
Calibrated Projection in MATLAB: User’s Manual∗

Hiroaki Kaido† Francesca Molinari‡ Jörg Stoye§ Matthew Thirkettle¶

March 12, 2019

Abstract

We present the calibrated-projection MATLAB package implementing the method to
construct confidence intervals proposed by Kaido, Molinari, and Stoye (2019). This
manual provides details on how to use the package for inference on projections of
partially identified parameters and instructions on how to replicate the empirical ap-
plication and simulation results in the paper. The version of this code included in
this ZIP file is what was used to carry out the empirical application in Section 4
of Kaido et al. (2019) and the Monte Carlo simulations in Appendix C. Please visit
https://github.com/MatthewThirkettle/calibrated-projection-MATLAB for the
most up-to-date version of the code.

Keywords: Partial identification; Inference on projections; Moment inequalities; Uni-
form inference.

∗We gratefully acknowledge financial support through NSF grants SES-1230071, SES-1357643 and SES-
1824344 (Kaido), SES-0922330 and SES-1824375 (Molinari), and SES-1260980 and SES-1824375 (Stoye).
†Department of Economics, Boston University, hkaido@bu.edu.
‡Department of Economics, Cornell University, fm72@cornell.edu.
§Department of Economics, Cornell University stoye@cornell.edu.
¶Department of Economics, Cornell University, mkt68@cornell.edu.

https://github.com/MatthewThirkettle/calibrated-projection-MATLAB

1 Introduction

This manual details the structure of the Calibrated Projection Interval (CPI) algorithm and

MATLAB Package. It accompanies the paper “Confidence Intervals for Projections of Partially

Identified Parameters” (Kaido et al., 2019) and it assumes familiarity with that paper.1 The

CPI algorithm uses an EAM (evaluate, approximate, maximize) algorithm to solve:

inf / sup
θ∈Θ

p′θ

s.t.
√
n
m̄j(θ)

σ̂j(θ)
≤ ĉ(θ) j = 1, · · · , J,

where ĉ(θ) is the calibrated critical value (Jones, Schonlau, & Welch, 1998; Jones, 2001).

This version of the CPI algorithm is optimized for basis projection p = (0, · · · , 0, 1, 0, · · · , 0)

with hyperrectangle parameter constraints Θ = {θ ∈ Rd : θLB ≤ θ ≤ θUB}. We also

allow for p to be in the unit sphere and polytope constraints on the parameter space, so

that Θ = {θ ∈ Rd : θLB ≤ θ ≤ θUB, Aθθ ≤ bθ}. Additional care is required within

these extensions (see Appendix B for further details). The current version of the package

is written for moment (in)equalities that are separable in data W and parameter θ, so that

EP [mj(Wi, θ)] = EP [fj(Wi)] + gj(θ).
2 Future releases of the package will include:

• Non-separability of EP [mj(Wi, θ)] in Wi and θ.

• Objective function h(θ) not necessarily equal to p′θ.

We have structured the code so that it is portable. In order to implement a user-specified

model, the user needs only input the data, algorithm options, the function that defines the

estimators for the moment (in)equalities, as well as the gradients and standard deviation

1Some notation differs between this paper and (Kaido et al., 2019). This is made clear throughout this
manual. Unless otherwise specified, we use notation from the earlier version of the paper (Kaido, Molinari,
& Stoye, 2016). The table numbering references (Kaido et al., 2019).

2In this manual and in the CPI MATLAB package data is defined as W . The function f and g are the
two components of the separable moment (in)equality EP [mj(Wi, θ)]. This is in contrast to Kaido et al.
(2019), where data is X, f(θ) refers to the objective function, and ḡ(θ) appears in the EAM algorithm. The
subscript n has also been dropped from all estimators.

1

estimators of the moment functions. Section 2 provides an overview of the key files in the

package and explains how to set up numerical solvers. Section 3 provides instructions on

how to replicate the simulations and the empirical application in Kaido et al. (2019).

2 Using the Calibrated Projection Interval Algorithm

This section is organized as follows. Section 2.1 briefly describes the key files in the package.

Section 2.2 details how to set up CVXGEN and CVX, both are fast disciplined convex solvers

that we use to compute the calibrated critical value ĉ(θ) (Mattingley & Boyd, 2012; Grant

& Boyd, 2014, 2008).

2.1 Overview of Important Files and Folders

First, we briefly describe the key MATLAB files and folders.

• KMS Simulation.m. This executes the simulations in Kaido et al. (2019). The DGP,

method (Calibrated Projection, Andrew and Soares (AS), or Bugni, Canay, and Shi

(BCS)-Profiling),3 nominal significance level, projection directional vector, number of

observations, and number of simulations are set by the user here. The data is generated

and passed to either KMS 0 Main.m or BCS Main, which computes the Calibrated or AS

Projection Interval, or the BCS-Profiled Interval, respectively.

• KMS 0 Main.m. This is the file that the user calls to execute the CPI algorithm and

compute the Projection Interval (either Calibrated or AS). The user specifies data

W, the initial guess for a feasible parameter theta 0, the projection direction p, a

set of pre-specified feasible points theta feas, the lower bound on parameter space

LB theta, the upper bound on parameter space UB theta, the polytope constraints on

the parameter space A theta and b theta so that Aθθ ≤ bθ, the nominal significance

3The code implementing BCS is the code provided by these authors and is available at http://

qeconomics.org/ojs/index.php/qe/article/view/431.

2

http://qeconomics.org/ojs/index.php/qe/article/view/431
http://qeconomics.org/ojs/index.php/qe/article/view/431

level alpha, a one-sided or two-sided confidence interval type, the projection method

(calibrated or AS) CI method, the GMS tuning parameter kappa, the GMS function

phi, the name of the MEX files for CVXGEN (discussed in Section 2.2 below) CVXGEN name,

and a structure of algorithm options KMSoptions.

The package assumes that the moment (in)equalities are separable, so that EP [mj(Wi, θ)] =

EP [fj(Wi)] + gj(θ).

• moments w.m is the user-specified function for the estimator of EP [fj(Wi)], namely

f̂j. We allow for both moment inequalities and equalities, as well as paired moment

inequalities. If fj(Wi) is a Bernoulli random variable and if its expectation is too close

to 0 or 1, then the corresponding moment (in)equalities are dropped. The output

f ineq keep and f eq keep defines the moment (in)equalities that are not discarded.

• moments theta.m is the user-specified function for gj(θ).

• moments gradient.m is the user-specified function for the gradient of gj(θ), which is

denoted Dθgj(θ).

• moments stdev.m is the user-specified function for the estimator for the standard de-

viation σj(Wi).

• KMSoptions.m defines a structure of algorithm options. KMSoptions is also passed

to the four user-specified functions above, so the user can pass additional parameters

through KMSoptions to the user-specified functions (e.g., the support for data Wi). The

function KMSoptions.m is called before running KMS 0 Main.m, and is passed through

the last argument of KMS 0 Main.m, which is KMSoptions.

• Rho Polytope Box.m and bound transform.m are additional user-written functions

needed when polytope constraints on the parameter space are provided (see the argu-

ments A theta and b theta in KMS 0 Main.m) or when p is not a basis vector. If p is a

3

non-basis vector or if polytope constraints on the parameter space are included, then

sensitivity in the estimate for the projection interval can arise.

The disciplined convex solver CVXGEN is used to check whether the set

Λb(θ, ρ, c) = {λ ∈
√
n(Θ− θ) ∩ ρBd : Gb

j +Dθgj(θ)λ+ ϕj(ξ̂j(θ)) ≤ c, j = 1, · · · , J}

is empty for each bootstrap repetition b = 1, · · · , B. In order to run CVXGEN, the user first

compiles a MEX file that defines the parameters of the problem (details in Section 2.2).

• The compiled MEX files are stored in the subfolder \CVXGEN. The file name for this is

chosen by the user. For example, we choose csolve DGP8.mex64 for the BCS Entry

Game. The file name must also be defined when KMS 0 Main.m is called. The name is

passed via the argument CVXGEN name.

2.2 CVXGEN and CVX Setup

The calibrated critical value ĉ(θ) is computed using a fixed-point algorithm. The fixed-point

mapping is computed by checking whether the following set is empty:

Λb(θ, ρ, c) = {λ ∈
√
n(Θ− θ) ∩ ρBd : Gb

j(θ) +Dθgj(θ)λ+ ϕj(ξ̂j(θ)) ≤ c, j = 1, · · · , J}. (1)

This amounts to solving many linear programs (LP), which is done using the fast disciplined

convex solver CVXGEN (Mattingley & Boyd, 2012) or CVX (Grant & Boyd, 2014, 2008).

2.2.1 CVXGEN Setup

To set up CVXGEN, the user needs to: 1) install a MEX Compiler; 2) generate C code at

https://cvxgen.com; 3) compile and save the MEX file; 4) Instruct the CPI algorithm to use

CVXGEN rather than CVX.

4

https://cvxgen.com

The first step is to install a MEX compiler. We use the MinGW-w64 Compiler on a Windows

machine, which is an add-on in MATLAB. To install: open MATLAB, go to Home tab, go to

Add-Ons. An add-on search window appears on the screen. Search MinGW-w64 Compiler

and install MATLAB Support for MinGW-w64 C/C++ Compiler v. On a Mac, a C compiler is

supplied with Xcode. On a Linux based system, one can use GCC (GNU Compiler Collection).

The next step is to generate the C code for a specific problem. First, create an account

at https://cvxgen.com and log in. Next, navigate to the edit tab under problem. Copy-

and-paste the following:

dimensions

dim p = XX

J1 = YY

J2 = ZZ

S = VV

end

parameters

A (J1 + 2∗J2 + 4∗dim p + 2 + S , dim p)

b (J1 + 2∗J2 + 4∗dim p + 2 + S , 1)

end

v a r i a b l e s

x (dim p , 1)

end

minimize

0

s u b j e c t to

A∗x<= b

end

Replace XX with the dimension of the parameter θ, YY with the number of moment inequal-

ities, ZZ with the number of moment equalities (do not double count EP [mj(Wi, θ)] ≤ 0

and −EP [mj(Wi, θ)] ≤ 0 here), and VV with the number of polytope box constraints. If no

polytope constraints Aθθ ≤ bθ are included, set VV= 0.

5

https://cvxgen.com

Next, navigate to the generate C tab under CODEGEN. Click Generate code. As a re-

sult, a list of files populate the webpage. Download the cvxgen.zip file and extract. Run

make csolve.m. The file csolve.mex64 should appear in the folder (if on a Linux or Mac

machine, the extension is slightly different).4 Rename csolve.mex64 to CVXGEN name.mex64

(where CVXGEN name is specified by the user) and move the file to the subfolder \CVXGEN.

Last, set KMSoptions.CVXGEN = 1 to instruct CPI algorithm to use CVXGEN.

There is an upper bound of 4, 000 non-zero Karush-Kuhn-Tucker matrix entries for the

linear program in CVXGEN. The size of the problem is determined jointly by J1, J2, and d.

As an example, CVXGEN can handle θ ∈ R10 with J1 = 55 and J2 = 55.

2.2.2 CVX Setup

An alternative solver to CVXGEN is CVX. This solver is slower than CVXGEN, but can handle

significantly larger LPs and, in our experience, is significantly faster than MATLAB’s LP solver

LINPROG. CVX is a MATLAB “wrapper” for five different disciplined convex solvers (Grant &

Boyd, 2014, 2008). Among these, the solver MOSEK is the fastest for our problem. To run

CVX with MOSEK:

1. Ensure that there is a copy of CVX is located in the subfolder \CVX. If not, navigate to

http://cvxr.com/cvx/ and deposit a copy in the subfolder \CVX.

2. Request a license from http://cvxr.com/cvx/ and deposit it in the same folder.

3. Run cvx setup.m.

4. Set solver using the command cvx solver MOSEK in the MATLAB command window.

5. Set KMSoptions.CVXGEN = 0.

6. Set CVXGEN name to the empty set.

4If an error occurs here, it is likely that the MEX compiler is not installed correctly.

6

http://cvxr.com/cvx/
http://cvxr.com/cvx/

Once CVXGEN or CVX is set up, either a simulation model (Section 3.1) or a user-specified

model can be called via the CPI algorithm.5

3 Simulations & Empirical Application

In this section we discuss how to replicate the empirical application and simulation results

on the calibrated projection confidence intervals reported in Kaido et al. (2019) (see Tables

1-3 in the paper). Section 3.1 provides instructions on how to replicate the simulations

to reproduce Tables 2-3 in Kaido et al. (2019). Section 3.3 explains how to replicate the

empirical application to reproduce Table 1.

3.1 Running Simulations: Calibrated Projection CIs

As per CVXGEN policy, we are unable to distribute the MEX files for these simulations. So the

first step is to generate the relevant MEX files, see Section 2.2 for instructions and Table 1 for

CVXGEN parameters and naming conventions.

The next step is to set parameters in KMS Simulation.m. Open an instance of KMS Simul-

ation.m and set the following:

• method = ’KMS’ to compute the Calibrated Projection Interval; or method = ’AS’ to

compute the AS Projection Interval.

• DGP=k where k∈ {1, 2, 3, 4, 5, 6, 7, 8}. This parameter selects the data-generating pro-

cess. k = 8 is the Entry Game used to evaluate the performance of the calibrated

projection CIs (Tables 2-3 in Kaido et al. (2019)).6

5For additional help with CVXGEN or CVX, please visit https://cvxgen.com and http://cvxr.com/cvx/.
6k = 1− 4 corresponds to the rotated box described in the earlier version Kaido et al. (2016). k = 5− 7

corresponds to the Entry Games described in another earlier version (Kaido, Molinari, & Stoye, 2017).
k = 5 is the point-identified Entry Game with zero correlation (Table 3); k = 6 is the partially-identified
Entry Game with zero correlation (Tables 4, 6 and 7); k = 7 is the partially-identified Entry Game with
Corr(u1, u2) = 0.5 (Table 5).

7

https://cvxgen.com
http://cvxr.com/cvx/

• KMS=1 or KMS=0 determines if KMS 0 Main or BCS Main is called. KMS=0 is a valid input

only if DGP=8, and component=1 or component=2.

• component=k where k∈ {1, · · · , dim p} selects the projection direction. That is, the

projection vector is p with pi = 1 if i = k and pi = 0 otherwise.

• n is the sample size. n is set to 4000 for Tables 2-3.

• Nmc is the number of Monte Carlo simulations requested. Nmc is set to 300 in Table 2

and 1000 in Table 3.

• sim lo and sim hi determine which simulations are run. These parameters are used

to split the simulations into batches if needed.

Among other things, convergence criteria are set in KMSoptions Simulation. All DGPs use

what we call the baseline options. The baseline options are:

• KMSoptions.EAM maxit=20. This sets the maximum number of EAM iterations to 20.

• KMSoptions.h rate=1.8. This determines the contraction rate of the parameter space

for the M-step.

• KMSoptions.h rate2=1.25. This determines the contraction rate of the parameter

space for additional points

• KMSoptions.EAM obj tol = 0.005. One requirement for convergence is that the ab-

solute difference between the expected improvement projection and the current feasible

point θ∗,L is less than EAM obj tol.

• KMSoptions.EI points=10. The M step is initialized with a set of starting points.

The algorithm selects EI points points around the current feasible point θ∗,L that

have positive expected improvement. Additional points are also selected.

8

The number of bootstrap repetitions is also set in KMSoptions Simulation.m. Table 2 sets

this number equal to 301, so that KMSoptions.B=301. For Table 3, set KMSoptions.B=1001.

Finally, run KMS Simulation to run a simulation with the parameters and options spec-

ified above. The results are saved in the subfolder \Results.

The file Analysis.m carries out post analysis for a particular set of simulations. To

run the post analysis, load a results file and run Analysis.m. The output includes the

median lower bound for the Calibrated Projection Interval; the median upper bound for

the Calibrated Projection Interval; coverage percent at the end points of the identification

region, as well as at the true parameter; average ĉ(θ); and average computational time.

3.2 Running Simulations: BCS-Profiling CIs

The BCS-profiling CIs can be calculated with or without the EAM algorithm. To calculate

them without the EAM algorithm, set KMS=0 in KMS Simulation.m and run simulations as

described in the previous section.

To calculate them with the EAM algorihm, the next step is to set the following parameters

in BCS Simulation.m.

• method = ’KMS’ (not AS) to compute the BCS-profiling CI with the EAM algorithm;

• DGP=8 to generate data from the Entry Game (Tables 2-3 in Kaido et al. (2019)).

• KMS=0 to run the BCS simulations.

• component=k where k∈ {1, 2} selects the projection direction. When KMS=0 is used,

k=1 and k=2 are the only valid options for the projection direction.

The remaining parameters (n,Nmc,sim lo,sim hi) are the same as the ones in the previous

section. The parameters for convergence criteria follow the baseline options and are set

in KMSoptions BCS Simulation.m. Once these parameters are set, run BCS Simulation.m

to conduct simulation experiments. The file Analysis BCS.m is an analog of Analysis.m,

which carries out post analysis for a particular set of BCS simulations.

9

3.3 Replicating the Empirical Application

The empirical exercise applies the CPI algorithm to the airline application in Kline and

Tamer (2016). The main replication file is KMS Application.m and the set of options are

located in KMSoptions Application.m. To create the MEX files, set J1=J2=16, dim p=9, and

S=0.

In addition to increasing the maximum number of allowable iterations to 200, there are

six additional options/modifications imposed that require further discussion:

1. Set KMSoptions app.FeasAll = 1

2. Set KMSoptions app.direct solve = 1

3. Set the GMS function equal to φ(x) = min(x, 0).

4. Set the upper bound on the correlation parameter to 0.85.

5. Set KMSoptions app.boundary = 0.

6. Set KMSoptions app.CVX resid tol = [].

The option KMSoptions app.FeasAll = 1 initiates the CPI algorithm in parallel from each

feasible point obtained in the feasible search rather than from only the feasible point that

maximizes q′θ for q ∈ {−p, p}. Each of the solutions as well as a subset of feasible points ob-

tained from the CPI algorithm are then passed as starting points to the vanilla fmincon algo-

rithm to fine tune the solution. This is accomplished by setting KMSoptions app.direct solve

= 1. We find that the CPI algorithm and the vanilla fmincon algorithm complement each

other in finding the solution to this relatively difficult DGP. In particular, feeding fmincon a

randomly chosen starting point returns an infeasible solution, so that a standard application

of the multistart-fmincon algorithm does not suffice. In contrast, passing fmincon the

solution to the CPI algorithm yields an improvement in the objective value and completes

in a reasonable amount of time.

10

We specify the GMS function to be the continuous function min(x, 0) rather than the

discontinuous “hard thresholding” function. This is both theoretically appealing and seems

to be the better choice for this application. Using “hard thresholding”, we find that the

CPI algorithm returns solutions that strictly satisfy the constraint
√
n
m̄j(θ)

σ̂j(θ)
≤ ĉ(θ) for all j,

thus signally that the algorithm terminated early. The continuous GMS function does not

experience this problem.

The gradient of the moment function, Dθgj(θ), is a necessary ingredient for computing the

calibrated critical value. The gradient is not well-defined when the correlation parameter is

close to one. To avoid numerical issues we restrict the parameter space so that θ9 ∈ [0, 0.85].

A final potential issue is that the identified region in the application includes values

of θ on the boundary. That is, there exists θ ∈ ΘI(P) such that θ9 = 1 where θ9 is the

correlation parameter. This is accounted for when computing the calibrated critical value

ĉ(θ) by specifying additional constraints that recenter the parameter space, see Lines 124-129

in KMS 33 Coverage.m. To turn these constraints on, set KMSoptions app.boundary = 1

and KMSoptions app.CVX resid tol = 1e-4. The reported results in Kaido et al. (2019) set

KMSoptions app.boundary = 0 and KMSoptions app.CVX resid tol = [] (i.e., the CVX

residual tolerance is set to default settings). We do not find that CPI is sensitive to whether

the boundary constraints are imposed. We do, however, find that the boundary constraints

generate numerical issues in the CVXGEN program, which are overcome by setting the CVX

residual tolerance to a larger value (e.g., 10−4).

11

References

Grant, M., & Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In

V. Blondel, S. Boyd, & H. Kimura (Eds.), Recent advances in learning and control

(pp. 95–110). Springer-Verlag Limited.

(http://stanford.edu/~boyd/graph dcp.html)

Grant, M., & Boyd, S. (2014, March). CVX: Matlab software for disciplined convex

programming, version 2.1. http://cvxr.com/cvx.

Jones, D. R. (2001). A taxonomy of global optimization methods based on response

surfaces. Journal of global optimization, 21 (4), 345–383.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of

expensive black-box functions. Journal of Global optimization, 13 (4), 455–492.

Kaido, H., Molinari, F., & Stoye, J. (2016). Confidence intervals for projections of partially

identified parameters. arXiv preprint arXiv:1601.00934v1 .

Kaido, H., Molinari, F., & Stoye, J. (2017). Confidence intervals for projections of partially

identified parameters. arXiv preprint arXiv:1601.00934v2 .

Kaido, H., Molinari, F., & Stoye, J. (2019). Confidence intervals for projections of partially

identified parameters. Econometrica.

Kline, B., & Tamer, E. (2016). Bayesian inference in a class of partially identified models.

Quantitative Economics , 7 (2), 329–366.

Mattingley, J., & Boyd, S. (2012). Cvxgen: A code generator for embedded convex

optimization. Optimization and Engineering , 13 (1), 1–27.

12

http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

Appendices

A Tables

DGP dim p J1 J2 S CVXGEN name

1-3 2 4 0 0 csolve DGP1

4 2 8 0 0 csolve DGP4

5-6 8 8 8 0 csolve DGP5

7 9 8 8 0 csolve DGP7

8 5 8 4 13 csolve DGP8

Table 1: List of parameters for creating the CVXGEN MEX files for simulations in Kaido et al. (2016), Kaido et
al. (2017), and Kaido et al. (2019). The first column corresponds to the parameter DGP in KMS Simulation.

B Polytope Constraints and Non-basis Directional Vec-

tors

In this appendix we describe the numerical issues that arise when either p is a non-basis

directional vector or polytope constraints are imposed on the parameter space. We also

propose a method on how to resolve these issues. The key issue is how to draw points

from the contracted parameter space, see Equation (??). If the constraints Aθθ ≤ bθ are

included or if p is not a basis vector, then the contracted parameter space is a polytope but

not a hyperrectangle (henceforth, called a non-basis polytope). In either case the numerical

problem amounts to drawing points uniformly from a non-basis polytope.

We have identified three methods that can be used to draw points from a non-basis

polytope. We, however, find that only the third method is reliable.

1. Hit-and-Run (HR) sampling. HR sampling uses Monte Carlo Markov Chain methods

to draw points uniformly from the non-basis polytope Θ(hcounter
rate) ⊂ Rd. The method

is, however, numerically unstable if the non-basis polytope is thin. The contracted pa-

13

rameter space in the EAM algorithm converges to a polytope in Rd−1 as the contraction

counter increases Therefore, HR sampling is unreliable for our problem.

2. Weighted average of vertices. In this method, the vertices of the contracted parameter

space Θ(hcounter
rate) are computed. A randomly generated point can be generated from

a random weighted average of the vertices. Uniform weights do not guarantee that

the point is uniformly drawn from Θ(hcounter
rate). This, never-the-less, does not violate

convergence assumptions for the EAM algorithm provided that there is positive mass

at all points θ ∈ Θ(hcounter
rate). The algorithm that computes the vertices suffers from

numerical issues as the parameter space becomes thin, and so this method is not

appropriate for the CPI algorithm.

3. Draw-and-Discard sampling (DD). The algorithm first draws points uniformly from

a box B ⊃ Θ(hcounter
rate). It then discards any points that are not in Θ(hcounter

rate). The

volume of B relative to Θ(hcounter
rate) must be small for this method to work well. If not,

then a large number of initial points are required in order to achieve a target number

of points. Therefore, the box B needs to be carefully defined.

In the current version of the CPI algorithm, the DD method only works for when p is

a basis vector and the parameter space is a non-basis polytope. Modifications to the user-

written function bound transform.m are required. We explain the modifications with an

example. The parameter space for DGP 8 is the polytope:

Θ = {θ ∈ R5 : θ1 ∈ [0, 1], θ2 ∈ [0, 1], θk ∈ [0,min{θ1 θ2}], k = 3, 4, 5}.

First, to run DD sampling set KMSoptions.HR=0 (to use hit-and-run sampling set KMSoptions-

.HR=1). To draw points from this space we use the draw-and-discard sampling method. The

file bound transform.m defines the box B above. It is not advised to set B to be the pa-

rameter bounds θLB and θUB, as the volume of this box relative to the contracted parameter

space Θ(hcounter
rate) quickly diverges. The inputs of bound transform are: LB in, UB in, and

14

KMSoptions. The inputs LB in and UB in define the contracted parameter space (contracted

in direction p). The outputs are the modified bounds LB out and UB out . Points drawn from

{θ ∈ R5 : LBin ≤ θ ≤ UBin} are unlikely to satisfy the polytope constraints. In particular,

if

LBin =



0

0

0

0

0


, UBin =



10−4

1

1

1

1


then it is likely that components 3− 5 violate the condition θk ∈ [0,min{θ1 θ2}]. To resolve

this issue the upper bound is modified, so that UBout,1 = UBin,1, UBout,2 = UBin,2, and

UBout,k = min{UBin,1, UBin,2, UBin,k} for k = 3, 4, 5 (see Lines 39-44 in bound transform.m).

The lower bound is unchanged. The box B defined by LBout and UBout contains the con-

tracted parameter space and retains a good volume ratio. The modifications to bound trans-

form.m are model specific, and depend on the constraints Aθθ ≤ bθ.

If the parameter space is a polytope, then additional constraints for the linear program

that computes ĉ(·) are required. These constraints are determined by the user-specified

function Rho Polytope Box. Recall that we require λ ∈
√
n(Θ − θ) ∩ ρBd. The constraint

λk ∈ [−ρ, ρ] is already included in KMS 33 Coverage. For DGP 8, the following constraints

need to be added:

λk ≤
√
n(1− θk), k = 1, 2

− λk ≤
√
n(0− θk), k = 1, 2, 3, 4, 5

− λ1 + λk ≤ −
√
n(−θ1 + θk), k = 3, 4, 5

− λ2 + λk ≤ −
√
n(−θ2 + θk), k = 3, 4, 5.

15

Observe that the constraint −λ1 + λk ≤ −
√
n(−θ1 + θk) is implied by the condition θk ≤

min{θ1, θ2}. These S = 13 constraints are specified in Rho Polytope Box. In the CVXGEN C

code generator, we set S = 13 for this DGP.

16

	Introduction
	Using the Calibrated Projection Interval Algorithm
	Overview of Important Files and Folders
	CVXGEN and CVX Setup
	CVXGEN Setup
	CVX Setup

	Simulations & Empirical Application
	Running Simulations: Calibrated Projection CIs
	Running Simulations: BCS-Profiling CIs
	Replicating the Empirical Application

	References
	Appendices
	Tables
	Polytope Constraints and Non-basis Directional Vectors

