ′gψ−g,2 =
∑N

`=1 Pg`,2∆y` are independent

unbiased estimators of ∆f ′gψ that are also independent of ∆yg. If A is only leave-one-

out connected then the algorithm may only find one path connecting j and j′. When this

happens the algorithm sets Pg`,2 = 0 for all ` as required in the formulation of the conservative

standard errors proposed in Kline et al. (2020).

Algorithm 4 Split Sample Estimator for Inference

1: function splitsampleestimator(g, j, j′,A) . A ≡ Leave-one-out connected network

2: Let S1 = ∅ and S2 = ∅
3: For each edge in Ṗjj′(A−g), pick at random one worker from A−g who is associated

with that edge and add that worker to S1

4: Add to S2 all workers from A−{g,S1} who are associated with an edge in Ṗjj′(A−{g,S1})
5: Add to S1 all workers from A−{g,S1,S2} who are associated with an edge in Ṗjj′(A−g)
6: Let stop = 1{Ṗjj′(A−{g,S1,S2}) = ∅} and s = 1

7: while stop < 1 do

8: Add to Ss all workers from A−{g,S1,S2} who are associated with an edge in

Ṗjj′(A−{g,S1,S2})
9: Let stop = 1{Ṗjj′(A−{g,S1,S2}) = ∅} and update s to 1 + 1{s = 1}

10: end while

11: For s = 1, 2 and ` = 1, . . . , N , let Pg`,s = 1{` ∈ Ss}∆f ′`(
∑

m∈Ss ∆fm∆f ′m)†∆fg

12: Return {Pg`,1, Pg`,2}N`=1

13: end function

In line 5, all workers associated with the shortest path in line 3 are added to S1 if they

were not added to S2 in line 4. This step ensures that all workers associated with Ṗjj′(A−g)
are used in the predictions. In line 11, Pg`,s is constructed as the weight observation ` receives

in the prediction ∆f ′gψ̂s where ψ̂s is the OLS estimator of ψ based on the sub-sample Ss.

2.5 Test of Equal Firm Effects

This section describes computation and interpretation of the test of the hypothesis that firm

effects for “younger” workers are equal to firm effects for the “older” workers which applies

11

Remark 6 of the main text.

The hypothesis of interest corresponds to a restricted and unrestricted model which when

written in matrix notation are

∆y = ∆Fψ + ∆ε (1)

∆y = ∆FOψ
O + ∆FY ψ

Y + ∆F3ψ3 + ∆ε = Xβ + ∆ε (2)

where ∆y and ∆F collects the first differences ∆yg and ∆fg across g. ∆FO represents

∆F for “doubly connected” firms present in each age group’s leave-one-out connected set

interacted with a dummy for whether the worker is “old”; ∆FY represents ∆F for doubly

connected firms interacted with a dummy for young; ∆F3 represents ∆F for firms that

are associated with either younger movers or older movers but not both. Finally, we let

X = (∆FO,∆FY ,∆F3), β = (ψO′, ψY ′, ψ′3)′, and ψ = (ψO′, ψ′3)′.

The hypothesis in question is ψO − ψY = 0 or equivalently Rβ = 0 for R = [Ir,−Ir, 0]

and r = |J | = dim(ψO). Thus we can create the numerator of our test statistic by applying

Remark 6 to (2) yielding

θ̂ = β̂′Aβ̂ −
N∑
g=1

Bggσ̂
2
g (3)

where A = 1
r
R′(RS−1

xxR
′)−1R; Bgg and σ̂2

g are defined as in Section 1.

Two insights help to simplify computation. First, since ∆F ′O∆FY = 0, ∆F ′O∆F3 = 0 and

∆F ′Y ∆F3 = 0, we can estimate equation (2) via two separate regressions, one on the leave-

one-out connected set for younger workers and the other on the leave-one-out connected set

for older workers. We normalize the firm effects so that the same firm is dropped in both

leave-one-out samples.

Second, we note that β̂′Aβ̂ = y′By where

B = XS−1
xxAS

−1
xxX

′ =
PX − P∆F

r
, (4)

PX = XS−1
xxX

′, and P∆F = ∆F (∆F ′∆F)−1∆F ′. Equation (4) therefore implies that Bii

in (3) is simply a scaled difference between two statistical leverages: the first one obtained

in the unrestricted model (2), say PX,gg, and the other on the restricted model of (1), say

P∆F,gg. Section 2.3 describes how to efficiently compute these statistical leverages. To

conduct inference on the quadratic form in (3) we apply the routine described in Section 5.2.

12

References

Bonhomme, S. (2017). Econometric analysis of bipartite networks. Econometric Analysis of

Network data edited by B. Graham and A. De Paula.

Card, D., F. Devicienti, and A. Maida (2014). Rent-sharing, holdup, and wages: Evidence

from matched panel data. The Review of Economic Studies 81 (1), 84–111.

Card, D., J. Heining, and P. Kline (2013). Workplace heterogeneity and the rise of west

german wage inequality. The Quarterly journal of economics 128 (3), 967–1015.

Jochmans, K. and M. Weidner (2019). Fixed-effect regressions on network data. Economet-

rica 87 (5), 1543–1560.

Kline, P., R. Saggio, and M. Sølvsten (2020). Supplement to “Leave-out estimation of

variance components”. Econometrica Supplemental Material .

Koutis, I., G. L. Miller, and D. Tolliver (2011). Combinatorial preconditioners and multilevel

solvers for problems in computer vision and image processing. Computer Vision and Image

Understanding 115 (12), 1638–1646.

Serafinelli, M. (2019). “good” firms, worker flows, and local productivity. Journal of Labor

Economics 37 (3), 747–792.

Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. management Sci-

ence 17 (11), 712–716.

13

	Data
	Veneto Workers History

	Computation
	Leave-One-Out Connected Set
	Leave-Two-Out Connected Set
	Computing
	Leaving a Cluster Out
	Johnson-Lindenstrauss Approximation
	Performance of the JLA
	Scaling to Very Large Datasets

	Split Sample Estimators
	Test of Equal Firm Effects

