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EXTREME POINTS AND MAJORIZATION: ECONOMIC APPLICATIONS
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We characterize the set of extreme points of monotonic functions that are either
majorized by a given function f or themselves majorize f and show that these extreme
points play a crucial role in many economic design problems. Our main results show
that each extreme point is uniquely characterized by a countable collection of intervals.
Outside these intervals the extreme point equals the original function f and inside the
function is constant. Further consistency conditions need to be satisfied pinning down
the value of an extreme point in each interval where it is constant. We apply these in-
sights to a varied set of economic problems: equivalence and optimality of mechanisms
for auctions and (matching) contests, Bayesian persuasion, optimal delegation, and de-
cision making under uncertainty.
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1. INTRODUCTION

IN THIS PAPER, we show that many well-known optimal design and decision problems have
a basic common structure: all these problems can be reduced to the choice of an optimal
element—that maximizes a given functional—from the set of monotonic functions that
are either majorized by, or majorize, a given monotonic function f . We apply our results to
the determination of feasible and optimal auctions and matching contests, of feasible and
optimal delegation mechanisms, and of optimal mechanisms for Bayesian persuasion.1
Our main goal is to reveal the common underlying role of majorization, and to offer a
unified treatment to well-known but complex problems that have been previously attacked
by separate, “ad hoc” methods. We also show how both novel and classical results in the
relevant literatures are straightforward corollaries of our findings.

The majorization relation, due to Hardy, Littlewood, and Polya (1929), embodies an
elegant notion of “variability” and defines a partial order among vectors in Euclidean
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space, or among integrable functions.2 Our main results characterize the extreme points
of the sets of monotonic functions that are majorized by, or majorize, a given monotonic
function f . The monotonicity constraint, a novel feature of our work, is not standard in
the mathematical literature: the set of extreme points that respect monotonicity is quite
different from the set of extreme points obtained without imposing it (see Ryff (1967)
for the latter).3 In addition, every extreme point is exposed, that is, it can be obtained as
the unique maximizer of some linear functional. Hence, no extreme point can be a priori
dismissed as potentially irrelevant for maximization.

Any linear or convex functional will attain a maximum on an extreme point, and this ex-
plains the major role played by extreme points for maximization. But, information about
the extreme points is very useful besides their role for optimization: any property that is
satisfied by the extreme points and that is preserved under averaging will also be satisfied
by all elements of a majorization set. This follows from Choquet’s theorem:4 any feasible
element in a relevant majorization set can be expressed as an integral with respect to a
measure that is supported on the extreme points of that set. Since the sets of extreme
points of majorization sets are much smaller than the original sets, and since they can
be easily parameterized (see Theorems 1 and 2), the integral representation drastically
simplifies the task of establishing a given property for the original set. In Section 2.1, we
illustrate this methodology in the classical context of auctions: our insights almost imme-
diately imply both a generalized version of Border’s theorem about reduced auctions, and
the equivalence of Bayesian and Dominant Strategy incentive-compatible mechanisms in
the symmetric case. For the latter, we note that every extreme point can be implemented
by a DIC mechanism. By Choquet’s theorem, the interim allocation associated with every
BIC mechanism can be represented as a mixture over extreme points; the result follows
since DIC incentive compatibility is equivalent to a monotonicity condition that is pre-
served under averaging.5

Consider the set of non-decreasing functions that majorize, or are majorized by, a non-
decreasing function f . Roughly speaking, each extreme point of this set is characterized
by its specific, countable collection of intervals. Outside these intervals an extreme point
must equal f , and inside each interval the extreme point is a step function that takes at
most three different values determined by specific, local “equal-areas” consistency con-
ditions (such that the majorization constraints become tight). We relate these flat areas
to the classical ironing procedure, and show how our majorization/extreme points focus
illuminates it and its uses in applications.

We also identify specialized conditions on the objective functional such as super-
modularity that allow us to compare feasible outcomes and to infer features of particular
extreme points where the objective functional will attain its maximum. A functional that
respects the majorization order (or its converse) will have an optimum on an element that
is the least variable (most variable) in a given set. Thus, under conditions that are often
present in applications and that can be easily checked, the optimum is either achieved at
the a priori fixed function f or at a step function g with at most two steps. This is a con-
sequence of an elegant theorem due to Fan and Lorentz (1954) that identifies necessary

2In economics, a related order has been popularized and applied, most famously to the theory of choice
under risk, under the name second-order stochastic dominance.

3For the discrete case and the differences to the celebrated Birkhoff–von Neumann theorem, see Dahl
(2001).

4See Phelps (2001) for an excellent introduction.
5An argument similar to the one used in Theorem 3 also shows that, for any convex objective function, there

exists an optimal mechanism that is non-randomized.
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and sufficient conditions for a large class of convex functionals to respect the majorization
order.

The paper contains a varied array of illustrations. The majorization constraint is not
always explicit in the description of the applied economic problems, and it arises for dif-
ferent reasons. For example, in the theory of auctions it stems from a feasibility condition
related to the availability of a limited supply (i.e., reduced-form auctions), in the the-
ory of optimal delegation it is a consequence of incentive compatibility, and in Bayesian
persuasion it is induced by information garbling together with Bayesian consistency. The
monotonicity constraint also arises for various reasons, for example because of incentive
compatibility constraints, or because a cumulative distribution function is non-decreasing.

We cover optimality of mechanisms for auctions and (matching) contests in Sections 4.1
and 4.2. The characterization of extreme points and the Fan–Lorentz inequality imme-
diately yield the revenue- and welfare-maximizing mechanisms in multi-prize contests
where agents spend resources in order to obtain prizes. In Section 4.3, we formulate
optimal delegation as a linear maximization problem under a majorization constraint.
Using our characterization of extreme points, this yields a novel characterization of those
(potentially stochastic) delegation mechanisms that can be optimal. Moreover, we use
our results to characterize when particularly simple delegation mechanisms are optimal,
significantly extending earlier results in the delegation literature. We obtain analogous
results for the Bayesian persuasion problem in Section 4.4. In recent, independent work,
Arieli et al. (2020) also studied a Bayesian persuasion problem via an extreme points
approach and considered maximization on a majorizing set of functions.6

Our majorization approach thereby clearly reveals the close connection between dele-
gation and Bayesian persuasion and their respective optimal mechanisms, and shows that
the equivalence between delegation and persuasion mechanisms obtained for a subset
of mechanisms by Kolotilin and Zapechelnyuk (2019) extends to all randomized mecha-
nisms. We also illustrate how results obtained in one strand can be immediately applied
to the other.

1.1. Majorization Preliminaries

Throughout, we consider right-continuous functions that map the unit interval [0�1]
into the real numbers. For two non-decreasing functions f�g ∈L1, we say that f majorizes
g, denoted by g ≺ f , if the following two conditions hold:∫ 1

x

g(s)ds ≤
∫ 1

x

f (s)ds� for all x ∈ [0�1]�∫ 1

0
g(s)ds=

∫ 1

0
f (s)ds�

(1)

We say that f weakly majorizes g, denoted by g ≺w f , if the first condition above holds (but
not necessarily the second). For non-monotonic functions f , g, majorization is defined
analogously by comparing their non-decreasing rearrangements f ∗, g∗, that is, f majorizes
g if g∗ ≺ f ∗.7

6See also Section 2. We thank Itai Arieli for bringing this paper to our attention.
7Given a function f , let m(x) denote the Lebesgue measure of the set {s ∈ [0�1] : f (s) ≤ x}. The non-

decreasing rearrangement of f , f ∗, is defined by f ∗(t)= inf{x ∈R :m(x)≥ t} for all t ∈ [0�1].
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Majorization is closely related to other concepts from economics and statistics. Let XF

and XG be now random variables with distributions F andG, respectively, defined on the
interval [0�1]. Define also

G−1(x)= sup
{
s :G(s)≤ x}� x ∈ [0�1]

to be the generalized inverse (or quantile function) ofG, and analogously for F . It follows
from Shaked and Shanthikumar (2007, Section 3.A) that

G≺ F ⇔ F−1 ≺G−1 ⇔ XF ≤cx XG ⇔ XG ≤ssd XF and E[XG] = E[XF ]�
where cx denotes the convex stochastic order among random variables, and where ssd
denotes the standard second-order stochastic dominance.8 Thus, F majorizesG if and only
if G is a mean-preserving spread of F , that is, one can construct random variables XF , XG,
jointly distributed on some probability space, such that XF ∼ F , XG ∼G and such that
XF = E[XG|XF ].9

2. EXTREME POINTS AND MAJORIZATION

An extreme point of a convex set A is a point x ∈A that cannot be represented as a
convex combination of two other points inA.10 The Krein–Milman theorem states that any
convex and compact setA in a locally convex space is the closed, convex hull of its extreme
points. In particular, such a set has extreme points. The usefulness of extreme points
for optimization stems from Bauer’s Maximum Principle: a convex, upper-semicontinuous
functional on a non-empty, compact, and convex set A of a locally convex space attains
its maximum at an extreme point of A.

Let L1 denote the real-valued and integrable functions defined on [0�1]. Given f ∈L1,
let the orbit of f be the set of all functions that are majorized by f :{

g ∈L1 | g ≺ f}�
Ryff (1967) has shown that g in the orbit is an extreme point of this set if and only if g =
f ◦Ψ , where Ψ is a measure-preserving transformation of [0�1] into itself. This generalizes
the discrete case analyzed by Hardy, Littlewood, and Polya where the extreme points
correspond, by the Birkhoff–von Neumann theorem, to permutation matrices.

In economic applications, we are often interested in functional maximizers that are
non-decreasing, for example, a cumulative distribution function in Bayesian persuasion,
or an incentive-compatible allocation in mechanism design. Thus, we study the subset of
non-decreasing functions in the orbit

MPS(f )= {
g ∈L1 | g non-decreasing such that g≺ f}�11

8A non-decreasing density f = F ′ majorizes another non-decreasing density g=G′ if and only if the associ-
ated distribution F dominates G in first-order stochastic dominance.

9See Strassen (1965).
10Formally, x ∈A is an extreme point of A if x= αy + (1 − α)z, for z� y ∈A and α ∈ [0�1] imply together

that y = x or z = x.
11We use the suggestive MPS in order to remind the reader of the relation to more familiar mean-preserving

spreads. But note that our functions are not necessarily distributions.
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Similarly, we denote by MPSw(f ) the set of non-negative, non-decreasing functions that
are weakly majorized by f . Finally, let

MPC(f )= {
g ∈L1 | g non-decreasing such that g � f and f (0)≤ g ≤ f (1)}�12

PROPOSITION 1—Representation:
1. Let f ∈ L1 be non-decreasing. Then, the sets MPS(f ), MPSw(f ), and MPC(f ) are

convex and compact in the norm topology, and hence the respective sets of extreme
points are non-empty.13

2. For any g ∈ MPS(f ), there exists a probability measure λg supported on the set of ex-
treme points of MPS(f ), ext MPS(f ), such that g = ∫

ext MPS(f ) hdλg(h) (and analo-
gously for any g ∈ MPSw(f ) and g ∈ MPC(f )).14

The second part of the proposition is a consequence of Choquet’s celebrated theo-
rem, a powerful strengthening of the Krein–Milman insight. Immediate implications are
a generalized Jensen inequality, and the Bauer’s Maximum Principle for the respective
majorization sets. While applications of Choquet’s result in infinite-dimensional function
spaces are often hampered by the difficulty of identifying all relevant extreme points, we
offer below relatively simple characterizations:

THEOREM 1: Let f be non-decreasing. Then g is an extreme point of MPS(f ) if and
only if there exists a collection of disjoint intervals [xi�xi) indexed by i ∈ I such that for a.e.
x ∈ [0�1],

g(x)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (x) if x /∈

⋃
i∈I

[xi�xi)�∫ xi

xi

f (s)ds

xi − xi
if x ∈ [xi�xi)�

(2)

Intuitively, if a function g is an extreme point of MPS(f ), then, at any point in its
domain, either the majorization constraint binds, or the monotonicity constraint binds.
This implies either that g(x)= f (x) or that g is constant at x. An analogous result for the
discrete case is in Dahl (2001).

An element x of a convex set A is exposed if there exists a continuous linear func-
tional that attains its maximum on A uniquely at x.15 Every exposed point is extreme, but
the converse is not true in general. Our next result establishes that all extreme points of
MPS(f ) are exposed. Thus, we cannot a priori exclude any extreme point from consider-
ation when maximizing a linear functional.

COROLLARY 1: Every extreme point of MPS(f ) is exposed.

12Analogously, the suggestive MPC stands for mean-preserving contractions. The additional constraint
f (0)≤ g ≤ f (1) ensures compactness, and is suitable for our applications below.

13For linear maximization, it is enough to establish compactness in the weak topology. We need the stronger
result in order to apply Choquet’s theorem.

14The integral in the statement is a Bochner integral (see, e.g., Phelps (2001)). The equality means that
V (g)= ∫

V (h)dμ(h) for any continuous, linear functional V .
15Formally, x is exposed if there exists a supporting hyperplane H such that H ∩A= {x}.
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Following the approach in Horsley and Wrobel (1987) (who, like Ryff, did not impose
monotonicity), we can extend our characterization of extreme points to the set of weakly
majorized functions. ForA⊆ [0�1], denote by 1A(x) the indicator function ofA: it equals
1 if x ∈A and it equals 0 otherwise.

COROLLARY 2: Suppose that f is non-decreasing and non-negative. A function g is an
extreme point of MPSw(f ) if and only if there is θ ∈ [0�1] such that g is an extreme point of
MPS(f · 1[θ�1]) and g(x)= 0 for a.e. x ∈ [0� θ).

Finally, we characterize the extreme points of the set of non-decreasing functions that
majorize f and that have the same range as f , denoted by MPC(f ).

THEOREM 2: Let f be non-decreasing and continuous. Then g ∈ MPC(f ) is an extreme
point of MPC(f ) if and only if there exists a collection of intervals [xi�xi), (potentially empty)
sub-intervals [y

i
� yi)⊂ [xi�xi), and numbers vi indexed by i ∈ I such that for a.e. x ∈ [0�1],

g(x)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (x) if x /∈
⋃
i∈I

[xi�xi)�
f (xi) if x ∈ [xi� yi)�
vi if x ∈ [y

i
� yi)�

f (xi) if x ∈ [yi� xi)�

(3)

Moreover, a function g as defined in (3) is in MPC(f ) if the following three conditions are
satisfied:

(yi − yi)vi =
∫ xi

xi

f (s)ds− f (xi)(yi − xi)− f (xi)(xi − yi)� (4)

f (xi)(yi − xi)+ f (xi)(xi − yi)≤
∫ xi

xi

f (s)ds ≤ f (xi)(yi − xi)+ f (xi)(xi − y
i
)� (5)

If vi ∈ (f (y
i
)� f (yi)), then for an arbitrary point mi satisfying f (mi)= vi it must hold that∫ xi

mi

f (s)ds ≤ vi(yi −mi)+ f (xi)(xi − yi)� (6)

Condition (4) in the theorem ensures that g and f have the same integrals for each
sub-interval [xi�xi), analogously to the condition imposed in Theorem 1. Condition (5)
ensures that vi ∈ (f (xi)� f (xi)), ensuring that g is non-decreasing. If f crosses g in the
interval [y

i
� yi], then there is mi ∈ [y

i
� yi] such that f (mi) = vi. In this case, Condition

(6) ensures that
∫ xi
s
f (t)dt ≤ ∫ xi

s
g(t)dt for all s ∈ [xi�xi) and thus that f ≺ g. If vi /∈

(f (y
i
)� f (yi)), Condition (5) is enough to ensure that f ≺ g and thus Condition (6) is not

necessary.
We note here that the instance of Bayesian persuasion studied by Arieli et al. (2020)

corresponds to a maximization exercise over a set of majorizing functions of the form
MPC (see also Section 4.4 for details). Analogously to the first part of our Theorem 2,
these authors identified the extreme points in their problem and further showed that all
extreme points are exposed.
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FIGURE 1.—This illustrates the differences between the extreme points of MPS(f ) and MPC(f ). Here
f (s) = s2, and there is a single interval [x�x] = [ 1

4 �
3
4 ] with [y� y] = [ 13

32 �
10
16 ]. On the left is the corresponding

extreme point in MPS(f ) and on the right is the corresponding extreme point in MPC(f ). The arrows indicate
how mass is moved to transform f into the extreme point.

Extreme Points: An Intuitive Description. Let f be a cumulative distribution function
(CDF) and recall that a CDF admits a jump at a given value if the distribution assigns a
mass point to that value. As h majorizes g if and only if g is a mean-preserving spread of
h, it follows that MPS(f ) is the set of mean-preserving spreads of f and MPC(f ) is the set
of mean-preserving contractions of f . These properties are also reflected in the extreme
points: Each extreme point g ∈ MPS(f ) is obtained by taking the mass in each interval
[xi�xi] and spreading it out into two mass points at the boundaries of the interval, xi and
xi (see Figure 1). There is a unique way to do so while preserving the mean determined
by (2). In contrast, each extreme point g ∈ MPC(f ) is obtained by contracting the mass
in each interval [xi�xi] into two mass points placed at y

i
and yi. If vi ∈ (f (y

i
)� f (yi)), the

CDFs g and f intersect at mi ∈ (y
i
� yi). Mass to the left of mi = f−1(vi) is moved to y

i

and mass to the right of mi is moved to yi (see Figure 1).16 Condition (4) determines the
mass at these mass points, and ensures that the mean is preserved on the interval [xi�xi].
Condition (5) ensures that g can be obtained from f by moving mass, and Condition (6)
ensures that g is a contraction of f .17

The main insight of Theorems 1 and 2 is that the mean-preserving spreads (or con-
tractions) of f described there cannot be represented as convex combinations of other
functions in MPS and in MPC, respectively, and that these are the only functions with this
property.18

16If f is not strictly increasing, then f is constant on the interval {s : f (s)= v}, which implies that the distri-
bution assigns no mass to that interval. Thus, any choice of m in that interval will lead to mass being moved in
the same way.

17A simpler characterization where each interval [xi�xi] is split into the two intervals [xi�m] and [m�xi] each
containing only a single mass point is not valid since the mean on these sub-intervals need not be preserved by
an extreme point.

18Winkler (1988) showed that every extreme point of a set of probability measures characterized by n con-
straints is the sum of at most n+ 1 mass points. Thus, if there is a unique constraint on the mean, any extreme
point is a sum of at most two mass points. Winkler’s characterization does not hold here since we impose
uncountably many majorization constraints.
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2.1. An Application to Ranked-Item Auctions

We illustrate the usefulness of the extreme-point characterization obtained in the pre-
vious section by showing that it immediately implies a generalization of the symmetric
version of Border’s (1991) theorem and the BIC-DIC equivalence for symmetric mecha-
nisms (Manelli and Vincent, 2010, Gershkov et al., 2013).19

There are n agents with types θ1� � � � � θn that are independently and identically dis-
tributed on [0�1] according to a common distribution F , with density f > 0. Each agent
wants at most one object. There are n objects with qualities 0 ≤ q1 ≤ q2 ≤ · · · ≤ qn = 1,
and we define A ⊂ {0� q1� q2� � � � � qn}n to be the set of feasible allocations, that is, αi =
qk �= 0 ⇒ αj �= qk for all j �= i.20 If agent i with type θi receives an object with quality q
and pays t for it, then his utility is given by θiq− t.

Fix a (potentially random) allocation rule α : [0�1]n × Ω → A that depends on the
agents’ types θ1� � � � � θn and on randomness generated by the mechanism ω. For each i,
let21

ϕi(θi)= E
[
αi(θi� θ−i�ω) | θi

]
denote the expected quality obtained by agent i, conditional on his type; this is also called
the interim allocation rule. It is useful to also consider the quantile si = F(θi), and to define
the interim quantile allocation functions

ψi(si)= ϕi
(
F−1(si)

)
�

It is straightforward to show that an allocation α is part of a Bayesian incentive-compatible
(IC) mechanism if and only if each induced interim quantile allocation ψi is non-
decreasing.22

Denote by α∗ the assortative allocation of agents to objects where the highest type gets
highest quality, etc. and ties are broken by fair randomization. In our symmetric model,
assortative matching α∗ is incentive compatible, and induces the symmetric interim quan-
tile allocation

ψ∗
i (si)=ψ∗(si)=

n∑
k=1

qk

[
(n− 1)!

(k− 1)!(n− k)!(si)
k−1(1 − si)n−k

]
�

A vector of interim allocations ϕ = (ϕ1� � � � �ϕn), where ϕi : [0�1] → R, is feasible if
there exists an allocation rule α that induces ϕ as its set of interim allocations, conditional
on type. We restrict attention to symmetric interim allocation rules where ϕi = ϕ, i =
1�2� � � � � n and thus ψi =ψ, i= 1�2� � � � � n.

19Manelli and Vincent (2010) analyzed the one-object auction case, and Gershkov et al. (2013) general
social choice problems. Both papers also treat the asymmetric case. Manelli and Vincent used the weaker
Krein–Milman theorem and an approximation argument. Gershkov et al. used a result about measures with
monotonic marginals. See also Goeree and Kushnir (2020).

20It is without loss of generality to assume thatm= n as we can always add objects with zero quality ifm< n,
or only sell the n highest-quality objects if m> n.

21A random allocation rule is a random variable defined on a probability space with outcomes (θ�ω), where
ω describes the randomization in the mechanism and the probability measure prescribes that the agents’ types
θ1� � � � � θn are i.i.d. distributed according to F and types θ are independent of the randomization of the mech-
anism ω.

22See Gershkov and Moldovanu (2010) who used discrete majorization in a dynamic mechanism design
framework with several qualities.
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In our terminology, Border’s theorem for the single object case, that is, qn = 1 and
qk = 0 for k < n, says that a symmetric and monotonic interim allocation ϕ is feasible if
and only if the associated quantile interim allocation satisfies ψ≺w s

n−1.23 In this case, the
assortative matching interim allocation ϕ∗(θi) = [F(θi)]n−1 is the efficient allocation and
hence ψ∗(si)= (si)n−1.

THEOREM 3—Border’s Theorem and BIC-DIC Equivalence: In the ranked-items auc-
tion model, the following hold:

1. A symmetric and monotonic interim allocation rule ϕ is feasible if and only if its asso-
ciated quantile interim allocation ψ(s)= ϕ(F−1(s)) is weakly majorized by the interim
quantile allocation rule associated with the assortative allocation ψ∗.

2. For any symmetric BIC mechanism, there exists an equivalent, symmetric DIC mech-
anism that yields all agents the same interim utility, and that creates the same social
surplus.

PROOF: 1. We first show thatψ≺w ψ
∗ is necessary for feasibility. Consider a monotonic

and symmetric interim quantile allocation rule ψ generated by α �= α∗. As switching to the
assortative rule takes high-quality objects from lower types and gives them to higher types,
we have that, for each agent i and for every τ ∈ [0�1],

E
[
αi(θ) | θi ≥ τ

] ≤ E
[
α∗
i (θ) | θi ≥ τ

]
�

If we define s = F(τ) to be the quantile associated with τ, we have that

E
[
αi(θ) | θi ≥ τ

] = 1
1 − F(τ)

∫ 1

τ

ϕ(θi)f (θi)dθi = 1
1 − s

∫ 1

s

ψ(ti)dti�

Since this holds for any τ ∈ [0�1], we obtain that ψ≺w ψ
∗.

To show that weak majorization is also sufficient for feasibility and prove part (2) of
the theorem, we will construct, for any allocation whose interim quantile allocation rule
is weakly majorized by the efficient allocation rule, a DIC mechanism that implements it.
We first construct such a DIC mechanism for every extreme point of MPSw(ψ∗). Recall
that, by Corollary 2, every extreme point ψ of MPSw(ψ∗) is described by s̃ ∈ [0�1] and by
a collection of intervals [sl� sl)⊆ [̃s�1] such that

ψ(s)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if s < s̃�

1
sl − sl

∫ sl

sl

ψ∗(r)dr if s ∈ [sl� sl)�
ψ∗(s) if s ≥ s̃ and s /∈

⋃
l∈I

[sl� sl)�

Any such extreme point is implemented by a random allocation α : [0�1]n×[0�1]n →A
that: (1) does not allocate to types below F−1(̃s); (2) uses uniformly i.i.d. drawn priorities

23See also Maskin and Riley (1984) and Matthews (1984). This is not the original formulation. For connec-
tions to majorization, see Hart and Reny (2015) (one-object) and Gershkov et al. (2019) (identical objects).
Hart and Reny’s proof is direct, while Gerskov et al. used a result by Che, Kim, and Mierendorff (2013) based
on a network-flow approach.
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(π1� � � � �πn) to determine the allocation between agents with values in the same interval
[θl� θl)= [F−1(sl)�F

−1(sl)), and (3) is otherwise assortative, that is,

αi(θ�π)=
{

0 if θi < F−1(̃s)�

qri(θ�π) if θi ≥ F−1(̃s)�

where the rank ri of agent i is given by

ri(θ�π)= ∣∣{j : φ(θj) < φ(θi) or φ(θj)=φ(θi) and πj < πi
}∣∣ + 1�

As αi(θ�π)—the object given to agent i—increases in θi for every type profile of the other
agents θ−i and for all priorities π, this allocation is implementable in dominant strategies.
We thus established that every extreme point of MPSw(ψ∗) is implementable in dominant
strategies.

It follows from Proposition 1 that, for any ψ ∈ MPSw(ψ∗), there exists a probability
measure λψ supported on the extreme points of MPSw(ψ∗) such that

ψ= E[ψ̃ | ψ̃∼ λψ]�

The designer can thus implement the interim allocation ψ by randomizing over mech-
anisms that each implement extreme points of MPSw(ψ∗). As we have shown that each
extreme point is implementable in dominant strategies and as dominant strategy incentive
compatibility is preserved under randomization, this completes the proof. Q.E.D.

The above argument generalizes to many other problems. For example, consider the
case where n is even, and where half of the agents are men and half are women. Suppose
that the planner is constrained to allocate at least β% of objects to men and β% of ob-
jects to women.24 Which interim allocations are feasible if all men and all women must
be treated equally as individuals, and if men and women needed to be treated equally as
groups?25 Exactly the same proof as the one for Theorem 3 yields that an interim alloca-
tion is feasible if and only if it is weakly majorized by the interim allocation induced by
the respective constrained efficient allocation.26 The constrained efficient allocation max-
imizes the sum of the agents’ utilities subject to the constraint that each group receives at
least β of the objects. Furthermore, each interim allocation can be implemented in dom-
inant strategies. This example illustrates that our approach can be readily used in other
settings, yielding the new economic insight that interim feasibility relates to majorization
with respect to the efficient allocation.

Finally, we also note that standard approaches to Border’s theorem in the discrete
case—see, for example, Vohra (2011)—use neither majorization nor Dahl’s (2001) char-
acterization of extreme points.

24β= 0 corresponds to the unconstrained problem analyzed before.
25This model is similar to the one considered in Che, Kim, and Mierendorff (2013), but not covered by their

setup since they assumed identical objects. Notably, no relation between implementability and the efficient
allocation is established in Che, Kim, and Mierendorff (2013).

26The expected quality conditional on having a type above a threshold τ, but unconditional on gender, is
always maximized by efficiently allocating objects subject to the constraint.
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3. MAXIMIZATION OF SPECIAL OBJECTIVE FUNCTIONALS

Our previous characterizations of extreme points determine all functions that can arise
as a unique maximizer of some convex functional over a set described by monotonicity and
majorization constraints. In many applications, further monotonicity or super-modularity
conditions are either naturally satisfied or can be imposed on the objective function. We
show below how such conditions can be used to further shrink the set of relevant extreme
points.

3.1. Convex, Super-Modular Functionals

A functional V : L1 → R that is monotonic with respect to the majorization order is
called Schur-concave. An integral inequality, due to Fan and Lorentz (1954), identifies a
large set of convex and Schur-concave functionals.

THEOREM 4—Fan and Lorentz (1954): Let K : [0�1] × [0�1] → R. Then∫ 1

0
K

(
f (t)� t

)
dt ≤

∫ 1

0
K

(
g(t)� t

)
dt

holds for any two non-decreasing functions f�g : [0�1] → [0�1] such that f ≺ g if and only if
the function K(u� t) is convex in u and super-modular in (u� t).

Theorem 4 is extremely useful for the applications below since it provides conditions
on the objective function such that a maximum over majorization sets determined by a
function f is attained either at f itself (highest variability), or at a particular function g
with at most two steps (lowest variability). In the Supplemental Material, we offer more
explanations about Schur-concave functionals and the Fan–Lorentz inequality and briefly
illustrate applications to decision under uncertainty (with and without expected utility),
and to portfolio choice.

3.2. Linear Optimization Under Majorization Constraints

We now consider optimization problems where the objective is a linear functional, and
where the constraint set is defined by majorization and by monotonicity. The classical
Riesz Representation Theorem says that, for every continuous, linear functional V on L1,
there exists a unique, essentially bounded function c ∈ L∞(0�1) such that for every f ∈L1,

V (f )=
∫ 1

0
c(x)f (x)dx� (7)

A linear kernel of the form K(f�x)= c(x)f (x) is super-modular (sub-modular) in (f�x)
(and hence the linear functional given in (7) is Schur-concave (convex)) if and only if
c is non-decreasing (non-increasing). In these cases, the Fan-Lorentz inequality provides
simple solutions to the optimization problem. We repeatedly apply this observation below.

3.2.1. Maximizing a Linear Functional on MPS(f )

Given a non-decreasing function f and a bounded function c, consider then the prob-
lem

max
h∈MPS(f )

∫ 1

0
c(x)h(x)dx� (8)
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There are three cases:
1. If c is non-decreasing, f itself is a solution for the optimization problem.
2. If c is non-increasing, then a solution for the optimization problem is the overall

constant function g that is equal to μf = ∫ 1
0 f (x)dx. This follows since h� g for any

h ∈ MPS(f ).
3. If c is not monotonic, other extreme points of MPS(f ) may be optimal.
The next result essentially characterizes the conditions under which an arbitrary ex-

treme point is optimal. The ironing technique, originally used in Myerson (1981) (see also
Toikka, 2011) for an optimization problem formulated without majorization constraints,
can be used if the constraint set includes all non-decreasing functions in a given orbit.27

Define

C(x)=
∫ x

0
c(s)ds

and let convC denote the convex hull of C, that is, the largest convex function that lies
below C.

PROPOSITION 2: Let g be an extreme point of MPS(f ), and let {[xi�xi)|i ∈ I} be the
collection of intervals described in Theorem 1. If convC is affine on [xi�xi) for each i ∈ I
and if convC = C otherwise, then g is optimal. Moreover, if f is strictly increasing, then the
converse holds.

3.2.2. Maximizing a Linear Functional on MPC(f )

We now analyze the problem28

max
h∈MPC(f )

∫ 1

0
c(x)h(x)dx� (9)

Again, there are three cases:
1. If c is non-increasing, then f solves this problem.
2. If c is non-decreasing, then an optimum is obtained at the step function g defined by

g(x)=
{
f (0)� for x < x�
f (1)� for x≥ x�

where x solves ∫ x

0
f (0)ds+

∫ 1

x

f (1)ds =
∫ 1

0
f (s)ds�

Indeed, it holds that g ∈ MPC(f ) and that g � h for all h ∈ MPC(f ). Therefore, the
Fan–Lorentz Theorem 4 implies that g is optimal in this case.

3. If c is non-monotonic, we cannot directly use the Fan–Lorentz result, but the follow-
ing observations suggest an approach to solve the problem:

27In the discrete case, the set of all vectors that are majorized by a given vector is a base polyhedron (Dahl,
2010), which implies useful combinatorial properties. But the set of monotone vectors that are majorized by a
given vector is not a base polyhedron, necessitating an ironing procedure.

28In the discrete case, the set of all vectors that majorize a given vector is not a base polyhedron. This
suggests that problem (9) differs fundamentally from problem (8) and requires different tools for its solution.



EXTREME POINTS AND MAJORIZATION 1569

LEMMA 1: Let

C(x)=
∫ x

0
c(s)ds�

A function g ∈ MPC(f ) is optimal if and only if there exists a concave function C(x) ≤ C(x)
such that:

1.
∫
C(x)dg(x)= ∫

C(x)dg(x), C(0)= C(0), and C(1)= C(1) and
2.

∫ 1
0 C

′
(x)g(x)dx= ∫ 1

0 C
′
(x)f (x)dx.

In general, there is no pointwise largest concave function below a given function. In
order to verify that g is optimal, one therefore has to construct a concave function C that
is specific to g.29 This contrasts the situation in the previous subsection, where the convex
hull provided a largest convex function below a given function.

Using our previous characterization, we can now determine when particular extreme
points are optimal.30

PROPOSITION 3: Suppose that f is strictly increasing, and that f and c are continuous. Let
g be an extreme point of MPC(f ), and let {[xi�xi)}ni=1 and {[y

i
� yi)}ni=1 be finite collections of

intervals as described in Theorem 2 that satisfy xi < xi+1.
Then g is optimal if and only if
1. the complement of

⋃
i∈I[xi�xi) is a subset of the set where c is non-increasing,

2. c(y
i
)(x− y

i
)≤ ∫ x

y
i
c(t)dt for all i ∈ I and x ∈ [xi�xi], and

3. equality holds in the previous inequality whenever x= xi� yi� xi such that x �= 0�1.

Note that the first condition can be understood via the Fan–Lorentz inequality: the
solution g is strictly increasing on an interval only if c is non-increasing on this interval.
The equalities in condition 3 are the first-order conditions with respect to local changes
of the interval boundaries. Recall that on each interval [xi�xi), we have

g(x)=

⎧⎪⎨⎪⎩
f (xi)� for x ∈ [xi� yi)�
vi� for x ∈ [y

i
� yi)�

f (xi)� for x ∈ [yi� xi)�
where vi is defined in (4). Consider a marginal increase in y

i
. This decreases g(y

i
) from

vi to f (xi) and, by implicitly differentiating (4), we obtain that this increases vi by vi−f (xi)
yi−yi

.
The first-order condition requires then that these two changes do not affect the objective
function:

c(y
i
)
[
vi − f (xi)

] = vi − f (xi)
yi − yi

∫ yi

y
i

c(t)dt�

This argument shows that the equality in condition 3 for x = yi is necessary for g to
be optimal. The other equalities can be obtained as first-order conditions with respect
to changes in xi and xi. Combined with the inequality in condition 2, these necessary
conditions are also sufficient for g to be optimal.

29The existence of such a function was shown in Dworczak and Martini (2019) and Dizdar and Kovac (2020).
30Partial characterizations of solutions to related problems appeared in Kolotilin et al. (2017) and Saeedi

and Shourideh (2020).
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4. MAXIMIZATION UNDER MAJORIZATION CONSTRAINTS: ECONOMIC APPLICATIONS

We now show how seemingly different and well-known economic problems share a
common structure: they all involve maximization of functionals over majorization sets.

4.1. The Revenue-Maximizing Ranked-Item Auction

We first return to the ranked-items auction model of Section 2.1. Consider incentive-
compatible mechanisms where the utility of the lowest type is zero (as required by indi-
vidual rationality and revenue optimality). Denote by J(θ)= θ− 1−F(θ)

f (θ)
the “virtual value”

function. Then the expected revenue generated by a symmetric mechanism with interim
allocation rule ϕ equals

n

∫ 1

0
J(θ)ϕ(θ)f (θ)dθ= n

∫ 1

0
J
(
F−1(s)

)
ψ(s)ds�

Thus, by Theorem 3, the revenue-maximization problem becomes

max
ψ∈MPSw(ψ∗)

∫ 1

0
J
(
F−1(s)

)
ψ(s)ds�

where ψ∗ is the interim quantile allocation induced by assortative matching. The maxi-
mum is attained at an extreme point of MPSw(ψ∗), and by Corollary 2 there is ŝ ∈ [0�1]
such that this extreme point is an extreme point of MPS(ψ∗ · 1[ŝ�1]) and equals zero on
[0� ŝ]. Assuming an increasing virtual value function J, the type θ̂= F−1(ŝ)must solve the
equation J(θ)= 0. The Fan–Lorentz Theorem 4 immediately yields then that an optimal
allocation ψ̂ satisfies31

ψ̂(s)=
{
ψ∗(s)� for s ≥ ŝ�
0� otherwise�

This can be implemented by an auction with a reserve price (say pay-your-bid, or all-pay)
where the highest bidder gets the highest quality, and so on.32 If the virtual value is not
increasing, other extreme points may be optimal, corresponding to the outcome of an
“ironing procedure,” as described in Proposition 2.

4.2. Matching Contests

We now analyze the same basic model as in Section 2.1, but assume that there is a
continuum of agents and prizes. Let F denote the distribution of types on [0�1], and let
G denote the distribution of prizes awarded, also on [0�1]. For simplicity, we assume that
both F and G are strictly increasing, and consider allocation schemes where all prizes are

31See also Gershkov et al. (2019), who looked at a revenue-maximization problem with several identical
goods where the objective is convex rather than linear. The convexity stems there from investments undertaken
prior to the auction.

32Iyengar and Kumar (2006) studied several variants of the ranked-item model and applications to revenue
maximization in keyword auctions. Ülkü (2013) allowed for interdependent values and for agents that have
values over sets of objects (while keeping one-dimensional types).
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distributed. If an agent with type θ obtains prize q and pays t for it, then her utility is given
by θq− t.33

We analyze contests where each agent makes an effort (or submits a bid), and where
agents are matched to prizes according to their bids. The assortative allocation is given by
ϕ∗(θ)=G−1(F(θ)), and is strictly increasing. It is implemented by the strictly increasing
bidding equilibrium

t(θ)= θϕ∗(θ)−
∫ θ

0
ϕ∗(s)ds�

The induced interim quantile allocation is given here by

ψ∗(s)= ϕ∗(F−1(s)
) =G−1

(
F(F−1(s))

) =G−1(s)�

The agents’ expected utility from the physical allocation of prizes is maximized by the
assortative scheme,34 but agents need to waste resources (e.g., signaling costs, payments
to a designer) in order to achieve it. Another feasible scheme is random matching where,
independently of bids, everyone gets a prize equal to the expected value of the prize distri-
bution μG. Expected utility from the physical allocation is smaller than under assortative
matching, but random matching can be implemented without costs. The induced quantile
distribution of prizes is given by

Gr(x)=
{

0 if x≤ μG�
1 otherwise�

and thus Gr �G⇔G−1
r ≺G−1. Intermediate schemes can be obtained by coarse match-

ing: for example, an agent with a bid in a given quantile is randomly matched to a prize in
the same quantile, that is, he expects to obtain the average prize in that quantile. Coarse
matching schemes balance output and bidding costs in less extreme ways than random or
assortative matching, and may be superior for some objectives.

The proposition below generalizes and complements several well-known, existing
results in the contest and matching literature (see Damiano and Li (2007), Hoppe,
Moldovanu, Sela [HMS] (2009), Condorelli (2012), and Olszewski and Siegel (2018)).35

These are obtained as immediate consequences of our theoretical insights together with
the Fan–Lorentz theorem.

PROPOSITION 4:
1. A matching scheme is feasible and incentive compatible if and only if the induced dis-

tribution of prizes Gic satisfies G−1
ic ≺G−1.

2. Assume that the distribution of types F is convex. Then each type of the agent prefers
random matching to any other scheme.36

33This formulation is easily generalized to other multiplicative, super-modular production functions and
also (at least for some questions) to non-linear costs.

34This follows from the rearrangement inequality of Hardy, Littlewood, and Polya (1929). Under complete
information, the set of feasible allocations is the set of measure-preserving mappings such that each subset of
prizes is matched to a subset of agents of equal measure.

35In recent work, Akbarpour, Dworczak, and Kominers (2020) discussed the main role played by the extreme
points identified above for problems where a designer maximizes a weighted sum of revenue and social surplus
given an arbitrary set of Pareto weights.

36F being convex implies, in particular, that F first-order stochastically dominates the uniform distribution
on [0�1]. The present result generalizes the one in HMS, who did not consider intermediate schemes. See also
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3. Random matching (assortative matching) maximizes the agents’ expected utility if the
distribution of types F has an Increasing (Decreasing) Failure Rate.37

4. If F has an Increasing Failure Rate, the revenue (i.e., average bid) to a designer is maxi-
mized by assortative matching.38

4.3. Optimal Delegation

We now study a model of optimal delegation.39 The state of the world θ is distributed
according to a distribution F with support [0�1] and with density f . Its realization is pri-
vately observed by an agent. The action space is the real line.

The agent’s utility from a deterministic action a in state θ is given by UA(θ�a)= −(θ−
a)2, and the principal’s utility is given by UP(θ�a) = −(γ(θ)− a)2, where γ : [0�1] → R

is bounded.40 We denote by Λ= supθ�θ̂∈[0�1] |θ− γ(θ̂)| the maximal disagreement between
the agent and the principal. Both agent and principal have expected utility preferences.

A direct mechanism M : [0�1] → �(R) assigns to each agent’s report a lottery over
actions with finite mean and variance. The principal can implement any incentive-
compatible (IC) direct mechanism by offering a menu of lotteries, out of which the agent
chooses a preferred one; conversely, any menu of lotteries induces an IC direct mecha-
nism.41

For a direct mechanism M , denote by μM : [0�1] → R its type-dependent mean action
function and by σ2

M : [0�1] → R+ its type-dependent variance. Since indirect utilities can
be expressed as a function of μM and σ2

M ,

UA(θ)= −(
θ−μM(θ)

)2 − σ2
M(θ)�

UP(θ)= −(
γ(θ)−μM(θ)

)2 − σ2
M(θ)�

we identify each mechanism with its induced mean and variance functionsM = (μM�σ2
M).

In general, the set of IC mechanisms cannot be satisfactorily characterized by majoriza-
tion.42 But, we show below that, for maximizing the principal’s utility, it is without loss of
generality to only consider a subset of IC mechanisms that can be characterized in this
way. We call a mechanism undominated if there does not exist a mechanism where the
menu of lotteries is a singleton (i.e., μ(θ) and σ2(θ) are constant), and that yields a higher
utility for the principal.

Olszewski and Siegel (2018) for a derivation that includes coarse matching. If F is concave, there is a uniquely
defined interval [θ∗�1] such that all types in this interval prefer assortative matching while all types in [0� θ∗)
prefer random matching (see HMS).

37This generalizes one of the main results of HMS (2009) who only compared the two extreme cases (random
and assortative matching). See also Condorelli (2012). Conversely, random matching (assortative matching)
minimizes average welfare if the distribution of types F has a Decreasing (Increasing) Failure rate.

38See also Damiano and Li (2007).
39Variants have been analyzed, for example, by Holmström (1984), Melumad and Shibano (1991), Alonso

and Matouschek (2008), and Amador and Bagwell (2013).
40Our approach can easily be extended to more general utilities. In particular, we obtain analogous results

if UA(θ�a)= θa+ b(a) and UP(θ�a)= γ(θ)a+ b(a) for a strongly concave function b. Closely related utility
functions have been used, for example, by Amador and Bagwell (2013) and Kolotilin and Zapechelnyuk (2019).

41This is the familiar taxation principle, but note that there are no monetary transfers here.
42For example, the mechanism (μ0�σ0) that always implements the deterministic action 0 and (μ1�σ1)

that always implements the deterministic action 1 satisfy
∫ 1

0 μ0(θ)dF(θ) = ∫ 1
0 0 dF(s)= 0 �= 1 = ∫ 1

0 1 dF(θ)=∫ 1
0 μ1(θ)dF(θ). Thus, μ0 and μ1 are not comparable to any other function by majorization simultaneously.
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PROPOSITION 5: Define an interval of actions [a�a] by

[a�a] =
[
−

√
2 Var

(
γ(θ)

) + 2Λ2�1 +
√

2 Var
(
γ(θ)

) + 2Λ2
]
�

A (potentially randomized) undominated mechanismM = (μM�σ2
M) is incentive compatible

if and only if there exists an extension43 (μM̃�σ
2
M̃
) of the functions μM , σ2

M to the interval
[a�a] such that μM̃(a)= a, μM̃(a)= a, σ2

M̃
(a)= σ2

M̃
(a)= 0, and such that:

1. μM̃ ∈ MPC(a∗) where a∗ : [a�a] → [a�a] is the identity, and
2. σ2

M̃
(θ)= −(μM̃(θ)− θ)2 − 2

∫ θ

a
(μM̃(s)− s)ds for all θ ∈ [a�a].

PROOF: Necessity. LetM = (μM�σ2
M) be an undominated IC mechanism. Define a new

mechanism on the extended type space [a�a] by the menu that consists of all options
(μM(θ)�σ

2
M(θ))θ∈[0�1] available in the original mechanism M and, in addition, the two de-

terministic actions a, a. Any such menu induces an IC direct mechanism M̃ = (μM̃�σ
2
M̃
)

that assigns to every agent in the extended type space [a�a] his most preferred option.
By Lemma A.2 in the Appendix, the agent’s utility in M is bounded from below by

−2 Var(γ(θ))− 2Λ2. This implies that any original type θ prefers the allocation assigned
to her inM to the deterministic actions a and a, and thus that μM̃(θ)= μM(θ) for any θ ∈
[0�1]. Clearly, it is also optimal for an agent of type a (a) to pick the deterministic action
a (a) in M̃ , and hence, μM̃(a)= a, μM̃(a)= a and σ̃M(a)= σ̃M(a)= 0. As a consequence,
an agent with hypothetical type a (a) obtains utility 0 in M̃ .

Since type a obtains utility 0, it follows from the envelope theorem and from the super-
modularity of the agent’s utility in (θ�μ) that the mechanism M̃ = (μM̃�σ

2
M̃
) is IC if and

only if μM̃ is non-decreasing and satisfies the envelope condition for all θ ∈ [a�a]:

−(
θ−μM̃(θ)

)2 − σ2
M̃
(θ)= 2

∫ θ

a

[
μM̃(s)− s]ds� (10)

Since

−(
θ−μM̃(θ)

)2 − σ2
M̃
(θ)≤ 0�

the envelope condition (10) implies that∫ θ

a

μM̃(s)ds ≤
∫ θ

a

a∗(s)ds�

where a∗(s)= s. Since μM̃(a)= a and σ2
M̃
(a)= 0, we obtain by (10) that∫ a

a

[
μM̃(s)− a∗(s)

]
ds = 0�

We conclude that μM̃ ∈ MPC(a∗). Thus, (μM̃�σM̃) is an extension of (μM�σ2
M) to [a�a]

with the desired properties.

43A function g̃ : [a�a] → R is an extension of a function g : [0�1] → R to the interval [a�a] if g̃(θ) = g(θ)
for all θ ∈ [0�1].
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Sufficiency. Conversely, suppose that (μM̃�σ2
M̃
) are such that μM̃ ∈ MPC(a∗) and such

that σ2
M̃

satisfies the condition of the proposition. Then, we can define a stochastic mech-
anism M = (μM�σ2

M) by the restriction of (μM̃�σ2
M̃
) to the set of types [0�1]. This mecha-

nism is well-defined since its variance is non-negative:

σ2
M(θ)= −(

μM̃(θ)− θ)2 − 2
∫ θ

a

(
μM̃(s)− s)ds

= −2
∫ μ̃M(θ)

θ

(
μM̃(θ)− s)ds− 2

∫ θ

a

(
μM̃(s)− s)ds

≥ −2
∫ μ̃M(θ)

a

(
μM̃(s)− s)ds ≥ 0�

where the first inequality follows since μM̃ is non-decreasing, and the second follows since
μM̃ � a∗. Since μM̃ is non-decreasing and (μM̃�σ2

M̃
) satisfies the envelope condition by

assumption, it follows that the mechanism M is IC. Q.E.D.

Kovac and Mylovanov (2009) characterized IC mechanisms by: (1) monotonicity of the
mean action function; (2) the envelope condition determining the variance functions, and
(3) a non-negativity constraint on the variance. This imposes a joint constraint on the
mean action function and on the variance of the lowest type. In contrast, our condition
μM̃ ∈ MPC(a∗) encompasses the monotonicity constraint on the mean action function,
and ensures that the variance derived by the envelope condition is non-negative for all
types if σ2

M̃
(a) = 0. This new formulation allows us to reduce the problem to a linear

maximization problem where we optimize only over mean action functions subject to the
majorization constraint.

Similarly to the revenue equivalence result for auctions, we now use Proposition 5 to
show that the value of the principal in different, undominated, IC delegation mechanisms
only depends on the implemented mean action function:44

PROPOSITION 6—Value Equivalence: Fix an undominated, IC delegation mechanism
M = (μM�σ

2
M) and let μM̃ , σ2

M̃
be an extension satisfying the conditions of Proposition 5.

The principal’s expected utility in M is only a function of μM̃ and is given by

VP(μM̃)= 2
∫ a

a

J(θ)μM̃(θ)dθ+C� (11)

where the “virtual value” J : [a�a] → R is defined as

J(θ)=

⎧⎪⎨⎪⎩
1� for θ ∈ [

a�0)�
1 − F(θ)+ (

γ(θ)− θ)f (θ)� for θ ∈ [0�1]�
0� for θ ∈ (1� a]�

and where

C =
∫ 1

0

(
θ2 − γ(θ)2

)
f (θ)− 2θ

(
1 − F(θ))dθ+ a2�

44Note though that the present majorization constraint is the opposite of that for auctions, and that the
envelope condition characterizing the variance is non-linear due to the agent’s quadratic utility.
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PROOF: The principal’s expected utility from using an IC mechanismM can be written
as

VP(μM̃)=
∫ a

a

[−γ(θ)2 + 2γ(θ)μM̃(θ)−μM̃(θ)2 − σ2
M̃
(θ)

]
dF(θ)�

Substituting for σ2
M̃
(θ) by the characterization of IC, we obtain that

VP(μM̃)=
∫ a

a

[
−γ(θ)2 + 2γ(θ)μM̃(θ)−μM̃(θ)2

−
(

−(
μM̃(θ)− θ)2 − 2

∫ θ

a

(
μM̃(s)− s)ds

)]
dF(θ)�

Integration by parts yields∫ a

a

∫ θ

a

(
μM̃(s)− s)dsf (θ)dθ=

[∫ θ

a

(
μM̃(s)− s)dsF(θ)

]θ=a
θ=a

−
∫ a

a

(
μM̃(θ)− θ)F(θ)dθ

=
∫ a

a

(
μM̃(θ)− θ)(1 − F(θ))dθ�

Plugging this back into the above equation and simplifying yields

VP(μM̃)=
∫ a

a

[−γ(θ)2f (θ)+ 2
(
γ(θ)− θ)f (θ)μM̃(θ)+ θ2f (θ)

+ 2
(
μM̃(θ)− θ)(1 − F(θ))]dθ

=
∫ a

a

[
2(

(
γ(θ)− θ)f (θ)+ (

1 − F(θ))μM̃(θ)
+ f (θ)(θ2 − γ(θ)2

) − 2θ
(
1 − F(θ))]dθ� Q.E.D.

What is remarkable about the above “virtual value” characterization is that the objec-
tive of the principal (i) does not depend on the choice of the extension μM̃ (as long as it
satisfies the conditions in Proposition 5) and (ii) becomes linear in the extension of the
mean allocation rule μM̃ despite the fact that the original objective of the principal was
strictly concave in μM .

COROLLARY 3: The principal’s problem is given by

max
μ
M̃

∈MPC(a∗)
VP(μM̃)

and therefore an extreme point of MPC(a∗) must be optimal.

We start with some insights into the nature of optimal delegation mechanisms:

REMARK 1: Recall that an extreme point μM̃ of MPC(a∗) is characterized by a collec-
tion of intervals [θi� θi) with sub-intervals [y

i
� yi) indexed by i ∈ I such that:
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1. If, for some i ∈ I, θ ∈ [θi� θi) and y
i
= yi, then

μM̃(θ)=

⎧⎪⎨⎪⎩
θi� for θ <

θi + θi
2

�

θi� for θ >
θi + θi

2
�

2. If, for some i ∈ I, θ ∈ [θi� θi) and y
i
< yi, then

μM̃(θ)=

⎧⎪⎨⎪⎩
θi� for θ < y

i
�

vi� for θ ∈ [y
i
� yi)�

θi� for θ > yi�

where vi is defined in equation (4).
3. If θ /∈ ⋃

i∈I[θi� θi), then μM̃(θ)= θ.

Such a mechanism is implemented by letting the agent choose any action a ∈ [a�a] \⋃
i∈I(θi� θi) and, for each i ∈ I such that y

i
< yi, adding to the agent’s choice set an addi-

tional option with mean vi and variance (θi − yi)2 − (y
i
− vi)2. In particular, a delegation

mechanism corresponding to an extreme point is deterministic if y
i
= yi for each i ∈ I.

Optimal delegation mechanisms sometimes involve deliberate randomization by the
principal (see Kovac and Mylovanov (2009) and Alonso and Matouschek (2008) for exam-
ples). But, our result above significantly reduces the class of uniquely optimal stochastic
mechanisms: any extreme (and thus exposed) point will use at most one non-degenerate
lottery on each of the intervals (θi� θi), and any stochastic extreme point will have a dis-
continuous mean-action function.

REMARK 2: Certain Bayesian persuasion problems give rise to the same class of opti-
mization problems (see Section 4.4 below), and this allows us to extend the equivalence
observed in Kolotilin and Zapechelnyuk (2019) to stochastic delegation and to general
persuasion mechanisms. As an illustration of this equivalence, we now provide a suffi-
cient condition for a deterministic delegation mechanism to be optimal by applying a re-
sult in Dworczak and Martini (2019) about the optimality of monotone partitional signals
in Bayesian persuasion.45

COROLLARY 4: Suppose that there are a1� a2 ∈ [a�a] such that J is non-increasing on the
intervals [a�a1] and [a2� a], and non-decreasing on the interval [a1� a2]. Then a deterministic
mechanism is optimal.

PROOF: Using integration by parts for the Riemann–Stieltjes integral,46 the principal’s
objective becomes

max
μ
M̃

∈MPC(a∗)

∫ a

a

(
−

∫ θ

a

J(s)ds
)

dμM̃(θ)�

45Our result also extends a result by Kovac and Mylovanov (2009). Recently, Kartik, Kleiner, and Van
Weelden (2020) provided sufficient conditions for the optimality of deterministic mechanisms in a related
veto bargaining model.

46Note that μM̃(θ) is non-decreasing and hence has bounded variation.
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The assumption implies that the integrand, as a function of θ, is convex on [a�a1] and
on [a2� a], and concave on [a1� a2]. It is therefore an affine-closed function (see Definition
2 in Dworczak and Martini, 2019). Their Theorem 3 implies then that the principal’s
problem is solved by an extreme point such that, in the notation of our Theorem 2, y

i
= yi

for all i ∈ I (see also Section 4.4). Any such mechanism corresponds to a deterministic
delegation mechanism. Q.E.D.

REMARK 3: Our results can be used to characterize when particular extreme points are
optimal. The Fan–Lorentz theorem (Theorem 4) immediately yields a result obtained by
Kovac and Mylovanov (2009) who used a rather different approach:

COROLLARY 5: Full delegation, that is, allowing the agent to choose any action in [0�1],
is optimal if J(θ)= 1 − F(θ)+ (γ(θ)− θ)f (θ) is non-increasing on [0�1], and if γ(0)≤ 0
and γ(1)≥ 1.

PROOF: The assumptions imply that J is non-increasing on [a�a], and thus the objec-
tive is linear, sub-modular, and thus Schur-convex. The function a∗ itself is then a max-
imizer over MPC(a∗) for any such functional. As a consequence, each type gets a mean
allocation equal to his type μM(θ)= θ. In turn, Proposition 5 implies that the variance for
each type, σM(θ), equals zero. Q.E.D.

More generally, Proposition 3 characterizes, for any delegation mechanism in a large
class, when this particular mechanism is optimal. This result applies to all determinis-
tic mechanisms in which the agent can choose out of a finite union of non-degenerate
intervals, significantly extending previous results. In addition, it applies to a large class
of stochastic extreme points, yielding novel characterizations when particular stochastic
delegation mechanisms are optimal.

Finally, note that, due to a failure of revenue equivalence on discrete-type spaces, there
is no obvious characterization of the set of feasible mechanisms using majorization.47

Thus, without analyzing the continuous-type case, we cannot prove the equivalence be-
tween delegation and Bayesian persuasion (see below) via our simple majorization tech-
niques.

4.4. Persuasion With Preferences Over the Posterior Mean

We consider here the persuasion problem studied by Kolotilin (2018) and Dworczak
and Martini (2019).

The state of the world ω is distributed according to a continuous distribution F on
the interval [0�1], and a sender can reveal information about the state to an uninformed
receiver. The sender chooses a signal (or Blackwell experiment) π that consists of a signal
realization space S and a family of distributions (πω)ω over S, conditional on the state.
By Bayes’s rule, each signal induces a distribution of posteriors, and hence a distribution
of posterior means. The receiver observes the choice of signal and the signal realization,
and then chooses an optimal action that depends on the mean of the posterior, denoted
here by x. The sender’s indirect utility v is state independent and only depends on the

47Consider the delegation problem with three types, {0�1�2}, together with a mechanism that chooses action
0 for type 0, action a for type 1, and action 2 for type 2. Such a mechanism is IC if and only if a is in [0�2].
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posterior mean x.48 Note that the posterior mean could take a continuum of values even
if the underlying state space is discrete. Requiring that the mean takes only one of finitely
many values is an unnecessary, exogenous restriction on an endogenous object.

Any signal is a “garbling” of the prior, and thus, for any signal π, the prior F is a mean-
preserving spread of the generated distribution of posterior means Gπ , that is, Gπ � F .
Conversely, it is well known that, for any G such that G � F , there exists a signal π
such that Gπ =G. Hence, formally, the sender’s problem is to choose a distribution over
posterior mean beliefs of the receiver G that solves

max
G∈MPC(F)

∫ 1

0
v(x)dG(x)�

As the objective is linear, a maximum is attained at one of the extreme points character-
ized in Theorem 2.49 This immediately implies that an optimal signal structure partitions
the states in intervals such that, in each interval:

1. Either all states are perfectly revealed.
2. Or states are pooled, so that only one (deterministic) signal is sent for all states in

this interval.
3. Or two different (potentially random) signals are sent for states in that interval,

inducing two possible posterior means on this interval.
A signal structure is called monotone partitional if it partitions the state space into in-

tervals such that each interval is either of type 1 or type 2; such an information structure
either reveals the state perfectly, or sends the same signal for all states in an interval.
While other information structures may be optimal, our result implies that an optimal
signal structure can still be implemented in a simple way by sending at most two signals
on each interval. Arieli et al. (2020) independently obtained the same result—they called
signal structures of type 3 bi-pooled.50

Equivalence to Optimal Delegation

Our majorization/extreme points approach highlights the close connections between
Bayesian persuasion and delegation. Although the delegation problem is a priori non-
linear, we have shown that both exercises can be reduced to a maximization of a linear
functional over a set of majorizing functions. Hence, the basic structure of their respective
optimal mechanisms is identical.

Kolotilin and Zapechelnyuk (2019) have recently established a formal equivalence be-
tween optimal delegation and Bayesian persuasion for the case where the set of policies
for the principal was exogenously restricted to deterministic delegation mechanisms and
to monotone partitional signals, respectively. Our majorization characterization imme-
diately implies that this equivalence holds without any restrictions on the policy space:
optimal signal structures for Bayesian persuasion that are not monotone partitional cor-
respond to randomized optimal delegation mechanisms.

48This allows for the sender’s payoff to depend on the action taken by the receiver.
49In the discussion paper version, we also treat a Bayesian persuasion problem with an ex ante informed

agent, and we show how the insights of our Theorem 1 become relevant.
50The optimality of such a structure in a particular example has already been established in Gentzkow and

Kamenica (2016) and for general piecewise linear objective functions in Candogan (2019).
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5. CONCLUSION

We provided characterizations of the extreme points of the sets of all monotonic func-
tions that are either majorized by, or themselves majorize, a given function. We have also
shown that many well-known optimization exercises in economics can be rephrased as
maximizing a convex functional over such sets. Hence, a maximum must be attained at
one of the extreme points.

Together with an integral representation result due to Choquet, the characterization
of extreme points directly implies many results, both novel and well-known. For exam-
ple, in the context of auctions, it implies both a new generalization of Border’s theorem
and the known equivalence between Bayes and dominant strategy incentive-compatible
mechanisms. For optimal delegation and Bayesian persuasion, our results imply that it
is without loss of generality to restrict attention to a small class of mechanisms, and re-
veal a novel, general equivalence result between these two problems and their (possibly
randomized) solutions.

An interesting question for future research is if an analogous extreme point character-
ization could be obtained for notions of multivariate majorization. Such a result would
be potentially useful in various other applications, for example, information revelation in
auctions where the state is naturally multidimensional.

APPENDIX

Throughout, we assume for any bounded non-decreasing function that it is right-
continuous and, moreover, left-continuous at x= 1.51

PROOF OF PROPOSITION 1: We first establish that MPS(f ) is a compact subset of L1 in
the norm topology. For any g ∈ MPS(f ), f (0) ≤ g(x) ≤ f (1), and the total variation of
g is uniformly bounded by f (1)− f (0). Helly’s Selection Theorem therefore implies that
any sequence {gn} in MPS(f ) has a subsequence that converges pointwise, and in L1, to
some function g with bounded variation. Since

∫ 1
x
gn(s)ds ≤ ∫ 1

x
f (s)ds, we obtain that∫ 1

x
g(s)ds ≤ ∫ 1

x
f (s)ds, with equality for x= 0. Also, since each gn is non-decreasing, g is

non-decreasing and we conclude that MPS(f ) is compact in the topology induced by the
L1-norm. Analogous arguments establish compactness of MPSw(f ) and MPC(f ).

It is clear from the definitions that the sets MPS(f ), MPSw(f ), and MPC(f ) are con-
vex. It then follows from Choquet’s theorem that, for any g ∈ MPS(f ), there is a prob-
ability measure λg that puts measure 1 on the extreme points of MPS(f ) such that
g= ∫

hdλg(h). The same argument applies to MPSw(f ) and MPC(f ). Q.E.D.

Preparations for the Proof of Theorem 1

Fix g ∈ MPS(f ) and for any function h let h(x−) = limx′↑x h(x′) and h(x+) =
limx′↓x h(x′) whenever the limits exist. Given s1� s2 ∈ [0�1] such that s1 < s2 and given
y ∈ [g(s1)�g(s2)], define

u(s) := median
{
g(s)− g(s1)�g(s)− g(s2)� y − g(s)}

for s ∈ [s1� s2] and u(s)= 0 else. (12)

51Recall that in L1 we identify functions that are equal almost everywhere. A bounded, non-decreasing
function f : [0�1] → R has at most countably many discontinuities, limits from the right are defined for each
x ∈ [0�1), and the limit from the left is defined for x= 1.
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LEMMA A.1: 1. g±u is non-decreasing, and g(s1)≤ (g±u)(s)≤ g(s2) for all s ∈ [s1� s2].
2. If g(s1) < g(s) for all s > s1, then u �≡ 0.
3. If g(s) < g(s2) for all s < s2 and if g is continuous at s2, then u �≡ 0.
4. There exists y ∈ [g(s1)�g(s2)] such that

∫ s2
s1
u(s)ds = 0.

PROOF OF LEMMA A.1: (1) Let

sa := inf
{
x|g(x)≥ g(s1)+ y

2

}
= inf

{
x|g(x)− g(s1)≥ y − g(x)}

and

sb := inf
{
x|g(x)≥ g(s2)+ y

2

}
= inf

{
x|g(x)− g(s2)≥ y − g(x)}�

It follows that

u(s)=

⎧⎪⎨⎪⎩
g(s)− g(s1)� for s ∈ (s1� sa)�

y − g(s)� for s ∈ (sa� sb)�
g(s)− g(s2)� for s ∈ (sb� s2)�

and hence that

(g+ u)(s)=

⎧⎪⎨⎪⎩
2g(s)− g(s1)� for s ∈ [s1� sa)�

y� for s ∈ [sa� sb)�
2g(s)− g(s2)� for s ∈ [sb� s2)�

By the definition of sa, and because g+ u is right-continuous, we obtain

(g+ u)(s−a ) = 2g
(
s−a

) − g(s1)≤ y = (g+ u)(sa)�
Similarly,

(g+ u)(s−b ) = y ≤ 2g
(
s+b

) = (g+ u)(sb)
by definition of sb. Since, in addition, u(s1) = u(s2) = 0, we conclude that g + u is non-
decreasing. Similar arguments show that g − u is non-decreasing as well. Since u(s) = 0
for s /∈ (s1� s2), the inequalities follow.

(2) Note that the first argument of the median function in (12) is strictly positive for
s > s1 since, by assumption, g(s1) < g(s) for all s > s1.

If y = g(s1), then the third argument in the definition of u is strictly negative for s >
s1, and the second argument is also strictly negative for a sufficiently small interval s ∈
(s1� s1 + δ). Hence, u �= 0 on a set of positive measure and therefore u �≡ 0.

If y > g(s1), then the right-continuity of g implies that there exists δ > 0 such that the
third argument is strictly positive on [s1� s1 + δ]; similarly, there exists δ′ > 0 such that the
second term is strictly negative on [s1� s1 + δ′]. Hence, u �= 0 on a set of positive measure
and therefore u �≡ 0.

(3) If y = g(s2), then the third argument in the definition of u is strictly positive for
s < s2 since g(s) < g(s2) for all s < s2; if y < g(s2), then continuity of g at s2 implies that
there is δ > 0 such that the third argument is strictly positive on [s2 − δ� s2]; the second
argument is strictly negative for s < s2; and continuity of g at s2 implies that there is δ′ > 0
such that the first argument is strictly positive on [s2 − δ′� s2]. Hence, u �= 0 on a set with
positive measure and therefore u �≡ 0.
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(4) In order to emphasize the fact that the definition of u in (12) depends on the param-
eter y , we write u(s� y) in this part. Note that, for all s, the function u(s� y) is continuous
in y , and that, for all y ∈ [g(s1)�g(s2)], u(·� y) is integrable in s and uniformly bounded.
Hence,

∫ 1
0 u(s� y)ds is continuous in y . If y = g(s1), then u(s� y)≤ 0 for all s; if y = g(s2),

then u(s� y) ≥ 0 for all s. The intermediate value theorem implies therefore that there
exists y ∈ [g(s1)�g(s2)] such that

∫ 1
0 u(s� y)ds= 0. Q.E.D.

PROOF OF THEOREM 1: “⇒”: Suppose that g is an extreme point. The proof proceeds
in two steps: Step 1 shows that, if g is non-constant in an interval around x, then f (x)=
g(x). Step 2 argues that, if g constant on an interval around x, then it has the same average
as f on this interval.

Step 1: Fix an arbitrary s1 ∈ [0�1) and suppose that g(s1) < g(s) for all s > s1. Since g is
right-continuous, if g(s1) < f(s1), then there exists s2 > s1 such that g(s2) < f(s1). Define
u according to (12) such that

∫ s2
s1
u(s)ds = 0. Then (g± u)(s) < f(s) holds on [s1� s2] as

g(s)± u(s)≤ g(s2) < f(s1)≤ f (s)�
Also,

∫ 1
s2
f (s)− g(s)ds ≥ 0 holds since f � g. This implies that

∫ 1
x
f (s)− (g± u)(s)ds ≥ 0

for all x, and hence that g±u ∈ MPS(f ). Lemma A.1(ii) implies that u �≡ 0, contradicting
the assumption that g is an extreme point of MPS(f ).

Similarly, if g(s1) > f(s1), then there exists s2 > s1 such that f (s2) < g(s1). Define u
according to (12) such that

∫ s2
s1
u(s)ds= 0. Then (g± u)(s) > f(s) holds on [s1� s2]. Since∫ 1

s1

(
f (s)− g(s))ds =

∫ 1

s1

[
f (s)− (g± u)(s)]ds ≥ 0�

we conclude that
∫ 1
x
[f (s)− (g± u)(s)]ds ≥ 0 for all x. Hence, g± u ∈ MPS(f ). Lemma

A.1(ii) implies that u �≡ 0, contradicting the assumption that g is an extreme point of
MPS(f ). We conclude that, if for an arbitrary x ∈ [0�1) the inequality g(x) < g(s) holds
for all s > x, then g(x)= f (x).

Step 2: It follows from Step 1 that, for any x ∈ [0�1) such that f (x) �= g(x), there ex-
ists a non-degenerate interval containing x where g is constant. Hence, there exists a
countable collection of intervals {[xi�xi)|i ∈ I} such that, for each i, g(s) = g(xi) for
s ∈ [xi�xi), g(s) < g(xi) for s < xi, g(s) > g(xi) for s > xi, and f (x) = g(x) for x �= 1
with x /∈ ⋃

i[xi�xi).
Suppose now that

∫ xi
xi
(f (s)− g(s))ds < 0 for some i ∈ I . This implies that

∫ 1
xi
(f (s)−

g(s))ds > 0 and, since g is constant on [xi�xi), that f (xi) < g(xi). If g(x−
i ) = g(xi), we

can choose s2 = xi and s1 < s2 large enough such that u defined according to (12) satisfies
g±u ∈ MPS(f ) and u �≡ 0, contradicting that g is an extreme point. Hence, g(x−

i ) < g(xi).
Also, if g(s) > g(xi) for all s > xi, we can choose s1 = xi and s2 > s1 small enough such
that u defined according to (12) satisfies g± u ∈ MPS(f ) and u �≡ 0, contradicting that g
is an extreme point. Hence, g is constant to the right of xi. Let b= sup{x|g(x)= g(xi)}.
There are two cases to consider:

Case 1:
∫ 1
b
(f (s)− g(s))ds > 0. If g is continuous at b, then we can choose s1 = b and

s2 > s1 small enough such that u satisfies g±u ∈ MPS(f ) and u �≡ 0. Hence, g(b−) < g(b).
We can therefore choose ε > 0 and δ > 0 such that

g± (ε1[xi�xi) − δ1[xi�b)) ∈ MPS(f )�
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contradicting the fact that g is an extreme point.
Case 2:

∫ 1
b
(f (s) − g(s))ds = 0. Since, by assumption,

∫ xi
xi
(f (s) − g(s))ds < 0 and∫ 1

xi
(f (s) − g(s))ds ≥ 0 are true, we obtain

∫ 1
xi
(f (s) − g(s))ds > 0. This implies that∫ b

xi
(f (s) − g(s))ds > 0, and hence that g(b−) < f(b). Since

∫ 1
b
(f (s) − g(s))ds = 0,

f (b) > g(b) would imply
∫ 1
b+ε(f (s) − g(s))ds < 0 for ε > 0 small enough, which con-

tradicts f � g. Therefore, g(b−) < f(b)≤ g(b). We can therefore choose ε > 0 and δ > 0
such that

g± (ε1[xi�xi) − δ1[xi�b)) ∈ MPS(f )�

contradicting the fact that g is an extreme point.
We can conclude that

∫ xi
xi
(f (s)− g(s))ds ≥ 0 for all i ∈ I . Since

∫ 1
0 (f (s)− g(s))ds = 0

and f (s)= g(s) for s /∈ ⋃
i[xi�xi), we obtain

∫ xi
xi
(f (s)− g(s))ds = 0 for all i ∈ I .

“⇐ ”: Suppose that g has the form in the statement, and suppose that there exists u ∈L1

such that g± u ∈ MPS(f ). Let {[xi�xi)|i ∈ I} be a countable collection of intervals such
that g is constant on each of the intervals, and such that f (x)= g(x) for x /∈ ⋃

i∈I[xi�xi).
Since g ± u is non-decreasing, for every i ∈ I there is a constant function that equals u
for a.e. x ∈ [xi�xi). Also, the properties of g imply that

∫ 1
x
(f (s) − g(s))ds = 0 for x /∈⋃

i(xi� xi), and therefore
∫ 1
x
u(s)ds= 0 must hold for x /∈ ⋃

i(xi� xi). Together this implies
u(s) = 0 for a.e. s ∈ ⋃

i(xi� xi) and therefore
∫ 1
x
u(s)ds = 0 holds for all x and hence

u(x)= 0 for a.e. x. We conclude that g is an extreme point of MPS(f ). Q.E.D.

PROOF OF COROLLARY 1: Fix an arbitrary h ∈ MPS(f ) and define

c(x)=
⎧⎨⎩x if x /∈

⋃
i∈I

[xi�xi)�
xi − x+ xi if x ∈ [xi�xi)�

Moreover, let

c(x)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c(x) if x /∈

⋃
i∈I

[xi�xi)�∫ xi

xi

c(s)ds

xi − xi
if x ∈ [xi�xi)�

and

h(x)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h(x) if x /∈

⋃
i∈I

[xi�xi)�∫ xi

xi

h(s)ds

xi − xi
if x ∈ [xi�xi)�
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It follows that ∫ 1

0

(
g(x)− h(x))c(x)dx≥

∫ 1

0

(
g(x)− h(x))c(x)dx

=
∫ 1

0

(
g(x)− h(x))c(x)dx (13)

=
∫ 1

0

∫ 1

x

g(s)− h(s)ds dc(x)

=
∫ 1

0

∫ 1

x

f (s)− h(s)ds dc(x)≥ 0� (14)

where the first inequality and the first equality follow from Chebyshev’s inequality, the
second equality follows from integration by parts, the third follows from Theorem 1,
and the final inequality holds since h ≺ f . Consequently, c determines a supporting hy-
perplane for MPS(f ) through g. Moreover, this hyperplane contains no other point in
MPS(f ): equality holds in (13) only if h is constant on each of the intervals [xi�xi) (see
Fink and Jodeit, 1984), which yields h = h. Equality holds in (14) only if

∫ 1
x
h(s)ds =∫ 1

x
f (s)ds for all x /∈ ⋃

i[xi�xi). This implies that

h(x)= f (x)= g(x) for all x /∈
⋃
i∈I

[xi�xi) and

h(x)=

∫ xi

xi

f (s)ds

xi − xi
= g(x) for x ∈ [xi�xi)�

Therefore, g is the only point of MPS(f ) contained in the hyperplane. Q.E.D.

PROOF OF COROLLARY 2: Observe first that MPSw(f ) = ⋃
θ∈[0�1] MPS(f · 1[θ�1]): Since

f is non-negative, g≺ f · 1[θ�1] implies that g ≺w f . Conversely, if g ≺w f , then there exists
θ ∈ [0�1] such that ∫ 1

0
g(x)dx=

∫ 1

0
f (x) · 1[θ�1](x)dx�

and therefore g≺ f · 1[θ�1].
Suppose g is an extreme point of MPSw(f ). It follows that there exists θ ∈ [0�1] such

that g ∈ MPS(f · 1[θ�1]). Since MPS(f · 1[θ�1]) ⊆ MPSw(f ), g must be an extreme point
of MPS(f · 1[θ�1]). If

∫ 1
0 g(s)ds = ∫ 1

0 f (s)ds, we can assume θ = 0, which trivially implies
g(x) = 0 for all x ∈ [0� θ). Otherwise,

∫ 1
0 g(s)ds <

∫ 1
0 f (s)ds and Theorem 1 implies that

if g(x) > 0 for some x ∈ [0� θ), then g is constant on some interval [a�b) with x�θ ∈ [a�b)
and g has jump discontinuities at a and b. It follows that there exists ε > 0 such that
g± ε1[a�b) ∈ MPSw(f ), contradicting that g is an extreme point of MPSw(f ).

Conversely, assume there is θ ∈ [0�1] such that g is an extreme point of MPS(f · 1[θ�1])
and g(x)= 0 for a.e. x ∈ [0� θ). Suppose there exists u ∈ L1 such that g± u ∈ MPSw(f ).
Since g(x)±u(x)≥ 0 for a.e. x, we obtain u(x)= 0 for a.e. x ∈ [0� θ). Therefore, g±u ∈
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MPSw(f · 1[θ�1]). Also, since ∫ 1

θ

g(s)ds =
∫ 1

θ

f (s) · 1[θ�1](s)ds�

we obtain
∫ 1
θ
u(s)ds = 0. We conclude that∫ 1

θ

(g± u)(s)ds=
∫ 1

θ

f (s) · 1[θ�1](s)ds�

and therefore that g± u ∈ MPS(f · 1[θ�1]). Since g is an extreme point of MPS(f · 1[θ�1]),
u≡ 0, and hence g is an extreme point of MPSw(f ). Q.E.D.

PROOF OF THEOREM 2: “⇒”: Recall that f is continuous by assumption and let g be
an extreme point of MPC(f ).

Step 1: Fix any x such that g(x) < g(s) for all s > x. If
∫ 1
x
(g(s)− f (s))ds > 0, then we

can choose s1 = x and s2 > s1 small enough such that u defined in (12) satisfies g ± u ∈
MPC(f ) and u �≡ 0, a contradiction; hence,

∫ 1
x
(g(s)− f (s))ds ≤ 0 for any such x.

Now if g(x) > f(x), then right-continuity of g and of f implies that there exists ε > 0
such that

∫ 1
x+ε(g(s)− f (s))ds < 0, which contradicts g � f . Therefore, g(x)≤ f (x).

If g(x) < f(x),52 then this inequality holds on [x�x + ε) for some ε > 0, and hence
we can choose s1 = x and s2 > s1 small enough such that g± u ∈ MPC(f ), and such that
u �≡ 0, contradicting that g is an extreme point.

We conclude that, if g(x) < g(s) for all s > x, then g(x)= f (x).
Step 2: Hence, for all x, either g(x) = f (x) or there exists y > x such that g is con-

stant on [x� y]. Since [x� y] contains a rational number, there is a countable collection of
intervals Ij such that g is constant on Ij for each j, and such that f = g outside of

⋃
j Ij .

Let

Y =
{
y ∈

⋃
j

cl(Ij)
∣∣∣∣ ∫ 1

y

(
f (s)− g(s))ds = 0

}
and observe that, since f is strictly increasing, the set Y is countable. Then Y defines a
partition of

⋃
j Ij into non-degenerate intervals. Consider an arbitrary such interval, say

[xi�xi). We have∫ 1

xi

(
f (s)− g(s))ds = 0�

∫ 1

xi

(
f (s)− g(s))ds = 0� and

∫ 1

x

(
f (s)− g(s))ds < 0 for all x ∈ (xi� xi) (since g � f ),

and g is piece-wise constant on [xi�xi).
We now prove that g consists of either two or three pieces on this interval. Indeed, if

[xi�xi) is partitioned into more than three intervals, then there are non-empty intervals
[a�b) and [c�d) with a > xi and d < xi such that g is constant on these intervals and

52If x= 1, then left-continuity of f and g at 1 implies that there is ε > 0 such that
∫ 1

1−ε f (s)− g(s)ds > 0,
contradicting g� f . Hence, x < 1.
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increases strictly at a, b, c, d (i.e., g(a) > g(s) for all s < a, g(s) > g(a) for all s > b, g(c) >
g(s) for all s < c, and g(s) > g(c) for all s > d). Moreover, since

∫ 1
x
(f (s) − g(s))ds is

continuous in the variable x, it achieves its maximum on [a�d], which is strictly negative by
assumption. Now, if g were continuous at x ∈ {a�b� c�d}, we could choose s1 and s2 such
that u defined by (12) satisfies g± u ∈ MPC(f ) and u �≡ 0 (Lemma A.1), a contradiction.
Hence, gmust have a discrete jump at x ∈ {a�b� c�d}. But, this implies that we can choose
δ�ε > 0 small enough such that u defined by

u(s)= δ1[a�b)(s)− ε1[c�d)(s)

satisfies g± u ∈ MPC(f ), contradicting the assumption that g is an extreme point.
Finally, we show that lims↑xi g(s) = f (xi). Observe that g(xi) ≤ f (xi) since the right-

continuity of g and f would otherwise imply that
∫ 1
y
(g(s)− f (s))ds < 0 for some y when-

ever xi < 1, and that g(1)≤ f (1) by assumption. By an analogous argument, it must hold
that f (xi)≤ lims↑xi g(s). Since lims↑xi g(s)≤ g(xi), we obtain

lim
s↑xi
g(s)≤ g(xi)≤ f (xi)≤ lim

s↑xi
g(s)�

and thus all terms are equal. Similar arguments establish that g(xi)= f (xi).
“⇐ ”: Suppose that g ∈ MPC(f ) satisfies the conditions in the first part of the theorem

and u ∈L1 satisfies g± u ∈ MPC(f ). Then, for all i ∈ I , it must hold that∫ 1

xi

u(s)ds= 0 and
∫ 1

xi

u(s)ds = 0�

If i ∈ I is such that

g(x)=
{
f (xi) if x ∈ [xi� yi)�
f (xi) if x ∈ [y

i
� xi)�

then u is constant on (xi� yi) and on [y
i
� xi). If xi = 0, then u = 0 on [xi� yi) since

g(0) = f (0) and (g ± u)(0) ≥ f (0). So suppose xi > 0 and u < 0 on [xi� yi) (and oth-
erwise consider −u). Then

(g+ u)(xi) < f(xi)�
Since f is continuous and since g+ u is non-decreasing, we obtain for some ε > 0 that∫ 1

xi−ε

[
(g+ u)(s)− f (s)]ds < 0�

which yields a contradiction. Therefore, u = 0 on [xi� yi), and since
∫ xi
xi
u(s)ds = 0, we

obtain that u= 0 on [xi�xi).
On the other hand, if i ∈ I is such that g satisfies

g(x)=

⎧⎪⎨⎪⎩
f (xi) if x ∈ [xi� yi)�
vi if x ∈ [y

i
� yi)�

f (xi) if x ∈ [yi� xi)�
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for some vi, then u is constant on [xi� yi), on [y
i
� yi), and on [yi� xi). The same arguments

as in the preceding paragraph imply that u= 0 on [xi� yi). Now assume u < 0 on [yi� xi)
(otherwise consider −u). Then (g+ u)(yi) < f(xi) and there exists ε > 0 such that∫ 1

xi−ε
(g+ u)(s)− f (s)ds < 0�

a contradiction. We conclude that u = 0 on [yi� xi), and since
∫ xi
xi
u(s)ds = 0, we obtain

that u= 0 on [xi�xi).
Observe that

∫ 1
x
(f (s)− g(s))ds = 0 for x /∈ ⋃[xi�xi) and hence

∫ 1
x
u(s)ds = 0 for x /∈⋃[xi�xi). Since u(x) = 0 for all x ∈ ⋃

i[xi�xi), we conclude that
∫ 1
x
u(s)ds = 0 for all

x ∈ [0�1], and therefore that u≡ 0.
To prove the second part of the theorem, we show that Conditions (4), (5), (6) are

equivalent to
∫ xi
xi
f (s)− g(s)ds = 0, vi ∈ [f (y

i
)� f (yi]), and g � f , respectively. We begin

by showing that (4) is equivalent to
∫ xi
xi
f (s)− g(s)ds = 0. Plugging in the definition of g

yields that this condition is equivalent to

0 =
∫ xi

xi

f (s)ds− f (xi)(yi − xi)− f (xi)(xi − yi)− vi(yi − yi)

and thus equivalent to (4).
We next show that (5) is equivalent to vi ∈ [f (xi)� f (xi)] and thus to the monotonicity

of g. It follows from (4) that vi ≤ f (xi) is equivalent to∫ xi

xi

f (s)ds− f (xi)(yi − xi)− f (xi)(xi − yi)≤ f (xi)(yi − yi)�

Adding f (xi)(yi − xi)− f (xi)(xi − yi) yields

∫ xi

xi

f (s)ds ≤ f (xi)(yi − xi)+ f (xi)(xi − y
i
)�

The other side of the inequality follows from an analogous argument for f (xi) ≤ vi and
we thus have that (5) is equivalent to vi ∈ [f (xi)� f (xi)].

Finally, we show that (6) ensures that g � f if vi ∈ (f (y
i
)� f (yi)) and that g � f is

automatically satisfied if vi /∈ (f (y
i
)� f (yi)). As

∫ 1
x
f (s)− g(s)ds = 0 for all x /∈ ⋃[xi�xi),

it suffices to show that
∫ 1
x
f (s)− g(s)ds ≤ 0 for all x ∈ [xi�xi).

Consider the case where vi ∈ (f (y
i
)� f (yi)). Since f is continuous and since vi ∈

[f (y
i
)� f (yi)], there exists a point mi ∈ (y

i
� yi) such that f (mi) = vi. As g(x) ≤ f (x) for

x ∈ [xi� yi], we obtain for all x ∈ [xi� yi] that

0 =
∫ 1

xi

f (s)− g(s)ds ≥
∫ 1

x

f (s)− g(s)ds�
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Furthermore, as g(x)≥ f (x) for x ∈ [y
i
�m], we get that for all x ∈ [y

i
�m],∫ 1

x

f (s)− g(s)ds ≤
∫ 1

m

f (s)− g(s)ds�

A symmetric argument shows that the same conclusion holds for all x ∈ [m�yi] and that∫ 1
x
f (s) − g(s)ds ≤ 0 for all x ∈ [yi� xi). We thus have that

∫ 1
x
f (s) − g(s)ds ≤ 0 for all

x ∈ [xi�xi) if and only if
∫ 1
m
f (s)− g(s)ds ≤ 0, which is equivalent to (6).

If vi /∈ (f (y
i
� yi)), then x �→ ∫ 1

x
f (s) − g(s)ds is quasi-concave on the interval [xi�xi]

and thus maximized at either xi or xi. Condition (4) ensures that this integral equals zero
at both points and thus f ≺ g. Q.E.D.

PROOF OF PROPOSITION 2: To simplify notation, let C denote the convex hull of C.
Note that, since C is continuous, C(0)= C(0) and C(1)= C(1). Also, if C(x) < C(x) for
all x ∈ (a�b)⊂ [0�1], then C is affine on (a�b).

For every non-decreasing function h that satisfies h≺ f , we obtain53

∫
c(x)h(x)dx= C(1)h(1)−

∫ 1

0
C(x)dh(x)

≤ C(1)h(1)−
∫ 1

0
C(x)dh(x) (15)

=
∫ 1

0
C

′
(x)h(x)dx≤

∫ 1

0
C

′
(x)f (x)dx� (16)

where the equalities follow from integration by parts for the Riemann–Stieltjes integral,
where the first inequality follows since C(x)≤ C(x), and where the final inequality follows
from the Fan–Lorentz theorem since C

′
is non-decreasing.

Since, by assumption, C(x) = C(x) for x /∈ ⋃
i∈I[xi�xi) and since g is constant on

[xi�xi), we obtain that ∫ 1

0
C(x)dg(x)=

∫ 1

0
C(x)dg(x);

and hence, (15) holds as an equality for h= g. Also, since f (x)= g(x) for x /∈ ⋃
i∈I[xi�xi),

since C is affine on [xi�xi), and since g is constant on [xi�xi) with g(x)= ∫ xi
xi
f (s)ds, we

obtain ∫ 1

0
C

′
(x)g(x)dx=

∫ 1

0
C

′
(x)f (x)dx�

Hence, setting h= g also satisfies (16) as an equality, and we conclude that g is optimal.
For the converse, assume that f is strictly increasing. Observe first that there is h ∈

MPS(f ) that satisfies (15) as an equality: Let {[y
j
� yj]|j ∈ J} be a minimal collection of

intervals such that C is affine on [y
j
� yj] for each j ∈ J and such that C(x)= C(x) for all

53Since C(x) is convex, C
′
(x) exists a.e. and we extend its definition by right-continuity to all x.
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x /∈ ⋃
j∈J[yj� yj]. Define h to be constant on [y

j
� yj] for each j with

∫ yj

y
j

h(s)ds=
∫ yj

y
j

f (s)ds�

and set h(x)= f (x) for x /∈ ⋃
j∈J[yj� yj]. It follows from the previous step that h satisfies

(15) and (16) with equality.
If C is not affine on [xi�xi) for some i ∈ I, then C

′
is non-decreasing and it is not con-

stant on [xi�xi). Since f is strictly increasing and g is constant on [xi�xi), an application
of Chebyshev’s inequality (see Theorem 1 in Fink and Jodeit (1984)) yields∫ xi

xi

1 dx
∫ xi

xi

C
′
(x)f (x)dx >

∫ xi

xi

f (x)dx
∫ xi

xi

C
′
(x)dx

=
∫ xi

xi

g(x)dx
∫ xi

xi

C
′
(x)dx=

∫ xi

xi

1 dx
∫ xi

xi

g(x)C
′
(x)dx�

Hence, g satisfies (15) with strict inequality, and therefore g cannot be optimal.
If C(x) < C(x) for some x /∈ ⋃

i∈I[xi�xi), then there is ε > 0 such that C(z) < C(z) for
all z ∈ [x�x+ ε] and g(x) < g(x+ ε) (since f is strictly increasing). Hence,∫ x+ε

x

C(s)dg(x) <
∫ x+ε

x

C(s)dg(x)�

and g satisfies (15) as a strict inequality and therefore g cannot be optimal. Q.E.D.

PROOF OF LEMMA 1: For any h ∈ MPC(f ),∫ 1

0
c(x)

[
g(x)− h(x)]dx≥ −

∫ 1

0
C(x)d

[
g(x)− h(x)]

≥
∫ 1

0
C(x)dh(x)−

∫ 1

0
C(x)dg(x)

=
∫ 1

0
C(x)dh(x)−

∫ 1

0
C(x)df (x)≥ 0�

where the first inequality follows from integration by parts since g(1)≥ h(1) and C(0)=
0; the second inequality follows from C(x) ≤ C(x) and condition 1; the equality follows
from condition 2; and the final inequality follows since C is concave and h ∈ MPC(f ).

The existence of such C for an optimal g is proven in Theorem 1 of Dizdar and Kovac
(2020). To see this, set u = −C, μ = f in their notation, and observe that u is Lipschitz
continuous as c is bounded. Q.E.D.

PROOF OF PROPOSITION 3: “⇐ ”: For each i and x ∈ [xi�xi), let y
i

denote the first
jump point of g on [xi�xi] and define c(x)= c(y

i
); for x /∈ ⋃

i[xi�xi), define c(x)= c(x)

and let C(x) = ∫ x

0 c(s)ds. We claim that C is concave: By definition, c is non-increasing
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outside the set
⋃

i[xi�xi), and c is constant on [xi�xi) for each i. Moreover, it follows from
conditions 2 and 3 that, for each i,

lim
x↑xi

c(x)= c(xi)≥ c(y
i
)= lim

x↓xi
c(x) and

lim
x↑xi

c(x)= c(y
i
)≥ c(xi)= lim

x↓xi
c(x)�

We conclude that c is non-increasing. Since C is absolutely continuous, it follows that C
is concave.

Letting C(x)= ∫ x

0 c(s)ds, it also follows from condition 2 that C(x)≤ C(x). Moreover,∫ 1

0
C(x)dg(x)=

∫ 1

0
C(x)dg(x)

since, by construction, C(x)= C(x) whenever x /∈ ⋃
i(xi� xi), and g is constant on (xi� xi)

for each i.
Finally, note that

∫ xi
xi
C

′
(x)dx = ∫ xi

xi
C ′(x)dx by condition 3. Since g is an extreme

point,
∫ xi
xi
(g(x) − f (x))dx = 0 and g(x) = f (x) for x /∈ ⋃[xi�xi). We therefore obtain∫

C
′
(x)g(x)dx = ∫

C
′
(x)f (x)dx. Hence, all conditions in Lemma 1 are satisfied, and it

follows that g is optimal.
“⇒ ”: Let g be an optimal extreme point. It follows from Lemma 1 that there exists a

concave function C with C(0)= C(0) and C(1)= C(1) that satisfies

C(x)≤ C(x) for all x� (17)∫ 1

0
C(x)dg(x)=

∫ 1

0
C(x)dg(x)� (18)∫ 1

0
C

′
(x)g(x)dx=

∫ 1

0
C ′(x)f (x)dx� (19)

Since C is concave, c(x)= C ′
(x) is well-defined almost everywhere and non-decreasing,

and we extend its definition to all of [0�1] by right-continuity.
Since f is strictly increasing and since f (x) = g(x) for x /∈ ⋃

i(xi� xi), it follows
from (18) that C(x) = C(x) for x /∈ ⋃

i(xi� xi). Since C is concave, we conclude that
c(x)= C ′(x)= C

′
(x) is non-increasing for x /∈ ⋃

i(xi� xi), establishing the first condition
in Proposition 3.

Next, we establish that, for each i, c(x) is constant on (xi� xi). Since g is an ex-
treme point, it follows from our characterization that, for each i, g(xi) = f (xi), g(xi) =
f (xi), and

∫ xi
xi
g(s)− f (s)ds = 0. Because C is concave, it follows that

∫ xi
xi
C(x)dg(x) ≥∫ xi

xi
C(x)df (x).54 Since g(x)= f (x) outside

⋃
i(xi� xi), (19) implies then that, for each i,

54Note that 1
f (xi)−f (xi) [f (x)− f (xi)] and 1

f (xi)−f (xi) [g(x)− f (xi)] are CDF’s. Since
∫ xi
x
g(s)− f (s)ds ≥ 0 with

equality for x = xi ,
1

f (xi)−f (xi) [f (x) − f (xi)] is a mean-preserving spread of 1
f (xi)−f (xi) [g(x) − f (xi)]. For any

concave function C , this implies
∫ xi
xi
C(x)dg(x)≥ ∫ xi

xi
C(x)df (x).
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xi
C(x)dg(x)= ∫ xi

xi
C(x)df (x). Using integration by parts twice, this yields

0 =
∫ xi

xi

C(x)df (x)−
∫ xi

xi

C(x)dg(x)

= [
C(x)

(
f (x)− g(x))]x=xi

x=xi
+

∫ xi

xi

[
g(x)− f (x)]C ′

(x)dx

=
[
C

′
(x)

∫ xi

x

[
f (s)− g(s)]ds]x=xi

x=xi
−

∫ xi

xi

[∫ xi

x

g(s)− f (s)ds
]
c(x)dx

=
∫ xi

xi

[∫ xi

x

f (s)− g(s)ds
]
c(x)dx�

Observe that
∫ xi
x
g(s)− f (s)ds > 0 for x ∈ (xi� xi) because g is an extreme point. Since

c is non-increasing,
∫ xi
xi

[∫ xi
x
f (s)−g(s)ds]c(x)dx= 0 holds only if c equals some constant

for all x ∈ (xi� xi).55

Next, since C(x)≤ C(x) and, by (18), C(y
i
)= C(y

i
), we obtain

lim
x↑y

i

c(x)≥ c(y
i
)≥ lim

x↓y
i

c(x)�

Because c is constant on (xi� xi), this implies c(x)= c(y
i
) for all x ∈ (xi� xi) and therefore∫ x

y
i

c(t)dt = c(y
i
)(x− y

i
)�

Since C(y
i
)= C(y

i
) and C(x) ≤ C(x), we obtain

∫ x

y
i
c(t)dt ≥ c(y

i
)(x− y

i
), which estab-

lishes condition 2.
Finally, since f is strictly increasing by assumption, f (x)= g(x) outside

⋃
i[xi�xi), and

xi < xi+1 for all i, we obtain that x ∈ suppg whenever x= xi� yi� xi, but x �= 0�1 (where g
is interpreted as a distribution function). Condition 3 then follows from (18). Q.E.D.

PROOF OF PROPOSITION 4: (1) This follows from the first statement in Theorem 3 and
generalizes all matching schemes considered in the literature.56

(2) Assuming that the distribution of prizes isGic , the expected utility of the agent with
type θ in the contest is given by

U(θ)=
∫ θ

0
G−1
ic

(
F(τ)

)
dτ�

55Suppose to the contrary that there are y� z ∈ (xi�xi) such that c(y) �= c(z). Suppose w.l.o.g. that y < z.
Then c(y) < c(z) and, letting b= mint∈[y�z]

∫ xi
t
g(s)− f (s)ds, we obtain∫ xi

xi

[∫ xi

x

g(s)− f (s)ds
]
c(x)dx≥ b[c(z)− c(y)]> 0

since b > 0.
56See, for example, the schemes considered by Olszewski and Siegel (2018))—these are extreme points of

the majorization set, and our result shows that the restriction they make is without loss for determining Pareto
optimal allocations.
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This is the standard payoff-equivalence result à la Myerson. Let us first maximize U(1),
the utility of the highest type. Substituting F(θ)= s yields the problem

max
G−1
ic ∈MPS(G−1)

∫ 1

0
G−1
ic (s)f (s)ds�

We immediately obtain from the Fan–Lorentz Theorem 4 that a maximizer isG−1
r (G−1) if

the density f is non-increasing (non-decreasing), that is, if F is convex (concave).57 Thus,
the highest type prefers the random allocation if the distribution of types is convex. But
then it is easy to see that all types prefer the random allocation.

(3) Consider now the average contestant utility (welfare) given by∫ 1

0
U(θ)f (θ)dθ=

∫ 1

0

(∫ θ

0
G−1
ic

(
F(τ)

)
dτ

)
f (θ)dθ

=
∫ 1

0
G−1
ic

(
F(θ)

)(
1 − F(θ))dθ=

∫ 1

0
G−1
ic (s)(1 − s)dF−1(s)�

where the second equality follows by integration by parts, and the last equality by substi-
tuting s = F(θ).

Observe that F−1(s)= − ln(1− s) and that (1− s)dF−1(s)= 1 for the exponential distri-
bution. We obtain by Theorem 4 that random matching (assortative matching) maximizes
average welfare if the distribution of types F is more convex (concave) on its domain than
the exponential distribution, which yields the result.

(4) If F has an increasing failure rate, the revenue (i.e., average bid) to a designer
is maximized by assortative matching because assortative matching maximizes aggregate
welfare while, by the above result, it also minimizes the agents’ welfare. Q.E.D.

LEMMA A.2: A mechanism is undominated if there does not exist a mechanism where the
set of actions is a singleton that yields a higher utility for the principal. The utility of the agent
in any undominated, IC mechanism satisfies UA(θ)≥ −2 Var(γ(θ))− 2Λ2.

PROOF: A first observation is that, in any undominated mechanismM , the utility of the
principal is bounded from below by the utility she obtains in the mechanism where she
takes the ex ante optimal action E[γ(θ)], and where she does not ask the agent to report.
The principal’s utility in that mechanism is given by −Var(γ(θ)). Hence, in mechanism
M , there must exist at least one type θ̂ such that Up(θ̂) ≥ −Var(γ(θ)). As the agent can
always pretend to be of type θ̂, a lower bound on the utility of the agent is given by58

UA(θ)≥ −(
θ−μM(θ̂)

)2 − σ2
M(θ̂)= −([

γ(θ̂)−μM(θ̂)
] + [

θ− γ(θ̂)])2 − σ2
M(θ̂)

≥ −2
(
γ(θ̂)−μM(θ̂)

)2 − σ2
M(θ̂)− 2

(
θ− γ(θ̂))2

≥ 2UP(θ̂)− 2Λ2 ≥ −2 Var
(
γ(θ)

) − 2Λ2� Q.E.D.

57If the distribution F is uniform, then the highest type is indifferent among all feasible schemes since his
utility is

∫ 1
0 G

−1
ic (s)ds = μG.

58The second inequality follows as for all a�b ∈ R we have (a − b)2 ≥ 0 ⇔ a2

2 + b2

2 ≥ ab ⇔ 2a2 + 2b2 ≥
(a+ b)2.
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