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APPENDIX SA: GENERALIZATION AND PROOF OF THEOREM 2

I STATE A GENERALIZED VERSION of Theorem 2 by allowing for arbitrary correlations be-
tween the two dimensions of player 1’s private information in μ. For every θ ∈ Θ, let μ(θ)
be the probability of commitment type θ. For every a∗

1 ∈ A∗
1, let μ(a∗

1) be the probability
of commitment type a∗

1. I say that μ is optimistic if

μ(a1)D(φa1� a1)+
∑

θ∈Θg∪Θp

μ(θ)D(θ�a1) > 0 (SA.1)

and is pessimistic otherwise, which generalizes the optimistic and pessimistic belief con-
ditions in the main text.

THEOREM 2′: If the game satisfies Assumptions 1, 2, and 3, and μ has full support and
satisfies Assumption 4 and (SA.1), then

lim inf
δ→1

vθ(δ�μ�u1�u2)≥ u1(θ�a1� a2) for every θ ∈Θ∗�

SA.1. Defining Useful Constants

Recall the definitions of Θg, Θp, and Θn in Appendix D of the main text. Let θg, θp, and
θn be typical elements of these sets and recall that Lemma D.1 shows that θg � θp � θn.

My proof starts by defining several useful constants which only depend on μ, u1, and
u2, but are independent of σ and δ. Let M ≡ maxθ�a1�a2 |u1(θ�a1� a2)| and

K ≡
max
θ∈Θ

{
u1(θ�a1� a2)− u1(θ�a1� a2)

}
min
θ∈Θ

{
u1(θ�a1� a2)− u1(θ�a1� a2)

} �
Since D(φa1� a1) > 0, the optimistic belief condition (SSA.1) implies the existence of κ ∈
(0�1) such that

κμ(a1)D(φa1� a1)+
∑
θ∈Θ

μ(θ)D(θ�a1) > 0�

For any κ ∈ (0�1), let

ρ0(κ) ≡ (1 − κ)μ(a1)D(φa1� a1)

2 max
(θ�a1)∈Θ×A1

∣∣D(θ�a1)
∣∣ > 0 (SA.2)
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and

T 0(κ)≡ ⌈
1/ρ0(κ)

⌉
� (SA.3)

Let

ρ1(κ)≡ κμ(a1)D(φa1� a1)

max
(θ�a1)

∣∣D(θ�a1)
∣∣ (SA.4)

and

T 1(κ)≡ ⌈
1/ρ1(κ)

⌉
� (SA.5)

Let δ ∈ (0�1) be close enough to 1 such that for every δ ∈ [δ�1) and θp ∈Θp,(
1 − δT 0(0)

)
u1(θp�a1� a2)+ δT 0(0)u1(θp�a1� a2)

>
1
2
(
u1(θp�a1� a2)+ u1(θp�a1� a2)

)
� (SA.6)

SA.2. Random History and Random Path

Let Ω ≡ A∗
1 ∪ Θ be the set of types with ω a typical element of Ω. Abusing notation,

I write μ as a full support distribution on Ω. Let ht ≡ (at� rt), with at ≡ (a1�s)s≤t−1 and
rt ≡ (a2�s� ξs)s≤t−1. Let at

∗ ≡ (a1� � � � � a1). I call ht a public history, rt a random history, and
r∞ a random path. Let H and R be the set of public histories and random histories, re-
spectively, with �, �, ≺, and � naturally defined. Recall that a strategy profile σ consists
of (σθ)θ∈Θ with σθ : H → �(A1) and σ2 : H → �(A2). Let Pσ(θ) be the probability mea-
sure over public histories induced by (σθ�σ2). Let Pσ ≡ ∑

ω∈Ω μ(ω)Pσ(ω) be the prob-
ability measure induced by σ , taking into account the possibilities of commitment types.
Let vσ(ht) ≡ {vσθ (ht)}θ∈Θ ∈ R|Θ| be the continuation payoff vector for strategic types at ht

under strategy profile σ .
Let Hσ ⊂ H be the set of histories ht such that Pσ(ht) > 0, and let Hσ(ω) ⊂ H be the

set of histories ht such that Pσ(ω)(ht) > 0. Let

Rσ
∗ ≡ {

r∞|(at
∗� r

t
) ∈Hσ for all t and rt ≺ r∞}

be the set of random paths consistent with player 1 playing a1 in every period. For every
ht = (at� rt), let σ1[ht] :H →A1 be a strategy in the continuation game at ht that satisfies
σ1[ht](hs) = a1 for all hs � ht with hs = (at� a1� � � � � a1� r

s) ∈ Hσ . Let σ1[ht] : H → A1 be
a strategy in the continuation game at ht that satisfies σ1[ht](hs) = a1 for all hs � ht with
hs = (at� a1� � � � � a1� r

s) ∈Hσ . For every θ ∈ Θ, let

Rσ
(θ)≡ {

rt |σ1

[
at

∗� r
t
]

is type θ’s best reply to σ2

}
and

Rσ(θ)≡ {
rt |σ1

[
at

∗� r
t
]

is type θ’s best reply to σ2

}
�
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SA.3. Beliefs and Best Response Sets

Let μ(at� rt) ∈ �(Ω) be player 2’s posterior belief at (at� rt) and, specifically, let
μ∗(rt)≡ μ(at

∗� r
t). Let

Bκ ≡
{
μ̃ ∈ �(Ω)

∣∣∣κμ̃(a1)D(φa1� a1)+
∑
θ∈Θ

μ̃(θ)D(θ�a1)≥ 0
}
� (SA.7)

By definition, Bκ′ � Bκ for every κ�κ′ ∈ [0�1] with κ′ < κ.
For every rt ∈Rt and ω ∈ Ω, let q∗(rt)(ω) be the ex ante probability that (a) player 1 is

type ω and (b) player 1 has played a1 from period 0 to t − 1, conditional on the realization
of random history being rt . Let q∗(rt) ≡ {q∗(rt)(ω)}ω∈Ω. For every δ ∈ (0�1) and strategy
profile σ ∈ NE(δ�μ), the following statements hold:

(i) For every at and rt� r̂t � rt−1 satisfying (at� rt)� (at� r̂t) ∈ Hσ , we have μ(at� rt) =
μ(at� r̂t).

(ii) For every rt� r̂t � rt−1 with (at
∗� r

t)� (at
∗� r̂

t) ∈Hσ , we have q∗(rt)= q∗(r̂t).
This is because player 1’s action in period t − 1 depends on rt only through rt−1, so is
player 2’s belief at every on-path history. Since the commitment type plays a1 in every
period, we have q∗(rt)(a1)= μ0(a1).

For future reference, I introduce two sets of random histories based on player 2’s pos-
terior beliefs. Let

Rσ
g ≡ {

rt |(at
∗� r

t
) ∈Hσ and μ∗(rt)(Θp ∪Θn)= 0

}
(SA.8)

and let

R̂σ
g ≡ {

rt |there exists rT � rt such that rT ∈Rσ
g

}
� (SA.9)

Intuitively, R̂σ
g is the set of on-path random histories under which all the strategic types

in Θp ∪ Θn will be separated from commitment type a1 at some random histories in the
future.

SA.4. Four Useful Lemmas

Recall that σθ : H → �(A1) is type θ’s strategy. The first lemma outlines the implica-
tions of monotone-supermodularity on different types of player 1’s equilibrium strategies.

LEMMA SA.1: Suppose σ is an equilibrium under (δ�μ), θ � θ̃ and ht
∗ = (at

∗� r
t) ∈

Hσ(θ)∩Hσ(θ̃):
(i) If rt ∈Rσ

(θ̃), then σθ(a
s
∗� r

s)(a1)= 1 for every (as
∗� r

s) ∈H(σ1(h
t∗)�σ2)(θ) with rs � rt .

(ii) If rt ∈Rσ(θ), then σθ̃(a
s� rs)(a1)= 1 for every (as� rs) ∈H(σ1(h

t∗)�σ2)(θ̃) with (as� rs)�
(at

∗� r
t).

PROOF: I only need to show the first part, as the second part is symmetric after switch-
ing signs. Without loss of generality, I focus on history h0. For notational simplicity, let
σ1[h0] = σ1. For every σω and σ2, let P(σω�σ2) :A1 ×A2 → [0�1] be defined as

P(σω�σ2)(a1� a2)≡
+∞∑
t=0

(1 − δ)δtp
(σω�σ2)
t (a1� a2)�
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where p
(σω�σ2)
t (a1� a2) is the probability of (a1� a2) occurring in period t under (σω�σ2).

Let P(σ1�σ2)
i ∈ �(A2) be P(σ1�σ2)’s marginal distribution on Ai, for i ∈ {1�2}.

Suppose toward a contradiction that σ1 is type θ̃’s best reply and there exists σθ with
P

(σθ�σ2)
1 (a1) < 1 such that σθ is type θ’s best reply. Then type θ̃’s and type θ’s incentive

constraints require that∑
a2∈A2

(
P

(σ1�σ2)
2 (a2)− P

(σθ�σ2)
2 (a2)

)
u1(θ̃� a1� a2)

≥
∑

a2∈A2�a1 �=a1

P(σθ�σ2)(a1� a2)
(
u1(θ̃� a1� a2)− u1(θ̃� a1� a2)

)
and ∑

a2∈A2

(
P

(σ1�σ2)
2 (a2)− P

(σθ�σ2)
2 (a2)

)
u1(θ�a1� a2)

≤
∑

a2∈A2�a1 �=a1

P(σθ�σ2)(a1� a2)
(
u1(θ�a1� a2)− u1(θ�a1� a2)

)
�

Since P
(σθ�σ2)
1 (a1) < 1 and u1 has strictly increasing differences in θ and a1, we have∑

a2∈A2�a1 �=a1

P(σθ�σ2)(a1� a2)
(
u1(θ̃� a1� a2)− u1(θ̃� a1� a2)

)
>

∑
a2∈A2�a1 �=a1

P(σθ�σ2)(a1� a2)
(
u1(θ�a1� a2)− u1(θ�a1� a2)

)
�

which implies that∑
a2∈A2

(
P

(σθ�σ2)
2 (a2)− P

(σ1�σ2)
2 (a2)

)(
u1(θ�a1� a2)− u1(θ̃� a1� a2)

)
> 0� (SA.10)

On the other hand, since u1 is strictly decreasing in a1, we have∑
a2∈A2�a1 �=a1

P(σθ�σ2)(a1� a2)
(
u1(θ̃� a1� a2)− u1(θ̃� a1� a2)

)
> 0�

Strategic type θ̃’s incentive constraint implies that∑
a2∈A2

(
P

(σ1�σ2)
2 (a2)− P

(σθ�σ2)
2 (a2)

)
u1(θ̃� a1� a2) > 0� (SA.11)

Since both P
(σθ�σ2)
2 and P

(σ1�σ2)
2 are probability distributions, we have∑

a2∈A2

(
P

(σθ�σ2)
2 (a2)− P

(σ1�σ2)
2 (a2)

) = 0�

Since u1(θ�a1� a2) − u1(θ̃� a1� a2) is weakly increasing in a2, inequality (SA.10) implies
that P(σθ�σ2)

2 (a2) − P
(σ1�σ2)
2 (a2) > 0. Since u1(θ̃� a1� a2) is strictly increasing in a2, (SA.11)

implies that P(σθ�σ2)
2 (a2)− P

(σ1�σ2)
2 (a2) < 0, leading to a contradiction. Q.E.D.
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The next lemma establishes a uniform upper bound on the number of periods in which
a2 is not player 2’s strict best reply although a1 has been played in all previous periods and
μ∗(rt) ∈ Bκ.

LEMMA SA.2: If μ∗(rt) ∈ Bκ and a2 is not a strict best reply at (at
∗� r

t), then for every
rt+1 � rt with (at+1

∗ � rt+1) ∈Hσ , we have∑
θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1

)
(θ)

) ≥ ρ0(κ)� (SA.12)

PROOF: If μ∗(rt) ∈ Bκ, then

κμ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(rt)(θ)D(θ�a1)≥ 0�

Suppose a2 is not a strict best reply at (at
∗� r

t). Then

μ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(rt+1
)
(θ)D(θ�a1)+

∑
θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1

)
(θ)

)
D(θ�a1)≤ 0

for every rt+1 � rt with (at+1
∗ � rt+1) ∈Hσ or, equivalently,

κμ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(rt)(θ)D(θ�a1)︸ ︷︷ ︸
≥0

+ (1 − κ)μ(a1)D(φa1� a1)︸ ︷︷ ︸
>0

+
∑
θ∈Θ

(
q∗(rt+1

)
(θ)− q∗(rt)(θ))D(θ�a1)+

∑
θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1

)
(θ)

)
D(θ�a1)≤ 0�

According to (SA.2), we have∑
θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1

)
(θ)

) ≥ (1 − κ)μ(a1)D(φa1� a1)

2 max
(θ�a1)∈Θ×A1

∣∣D(θ�a1)
∣∣ = ρ0(κ)�

Q.E.D.

Lemma SA.2 implies that for every σ ∈ NE(δ�μ) and along every r∞ ∈Rσ
∗ , the number

of rt such that μ∗(rt) ∈ Bκ but a2 is not a strict best reply is at most T 0(κ). The next
lemma obtains an upper bound for player 1’s continuation payoff after separating from
commitment type a1 at a history with a pessimistic posterior belief.

LEMMA SA.3: For every σ ∈ NE(δ�μ) and ht ∈Hσ with

μ
(
ht

)
(a1)D(φa1� a1)+

∑
θ∈Θ

μ
(
ht

)
(θ)D(θ�a1) < 0� (SA.13)

we have vθ(ht)= u1(θ�a1� a2) with θ ≡ min{supp(μ(ht))}.

PROOF: Let

Θ′ ≡ {
θ̃ ∈ Θp ∪Θn|μ

(
ht

)
(θ̃) > 0

}
�
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Since D(φa1� a1) > 0, (SA.13) implies that Θ′ �= {∅}. The rest of the proof is done via
induction on |Θ′|. When |Θ′| = 1, there exists a pure strategy σ∗

θ :H → A1 in the support
of σθ such that (SA.13) holds for all hs satisfying hs ∈ H(σ∗

θ �σ2) and hs � ht . At every such
hs, a2 is player 2’s strict best reply. When playing σ∗

θ , type θ’s stage game payoff is no
more than u1(θ�a1� a2) in every period.

Suppose toward a contradiction that the conclusion holds when |Θ′| ≤ k − 1 but fails
when |Θ′| = k. Then there exists hs ∈Hσ(θ) with hs � ht such that

(i) μ(hτ) /∈ Bκ for all hs � hτ � ht ,
(ii) vθ(h

s) > u1(θ�a1� a2),
(iii) for all a1 such that μ(hs�a1) /∈ Bκ, σθ(h

s)(a1)= 0.
Since belief is a martingale, there exists a1 such that (hs� a1) ∈ Hσ and μ(hs�a1) satisfies
(SA.13). Since μ(hs�a1)(θ) = 0, there exists θ̃ ∈ Θ∗ \ {θ} such that (hs� a1) ∈ Hσ(θ̃). My
induction hypothesis suggests that vθ̃(hs)= u1(θ̃� a1� a2). The incentive constraints of type
θ and type θ̃ at hs require the existence of (α1�τ�α2�τ)

∞
τ=0 with αi�τ ∈ �(Ai) such that

E

[ ∞∑
τ=0

(1 − δ)δτ
(
u1(θ�α1�τ�α2�τ)− u1(θ�a1� a2)

)]

> 0 ≥ E

[ ∞∑
τ=0

(1 − δ)δτ
(
u1(θ̃�α1�τ�α2�τ)− u1(θ̃� a1� a2)

)]
�

where E[·] is taken over probability measure Pσ . However, the supermodularity condition
implies that

u1(θ�α1�τ�α2�τ)− u1(θ�a1� a2)≤ u1(θ̃�α1�τ�α2�τ)− u1(θ̃� a1� a2)�

This leads to a contradiction. Q.E.D.

The next lemma outlines an important implication of rt /∈ R̂σ
g .

LEMMA SA.4: If rt /∈ R̂σ
g and (at

∗� r
t) ∈Hσ , then there exists θ ∈ (Θp∪Θn)∩supp(μ∗(rt))

such that rt ∈ R
σ
(θ).

PROOF: Suppose toward a contradiction that rt /∈ R̂σ
g but no such θ exists. Let

θ1 ≡ max
{
(Θp ∪Θn)∩ supp

(
μ∗(rt))}�

The set on the RHS is nonempty according to the definition of R̂σ
g and Rσ

g

Let (at1∗ � r
t1) � (at

∗� r
t) be the history at which type θ1 has a strict incentive not to play

a1 with (at1∗ � r
t1) ∈ Hσ . For any (at1+1

∗ � rt1+1) � (at1∗ � r
t1) with (at1+1

∗ � rt1+1) ∈ Hσ , on one
hand, we have μ∗(rt1+1)(θ1) = 0. On the other hand, the fact that rt /∈ R̂σ

g implies that
μ∗(rt1+1)(Θn ∪Θp) > 0. Let

θ2 ≡ max
{
(Θp ∪Θn)∩ supp

(
μ∗(rt1+1

))}
�

and let us examine type θ1 and θ2 incentive constraints at (at1∗ � r
t1). According to

Lemma SA.1, there exists rt2 � rt1 such that type θ2 has a strict incentive not to play a1 at
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(at2∗ � r
t2) ∈Hσ . One can iterate the above process and construct rt3 � rt4 � � � . Since∣∣supp

(
μ∗(rtk+1

))∣∣ ≤ ∣∣supp
(
μ∗(rtk))∣∣ − 1

for any k ∈ N, there exists m ≤ |Θp ∪ Θn| such that (atm∗ � rtm) ∈ Hσ , rtm � rt , and
μ∗(rtm)(Θn ∪Θp) = 0, which contradicts rt /∈ R̂σ

g . Q.E.D.

SA.5. Proof of Theorem 2: Θn = {∅}
PROPOSITION SA.1: If Θn = {∅} and μ ∈ Bκ, then for every θ ∈ Θ, we have

vθ
(
a0

∗� r
0
) ≥ u1(θ�a1� a2)− 2M

(
1 − δT 0(κ)

)
�

Despite Proposition SA.1 being stated in terms of player 1’s guaranteed payoff at h0,
the conclusion applies to all rt and θ ∈Θg ∪Θp as long as μ∗(rt) ∈ Bκ and (at

∗� r
t) ∈Hσ(θ)

but (at
∗� r

t) /∈ ⋃
θn∈Θn

Hσ(θn). I show Lemma SA.5 and Lemma SA.6, which together imply
Proposition SA.1.

LEMMA SA.5: For every σ ∈ NE(δ�μ), if μ∗(rt) ∈ Bκ for all rt ∈ R̂σ
g , then for every r∞ ∈

Rσ
∗ , ∣∣{t ∈ N|r∞ � rt and a2 is not a strict best reply at

(
at

∗� r
t
)}∣∣ ≤ T 0(κ)� (SA.14)

PROOF: Pick any r∞ ∈Rσ
∗ . If r0 /∈ R̂σ

g , then let t∗ = −1; otherwise, let

t∗ ≡ max
{
t ∈ N∪ {+∞}|rt ∈ R̂σ

g and r∞ � rt
}
�

According to Lemma SA.2, for every t ≤ t∗, if a2 is not a strict best reply at (at
∗� r

t), then
we have inequality (SA.12).

Next, I show that μ∗(rt
∗+1) ∈ Bκ. If t∗ = −1, this is a direct implication of (SA.1). If t∗ ≥

0, then there exists r̂ t∗+1 � rt
∗ such that r̂ t∗+1 ∈ R̂σ

g . Letting rt
∗+1 ≺ r∞, we have q∗(rt

∗+1) =
q∗(r̂t

∗+1). Moreover, since μ∗(rt) ∈ Bκ for every rt ∈ R̂σ
g , we have μ∗(rt

∗+1) = μ∗(r̂t
∗+1) ∈

Bκ.
Since rt

∗+1 /∈ R̂σ
g , Lemma SA.4 implies the existence of

θ ∈ (Θp ∪Θn)∩ supp
(
μ∗(rt∗+1

))
such that rt∗+1 ∈ R

σ
(θ). Since θg � θ for all θg ∈ Θg, Lemma SA.1 implies that for every θg

and r∞ � rt � rt
∗+1, we have σθg(a

t
∗� r

t)= 1, and, therefore, q∗(rt)(θg) = q∗(rt+1)(θg). This
implies that μ∗(rt) ∈ Bκ for every r∞ � rt � rt

∗+1. If a2 is not a strict best reply at (at
∗� r

t)
for any t > t∗, inequality (SA.12) again applies.

To sum up, for every t ∈N, if a2 is not a strict best reply at (at
∗� r

t), then∑
θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1

)
(θ)

) ≥ ρ0(κ)�

from which we obtain (SA.14). Q.E.D.

Next, I show that the condition required in Lemma SA.5 holds in every equilibrium
when δ is large enough.
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LEMMA SA.6: For every σ ∈ NE(δ�μ) with δ > δ, μ∗(rt) ∈ B0 for every rt ∈ R̂σ
g with

μ∗(rt)(Θn)= 0.

PROOF: For any given δ > δ, according to (SA.6), there exists κ∗ ∈ (0�1) such that(
1 − δT 0(κ

∗))u1(θp�a1� a2)+ δT 0(κ
∗)u1(θp�a1� a2)

>
1
2
(
u1(θp�a1� a2)+ u1(θp�a1� a2)

)
� (SA.15)

Suppose toward a contradiction that there exist rt1 and rT1 such that rT1 � rt1 , rT1 ∈ Rσ
g ,

and μ∗(rt1) /∈ B0. Since μ∗(rT1) ∈ B0, let t∗1 be the largest t ∈ N such that μ∗(rt) /∈ B0 for
rT1 � rt � rt1 . Then there exists a1 �= a1 and rt

∗
1 +1 � rt

∗
1 such that μ((a

t∗1∗ � a1)� r
t∗1 +1) /∈ B0 and

((a
t∗1∗ � a1)� r

t∗1 +1) ∈Hσ . This also implies the existence of θp ∈ Θp∩supp(μ((a
t∗1∗ � a1)� r

t∗1 +1)).
According to Lemma SA.3, type θp’s continuation payoff at (a

t∗1∗ � rt
∗
1 ) by playing a1 is at

most

(1 − δ)u1(θp�a1� a2)+ δu1(θp�a1� a2)� (SA.16)

His incentive constraint at history (a
t∗1∗ � rt

∗
1 ) requires that his expected payoff from σ1 is

weakly lower than (SA.16), that is, there exists rt∗1 +1 � rt
∗
1 satisfying (a

t∗1 +1
∗ � rt

∗
1 +1) ∈Hσ and

type θp’s continuation payoff at (a
t∗1 +1
∗ � rt

∗
1 +1) is no more than

1
2
(
u1(θp�a1� a2)+ u1(θp�a1� a2)

)
� (SA.17)

If μ∗(rt) ∈ Bκ∗ for every rt ∈ R̂σ
g ∩ {rt � rt

∗
1 }, then according to Lemma SA.5, his continu-

ation payoff at (a
t∗1∗ � rt

∗
1 ) by playing σ1 is at least(
1 − δT 0(κ

∗))u1(θp�a1� a2)+ δT 0(κ
∗)u1(θp�a1� a2)�

which is strictly larger than (SA.17) by the definition of κ∗ in (SA.15), leading to a contra-
diction.

Suppose, on the other hand, there exists rt2 � rt
∗
1 such that rt2 ∈ R̂σ

g while μ∗(rt2) /∈ Bκ∗ .
There exists rT2 � rt2 such that rT2 ∈Rσ

g and rT2 � rt2 . Again, we can find rt
∗
2 such that t∗2 is

the largest t ∈ {t2� t2 + 1� � � � � T2} such that μ∗(rt) /∈ B0 for rT2 � rt � rt2 . Then there exists
a1 �= a1 and rt

∗
2 +1 � rt

∗
2 such that μ((a

t∗2∗ � a1)� r
t∗2 +1) /∈ B0 and ((a

t∗2∗ � a1)� r
t∗2 +1) ∈Hσ .

Iterating the above process and repeatedly applying the aforementioned argument, we
know that for every k≥ 1, in order to satisfy player 1’s incentive constraint to play a1 �= a1

at (a
t∗
k∗ � rt

∗
k), we can find a triple (rtk+1� rt

∗
k+1� rTk+1). It implies that this process cannot stop

after a finite number of rounds. Since μ∗(rtk) /∈ Bκ∗ but μ∗(rt
∗
k
+1) ∈ B0 as well as rtk+1 �

rt
∗
k
+1, we have∑

θ∈Θ
q∗(rtk)(θ)− q∗(rtk+1

)
(θ) ≥

∑
θ∈Θ

q∗(rtk)(θ)− q∗(rt∗k+1
)
(θ) ≥ ρ1

(
κ∗) (SA.18)

for every k ≥ 2. Equations (SA.18) and (SA.5) together suggest that this iteration process
cannot last for more than T 1(κ

∗) rounds, which is an integer independent of δ, leading to
a contradiction. Q.E.D.
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LEMMA SA.7: For every δ ≥ δ and σ ∈ NE(δ�μ), if rt satisfies (at
∗� r

t) ∈ Hσ ,
μ∗(rt)(Θn)= 0, rt /∈ R̂σ

g , and

μ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(rt)(θ)D(θ�a1) > 0� (SA.19)

then a2 is player 2’s strict best reply at every (as
∗� r

s)� (at
∗� r

t) with (as
∗� r

s) ∈Hσ .

PROOF: Since μ∗(rt)(Θn) = 0 and rt /∈ R̂σ
g , Lemma SA.4 implies the existence of θp ∈

Θp∩supp(μ∗(rt)) such that rt ∈ R
σ
(θp). According to Lemma SA.1, σθ(a

s
∗� r

s)(a1)= 1 for
every (as

∗� r
s) ∈Hσ(θ) with rs � rt . From (SA.19), we know that a2 is not a strict best reply

only if there exists type θp ∈ Θp who plays a1 �= a1 with positive probability. In particular,
(SA.19) implies the existence of κ ∈ (0�1) such that1

κμ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(rt)(θ)D(θ�a1) > 0�

According to (SA.12), we have∑
θ∈Θp

(
q∗(rs)(θ)− q∗(rs+1

)
(θ)

) ≥ ρ0(κ)

whenever a2 is not a strict best reply at (as
∗� r

s)� (at
∗� r

t). Therefore, there can be at most
T 0(κ) such periods. Hence, there exists rN with (aN

∗ � r
N) ∈Hσ such that

(i) a2 is not a strict best reply at (aN
∗ � r

N),
(ii) a2 is a strict best reply for all (as

∗� r
s)� (aN

∗ � r
N) with (as

∗� r
s) ∈Hσ .

Then there exists θp ∈ Θp who plays a1 �= a1 in equilibrium at (aN
∗ � r

N): his continua-
tion payoff by playing a1 in every subsequent period is at least (1 − δ)u1(θp�a1� a2) +
δu1(θp�a1� a2) while his equilibrium continuation payoff from playing a1 is at most
(1 − δ)u1(θp�a1� a2)+ δu1(θp�a1� a2) according to Lemma SA.3. The latter is strictly less
than the former when δ > δ. This leads to a contradiction. Q.E.D.

SA.6. Proof of Theorem 2: Incorporating Types in Θn

Next, we extend the proof in Appendix SA.5 by allowing for types in Θn. Lemmas SA.5
and SA.6 imply the following result in this general environment.

PROPOSITION SA.2: For every δ > δ and σ ∈ NE(δ�μ), there exists no θp ∈ Θp, random
histories rt+1 and rt with rt+1 � rt and a1 �= a1 that simultaneously satisfy the three require-
ments

(i) rt+1 ∈ R̂σ
g ,

(ii) ((at
∗� a1)� r

t+1) ∈Hσ(θp),
(iii) vθp(((a

t
∗� a1)� r̂

t+1))= u1(θp�a1� a2) for all r̂ t+1 � rt .

1There are two reasons why one cannot directly apply the conclusion in Lemma SA.2. First, a stronger
conclusion is required for Lemma SA.7. Second, κ can be arbitrarily close to 1, while κ is uniformly bounded
below 1 for any given μ.
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PROOF: Suppose toward a contradiction that such θp ∈ Θp, rt , rt+1, and a1 exist. From
requirement (iii), we know that rt ∈ Rσ(θp). According to Lemma D.1 in the main text,
θn ≺ θp for all θn ∈Θn. The second part of Lemma SA.1 then implies that μ∗(r̂t+1)(Θn)=
0 for all r̂ t+1 � rt with (at+1

∗ � r̂t+1) ∈Hσ .
If μ∗(rt+1) ∈ Bκ, then requirement (ii) and Proposition SA.1 result in a contradiction

when examining type θp’s incentive at (at
∗� r

t) to play a1 as opposed to a1. If μ∗(rt+1) /∈ Bκ,
since δ > δ and rt+1 ∈ R̂σ

g , we obtain a contradiction from Lemma SA.6. Q.E.D.

The rest of the proof considers a given σ ∈ NE(δ�μ) when δ is large enough. First,

μ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(rt)(θ)D(θ�a1)≥ 0 (SA.20)

for all t ≥ 1 and rt satisfying (at
∗� r

t) ∈ Hσ . This is because otherwise, according to
Lemma SA.3, there exists θ ∈ supp(μ∗(rt)) such that vθ(at

∗� r
t) = u1(θ�a1� a2). But then,

at (at−1
∗ � rt−1) with rt−1 ≺ rt , he could obtain strictly higher payoff by playing a1 instead of

a1, leading to a contradiction.

LEMMA SA.8: If μ is optimistic, then vθ(a
t
∗� r

t) ≥ u1(θ�a1� a2) − 2M(K + 1)(1 − δ) for
every θ and rt /∈ R̂σ

g satisfying the following two requirements:
(i) We have (at

∗� r
t) ∈Hσ .

(ii) Either t = 0 or t ≥ 1, but there exists r̂ t such that rt� r̂t � rt−1, (at
∗� r̂

t) ∈ Hσ , and
r̂ t ∈ R̂σ

g .

PROOF: If μ∗(rt) ∈ Bκ and rt /∈ R̂σ
g , then Lemmas SA.1 and SA.4 suggest that μ∗(rs) ∈

Bκ for all rs � rt and the conclusion is straightforward from Lemma SA.2.
Therefore, for the rest of the proof, I consider the adverse circumstance in which

μ∗(rt) /∈ Bκ. I consider two cases. First, when μ∗(rt)(Θn) > 0, then according to (SA.20),

μ(a1)D(φa1� a1)+
∑

θ∈Θp∪Θg

q∗(rt)(θ)D(θ�a1) > 0�

Since rt /∈ R̂σ
g , according to Lemma SA.4, there exists θ ∈ Θp ∪ Θn with (at

∗� r
t) ∈ Hσ(θ)

such that rt ∈ Rσ
(θ). According to Lemma SA.1, for all θg ∈ Θg with (at

∗� r
t) ∈ Hσ(θg)

and every (as
∗� r

s) ∈ Hσ(θ) with rs � rt , we have σθg(a
s
∗� r

s)(a1) = 1. This implies that for
every hs = (as� rs)� (at

∗� r
t) with as �= as

∗ and hs ∈Hσ , we have μ(hs)(Θg)= 0. Therefore,

vθ
(
hs

) = u1(θ�a1� a2) for every θ ∈Θ� (SA.21)

Let τ : Rσ
∗ → N ∪ {+∞} be such that for rτ ≺ rτ+1 ≺ r∞, we have μ∗(rτ)(Θn) > 0 while

μ∗(rτ+1)(Θn)= 0. Let

θn ≡ max
{

supp
(
μ∗(rt)) ∩Θn

}
�

The second part of Lemma SA.1 and (SA.21) together imply that μ∗(rτ)(θn) > 0. Let
us examine type θn’s incentive at (at

∗� r
t) to play his equilibrium strategy as opposed to
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playing a1 in every period. This requires that

E

[
τ−1∑
s=t

(1 − δ)δs−tu1(θn�a1�α2�s)+ (
δτ−t − δτ+1−t

)
u1(θn�a1�τ�α2�τ)+ δτ+1−tu1(θn�a1� a2)

]
≥ u1(θn�a1� a2)�

where E[·] is taken over Pσ and α2�s ∈ �(A2) is player 2’s action in period s.
Using the fact that u1(θn�a1� a2)≥ u1(θn�a1� a2), the above inequality implies that

E

[
τ−1∑
s=t

(1 − δ)δs−t
(
u1(θn�a1�α2�s)− u1(θn�a1� a2)

)
+ (

δτ−t − δτ+1−t
)(
u1(θn�a1�α2�τ)− u1(θn�a1� a2)

)] ≤ 0�

According to the definitions of K and M , we know that for all θ,

E

[
τ∑

s=t

(1 − δ)δs−t
(
u1(θn�a1�α2�s)− u1(θn�a1� a2)

)] ≤ 2M(K + 1)(1 − δ)� (SA.22)

This bounds the loss (relative to the payoff from the highest action profile) from above
in periods before all types in Θn separate from the commitment type. For every r∞ ∈Rσ

∗ ,
since rt /∈ R̂σ

g , we have

μ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(rτ(r∞)+1
)
(θ)D(θ�a1)

≥ μ(a1)D(φa1� a1)+
∑

θ∈Θp∪Θg

q∗(rt)(θ)D(θ�a1)

> μ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(rt)(θ)D(θ�a1)≥ 0�

According to Lemma SA.7, we know that vθ(aτ(r∞)+1
∗ � rτ(r

∞)+1) = u1(θ�a1� a2) for all θ ∈
Θg ∪Θp and r∞ ∈Rσ

∗ . This together with (SA.22) gives the conclusion.
Second, when μ∗(rt)(Θn) = 0, if t = 0, the conclusion directly follows from Proposi-

tion SA.1. If t ≥ 1 and there exists r̂ t such that rt� r̂t � rt−1, (at
∗� r̂

t) ∈Hσ , and r̂ t ∈ R̂σ
g , then

since

μ∗(rt) = μ∗(r̂ t)�
we have μ∗(r̂t)(Θn) = 0. Since r̂ t ∈ R̂σ

g , according to Lemma SA.6, μ∗(r̂t) = μ∗(rt) ∈ Bκ.
The conclusion then follows from Lemma SA.7. Q.E.D.

The next lemma puts an upper bound on type θn ∈ Θn’s continuation payoff at (at
∗� r

t)

with rt /∈ R̂σ
g .
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LEMMA SA.9: For every θn ∈Θn such that a2 /∈ BR2(θn�a1|u2), and rt /∈ R̂σ
g with (at

∗� r
t) ∈

Hσ
θn

and μ∗(rt) /∈ Bκ, we have

vθn
(
at

∗� r
t
) ≤ u1(θn�a1� a2)+ 2(1 − δ)M� (SA.23)

This is implied by Lemma SA.8(i). Let

A(δ) ≡ 2M(K + 1)(1 − δ)� B(δ) ≡ 2M
(
1 − δT 0(κ)

)
and

C(δ) ≡ 2MK|Θn|(1 − δ)�

Notice that when δ → 1, all three functions converge to 0. The next lemma establishes a
uniform upper bound on player 1’s payoff when rt ∈ R̂σ

g .

LEMMA SA.10: When δ > δ and σ ∈ NE(δ�μ), for every rt ∈ R̂σ
g ,

vθ
(
at

∗� r
t
) ≥ u1(θ�a1� a2)− (

A(δ)+B(δ)
) − 2T 1(κ)

(
A(δ)+B(δ)+C(δ)

)
(SA.24)

for all θ such that (at
∗� r

t) ∈Hσ(θ).

PROOF: The nontrivial part of the proof deals with situations where μ∗(rt) /∈ Bκ. Since
rt ∈ R̂σ

g , Lemma SA.6 implies that μ∗(rt)(Θn) �= 0. Without loss of generality, assume
Θn ⊂ supp(μ∗(rt)). Let me introduce |Θn| + 1 integer-valued random variables on the
space Rσ

∗ .
• Let τ : Rσ

∗ → N ∪ {+∞} be the first period s ∈ N along random path r∞ such that
either one of the following two conditions is met.

(i) We have μ∗(rs+1) ∈ Bκ/2 for rs+1 � rs with (as+1
∗ � rs+1) ∈Hσ .

(ii) We have rs /∈ R̂σ
g .

In the first case, there exists a1 �= a1 and rτ+1 � rτ such that ((aτ
∗� a1)� r

τ+1) ∈ Hσ(θ̃)

for some θ̃ ∈ Θp ∪Θn and, moreover, μ((aτ
∗� a1)� r

τ+1) /∈ B0.
Lemma SA.3 implies the existence of θ ∈ Θp ∪ Θn with ((aτ

∗� a1)� r
τ+1) ∈ Hσ(θ)

such that vθ((aτ
∗� a1)� r

τ+1)= u1(θ�a1� a2).
Suppose toward a contradiction that θ ∈ Θp. Then Lemma SA.1 implies that

μ∗(rτ+1)(Θn) = 0. Since μ∗(rτ+1) ∈ Bκ/2, Proposition SA.1 implies that type θ’s con-
tinuation payoff by playing a1 in all subsequent periods is at least(

1 − δT 0(κ/2)
)
u1(θ�a1� a2)+ δT 0(κ/2)u1(θ�a1� a2)�

which is strictly larger than his payoff from playing a1, which is at most 2M(1 − δ)+
u1(θ�a1� a2). This leads to a contradiction. Hence, there exists θn ∈ Θn such that
vθn((a

τ
∗� a1)� r

τ+1) = u1(θn�a1� a2), which implies that vθn(a
τ
∗� r

τ) ≤ u1(θn�a1� a2) +
2(1−δ)M . In the second case, Lemma SA.9 implies that vθn(aτ

∗� r
τ)≤ u1(θn�a1� a2)+

2(1 − δ)M for all θn ∈ Θn with rτ ∈Hσ(θn).
• For every θn ∈ Θn, let τθn : Rσ

∗ → N ∪ {+∞} be the first period s along random path
r∞ such that any one of the following three conditions is met.

(i) We have μ∗(rs+1) ∈ Bκ/2 for rs+1 � rs with (as+1
∗ � rs+1) ∈Hσ .

(ii) We have rs /∈ R̂σ
g .

(iii) We have μ∗(rs+1)(θn)= 0 for rs+1 � rs with (as+1
∗ � rs+1) ∈Hσ .
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By definition, τ ≥ τθn , so τ ≥ maxθn∈Θn{τθn}. Next, I show that

τ = max
θn∈Θn

{τθn}� (SA.25)

Suppose toward a contradiction that τ > maxθn∈Θn{τθn} for some r∞ ∈Rσ
∗ . Then there ex-

ists (as
∗� r

s) � (at
∗� r

t) such that rs ∈ R̂σ
g , μ∗(rs) /∈ Bκ, and μ∗(rs)(Θn) = 0. This contradicts

Lemma SA.6 when δ > δ.
Next, I show by induction on the number of states in Θn that

E

[
τ∑

s=t

(1 − δ)δτ−t
(
u1(θ�a1� a2)− u1(θ�a1� α̂2�s)

)] ≤ 2MK|Θn|(1 − δ) (SA.26)

for all θ ∈ Θ and

vθ̃n
(
a
τθn∗ � rτθn

) ≤ u1(θn�a1� a2)+ 2(1 − δ)M (SA.27)

for

θ̃ ≡ min
{
Θn ∩ supp

(
μ∗(rτθn+1

))}
with θn� θ̃n ∈Θn, where E[·] is taken over Pσ and α̂2�s ∈ �(A2) is player 2’s (mixed) action
at (as

∗� r
s).

When |Θn| = 1, let θn be its unique element. Consider player 1’s pure strategy of playing
a1 until rτ and then playing a1 forever. This is one of type θn’s best responses according
to (SA.25), which results in payoff at most

E

[
τ−1∑
s=t

(1 − δ)δs−tu1(θn�a1� α̂2�s)+ δτ−t
(
u1(θn�a1� a2)+ 2(1 − δ)M

)]
�

The above expression cannot be smaller than u1(θn�a1� a2), which is the payoff he can
guarantee by playing a1 in every period. Since u1(θn�a1� a2) ≥ u1(θn�a1� a2), and using
the definition of K, we get for all θ,

E

[
τ−1∑
s=t

(1 − δ)δs−t
(
u1(θ�a1� a2)− u1(θ�a1� α̂2�s)

)] ≤ 2MK(1 − δ)�

We can then obtain (SA.27) for free since τ = τθn and type θn’s continuation value at
(aτ

∗� r
τ) is at most u1(θn�a1� a2)+ 2(1 − δ)M by Lemma SA.3.

Suppose the conclusion holds for all |Θn| ≤ k − 1, consider when |Θn| = k, and let
θn ≡ minΘn. If (aτ

∗� r
τ) /∈Hσ(θn), then there exists (aτθn∗ � rτθn )≺ (aτ

∗� r
τ) with (a

τθn∗ � rτθn ) ∈
Hσ(θn) at which type θn plays a1 with probability 0. I put an upper bound on type θn’s
continuation payoff at (aτθn∗ � rτθn ) by examining type θ̃n ∈ Θn \ {θn}’s incentive to play a1

at (aτθn∗ � rτθn ), where

θ̃ ≡ min
{
Θn ∩ supp

(
μ∗(rτθn+1

))}
�

This requires that

E

[ ∞∑
s=0

(1 − δ)δsu1(θ̃n�α1�s� α2�s)

]
≤ u1(θ̃n� a1� a2)+ 2(1 − δ)M︸ ︷︷ ︸

by induction hypothesis

�
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where {(α1�s� α2�s)}s∈N is the equilibrium continuation play following (a
τθn∗ � rτθn ). By defini-

tion, θ̃n � θn, the supermodularity condition implies that

u1(θn�a1� a2)− u1(θ̃n� a1� a2)≥ u1(θn�α1�s� α2�s)− u1(θ̃n�α1�s� α2�s)�

Therefore, we have

vθn
(
a
τθn∗ � rτθn

) = E

[ ∞∑
s=0

(1 − δ)δsu1(θn�α1�s� α2�s)

]

≤ E

[ ∞∑
s=0

(1 − δ)δs
(
u1(θ̃n�α1�s� α2�s)+ u1(θn�a1� a2)− u1(θ̃n� a1� a2)

)]
≤ u1(θn�a1� a2)+ 2(1 − δ)M�

Since it is optimal for type θn to play a1 until rτθn and then play a1 forever, doing so must
give him a higher payoff than playing a1 forever starting from rt , which gives

E

[
τθn−1∑
s=t

(1 − δ)δs−tu1(θn�a1� α̂2�s)+ δτθn
(
u1(θn�a1� a2)+ 2(1 − δ)M

)] ≥ u1(θn�a1� a2)�

This implies that

E

[
τθn−1∑
s=t

(1 − δ)δs−t
(
u1(θn�a1� a2)− u1(θn�a1� α̂2�s)

)] ≤ 2M(1 − δ)�

which also implies that for every θ ∈ Θ,

E

[
τθn−1∑
s=t

(1 − δ)δs−t
(
u1(θ�a1� a2)− u1(θ�a1� α̂2�s)

)] ≤ 2MK(1 − δ)� (SA.28)

When τ > τθn , the induction hypothesis implies that

E

[
τθ−1∑
s=τθn

(1 − δ)δs−τθn
(
u1(θ�a1� a2)− u1(θ�a1�α2�s)

)] ≤ 2MK(k− 1)(1 − δ)� (SA.29)

According to (SA.28) and (SA.29),

E

[
τ∑

s=t

(1 − δ)δτ−t
(
u1(θ�a1� a2)− u1(θ�a1� α̂2�s)

)] ≤ 2MKk(1 − δ)�

which establishes (SA.26) when |Θn| = k. Equation (SA.27) can be obtained directly from
the induction hypothesis.

I examine player 1’s continuation payoff at on-path histories after (aτ+1
∗ � rτ+1) ∈ Hσ in

three cases.
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Case 1. If rτ+1 /∈ R̂σ
g , by Lemma SA.8, then for every θ,

vθ
(
aτ+1

∗ � rτ+1
) ≥ u1(θ�a1� a2)−A(δ)�

Case 2. If rτ+1 ∈ R̂σ
g and μ∗(rs) ∈ Bκ for all rs satisfying rs � rτ+1 and rs ∈ R̂σ

g , then for
every θ,

vθ
(
aτ+1

∗ � rτ+1
) ≥ u1(θ�a1� a2)−B(δ)�

Case 3. If there exists rs such that μ∗(rs) /∈ Bκ with rs � rτ+1 and rs ∈ R̂σ
g , then repeat

the procedure in the beginning of this proof by defining random variables
• τ′ :Rσ

∗ → {n ∈ N∪ {+∞}|n ≥ s},
• τ′

θn
:Rσ

∗ → {n ∈ N∪ {+∞}|n ≥ s}
similarly as we have defined τ and τθn , and then examine continuation payoffs
at rτ′+1 � � � .

Since μ∗(rτ+1) ∈ Bκ/2 but μ∗(rs) /∈ Bκ, then∑
θ∈Θ

(
q∗(rτ+1

)
(θ)− q∗(rs)(θ)) ≥ ρ1(κ)

2
� (SA.30)

Therefore, such iterations can last for at most 2T 1(κ) rounds.
Next, I establish the payoff lower bound in Case 3. For future reference, I introduce the
notion of trees. Let

Rσ
b ≡ {

rt |μ∗(rt) /∈ Bκ and rt ∈ R̂σ
g

}
�

For k ∈ N, I define set Rσ(k) ⊂R recursively as follows. Let

Rσ(1)≡ {
rt |rt ∈Rσ

b and there exists no rs ≺ rt such that rs ∈Rσ
b

}
�

For every rt ∈Rσ(1), let τ[rt] :Rσ
∗ → N∪ {+∞} be the first period s > t (starting from rt)

such that either one of the following two conditions is met:
(i) We have μ∗(rs+1) ∈ Bκ/2 for rs+1 � rs with (as+1

∗ � rs+1) ∈Hσ ,
(ii) We have rs /∈ R̂σ

g .
Then

T
(
rt

) ≡ {
rs|rτ[rt1 ] � rs � rt

}
is called a tree with root rt . For any k ≥ 2, let

Rσ(k) ≡ {
rt |rt ∈Rσ

b � rt � rτ[r
s ] for some rs ∈Rσ(k− 1) and

there exists no rs ≺ rt that satisfy these two conditions
}
�

Let T be the largest integer such that Rσ(T) �= {∅}. According to (SA.30), we know that
T ≤ 2T 1(κ). Similarly, one can define trees with roots in R(k) for every k≤ T .

In what follows, I show that for every θ and every rt ∈Rσ(k),

vθ
(
at

∗� r
t
) ≥ u1(θ�a1� a2)− (T + 1 − k)

(
A(δ)+B(δ)+C(δ)

)
� (SA.31)

The proof is done by induction on k from T to 0. When k = T , player 1’s continuation
value at (aτ[rt ]+1

∗ � rτ[r
t ]+1) is at least u1(θ�a1� a2)−A(δ)−B(δ) according to Lemma SA.2
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and Lemma SA.8. His continuation value at rt is at least

u1(θ�a1� a2)−A(δ)−B(δ)−C(δ)�

Suppose the conclusion holds for all k ≥ n + 1. Then when k = n, type θ’s continuation
payoff at (at

∗� r
t) is at least

E
[(

1 − δτ[rt ]−t
)
u1(θ�a1� a2)+ δτ[rt ]−tVθ

(
aτ[rt ]+1

∗ � rτ[r
t ]+1

)] −C(δ)�

Pick any (aτ[rt ]+1
∗ � rτ[r

t ]+1) and consider the set of random paths r∞ that it is consistent with.
Denote this set by

R∞(
aτ[rt ]+1

∗ � rτ[r
t ]+1

)
�

Partition it into the following two subsets:
(i) Subset R∞

+ (aτ[rt ]+1
∗ � rτ[r

t ]+1) consists of r∞ such that for all s ≥ τ[rt] + 1 and rs ≺ r∞,
we have rs /∈Rσ

b .
(ii) Subset R∞

− (aτ[rt ]+1
∗ � rτ[r

t ]+1) consists of r∞ such that there exists s ≥ τ[rt] + 1 and
rs ≺ r∞ at which rs ∈Rσ(n+ 1).

Conditional on r∞ ∈R∞
+ (aτ[rt ]+1

∗ � rτ[r
t ]+1), we have

vθ
(
aτ[rt ]+1

∗ � rτ[r
t ]+1

) ≥ u1(θ�a1� a2)−A(δ)−B(δ)�

Conditional on r∞ ∈R∞
− (aτ[rt ]+1

∗ � rτ[r
t ]+1), type θ’s continuation payoff is no less than

vθ
(
as

∗� r
s
) ≥ u1(θ�a1� a2)− (T − n)

(
A(δ)+B(δ)+C(δ)

)
after reaching rs ∈Rσ(n) according to the induction hypothesis. Moreover, since his pay-
off loss is at most A(δ)+B(δ) before reaching rs (according to Lemmas SA.2 and SA.8),
we have

vθ
(
aτ[rt ]+1

∗ � rτ[r
t ]+1

) ≥ u1(θ�a1� a2)− (T + 1 − n)
(
A(δ)+B(δ)+C(δ)

)
�

which obtains (SA.31). Equation (SA.24) is implied by (SA.31) since player 1’s loss is
bounded above by A(δ)+B(δ) from r0 to every rt ∈Rσ(0). Q.E.D.

Theorem 2′ is implied by Lemmas SA.8, SA.9, and SA.10.

APPENDIX SB: PROOF OF THEOREM 3

SB.1. Proof of Theorem 3: Equilibrium Payoff

First, I show that for every θ ∈ Θ, strategic type θ secures payoff wθ(φ) in all equilibria.
Let κ ∈ (0�1). Given δ > δ and σ ∈ NE(δ�μ), let us examine r1 such that (a1

∗� r
1) ∈ Hσ .

If μ∗(r1) ∈ Bκ, then for every r̂1 with (a1
∗� r̂

1) ∈ Hσ , we have μ∗(r̂1) ∈ Bκ. The conclusion
is then implied by Theorem 2. If μ∗(r1) /∈ Bκ, then we still have

μ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(r1
)
(θ)D(θ�a1)≥ 0� (SB.1)

This is because otherwise there exists θ ∈ suppμ∗(r1) such that vθ(a1
∗� r

1) = u1(θ�a1� a2)
according to Lemma SA.3, contradicting type θ’s incentive to play a1 in period 0. I con-
sider two cases separately.
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Case 1. If Θn ∩ suppμ∗(r1) = {∅}, then Lemma SA.6 implies that r1 /∈ R̂σ
g . According

to Lemma SA.4, there exists θ ∈ (Θp ∪ Θn) ∩ suppμ∗(r1) such that r1 ∈ Rθ
.

According to Lemma SA.1, for every θg ∈ Θg, type θg will play a1 at every
(at

∗� r
t)� (a1

∗� r
1) with (at

∗� r
t) ∈Hσ(θg).

According to the definition of wθ(φ), and given that the two dimensions of
player 1’s private information are independently distributed, we know that type
θ can secure payoff wθ(φ) at r1 for every θ ∈ Θ. Since μ∗(r1) /∈ Bκ, μ∗(r̂1) /∈ Bκ

for every r̂1 with (a1
∗� r̂

1) ∈Hσ . The argument in the previous paragraph applies
symmetrically, which implies that type θ’s discounted average payoff at h0 is at
least

(1 − δ)u1(θ�a1� a2)+ δwθ(φ)�

Case 2. If Θn ∩ suppμ∗(r1) �= {∅}, then according to Lemma SA.10, type θ can guaran-
tee payoff at least the RHS of (SA.24), which leads to the same conclusion.

Next, I uniquely pin down every type’s equilibrium payoff when the total probability of
commitment types is arbitrarily small. The key is to show that for every Nash equilibrium
σ , we have

μ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(r1
)
(θ)D(θ�a1)= 0

for every r1 such that (a1
∗� r

1) ∈Hσ . This is because when the total probability of commit-
ment types is small enough and φ is pessimistic,

μ(a1)D(φa1� a1)+
∑
θ∈Θ∗

q0(θ)D(θ�a1) < 0�

Suppose toward a contradiction that

μ(a1)D(φa1� a1)+
∑
θ∈Θ

q∗(r1
)
(θ)D(θ�a1) > 0�

On one hand, Theorem 2 suggests that every type θ ∈ Θ∗ receives continuation payoff
at least u1(θ�a1� a2) after playing a1 in period 0. On the other hand, it also implies that
there exists type θ ∈ Θ∗ that plays actions other than a1 with positive probability, and
according to Lemma C.3, this type’s continuation payoff in period 1 is u1(θ�a1� a2). As a
result, this type has a strict incentive to deviate by playing a1 in period 0, which leads to a
contradiction. Similarly, one can show by induction that for every t ≥ 1 and (at

∗� r
t) ∈Hσ ,

μ(a1)D(φa1� a1)+
∑
θ∈Θ∗

q∗(rt)(θ)D(θ�a1)= 0�

The rest of proof follows the same steps as Appendix D in the main text.

SB.2. Proof of Theorem 3: On-Path Behavior

Step 1. Let

X
(
ht

) ≡ μ(a1)D(φa1� a1)+
∑

θ∈Θg∪Θp

q
(
ht

)
(θ)D(θ�a1) (SB.2)
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and

Y
(
ht

) ≡ μ
(
A∗

1

)
D(θ�a1)+

∑
θ∈Θg∪Θp

q
(
ht

)
(θ)D(θ�a1)� (SB.3)

When belief is pessimistic, X(h0) < 0 and Y(h0) < 0. Moreover, at every ht ∈ Hσ with
Y(ht) < 0, player 2 has a strict incentive to play a2. According to Lemma SA.3, there
exists θp ∈Θp with ht ∈H(θp) such that type θp’s continuation value at ht is u1(θp�a1� a2),
which further implies that playing a1 in every period is one of his best replies. According
to Lemma SA.1 and using the implication that Y(h0) < 0, every θn ∈ Θn plays a1 with
probability 1 at every ht ∈H(θn).

Step 2. Let us examine the equilibrium behaviors of the types in Θp ∪ Θg. I claim that
for every h1 = (a1� r

1) ∈Hσ , we have∑
θ∈Θg∪Θp

q
(
h1

)
(θ)D(θ�a1) < 0� (SB.4)

Suppose toward a contradiction that
∑

θ∈Θg∪Θp
q(h1)(θ)D(θ�a1) ≥ 0. Then X(h1) ≥

μ(a1)D(φa1� a1). According to Proposition SA.1, there exists K ∈ R+ independent of δ
such that type θ’s continuation payoff is at least u1(θ�a1� a2)− (1 −δ)K at every h1

∗ ∈Hσ .
When δ is large enough, this contradicts the conclusion in the previous step that there
exists θp ∈ Θp such that type θp’s continuation value at h0 is u1(θp�a1� a2), as he can
profitably deviate by playing a1 in period 0.

Step 3. According to (SB.4), we have μ∗(r1) /∈ B0. Step 1 also implies that μ∗(r1)(Θn)=
0. According to Lemma SA.6, we have r1 /∈ R̂σ

g . According to Lemma SA.1, type θg plays
a1 at every ht ∈ H(θg) with t ≥ 1 for every θg ∈ Θg. Next, I show that r0 /∈ R̂σ

g . Sup-
pose toward a contradiction that r0 ∈ R̂σ

g . Then there exists hT = (aT
∗ � r

T ) ∈ Hσ such that
μ(hT)(Θp ∪ Θn) = 0. If T ≥ 2, it contradicts our previous conclusion that r1 /∈ R̂σ

g . If
T = 1, then it contradicts (SB.4). Therefore, we have r0 /∈ R̂σ

g . This implies that type θg

plays a1 at every ht ∈H(θg) with t ≥ 0 for every θg ∈ Θg.
Step 4. In the last step, I pin down the strategies of type θp by showing that X(ht)= 0 for

every ht = (at
∗� r

t) ∈ Hσ with t ≥ 1. First, I show that X(h1) = 0. The argument at other
histories follows similarly. Suppose first that X(h1) > 0. Then according to Lemma SA.7,
type θp’s continuation payoff at (at+1

∗ � rt+1) is u1(θp�a1� a2) by playing a1 in every period,
while his continuation payoff at (at

∗� a1� r
t+1) is u1(θp�a1� a2), leading to a contradiction.

Suppose next that X(h1) < 0. Similar to the previous argument, there exists type θp ∈ Θp

with h1 ∈H(θp) such that his incentive constraint is violated. Similarly, one can show that
X(ht)= 0 for every t ≥ 1, ht = (at

∗� r
t) ∈Hσ . This establishes the uniqueness of player 1’s

equilibrium behavior.

APPENDIX SC: HIGHEST GUARANTEED PAYOFF IN BINARY-ACTION MS GAMES

I show that the payoff lower bound in Theorem 2 is tight in the sense that when
the total probability of commitment types is sufficiently small and the set Θp is
nonempty, no type of strategic player 1 can guarantee payoff strictly higher than
max{u1(θ�a1� a2)�u1(θ�a1� a2)}.

ASSUMPTION SC.1: There exists θ ∈Θ∗ such that BR2(θ�a1)= {a2}.
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Intuitively, Assumption SC.1 implies that there exists a state θ under which (a) playing
a1 is individually rational and (b) player 2 does not have an incentive to play the desirable
action when she knows that player 1 is strategic type θ. The result is stated as Proposi-
tion SC.1.

PROPOSITION SC.1: Suppose the game satisfies Assumptions 2 and SC.1. For every φ ∈
�(Θ), there exist ε ∈ (0�1) and δ ∈ (0�1), such that for every δ > δ, and every μ that attaches
probability less than ε to all commitment types, and the marginal state distribution is φ,
there exists an equilibrium such that for all θ ∈ Θ, strategic type θ’s payoff is no more than
max{u1(θ�a1� a2)�u1(θ�a1� a2)}.

This proposition applies regardless of the set of commitment actions A∗
1 as well as the

distributions of the states conditional on each commitment type {φa∗
1
}a∗

1∈A∗
1
. This contrasts

to the private-value benchmark, in which a patient player can guarantee his commitment
payoff from a1 ∈ A1 when a1 is one of the commitment actions.

PROOF OF PROPOSITION SC.1: Since wθ(φ) ≤ max{u1(θ�a1� a2)�u1(θ�a1� a2)} for ev-
ery θ ∈ Θ, the case in which φ is pessimistic is implied by the payoff uniqueness result of
Theorem 3. When φ is optimistic, let

θ ≡ minΘ∗ and θ ≡ maxΘ∗�

Assumption SC.1 and Assumption 2 in the main text together imply that BR2(θ�a1) =
{a2}. The assumption that φ is optimistic implies that BR2(θ�a1) = {a2}. For every full
support φ ∈ �(Θ), let ε be bounded from above by

ε < min
{∣∣φ(θ)D(θ�a1)

∣∣
D(θ�a1)

�
φ(θ)D(θ�a1)∣∣D(minΘ�a1)

∣∣
}
� (SC.1)

Recall that A∗
1 is the set of commitment actions. For every a∗

1 ∈ A∗
1, let φa∗

1
∈ �(Θ) be the

distribution of θ conditional on player 1 being commitment type a∗
1. Let Ag

1 be the subset
of A∗

1 such that

BR2

(
φa∗

1
� a∗

1

) = {a2}�
When A

g
1 is nonempty, consider the following equilibrium:

• Strategic types outside Θ∗ play a1 in every period on the equilibrium path.
• Strategic types in Θ∗ \ {θ} play a1 in every period on the equilibrium path.
• Strategic type θ mixes between actions in {a1}∪A

g
1 in period 0 and on the equilibrium

path, repeats the same action that he has played in period 0 in all subsequent periods.
The probability with which he plays a∗

1 in period 0 is denoted by p(a∗
1), given by

p
(
a∗

1

) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μ

(
a∗

1

)
D(φa∗

1�a
∗
1
)∣∣(1 − ε)φ(θ)D

(
θ�a∗

1

)∣∣ if a∗
1 ∈ A

g
1 \ {a1� a1}�

1 −
∑

â1∈Ag
1\{a1�a1}

p(̂a1) if a∗
1 = a1�

(SC.2)

where μ(a∗
1) denotes the probability that player 2’s prior belief attaches to commit-

ment type a∗
1, and ε denotes the probability it attaches to all the commitment types.

Intuitively, after player 2 observes a∗
1 ∈ A

g
1 \ {a1� a1} in period 0, her posterior belief

makes her indifferent between a2 and a2 against a∗
1.
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• Starting from period 1, player 2 plays a2 in every period if player 1 has played a1 in all
previous period; she mixes between a2 and a2 if player 1 has played a∗

1 ∈ A
g
1 \ {a1� a1}

in all previous period and the probability of playing a2 is such that type θ is indifferent
between playing a1 in every period and playing a∗

1 in every period at period 0. At all
other histories, she plays a2 with probability 1.

In the above equilibrium, all types in Θ∗ receives payoff approximately u1(θ�a1� a2), and
all types outside Θ∗ receives payoff approximately u1(θ�a1� a2). This establishes Proposi-
tion SC.1. Q.E.D.

APPENDIX SD: COUNTEREXAMPLES

SD.1. Conflicts Between Reputation Building and Signaling Under MS Stage-Game Payoff

I show that when Assumptions 1–4 are satisfied and the prior belief about θ is opti-
mistic, there exist equilibria such that player 1’s highest action signals the low state at
some on-path history. Players’ stage-game payoffs are

θ = θh T N

G 1�1 −1�0
B 2�−1 0�0

θ = θl T N

G 1 −η�−1 −1 −η�0
B 2�−2 0�0

There is only one commitment plan, given by

γ(θ) ≡
{
G if θ = θh�

B if θ = θl�

The equilibrium construction focus on settings in which η ∈ (0�1) and the prior probabil-
ity of state θh, denoted by φh, is strictly between 10/11 and 1.

Consider the following strategy profile. In period 0, player 2 plays N , strategic type θh

plays G with probability

2φhε

3φh(1 − ε)
�

and strategic type θl plays G with probability

φhε

6(1 −φh)(1 − ε)
�

According to Bayes rule, the probability of state θ after observing G in period 0 is 10/11,
which is strictly less than φh. Namely, observing player 1 playing his highest action G leads
to negative inferences about θ. In period 1, the following situations exist:

• If the history is (B�N), then future play is dictated by the realization of the public
randomization device. With probability (1−δ)/δ, players play (B�N) in every subse-
quent period on the equilibrium path; with complementary probability, players play
(G�T) in every subsequent period on the equilibrium path. Off-path deviations are
deterred by grim-trigger strategies, namely, whenever player 2 observes player 1 play-
ing B in periods in which he is supposed to play G, player 2 plays N in all subsequent
periods.
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• If the history is (G�N), then both strategic types play B with probability 1 and player
2 plays T . This is incentive compatible for player 2 since at history (G�N), the prob-
ability of commitment type G is 6/11, the probability of strategic type θh is 4/11, and
the probability of strategic type θl is 1/11.

In period 2, players’ actions at histories (B�N�B�N), (B�N�G�T), and (B�N�B�T) have
been specified. At history (G�N�G�T), players play (G�T) in every subsequent period
on the equilibrium path, with off-path deviations deterred via grim-trigger strategies. At
history (G�N�B�T), the following situations exist:

• With probability (1 − δ)/δ, players play (B�N) in every subsequent period on the
equilibrium path.

• With probability 1 − 1−δ
δ2 − 1−δ

δ
, players play (G�T) in every subsequent period on the

equilibrium path, with off-path deviations deterred via grim-trigger strategies.
• With probability (1 − δ)/δ2, type θl plays B for sure, and type θh plays B with proba-

bility 1/4 and plays G with probability 3/4. Player 2 plays T .
In period 3, the following situations exist:

• At history (G�N�B�T�G�T), play (G�T) in every subsequent period on the equilib-
rium path, with off-path deviations deterred via grim-trigger strategies.

• At history (G�N�B�T�B�T), future play is determined by the realization of public
randomization. With probability (1 − δ)/δ, play (B�N) in every subsequent period
on the equilibrium path. With complementary probability, play (G�T) in every sub-
sequent period on the equilibrium path, with off-path deviations deterred via grim-
trigger strategies.

The above strategy profiles an equilibrium when δ is large enough. Despite that the game
satisfies Assumptions 1–4 and the prior belief about state is optimistic, playing G in period
0 signals state θl.

SD.2. Reputation Failure in Common Interest Games

I present an example of a common interest game with nontrivial interdependent values,
under which there exists equilibrium such that all strategic types’ equilibrium payoffs are
arbitrarily low compared to their commitment payoffs. Consider the game

θ = θ1 h l

H 1�1 0�0
L 0�0 ε� ε

θ = θ2 h l

H 0�0 ε� ε

L 1�1 0�0

with ε ∈ (0�1) being a parameter. Suppose �≡ {γ} in which the committed player 1 plays
his Stackelberg action in every state:

γ(θ)≡
{
H if θ = θ1�

L if θ = θ2�
(SD.1)

PROPOSITION SD.1: For every full support φ ∈ �{θ1� θ2} and ε ∈ (0�1), there exists ε > 0,
such that when player 1 is committed with probability less than ε, there exists an equilibrium
in which strategic player 1’s payoff is ε in every state.

PROOF: Let

ε ≡ min
{
φ(θ1)�φ(θ2)

} ε

1 + ε
� (SD.2)
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I verify that the following strategy profile is an equilibrium for every δ ∈ (0�1):
• Player 2 plays l at every history.
• Strategic type θ1 plays L at every history. Strategic type θ2 plays H at every history.

First, given player 2’s strategy, player 1’s strategy maximizes his payoff at each state and
at each history. Second, given player 1’s strategy, I show that player 2 has a strict incentive
to play l for all histories.

This is because if player 1 plays L, then he is either strategic type θ1 or commitment
type L. The likelihood ratio between these two types is strictly greater than φ(θ1)−ε

ε
, which

according to (SD.2) is at least 1/ε. This implies that player 2 strictly prefers l to h in the
event that player 1 plays L. Similarly, in the event that player 1 plays H, player 2 strictly
prefers l to h. Q.E.D.
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