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APPENDIX E: COMPENDIUM: EQUILIBRIUM CONDITIONS

E.1. Transitional Dynamics

HERE, WE PRESENT the set of equilibrium conditions. Given a sequence of government
policies {imt � i

w
t � i

g
t �B

Fed
t �MFed

t �GFA
t �GFed

t � T h
t �Tt} that satisfy the Fed’s and fiscal authori-

ties’ budget constraint, the optimal individual bank variables, {b̄t� āt� d̄t� c̄t��t� vt}, aggre-
gate variables, {Bt�Mt�Dt�Gt�Et}, and a system of prices and real returns {Pt�R

b
t �R

m
t �R

g
t �

Rd
t � χ̄t

+� χ̄t
−}, the system features 18 unknowns to be determined for all t. There is only

one endogenous aggregate state variable, Et , from which the entire equilibrium is solved
for. Table III presents the list of all model variables and Figure 11 presents a detailed
timing of the model.

Individual Bank Variables. The portfolio solution to {b̄t� āt� d̄t} and the values of
{�t� vt} are the solution and values of the following problem:

�t ≡ max
{b̄�ā�d̄}≥0

{
Eω

[
Rb

t b̄+Rm
t ā−Rd

t d̄ + χ̄t (ā� d̄�ω)
]1−γ} 1

1−γ �

b̄+ ā− d̄ = 1�

d̄ ≤ κt� (E.1)

The value of the bank’s problem is

vt = 1
1 − γ

[
1 + (

β(1 − γ)�1−γ
t vt+1

) 1
γ
]γ
� (E.2)

Dividends depend on {�t� vt} via

c̄t = 1

1 + [
β(1 − γ)vt+1�t+1

1−γ
]1/γ � (E.3)

This block of equations yields the equations needed to obtain {b̄t� āt� d̄t� c̄t��t� vt} for a
given path for real rates {Rb

t �R
m
t �R

d
t � χ̄t}.
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TABLE III

MODEL VARIABLE LIST.

Interest rates
īf average interbank market rate
ib nominal interest rate on loans
id nominal interest rate on deposits
ig nominal interest rate on bonds

Individual bank variables
Portfolios
b̃ bank loans in lending stage
m̃ reserves held by banks at end of lending stage
d̃ bank deposits at end of lending stage
g̃ government bonds at end of lending stage
b loans at beginning of lending stage
m reserves held at beginning of lending stage
d deposits owed at beginning of lending stage
g government bonds at beginning of lending stage
b̄ portfolio share in loans
m̄ portfolio share in reserves
ā portfolio share in liquid assets
d̄ portfolio share in deposits
ḡ portfolio share in bonds

Others
c bank consumption
� risk-adjusted value of bank equity
Re return on equity
e real equity
μ Lagrange multiplier on capital requirement constraint
V l , V b value of the bank at lending/balancing stage
V value of the bank as a function of bank equity
Interbank market

ω withdrawal shock
s surplus at beginning of balancing stage after shock ω
θ market tightness in interbank market
f interbank market loans
w discount window loans
�+ probability that a bank with surplus finds a match
�− probability that a bank with deficit finds a match

Aggregates
E aggregate real bank equity
�x
t intercept demand x ∈{g�b�d�m}

εx elasticity of demand x ∈{g�b�d�m}
B, Bf bank loan supply / firm demand
D, Dh bank / household deposits
M , Mh reserve / currency holdings
G, Gh bank / household gov. bond holdings
P price level
π inflation

Government and fed policies
im nominal interest rate on reserves
iw nominal interest rate on discount window loans
GFA Total supply of government bonds
GFed Fed holding of government bonds
MFed supply of reserves
BFed Fed holdings of private loans
W Fed discount window loans
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Aggregate Banking Variables. Next, homogeneity in policy functions gives us the aggre-
gate bank portfolio:

Bt+1 = Ptb̄t (1 − c̄t)Et� (E.4)

Dt+1 = Ptd̄t (1 − c̄t)Et� (E.5)

At+1 = Ptāt (1 − c̄t)Et� (E.6)

Real aggregate equity evolves according to

Et+1 = [((
1 + ibt+1

)
b̄t +

(
1 + imt+1

)
m̄t +

(
1 + i

g
t+1

)
ḡt −

(
1 + idt+1

)
d̄t

)
Pt (1 − c̄t)Et

− (
1 + iwt+1

)
Wt+1 − PtTt

]
/Pt+1� (E.7)

This block of equations determines {Bt�Gt�Dt�Et} given a path for inflation and nominal
rates—which together determine real rates—and transfers.

Market Clearing Conditions. The real rates and the path for prices follow from the
market clearing conditions in all the asset markets:

Bt+1 +BFED
t+1

Pt

=�b
t

(
Rb

t

)εb� (E.8)

Dt+1

Pt

=�d
t

(
Rd

t

)εd � (E.9)

MFed
t+1 =Mt+1 + Pt�

m
t

(
Rm

t

)εm
� (E.10)

Gt+1 =GFA
t+1 − (

GFed
t+1 + Pt�

g
t

(
R

g
t

)εg)
� (E.11)

Rm
t = 1 + imt

Pt+1/Pt

� (E.12)

Using these market clearing conditions, we determine {m̄� ā}:

Ptāt · (1 − c̄t) ·Et = M̃Fed
t+1 −Mh

t+1 +Gt+1 −GFed
t+1 −Gh

t+1� (E.13)

Mh
t+1 + Pt · m̄t (1 − c̄t)Et = M̃Fed

t+1 � (E.14)

The last term is the definition of Rm
t . This block determines {Pt�R

b
t �R

m
t �R

d
t } given ag-

gregate bank variables. The return for the government bond comes from the clearing of
government bonds at the balancing stage. This condition is

R
g
t =

⎧⎨
⎩
Rm

t +χ+
t if Pt�

g
t

(
Rm

t +χ+
t

)εg ≤Gs
t −GFed

t �[
Gs

t −GFed
t

Pt�
g
t

]1/εg

otherwise�

To close the system, we need the equations that determine χt .

Interbank Market Block. We need to determine χ̄t . This follows from the conditions
obtained from Proposition 1:

S̃−
t = (1 − c̄t)Et ·

∫ ω∗
t

1
s̃(ω) d� and S̃+

t = (1 − c̄t)Et ·
∫ ∞

ω∗
t

s̃(ω) d��
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where we employ the definition of reserve balances before the exchange of government
bonds:

s̃(ω) = āt +
(

1 + idt+1

1 + imt+1

)
ωd̄t − ρd̄t (1 +ω)�

The market tightness is defined as

θt = S̃−
t

S̃+
t − ḡt

�

and the deposit threshold as

ω∗
t ≡ −

āt

d̄t

− ρ

Rd
t+1

Rm
t+1

− ρ

�

From here, discount-window loans are

Wt =
(
1 −�−(θt)

)(
S̃−
t − ḡ−

t

)
� (E.15)

and the average interbank market rate, īft , is

i
f

t =φ(θt)imt + (
1 −φ(θt)

)
iwt �

This system of equations gives us

χ−
t =�−

t

(
i
f

t − imt
) + (

1 −�−
t

)(
iwt − imt

)
and χ+

t =�+
t

(
i
f

t − imt
)
� (E.16)

Note that here we take the probabilities �−
t and �+

t as given functions of market tight-
ness, as we do in the main text. This block determines χ̄t and the amount of discount
window loans, Wt . Note that so far, we have provided enough equations to solve for
{b̄t� āt� d̄t� c̄t��t� vt}, {Bt�Mt�Dt�Gt�Et}, and {Pt�R

b
t �R

m
t �R

d
t �R

g
t � χ̄t}.

Law of Motion for Aggregate Equity. The Fed’s budget constraint is

Et+1 = (
1 + (

Rb
t+1 − 1

)(
b̄t + b̄Fed

t

) − (
Rd

t+1 − 1
)
d̄t

)
(1 − c̄t)Et� (E.17)

where b̄Fed
t ≡ BFed

t+1/(Pt · (1 − c̄t)Et). Equation (E.17) shows that portfolio choices, market
returns, and next-period Fed policies and price level determine next-period aggregate real
equity.

Consolidated Government Budget Constraint. The government’s budget policy se-
quence {im� iwt �Wt�B

Fed
t �MFed

t � T�T h} satisfies the following constraint:(
1 + imt

)
Mt +Mh

t +BFed
t+1 − (

GFA
t+1 −GFed

t+1

) +W Fed
t+1

=MFed
t+1 + (

1 + ibt
)
BFed

t − (
1 + i

g
t

)(
GFA

t −GFed
t

) + (
1 + iwt

)
W Fed

t

+ Pt

(
Tt + Th

t

)
� (E.18)
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And the tax on banks satisfies

Tt =
(
im −π

)
β
Mt

Pt

+ (
i
g
t −πt

)Gt

Pt

− (
ibt −πt

)BFed
t

Pt

− (
iwt − imt

)Wt

Pt

� (E.19)

E.2. Stationary Equilibrium

In a stationary equilibrium, inflation is constant. The stationary equilibrium conditions
are summarized by replacing time subscripts with steady state subscripts ss.

Individual Bank Variables. For the individual bank variables, we have

css = 1 −β
1
γ �1/γ−1

ss � (E.20)

vss = 1
1 − γ

(
1

1 − (
β�1−γ

ss

) 1
γ

)γ

� (E.21)

�ss ≡ (
1 − τss

)
max

{b̄�ā�d̄}≥0

{
Eω

[
Rb

ssb̄+Rm
ssā−Rd

ssd̄ + χ̄(ā� d̄)
]1−γ} 1

1−γ � (E.22)

b̄+ ā− d̄ = 1� (E.23)

d̄ ≤ κ� (E.24)

where {b̄ss� āss� d̄ss} are the optimal choices of {b̄� ā� d̄} in the problem above.

Market Clearing Conditions. The real rates and the path for prices follow from the
market clearing conditions in all the asset markets:

Bt+1 +BFED
t+1

Pt

=�b
t

(
Rb

t

)εb� (E.25)

Dt+1

Pt

=�d
t

(
Rd

t

)εd � (E.26)

MFed
t+1 =Mt+1 + Pt�

m
t

(
Rm

t

)εm
� (E.27)

Gt+1 =GFA
t+1 − (

GFed
t+1 + Pt�

g
t

(
R

g
t

)εg)
� (E.28)

Rm
t = 1 + imt

Pt+1/Pt

� (E.29)

The last term is the definition of Rm
ss . This block determines {Pt�R

b
t �R

m
t �R

d
t } given ag-

gregate bank variables. The return for the government bond comes from the clearing of
government bonds at the balancing stage. This condition is

Rg
ss =

⎧⎪⎨
⎪⎩
Rm

ss +χ+
ss if �g

ss

(
Rm

ss +χ+
ss

)εg ≤ Pt

(
GFA

ss −GFed
ss

)
�[

GFA
ss −GFed

ss

Pt�
g
ss

]1/εg

otherwise.

Notice that in a stationary equilibrium, the price level is pinned down by MFed
t+1 , using the

demand for reserves and currency. This is because reserves are obtained as a residual,
given the indifference. To close the system, we need the equations that determine χt .
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Interbank Market Block. We need to determine χ̄ss. This follows from the conditions
obtained from Proposition 1:

S̃−
ss = (1 − css)Ess ·

∫ ω∗
ss

1
s̃(ω) d� and S+

ss = (1 − css)Ess ·
∫ ∞

ω∗
ss

s̃(ω) d��

where we employ the definition

s(ω) = āss +
(

1 + idss
1 + imss

)
ωd̄ss − ρd̄ss(1 +ω)� (E.30)

The market tightness is defined as

θss = S̃−
ss

S̃+
ss − ḡss

(E.31)

and the deposit threshold

ω∗
ss ≡ −

āss

d̄ss

− ρ(
Rd

ss

Rm
ss

− ρ

) � (E.32)

From here, discount window loans are

Wss = (
1 −�−(θss)

)
S̃−
ss� (E.33)

and the average interbank market rate is

i
f

ss =φ(θss)imss + (
1 −φyields(θss)

)
iwss�

This system of equations gives us

χ−
ss =�−

ss

(
i
f

ss − imss
) + (

1 −�−
ss

)(
iwss − imss

)
and χ+

ss =�+
ss

(
i
f

ss − imss
)
� (E.34)

Note that here we take the probabilities �−
ss and �+

ss as given functions of market tightness,
as in the main text. This block determines χ̄ss and the amount of discount window loans,
Wss.

Law of Motion for Aggregate Equity. The steady state condition for the law of motion
of bank equity is

1/β= (
1 + (

Rb
ss − 1

)(
b̄ss + b̄Fed

ss

) − (
Rd

ss − 1
)
d̄ss

)
� (E.35)

where b̄Fed
ss ≡ BFed

t+1/(Pt (1 − c̄ss)Ess).

Consolidated Government Budget Constraint. The policy sequence satisfies the follow-
ing consolidated budget constraint:

Tss + Th
ss =

[(
imss −πss

)Mt+1

Pt

+ (
igss −πss

)GFA
t+1 −GFed

t+1

Pt

− (
ibss −πss

)BFed

Pt

− (
iwss − imss

)Wt+1

Pt

]
� (E.36)
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The tax on banks satisfies

Tss =Ess(1 − c̄ss)
[(
imss −πss

)
m̄ss +

(
igss −πss

)
ḡss −

(
ibss −πss

)
bFed
ss − (

iwss − imss
)
w̄ss

]
� (E.37)

APPENDIX F: NONFINANCIAL SECTOR (PROOF OF PROPOSITION 3)

This Appendix describes the nonfinancial sector of the model, which closes the general
equilibrium. The nonfinancial sector is composed of a representative household that sup-
plies labor; stores wealth in deposits, government bonds, and currency; and owns shares of
a representative firm. The firm uses labor for production and is subject to a working capi-
tal constraint. This block delivers an endogenous demand schedule for loans, a supply for
deposits, and a demand for government bonds. Preference and technology assumptions
are such that the equilibrium has no feedback from future state variables to the asset de-
mands at period t. The assumptions make all the schedules static and autonomous. This
formulation has two virtues. First, we can solve the equilibrium allocations by solving the
equilibrium in the deposit market and loan markets, by solving the bank’s problem that
takes these schedules as given. From then, since quantities are consistent with an equi-
librium demand equation from the nonfinancial sector, we know it is satisfying market
clearing conditions in the labor market. If all asset markets clear, the goods market also
clears. The formulation is convenient because it allows us to focus on the banking system,
as we can effectively treat these schedules as exogenous functions with exogenous shocks
to their intercepts. We exploit this feature in the application.

The nonfinancial sector is populated by a representative household that saves in de-
posits, currency, and government bonds and own shares of a productive firm. Assets are
special, because different goods are bought with different assets. Similar assumptions are
common in new-monetarist models (Lagos, Rocheteau, and Wright (2017)). We see this
formulation as a convenient way to obtain asset demands. The firm is subject to a working
capital constraint that delivers a demand for loans. The household’s Bellman equation is

V h
t (G�M�D�ϒ) = max

{cx�X ′�ϒ′�h}

∑
x∈{d�g�m}

Ux
(
cx

) + ch − h1+ν

1 + ν
+βhV h

t+1

(
G′�M ′�D′�ϒ′)�

subject to the budget constraint

Pt

( ∑
x∈{d�g�m}

cx + ch
)

+
∑

X∈{G�M�D}

X ′ + qtϒ
′

=
∑

X∈{G�M�D}

(
1 + iXt

)
X + (

qt + Ptr
h
t

)
ϒ+ zth− PtT

h
t (F.1)

and the following payment constraints:

Ptc
d ≤ (

1 + idt
)
Dh� Ptc

g ≤ (
1 + i

g
t

)
Gh� Ptc

m ≤M� (F.2)

In the problem, the household supplies h hours and consumes four types of goods: cd are
goods subject to a deposits in advance constraint, (F.2); cg are goods subject to a bond-
in-advance constraint; cm are goods subject to a currency-in-advance constraint; and ch

are goods that are not subject to any constraint and yield linear utility. The quasi-linearity
in ch is key to produce the static nature of demand schedules, because it allows us to fix
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marginal utility to one in any Euler equation. Labor supply is h and has an inverse Frisch
elasticity of ν, the key parameter for the effect of the loans rate on output. Also, note that
βh is the household’s discount factor, which can differ from the banker’s discount factor.
Equation (F.1) is the household’s nominal budget constraint. The right-hand side includes
the value of the household’s portfolio of assets, G, M , and D. These assets earn nominal
interest rates paid by banks and the government; currency has no interest. The term ϒ is
firm shares, which can be normalized to 1. The nominal price of the firm is qt , firm profits
(in real terms) are rht . The wage is zt is earned on hours worked. Finally, households pay
a lump-sum tax Th

t .
The portfolio of assets G, M , and D matters because each asset is a store of wealth in

the budget constraint (F.1), but also because each asset is a special medium of exchange in
the corresponding good markets. The preference specification (quasi-linear preferences)
is identical to the one in Lagos and Wright (2005). Furthermore, the fact that some goods
must be bought with specific assets is akin to the transaction technology in new mone-
tarist models (Lagos, Rocheteau, and Wright (2017)), but the trading protocol stemming
from random search is replaced by a Walrasian market. We employ the following utility
specification for each good:

Ud ≡ (D̄t)γ
d

(
cd

)1−γd

1 − γd
� Um ≡ (M̄t)γ

m

(
cm

)1−γm

1 − γm � and Ug ≡ (Ḡt)γ
g

(
cg

)1−γg

1 − γg �

where {γd�γg�γm} > 0. This specification delivers an iso-elastic asset demand with
{D̄t� M̄t� Ḡt} as demand shifts. Notice that if cd = D̄t , we have ∂Ud/∂cd = 1. The presence
of the linear term ch in the utility function implies that at the household optimum, we
must have cd ≤ D̄t . This bound will be achieved, in effect, when the household is satiated
in deposits. The same holds for cm and cg.

Next, we present the firm’s problem. The firm has access to a production technology
that uses hd

t units of labor that are transformed into t+1 output via a production function
yt+1 = At+1h

α
t . Production is scaled by At+1, a productivity shock that works as a loan

demand shifter. The term At+1 is known at t. The firm uses bank loans to pay workers in
the first period to maximize shareholder value.

PROBLEM 15—Firm’s Problem:

Pt+1r
h
t = max

{Bdt+1�ht}≥0
Pt+1yt+1 − (

1 + ibt+1

)
Bd

t+1 + (
1 + idt+1

)(
Bd

t+1 − ztht

)
�

subject to the working capital constraint, ztht ≤ Bd
t+1.

In the firm’s problem, the firm maximizes profits, the sum of sales minus financial ex-
penses. The firm borrows Bd

t+1 from banks and uses these funds to finance payroll, ztht .
What the firm does not spend is saved as deposits. Notice that in equilibrium, the firm
does not save. The next proposition is a generalized version of Proposition 3.1 It is more
general because it describes the equilibrium solution to the asset demands when asset
markets for the household are not necessarily satiated.

1We use the superscript h to indicate the aggregate household holdings of a specific asset.
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TABLE IV

STRUCTURAL TO REDUCED FORM PARAMETERS.

Reduced �x εx �b εb

Structural X̄t (βh)1/γx 1
γx

− 1 (αAt+1)−( ν+1
α−(ν+1) ) ν+1

α−(ν+1)

PROPOSITION F.1: The household demand for loans, deposits, and government bonds are
given by

Xh
t+1

Pt

⎧⎪⎨
⎪⎩

=�x
t

(
Rx

t+1

)εx
� Rx

t+1 ≤ 1/βh�

≥ X̄t� Rx
t+1 = 1/βh�

= ∞� otherwise�
for x ∈{m�d�g}�

The firm’s loan demand is

Bd
t+1

Pt

=�b
t

(
Rb

t+1

)εb
�

Output and hours are given by

yt+1 =
(

1
α

) α
α−(ν+1)

A
(ν+1)
ν+1−α

t+1

(
Rb

t+1

) α
α−(ν+1) and ht =

(
1

αAt+1

) 1
α−(ν+1) (

Rb
t+1

) 1
α−(ν+1) �

and profits and the value of the firm are given by

rht+1 =A
(ν+1)
ν+1−α

t+1

(
α

− α
α−(ν+1) − α

− ν+1
α−(ν+1)

) · (Rb
t+1

) α
α−(ν+1) and qt =

∑
s≥0

(
βh

)s
rhs �

One important thing to note is that Rx
t+1 for x ∈ {m�d�g} refers correspondingly to the

real return of each asset. In the context of the household, Rm
t+1 is the inverse inflation, not

the real rate on reserves. Table IV is the conversion table from structural parameters to
the reduced form parameters of the nonfinancial sector demand functions.

The rest of the Appendix proceeds with the proof.

PROOF OF PROPOSITION 3: Derivation of Household Deposit, Bond, and Currency De-
mands. To ease the notation, we remove the h superscripts from Problem F. Define the
household’s net worth, eh = (1 + idt )D + (1 + imt )M + (1 + i

g
t )G + (qt + rt)ϒ − Th

t , as
the right-hand side of its budget constraint, excluding labor income. Then substitute ch

from the budget constraint and employ the definition eh. We obtain the following value
function:

V h
t (G�M�D�ϒ) = max

{cd�cg�h�G′�D′�ϒ′}
Ud

(
cd

) +Ug
(
cg

) +Um
(
cm

) − h1+ν

1 + ν
+ eh

+ zth− (
Ptc

g + Ptc
d +D′ +G′ +M ′ + qtϒ

′)
Pt

+βhV h
t+1

(
G′�M ′�D′�ϒ′)� (F.3)

subject to the payment in advance constraints in (F.2).



BANKS, LIQUIDITY MANAGEMENT, AND MONETARY POLICY 11

Step 1—Derivation of the Deposit, Currency, and Bond-Goods Demand. The first step is
to take the first-order conditions for {cd� cg� cm}. Since {G�D�M} enter symmetrically into
the problem, we express the formulas in terms of x ∈{d�g�m}, an index that corresponds
to each asset. From the first-order conditions in the objective of (F.3) with respect to D

Pt
,

G
Pt

, and M
Pt

, we obtain that (
Ux

cx

) = 1 +μx
t �

where μx
t ≥ 0 are associated multipliers payment-in-advance constraints in (F.2). The mul-

tiplier is activated when Ux
cx ≤ 1, and thus cx ≤ Rx

t · X
Pt−1

. Solving for the multiplier, we
obtain μx

t = max{Ux
cx (Rx

t · X
Pt−1

) − 1�0}. Combining this multiplier yields

cx(X� t) = min
{(
Ux

cx

)−1
(1)�Rx

t · X

Pt−1

}
for x ∈{d�g�m}� (F.4)

The expression shows that the deposit- and bond-in-advance constraints bind if the
marginal utility associated with their consumption is less than one. Note that

Ux
cx (X̄) = (X̄)γ

x
x−γx for x ∈{d�g�m}� (F.5)

and marginal utility is above 1, for X/Pt < X̄ . Then the marginal consumption as a func-
tion of real balances is

∂cx

∂
(
X ′/Pt

) =
{
Rx

t � X/Pt < X̄�

0� otherwise�
for x ∈{d�g�m}�

We return to this condition below to derive the demand for deposits and bonds by the
non-financial sector.

Step 2—Labor Supply. The first-order condition with respect to labor supply yields a
labor supply that depends only on the real wage:

hν
t = zt/Pt� (F.6)

Step 3—Deposit and Bond Demand. Next, we derive the household demand for deposits,
government bonds, and currency. By taking first-order conditions with respect to D′/Pt ,
G′/Pt , and M ′/Pt , we obtain the real balances of deposits, bonds, and currency:

1 = βh
∂V h

t+1

∂
(
X ′/Pt

) = βh

[
∂Ux

∂cx
· ∂cx

∂
(
X ′/Pt

) + ∂Uh

∂ch
· ∂ch

∂
(
X ′/Pt

)]
for x ∈{d�g�m}�

The first equality follows directly from the first-order condition, and the second uses the
envelope theorem and the solution for the optimal consumption rule. If we shift the pe-
riod in (F.4) by one, the first-order condition then becomes

1
βh

=
⎧⎨
⎩
∂Ux

∂cx
Rx

t � X/Pt < X̄�

Rx
t � otherwise�

for x ∈{d�g�m}�

Finally, once we employ the definition of marginal utility, we obtain

1
βh

=
{

(X̄)γ
x(
Rx

t X/Pt

)−γx

Rx
t � X/Pt < X̄�

Rx
t � otherwise�

for x ∈{d�g�m}�
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Inverting the condition yields

X/Pt =

⎧⎪⎨
⎪⎩
X̄

(
βh

)1/γx(
Rx

t

) 1
γx

−1
� Rx

t < 1/βh�

[X̄�∞)� Rx
t = 1/βh�

∞� Rx
t > 1/βh�

for x ∈{d�g�m}�

Thus, we have that

�x
t = X̄t

(
βh

)1/γx
and εx = 1

γx − 1 for x ∈{d�g}�

This verifies the functional form for the household demand schedules. Next, we move to
the firm’s problem to obtain the demand for loans.

Firm Problem. In this Appendix, we allow the firm to save in deposits whatever it does
not spend in wages. From the firm’s problem, if we substitute the production function into
the objective, we obtain

Pt+1r
h
t+1 = max

Bdt+1≥0�xt+1�ht≥0
Pt+1At+1h

α
t − (

1 + ibt+1

)
Bd

t+1 + (
1 + idt+1

)(
Bd

t+1 − ztht

)
�

subject to ztht ≤ Bd
t+1. Observe that

Pt+1At+1h
α
t − (

1 + ibt+1

)
Bd

t+1 + (
1 + idt+1

)(
Bd

t+1 − ztht

)
= Pt+1At+1h

α
t − ztht −

(
ibt+1 − idt+1

)(
Bd

t+1 + ztht

)
�

Step 4—Loans Demand. Since ibt+1 ≥ idt+1, it is without without loss of generality that the
working capital constraint is binding, ztht = Bd

t+1. Thus, the objective is

Pt+1At+1h
α
t − (

1 + ibt+1

)
ztht�

The first-order condition in ht yields

Pt+1αAt+1h
α
t = (

1 + ibt+1

)
ztht�

Dividing both sides by Pt , we obtain

Pt+1

Pt

αAt+1h
α
t = (

1 + ibt+1

) zt
Pt

ht�

Next, we use the labor supply function, (F.6), to obtain the labor demand as a function of
the loans rate:

Pt+1

Pt

αAt+1h
α
t = (

1 + ibt+1

)
hν+1
t →Rb

t = αAt+1h
α
t

hν+1
t

� (F.7)

Once we obtain the wage, if we use that the fact that the working capital constraint is
binding, we have

Bd
t+1

Pt

= ht

ztht

Pt

= hν+1
t → ht =

(
Bd

t+1

Pt

) 1
ν+1

� (F.8)
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We combine (F.7) and (F.8) to obtain the demand for loans:

Rb
t = αAt+1

(
Bd

t+1

Pt

)−1(Bd
t+1

Pt

) α
ν+1

→ Bd
t+1

Pt

=�t

(
Rb

t+1

)εb
� (F.9)

Thus, the coefficients of the loans demand are

�b
t = (αAt+1)−εb and εb =

(
ν + 1

α− (ν + 1)

)
�

This concludes the elements of the proposition. Next, we present the formulas for hours,
output and the market price of shares.

Step 5—Equilibrium Output and Hours. We substitute the loans demand, (F.9), into (F.8)
to obtain the labor market equilibrium:

ht =
(

1
αAt+1

) 1
α−(ν+1) (

Rb
t+1

) 1
α−(ν+1) �

We substitute (F.8) into the production function to obtain

yt+1 =At+1

(
1

αAt+1

) α
α−(ν+1) (

Rb
t+1

) α
α−(ν+1) → yt+1 =

(
1
α

) α
α−(ν+1)

A
(ν+1)
ν+1−α

t+1

(
Rb

t+1

) α
α−(ν+1) ·

The profit of the firm is given by

rht+1 = yt+1 −Rb
t+1Bt+1 → rht+1 =A

(ν+1)
ν+1−α

t+1

(
α

− α
α−(ν+1) − α

− ν+1
α−(ν+1)

) · (Rb
t+1

) α
α−(ν+1) �

Step 6—Market Price. The asset price qt then is determined as

qt =
∑
s≥1

(
βh

)s
rhs �

With this, we conclude that output, hours, and the firm price are decreasing in the current
(and future) loans rate. Throughout the proof, we use the labor market clearing condition,
so this market clears independently of other markets. Thus, once we compute equilibria
taking the schedules as exogenous in the bank’s problem, it is possible to obtain output,
hours, and household consumption from the equilibrium rates. By Walras’ law, if asset
markets clear, so does the goods market. Q.E.D.

APPENDIX G: PROOFS OF POLICY ANALYSIS (SECTION 3)

To present formal proofs, we define two important concepts: reserve satiation and neu-
trality.

DEFINITION 16—Satiation: Banks are satiated with reserves at period t if the liquidity
premium is zero, Rb

t =Rm
t .

The following lemma states that banks are satiated with reserves under two conditions.
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LEMMA G.1: Banks are satiated with reserves if and only if either (Case 1) iwt = imt or
(Case 2) a bank is in surplus for ω=ωmin.

To discuss policy effects, we compare an original policy sequence—with subindex o—
with an alternative (shock) policy—subindex s in all of the exercises. We say that a policy
is neutral relative to the other if it satisfies the following definition.

DEFINITION 17—Neutrality: Consider original and alternative policy sequences:{
ρo�t�B

Fed
o�t �G

Fed
o�t �G

FA
o�t�Mo�t�Wo�t� To�t� κo�t� i

ior
o�t� i

w
o�t

}
and{

ρs�t�B
Fed
s�t �G

Fed
s�t �G

FA
s�t �Ms�t�Ws�t� Ts�t� κs�t� i

ior
s�t � i

w
s�t

}
�

Policy s is neutral—relative to o—if the induced equilibria satisfies

{Eo�t� co�t� b̄o�t� d̄o�t� m̄o�t� ḡo�t}={Es�t� cs�t� b̄s�t� d̄s�t� m̄s�t� ḡs�t} for all t ≥ 0�

When the condition holds, real aggregate loans and deposits are also determined and
identical to those of the original allocation—and also for currency and holdings of gov-
ernment bonds and currency. The rest of this Appendix shows the proofs for the classic
exercises in monetary policy analysis that we studied in the main text. We begin by estab-
lishing the classic results.

PROPOSITION G.1: Consider an equilibrium sequence induced by policy {Mt+1�Wt+1�B
Fed
t+1�

GFed
t+1�} and {iwt � i

m
t }. Then:

(i) if the sequence induces a stationary equilibrium, then an alternative policy sequence
in which the Fed balance sheet is scaled by a constant K > 0 induces another stationary
equilibrium in which the price level is scaled by K, but all real variables are the same as in the
original stationary equilibrium;

(ii) if the components of the balance sheet of the Fed grow at rate kt for some t, and an
alternative policy that differs only in that growth rate is neutral if and only if the demand for
currency is inelastic (or zero) and the Fed alters its nominal policy rates to keep {1+imt

1+kt
�

1+iwt
1+kt

}
constant across both policies.

Part (i) establishes long-run neutrality. This result applies only to the stationary equi-
librium because assets are nominal. Thus, changes at any point in time, by changing the
price level, have redistributive consequences. Even if the policy is anticipated, the policy
change induces a different equilibrium if policy rates are not adjusted. In the long run,
however, a change in the scale of the Fed’s balance sheet leads to a scaled stationary
equilibrium. Part (ii) is a condition for superneutrality: the condition that changes in the
inflation rate of the economy are neutral. The result says that if the Fed increases the
growth rate of its nominal balance sheet by a scalar and adjusts its nominal policy rates
to keep real rates constant, variations in the growth rate of its nominal balance sheet
translate only into changes in the unit of account, and inflation generates no changes. It is
important to note that a qualification for this result is that the demand for real balances of
currency is inelastic. Otherwise, changes in inflation produce a change in the money de-
mand by households, and inflation adjusts differently in that context. Part (ii) also can be
interpreted as an approximation for mild inflation rates: as long as the currency demand
is close to inelastic, changes in inflation will be close to neutral.
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G.1. Proof of Lemma G.1 (Conditions for Satiation)

By definition of satiation, the right-hand side of (Loan LP-Deposit LP) must equal zero
under satiation, and thus

0 = χ̄+ + (
χ̄− − χ̄+) · F(

ω∗) · Eω

[(
Re

)−γ
ω <ω∗]

Eω

[(
Re

)−γ] �

and

0 = χ̄+�

This expression equals zero in two cases.
Case 1. If iwt = imt , then the condition holds immediately, since χ− = χ+ = 0. This case

is condition (i) in the proposition.
Case 2. If iwt > imt , then since χ− > χ+ for any θ, we must have that F (ω∗) = 0 and

χ̄+ = 0. This occurs only if ω∗ ≤ωmin.
Under condition (ii) of the proposition, no bank is in deficit, even for the worst shock.

G.2. Proof of Proposition G.1 Item (i)

Consider a policy sequence {o} and an alternative policy {s} such that:
1. Xs�t = kXo�t for some k > 0 for the balance sheet variables X ∈ {BFed�GFed�GFA�

M�W };
2. policies are identical for nonbalance-sheet variables {ρo�t� κo�t� i

m
o�t� i

w
o�t} = {ρs�t� κs�t�

ims�t� i
w
s�t}.

The proposition states that the stationary equilibrium induced by either policy features
identical real asset positions and price levels that satisfy Ps�t = kPo�t .

The proof is by construction, and it is immediate to verify that the equilibrium condi-
tions that determine {b̄ss� āss� d̄ss� c̄ss�Ess} in Section E.2 are satisfied by the pair of policy
sequences {

BFed
o�t �G

Fed
o�t �G

FA
o�t�Mo�t�Wo�t

}
t≥0

and {
BFed

s�t �G
Fed
s�t �G

FA
s�t �Ms�t�Ws�t

}
t≥0
�

We proceed to check that {b̄ss� āss� d̄ss� c̄ss�Ess} solves the set of equilibrium equations in
Section E.2 in both cases.

Consider the original and alternative policies. We are considering stationary equilibria,
so by hypothesis these satisfy

Xa�t =Xa�t−1(1 +πss)� for some πss and a ∈{o� s} and
{
BFed�GFed�GFA�M�W

}
�

By hypothesis also, inflation and nominal rates are equal under both policies. Thus, the
real interest rate on reserves is equal under both policies. We check the equilibrium con-
ditions in the order in which they appear in Section E.

First, we guess and verify that the real returns on loans and deposits are also equal un-
der both policies. If both policies yield the same real rates, the solution for bank portfolios
(the solution for �t) must also be equal in both equilibria:

{b̄o�ss� āo�ss� d̄o�ss� c̄o�ss}={b̄s�ss� ās�ss� d̄s�ss� c̄s�ss}�
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Consider now the aggregate supply of loans and reserves under either policy:

(1 − css)b̄ssEss =�b
(
Rb

ss

)ε −BFed
t+1/Pt�

That equation can be satisfied under both policies because BFed
o�t+1/Po�t = (1+g)BFed

o�t+1/(1+
g)Po�t = BFed

s�t+1/Ps�t . This verifies that the real rate on loans is equal under both policies.
The same steps verify that Rd

ss is the same under both policies. Similarly, the demand
for reserves and currency can be satisfied in both equations because

(1 − css)m̄ssEss =Mo�t/Po�t =Ma�t/Pa�t �

A similar argument holds for the holdings of government bonds. This verifies market
clearing for reserves.

Now, the ratio of surpluses to deficits is also equal under both policies:

θss ≡ S−
a�t/S

+
a�t for a ∈{o� s}�

Because θ and policy rates are equal, the liquidity cost function χ is also equal under both
policies. Observe that χ is a function of θ only. With equal inflation under both policies,
the liquidity return Rχ must also be equal. This verifies that all the real rates in both
equilibria are the same under both policies. Since rates are the same, both policies satisfy
the same law of motion for equity (18). It is immediate to verify that the consolidated
government budget constraint is satisfied under both policies, once all portfolios from the
private sector are identical in real terms.

G.3. Proof of Proposition G.1 Item (ii)

The proof closely follows the proof of item (i). The difference is that we prove neu-
trality along an equilibrium sequence, not only in a stationary equilibrium. The proof is
again by construction and requires only that we verify that the equilibrium conditions that
determine {b̄t� āt� d̄t� c̄t�Et} in Section E lead to the same values under both policies. Let{

Mo�t�G
Fed
a�t �G

FA
a�t�B

Fed
o�t �Wo�t

}
t≥0

and {
Ma�t�G

Fed
a�t �G

FA
a�t�B

Fed
a�t �Wa�t

}
t≥0

be two policy sequences. Again, to ease notation, we follow the order of the equations in
Section E.

Consider the original and alternative policies. By the hypothesis of stationary equilib-
rium, both equilibria satisfy

Xa�t =XFed
a�t−1(1 + ka)�

BFed
a�t = BFed

a�t−1(1 + ka) for ka and for a ∈{o� s} and X ∈ {
M�GFed�GFA�BFed�W

}
�

Also, let the initial conditions be the same: Xs�0 =Xo�0.
Then the condition for the consolidated government implies that

Xs�t+1 = (1 + ks)tXs�0 = (1 + ks)tXo�0� and

Xo�t+1 = (1 + ko)tXo�0
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for X ∈{M�GFed�GFA�BFed�W }. Thus, we can relate both government policy paths via

Xs�t+1 =
(

1 + ks − ko

1 + ko

)t

Xo�t+1�

Through the proof, we guess and verify the following.
A.1 {Rb

o�t�R
d
o�t�R

m
o�t�R

g
o�t�R

χ̄
o�t}={Rb

s�t�R
d
s�t�R

m
s�t�R

g
o�t�R

χ̄
s�t}.

A.2 Po�0 = Ps�0 = P0.
A.3 (1 +πs�t) = (1 +πo�t)(1 + ks−ko

1+ko
).

First, we verify (A.1). Under the conjecture that real returns are the same along a se-
quence, we have that

{b̄o�t� āo�t� d̄o�t� c̄o�t}={b̄s�t� ās�t� d̄s�t� c̄s�t}�

so the optimality conditions are satisfied in both cases.
Next, consider the aggregate supply of loans and reserve demand. Equilibrium in the

loans market requires

(1 − ct)b̄tEt =�b
(
Rb

t

)ε −BFed
t+1/Pt�

If the equation is satisfied under both policies, then we must verify that BFed
o�t+1/Po�t =

BFed
s�t+1/Ps�t . To see that this condition holds, recall that

BFed
s�t+1 =

(
1 + ks − ko

1 + ko

)t

BFed
s�0 �

Now, if πs�t −πo�t = (ks − ko)/(1 + ko), by (A.2), we have that

Pa�t =
t∏

τ=1

(1 +πa�τ)P0 for a ∈{o� s}�

Combined with the guess (A.3) above, we obtain

Ps�t =
t∏

τ=1

(1 +πo�t)
(

1 + ks − ko

1 + ko

)
P0 = Po�t

(
1 + ks − ko

1 + ko

)t

�

Therefore,

BFed
s�t+1/Ps�t =

(
1 + ks − ko

1 + ko

)t

BFed
s�0 /Ps�t = BFed

0�t+1/Po�t�

which shows that the real holdings of loans under both policies are equal. The arguments
are identical for the equilibrium in the deposit and government bond market, but the
market for Fed assets works differently.

We needed to verify that under our guess, {Rb
t �R

g
t �R

d
t } is the same under both policies.

Note that Rm
t is the same under both policies:

Rm
o�t =

(
1 + iior

o�t+1

)
/(1 +πo�t+1) = (

1 + iior
s�t+1

)(
1 + ks − ko

1 + go

)
/(1 +πo�t+1)�
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and by assumption (A.3), the condition is also equal:

(
1 + iior

s�t+1

) (1 +πo�t+1)
(1 +πs�t+1)

/(1 +πo�t+1) =Rm
s�t �

Next, consider the condition for an equilibrium for Fed liabilities:

(1 − ct)m̄tEt =Mo�t/Po�t −Mh
o�t/Po�t =Ms�t/Ps�t −Mh

s�t/Ps�t �

It is important that the demand for real balances of currency is inelastic—possibly zero.
Otherwise, since currency earns no interest rate, its rate of return does change with the
rate of inflation. For that reason, consider that if the demand the demand for real balances
is indeed inelastic, then bank reserve demand must be the same: the condition is used to
verify our guess (A.3). The condition above requires

Ps�t+1

Po�t+1
= Ms�t+1

Mo�t+1
=

(
1 + ks − ko

1 + ko

)t
Mo�t+1

Mo�t+1
=

(
1 + ks − ko

1 + ko

)t

�

Then since by Assumption (A.2), initial prices are the same we have that

Ps�t+1

Po�t+1
=

t∏
τ=1

(1 +πs�t)P0

t∏
τ=1

(1 +πo�t)P0

=
(

1 + ks − ko

1 + ko

)t

⇒
t∏

τ=1

(1 +πs�t) =
t∏

τ=1

(1 +πo�t)
(

1 + ks

1 + ko

)
�

Since the condition holds for all t, then A.3 is deduced from the quantity equation of
reserves.

The next step is to verify that Rχ̄
t is constant under both policies. For that, observe that

the interbank market tightness is the same under both economies. To see that, simply
note that the ratio of reserves to deposits is the same under both policies and that this is
enough to guarantee that θt is equal under both policies. By Lemma C.3 and the condition
for policy rates in the proposition—(1 + ixo�t) = (1 + ixs�t)( 1+ks

1+ko
) for x ∈ {w�m}—in states

away from satiation,

χ
(·; iws�t� iior

s�t

) =
(

1 + ks

1 + ko

)
χ
(·; iwo�t� iior

o�t

)
�

Therefore, we have that

Rχ
o�t =

χ
(·; iwo�t� iior

o�t

)
1 +πo�t

=

(
1 + ks

1 + ko

)
χ
(·; iwo�t� iior

o�t

)
(

1 + ks

1 + ko

)
(1 +πo�t)

= χ
(·; iws�t� iior

s�t

)
(1 +πs�t)

=Rχ
s�t �

This step verifies that Rχ̄
o�t =Rχ̄

s�t . So far, we have checked the consistency of assumptions
(A.1) and (A.3) and that the policy rules for {b̄t� āt� d̄t� c̄t} and the real rates are the same
under both equilibria. We still need to show that the sequences for Et are the same under
both policies, that the initial price level is the same, and that the Fed’s budget constraint
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is satisfied under both policies. This follows immediately from the law of motion of bank
equity:

Et+1 = (
1 + (

Rb
t+1 − 1

)
b̄t −

(
Rd

t+1 − 1
)
d̄t

)
(1 − c̄t)Et�

which, as noted, must be the same. We have already verified that BFed
s�t+1/Ps�t = BFed

s�0 /Po�t .
Following the same steps, we can show that real reserves MFed

t /Pt , government bonds
GFed

t /Pt and GFA
t /Pt and discount loans W Fed

t /Pt are identical under both policies. Away
from satiation, Rχ

o�t = Rχ
s�t , so that means that real income from the discount window,

W Fed
t

Pt
( 1+iwt

1+πt
), is constant under both policies—τt is identical under both policies. Consider

now (B0�D0�M0�G0�W0), the initial condition under both policies. If P0 is same initial
price under both policies, Eo�0 = Es�0. This is precisely the initial conditions that we need
to confirm our guess that Eo�0 = Es�0 and Po�0 = Ps�0.

G.4. Proof of Proposition 9

Consider two policies, o and s, and let the alternative policy feature a mix of conven-
tional and unconventional open-market operations performed at t = 0 and reverted at
t = 1 in the sense that:

1. BFed
s�1 = BFed

o�1 + �BFed, GFed
s�1 = GFed

o�0 + �GFed, and MFed
s�1 = MFed

o�1 + �MFed, such that,
�MFed = �GFed +�BFed and �MFed��GFed��BFed ≥ 0 satisfying BFed

s�1 ≥ 0 and GFed
s�1 ≥

0;
2. for all t ≥ 0, we have {

imo�t� i
w
o�t�G

FA
o�t�Wo�t

} = {
ims�t� i

w
s�t�G

FA
s�t �Ws�t

};
3. for all t �= 1, we have{

imo�t� i
w
o�t�M

Fed
o�t �G

Fed
o�t �G

FA
o�t�B

Fed
o�t �Wo�t

} = {
ims�t� i

w
s�t�M

Fed
s�t �G

Fed
s�t �G

FA
s�t �B

Fed
s�t �Ws�t

}
�

The statement of the proposition is that for λ > 0, the operation is neutral if and only
if banks are satiated with reserves at time zero under both policies. If λ → 0 and the
economy is away from satiation, then a conventional policy, �B = 0, is neutral, but an
unconventional policy, �B > 0, is not. We refer to neutrality as a situation in which, as we
compare across both policy sequences, the total outstanding amount of loans, deposits,
and bonds remains unchanged in real terms.

The proof requires an intermediate step: First, we show that if two policies induce
identical real aggregate loans deposits and bond holdings, the equilibrium prices Po�0 =
Ps�0 must be equal. Then we show for positive λ that if the price is constant, the open-
market operation must have real effects away from satiation. Then we show that if banks
are satiated, the policy has no effects. Finally, we show that if λ = 0, the stated results
holds.

Auxiliary Lemma. First, we prove the following auxiliary lemma corresponding to the
first step of the proof.

LEMMA G.2: Consider two arbitrary policy sequences o and s, as described above. If total
real loans, deposits, dividends, reserves, government bonds, and bank equity are equal across
equilibria for all t ≥ 0, then Po�0 = Ps�0.
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PROOF: Without loss of generality, normalize the price in the original equilibrium to
Po�0 = 1, but not the price of the alternative sequence—we can always rescale the original
sequence to obtain a price of one. The idea of the proof is to start from the quantity
equation in one equilibrium and use real market clearing conditions to express obtain a
relationship using quantities of the second equilibrium. Using the quantity equation of
the second equilibrium, the result must follow.

Consider now a given bank. By hypothesis, real equity is equal in both equilibria, Es�0 =
Eo�0 and c̄o�0 = c̄s�0. Also, recall that{

BFed
o�1 �Bo�1�G

Fed
o�1 �Go�1�M

Fed
o�1 �Mo�1

}
and {

BFed
s�1 �Bs�1�G

Fed
s�1 �Gs�1�M

Fed
s�1 �Ms�1

}
are the nominal loans, government bonds, and reserves of the Fed and the representative
bank, respectively, under the original and alternative policies.

We use the following relationships. Since equity, dividends, and real deposits are con-
stant, from the bank’s budget constraints, we obtain

Bo�1 −Bs�1/Ps�1 =As/Ps�1 −Ao� (G.1)

Also, we know that since market clearing must hold in the loans market under both
equilibrium sequences,

�b
(
Rb

o�1

)εb ≡ BFed
o�1 +Bo�1

= (
BFed

s�1 +Bs�1

)
/Ps�1� (G.2)

—recall that Po�0 = 1.
We now exploit the quantity equations of both equilibria through the following rela-

tionship:

MFed
o�t +GFA

o�t −GFed
o�t −Gh

o�t +�M −�G = MFed
1�t +GFA

1�t −GFed
1�t −Gh

1�t

= Ps�0ās�0(1 − c̄s�0)Es�0

= Ps�0(b̄o�0 + āo�0 − b̄s�0)(1 − c̄s�0)Es�0

= Ps�0(b̄o�0 + āo�0)(1 − c̄s�0)Es�0 · · ·
− (

�b
(
Rb

o�1

)εb −BFed
s�1

)
� (G.3)

The first equality uses just the relationship between both policies; the second equality
follows from the quantity equation (22), which holds under the alternative equilibrium;
the third equality uses (G.1) expressed in terms of the bank’s portfolio; and fourth follows
from (G.2). Substituting out BFed

s�1 from the last term into (G.3), we obtain

MFed
o�t +GFA

o�t −GFed
o�t −Gh

o�t +�M −�G

= · · ·Ps�0(b̄o�0 + āo�0)(1 − c̄s�0)Es�0 − (
�b

(
Rb

o�1

)εb − (
BFed

o�1 +�B
))
�
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Then, using that �M = �B+�G, the equation simplifies to

MFed
o�t +GFA

o�t −GFed
o�t −Gh

o�t = Ps�0(b̄o�0 + āo�0)(1 − c̄s�0)Es�0 − (
�b

(
Rb

o�1

)εb −BFed
o�1

)
�

Using the loans clearing condition �b(Rb
o�1)εb −BFed

o�1 = b̄o�0(1 − c̄s�0)Es�0, we obtain

MFed
o�t +GFA

o�t −GFed
o�t −Gh

o�t = Ps�0(b̄o�0 + āo�0)(1 − c̄s�0)Es�0 − b̄o�0(1 − c̄s�0)Es�0

= (Ps�0 − 1)b̄o�0(1 − c̄s�0)Es�0 + Ps�0āo�0(1 − c̄s�0)Es�0

Finally, using the quantity equation (22) applied to the first equilibrium, MFed
o�t + GFA

o�t −
GFed

o�t −Gh
o�t = āo�0(1 − c̄s�0)Es�0, we obtain

0 = (Ps�0 − 1)b̄o�0(1 − c̄o�0)Eo�0 + (Po�0 − 1)āo�0(1 − c̄o�0)Eo�0�

Since this equation is independent of �M ; b̄o�0, c̄o�0, Eo�0, āo�0 are all positive numbers;
and any price is positive, it must be that Po = Ps = 1. Q.E.D.

Next, we establish the main results.

Item 1: Nonneutrality Away From Satiation and λ > 0. First, we argue that if the policy
change is neutral away from satiation, we reach a contradiction. Assume that the policy is
indeed neutral. If policy s is neutral with respect to policy o, real assets, real asset returns,
dividends, and bank equity must be equal across both equilibria. Consider Loan LP. Since
real loans are the same, Rb must be the same in both equilibria. Also, Rm must be the
same. This is the case because by t = 1, the policy is reversed, and thus the equilibrium
and the price must be the same. Since by assumption, the policy is neutral, the t = 0
price must also be equal, as shown in Lemma G.2. Hence, since im is constant across
both policies, then Rm must the same. However, since under one equilibrium liquid assets
are lower, but deposits are the same by assumption, the liquidity premium cannot be the
same—a contradiction.

Item 2: Neutrality Under Satiation. Next, we verify that under satiation, the policy
change has no effects. The key to verifying the result is showing that if the economy is
under satiation under both policies, and if the bank’s portfolio changes in the exact oppo-
site direction as the Fed’s portfolio, the policy is neutral—that is, we guess that there are
no crowding in or crowding out effects. Thus, we guess that

Bo�1 −�B = Bs�1� Go�1 −�G=Gs�1� and Mo�1 +�M =Ms�1�

If the allocation is the same in real terms, then by Lemma G.2, t = 0 and t = 1 prices are
the same, and Po�1 = Ps�1. Under satiation, we also know that Rb = Rm = Rg. Hence, the
aggregate quantity of loans and bonds is equal under both policies. Hence, clearing in the
loans market implies

�b
(
Rb

o�1

)εb = �b
(
Rm

o�1

)εb = Bo�1 +BFed
o�1

Po�1
= Bo�1 −�B+BFed

o�1 +�B

Po�1
· · ·

= Bs�1 +BFed
s�1

Ps�1
=�b

(
Rb

s�1

)εb
�
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In the bond market,

�g
(
R

g
o�1

)εg = �g
(
Rm

o�1

)εg = GFA
1 −Go�1 +GFed

o�1

Po�1
= GFA

1 −Go�1 −�G+GFed
o�1 +�G

Po�1
· · ·

= GFA
1 −Gs�1 +GFed

s�1

Ps�1
=�g

(
R

g
s�1

)εg
�

and in the deposit market,

Do�1

Po�1
= Bo�1 +Go�1 +Mo�1

Po�1
+Eo�1 = Bo�1 +Go�1 +Mo�1 −�B−�G+�M

Po�1
+Eo�1 · · ·

= Bs�1 +Gs�1 +Ms�1

Po�1
+Es�1 = Ds�1

Ps�1
�

Thus, all market clearing conditions are satisfied. If banks start under satiation, and the
increase in total liquid assets is positive, then banks are satiated under both policies. Un-
der both policies, banks are indifferent between loan, bond, and reserve holdings; thus,
the guess is consistent with bank equilibrium choices. Since the law of motion of equity
is unchanged across both equilibria, the path of dividends is also the same, which verifies
the guess that the price level is the same in both cases.

Finally, let us explain why the qualifications BFed
s�1 ≥ 0 and GFed

s�1 ≥ 0 are necessary. Note
that if Bo�1 <−�B, then banks will no longer hold loans and Rb < Rm. Thus, their nonneg-
ativity constraint will be binding. Hence, the argument in the proposition does not follow
through. Indeed, if the operation exceeds the bank’s holdings, the policy may have real
effects because the Fed will induce greater amounts of lending and generate a fiscal cost.
Similarly, if Go�1 <−�G while holding fixed GFA, the nonfinancial sector must reduce its
holdings of reserves and will also have real effects.

Item 3: Limit Case as λ→ 0. Finally, we verify that if λ→ 0, conventional policies are
neutral, but unconventional policies are not. Recall a conventional policy is one in which
�B = 0, �G > 0, and an unconventional policy is one in which �B > 0. Also, recall that
if λ→ 0, then χ̄+

o�1 = 0 and (χ̄−
o�1 − χ̄+

o�1) =Rw
o�1 for any interbank market tightness. Thus,

we have that the Loan LP becomes

Rb −Rm =Rw
o�1 · F(

ω∗) · Eω

[(
Re

)−γ|ω<ω∗]
Eω

[(
Re

)−γ] �

where ω∗ ≡ −(ā/d̄ − ρ)/(Rd
t+1/R

m
t+1 − ρ). In turn, the bond return satisfies

Rg =Rm�

First, we verify that the conventional policy is neutral. Suppose it is. By Lemma G.2, t = 0
and t = 1 prices are the same: Po�1 = Ps�1. Thus, Rm

o�1 = Rm
s�1. Since the price level is the

same and the policy is exclusively a conventional policy, �M = �G. Under this guess, if
the policy does not crowd out household bonds, Go�1 +Mo�1 =Go�1 +Mo�1 +�M −�G=
Gs�1 +Ms�1. This, in turn, implies that āo�0 = ās�0, and thus ω∗

o�0 =ω∗
s�0. Since the threshold

remains unchanged, and tightness does not affect the loans nor the bond premium, the
guess is therefore verified.
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To close the proposition, we verify that the unconventional policy has an effect. Suppose
it does not. Then, prices do not change, again by Lemma G.2. We know that

Go�1 +Mo�1 =Go�1 +Mo�1 +�M −�G−�B =Gs�1 +Ms�1 −�B�

Thus, since �B �= 0, the real value of liquid assets under the original and alternative poli-
cies differ. Hence, we have a contradiction: either the threshold ω∗ differs across both
policies, or the deposits adjust, or both. In either case, the liquidity premium must be
different across both policies. The result follows.

G.5. Proof of Proposition 11 and Corollary 12

We first demonstrate Proposition 11 and then prove the bound in Corollary 12. For
the rest of this proof, we avoid time subscripts under the understanding that the condi-
tion applies to stationary equilibria. A stationary equilibrium satisfies four equilibrium
conditions under any Friedman rule. We have:

1. A stationarity condition:

1/β= (
ā+Rb(1 + d̄ − ā) −Rdd̄

); (G.4)

2. two stationary clearing conditions:

B =�b(R̄)ε
b

and D=�d(R̄)ε
d ;

3. an aggregate budget balance:

B =D+ (1 − ā)Ẽ� (G.5)

Here, Ẽ is the steady-state equity after dividends. These conditions hold regardless of the
stationary dividend.

PROOF OF PROPOSITION 11: There are four possible outcomes: either capital require-
ments bind or not, and either ā > 0 or a = 0. We develop observations for each case.
We first observe that under the Friedman rule, Rb ≥ Rm, with equality if a > 0. We first
investigate the cases where a= 0.

Case I: ā= 0 and capital requirements do not bind.
If the capital requirement does not bind and ā = 0, then we know that Rb ≥ Rm and

Rb =Rd . Because the Friedman rule eliminates the liquidity premium, the stationary con-
dition (G.4) requires

1
β

= (
ā+Rb(1 − ā+ d̄) −Rdd̄

) =Rb�

where the first equality is the definition of equity returns and the second equality uses
Rb =Rd and a= 0. Thus, we have that Rb =Rd = 1/β and Rm ≤ 1/β.

In this case, the stationary equilibrium loans and deposits are given by

B =�b(1/β)ε
b

and D=�d(1/β)ε
d
�

Thus, (G.5) becomes

Ẽ =�b(1/β)ε
b −�d(1/β)ε

d
� (G.6)
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If capital requirements are indeed satisfied, it must be that

Ẽ ≥ 1
κ
�d(1/β)ε

d
� (G.7)

Combining, (G.6)–(G.7) yields

�b(1/β)ε
b ≥ κ+ 1

κ
�d(1/β)ε

d
� (G.8)

If the condition is not satisfied, then it is not possible to have a stationary equilibrium
under the Friedman rule with a = 0 and where capital requirements do not bind. We
summarize this case with the following observation.

REMARK 18: If ā = 0 and capital requirements do not bind, then Rb = Rd = 1/β and
Rm ≤ 1/β, and condition (24) must hold.

Case II: capital requirements binds and ā= 0.
If the capital requirement binds and ā = 0, we know that Rb > Rd and Rb > Rm. Since

capital requirements bind, after dividend equity must equal Ẽ = 1
κ
�d(Rd)εd . Again, be-

cause the Friedman rule eliminates the liquidity premium, the stationary condition (G.4)
to bank equity is 1/β:

1/β=Rb + (
Rb −Rd

)
κ�

Rewriting this expression yields a relationship between Rd and Rb:

Rb =
1
β

+ κRd

(1 + κ)
� (G.9)

We have the following observation, which we proof consequently.

REMARK 19: If the capital requirement binds and ā= 0, we have that Rd < 1/β.

Suppose the contrary. Then

Rb =
1
β

+ κRd

(1 + κ)
>

1
β

+ κ
1
β

(1 + κ)
= 1

β
�

But if Rb > 1/β and Rb >Rd , this implies that the return on equity is above 1/β. Clearly,
a contradiction. Hence, Remark 2 must hold.

Substituting the equilibrium conditions into the aggregate budget constraint yields

�b
(
Rb

)εb =�d
(
Rd

)εd + 1
κ
�d

(
Rd

)εd =�d
(
Rd

)εd(κ+ 1
κ

)
�

Substituting (G.9) and rearranging produces

(1 + κ)
(
�d

�b

1 + κ

κ

)1/εb(
Rd

)εd/εb = 1
β

+ κRd� (G.10)
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This is the same expression for R̄d in Proposition 11. We have the following property.

REMARK 20: Equation (G.10) has a unique solution.

To see this, note that the left-hand side is decreasing in Rd and the right is increasing in
Rd . For Rd = 0, the left-hand side is above 1/β, so the solution must be unique. With this,
and using (G.9), we obtain R̄b as in the proposition.

Next, we must verify that the unique solution indeed holds for Rd < 1/β as needed;
see Remark 2. Since the right-hand side of (G.10) is increasing and the left is decreasing,
R̄d < 1/β if and only if

(1 + κ)
(
�d

�b

1 + κ

κ

)1/εb

(1/β)ε
d/εb <

1
β

+ κ1/β�

Rearranging the terms leads to

�b(1/β)ε
b
<

κ+ 1
κ

�d(1/β)ε
d
�

This is enough to reach the following conclusion.

REMARK 21: If ā = 0 and capital requirements bind, then Rm ≤ R̄b ≤ 1/β and condi-
tion (24) must be violated.

We can combine this result and Remark 1, to obtain the following.

REMARK 22: Whether condition (24) holds or not, if ā= 0, then Rm ≤ min{1/β�
1
β+κR̄d

(1+κ) }

for (1 + κ)(�d

�b
1+κ
κ

)1/εb (R̄d)εd/εb = 1
β

+ κR̄d .

Next, we move to the cases where ā > 0.
Case III: capital requirements do not bind and ā > 0.
In this case, we know that Rb =Rm =Rd . The (G.4) becomes

1/β= (
ā+Rm(1 + d̄ − ā) −Rmd̄

) = (
Rm − ā

(
Rm − 1

))
�

Hence, we have that

ā= Rm − 1/β
Rm − 1

�

This implies that Rm > 1/β. We have the following remark.

REMARK 23: If capital requirements do not bind and ā > 0, then Rm > 1/β.

Case IV: capital requirements bind and ā > 0.
So far, we have shown conditions for stationary equilibria in which a = 0, which hold

only if Rm ≤ 1/β—with an exact threshold given in Remark 5. Remark 6 shows that if cap-
ital requirements do not bind and if Rm > 1/β, then ā > 0. To complete the statement of
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the proposition, we need to show if condition (24) is not satisfied and Rm ≤ R̄b = 1
β

1+κβR̄d

1+κ
,

where R̄d solves

(1 + κ)
(
�d

�b

(
1 + κ−1

))1/εb(
R̄d

)εd/εb = 1
β

+ κR̄d�

then ā = 0 and the capital requirement binds. Hence, any Rm > R̄b must feature ā > 0
establishing that Rb =Rm.

To prove this, we assume by contradiction that ā > 0. By assumption,

Rb =Rm ≤ R̄b = 1
β

1 + κβR̄d

1 + κ
�

and a > 0. Under the stated assumptions, (G.4) becomes

1/β= (
Rm − (

Rm − 1
)
ā+ (

Rm −Rd
)
κ
)
� (G.11)

However, we also know that

1/β= (
R̄b + (

R̄b − R̄d
)
κ
)
� (G.12)

Hence, we have the following condition.

REMARK 24: If condition (24) is not satisfied, capital requirements bind, ā > 0, and
Rm ≤ R̄b, then it would be the case that Rd < R̄d .

The remark can be shown to hold simply by noticing that if Rm < R̄b and ā > 0, then it
must be that Rd < R̄d , by comparing (G.11) and (G.12).

Next, solving for ā from (G.11) yields

ā= Rm − 1/β+ (
Rm −Rd

)
κ

Rm − 1
�

Observe that by monotonicity

�b
(
Rm

)εb
> �b

(
R̄b

)εb
�

and also

�d
(
Rd

)εd(
1 + κ−1(1 − ā)

)
<�d

(
R̄d

)εd(
1 + κ−1(1 − ā)

)
<�d

(
R̄d

)εd
�

Then, if we substitute real rates into (G.5), we obtain

�b
(
Rm

)εb =�d
(
Rd

)εd + 1 − ā

κ
·�d

(
Rd

)εd =�d
(
Rd

)εd(κ+ (1 − ā)
κ

)
�

Substituting the inequalities above,

�b
(
R̄b

)εb
< �b

(
Rm

)εb =�d
(
Rd

)εd(κ+ (1 − ā)
κ

)
<�d

(
R̄d

)εd(κ+ 1
κ

)
�

However, this contradicts the definition of {R̄b� R̄d}. Hence, we reach the following con-
clusion.
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REMARK 25: If condition (24) is not satisfied and Rm ≤ R̄b, then we have that ā = 0
and capital requirements bind.

Collecting the Results.
Consider the cases in which condition (24) holds. Combining remarks (1) and (6), we

have the following remark.

REMARK 26: If (24) holds, then the loans rate associated with the Friedman rule is

Rb�FR =
{

1/β if Rm < 1/β�
Rm if Rm ≥ 1/β�

(G.13)

Moreover, ā = 0, and the capital requirement does not bind if and only if Rm ≤ 1/β. If
Rm ≤ 1/β, the stationary deposit rate is also 1/β.

Now consider the cases in which condition (24) does not hold. Combining remarks (5)
and (8), we have the following result.

REMARK 27: If (24) does not hold,

Rb�FR =
{
R̄b if Rm < R̄b�

Rm if Rm ≥ R̄b�
(G.14)

where

R̄b = 1
β

1 + κβR̄d

1 + κ
≤ 1
β
�

where R̄d is the stationary deposit rate that is the unique solution to

(1 + κ)
(
�d

�b

(
1 + κ−1

))1/εb(
R̄d

)εd/εb = 1
β

+ κR̄d�

Moreover, ā= 0 if and only if Rm ≤ R̄b. In this case, the capital requirement binds.

Combining remarks (9) and (10), we obtain the statement of Proposition 11. Q.E.D.

PROOF OF COROLLARY 12: The proof is immediate. First, observe that if (24) holds,
then we had showed that the R̄d that solves

(1 + κ)
(
�d

�b

(
1 + κ−1

))1/εb(
R̄d

)εd/εb = 1
β

+ κR̄d�

is above 1
β

. Thus, R̄b > 1/β. Otherwise, if (24) does not hold, the solution is less than 1/β
and R̄b < 1/β. This implies that a compact way to write Rb�FR is

Rb�FR =
{

min
{
R̄b�1/β

}
if Rm

ss < min
{
R̄b�1/β

}
�

Rm if Rm
ss ≥ min

{
R̄b�1/β

}
�

Then, since by assumption of the corollary Rm ≥ min{R̄b�1/β} = Rb�FR and Rb ≥ Rm in
any equilibrium, the bound follows. Q.E.D.
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APPENDIX H: EFFICIENT ALLOCATIONS AND PROOF OF PROPOSITION 13

In this Appendix, we derive the efficient allocations under the assumption that βh = β.
We also show that a version of the Friedman rule, with the appropriate choice of Rm, can
implement the first-best allocation, provided that capital requirements are sufficiently
ample. We let a planner maximize a weighted average of households’ and bankers’ utility
subject to the resource constraint for goods and labor. The planner’s problem is as follows.

PROBLEM 28—Planner’s Problem: The unconstrained planner’s problem is given by

max
{ct �cdt �c

g
t �c

m
t �ht}∞

t=0

∑
t=0�1����

βt

[
(1 −�)

( ∑
x∈{d�g�m}

Ux
(
cxt

) + cht − h1+ν
t

1 + ν

)
+� · u(ct)

]
�

subject to the resource constraint ∑
x∈{d�g�m}

cxt + cht + ct = yt (H.1)

and the technological constraint

yt =Ath
α
t−1� (H.2)

The initial labor input h−1 is given.

Here, we use � for the Pareto weight on the banker’s consumption. The next proposi-
tion characterizes an optimal allocation.

PROPOSITION H.1: The optimality conditions of the unconstrained planner problem are

Ux
cx (X̄) = 1 = �

(1 −�)
φu′(ct) for x ∈{d�g�m} (H.3)

and

βαAt+1h
α−1
t = hν

t � (H.4)

The proposition states that in the first best allocation, the planner equalizes the labor
wedge to zero and equalizes all the marginal utility across goods to one. The latter is
optimal because the marginal rate of transformation is one across all goods. Notice also
that the planner’s solution is characterized by a sequence of static problems, so there are
no dynamic trade-offs in the allocation. We say an allocation is efficient if it coincides with
the planner’s solution for some �.

Next, we state a detailed version of Proposition 13.

PROPOSITION H.2: Consider a competitive equilibrium and a version of the Friedman rule
in which the Fed sets Rm

t =Rw
t = 1/β (and πt = β− 1) and adjusts MFed

t and GFed
t such that

Rg = 1/β. A necessary condition for this Friedman rule to induce an efficient allocation in its
stationary equilibrium is that

�b(1/β)ε
b ≥

(
1 + κ

κ

)
�d(1/β)1/εd �

If the condition is violated, the first-best is not attainable.

We proceed with a proof.



BANKS, LIQUIDITY MANAGEMENT, AND MONETARY POLICY 29

H.1. Decentralization and the Friedman Rule (Proof of Propositions H.1 and H.2)

We begin with the proof of Proposition H.1.

PROOF: If we substitute out ch from the resource constraint into the objective, replac-
ing yt from the technological constraint yields a modified objective function:

max
{ct �cdt �c

g
t �c

m
t �ht}

∑
t=0�1����

βt

[
(1 −�)

( ∑
x∈{d�g�m}

Ux
(
cxt

) +Ath
α
t−1

−
∑

x∈{d�g�m}

cx + ct − h1+ν
t

1 + ν

)
+� · u(ct)

]
�

The conditions are verified by taking first-order conditions with respect to {ct� cdt � c
g
t �

cmt �ht}. Q.E.D.

We now move to proof Proposition H.2.

PROOF: Note that a necessary condition for efficiency is that Rd = Rg = 1/β and
1

1+π
= 1/β. This follows directly from the household’s optimality condition in (F.4)—the

case in which each asset-in-advance constraint is slack. In that case, the household’s allo-
cation across goods coincides with the planner problem’s unconstrained condition, (H.3).
Similarly, for the firm’s problem, the optimality condition (F.7) coincides with (H.4) for
Rb = 1/β. Also notice that it is possible for Rb = Rd = Rg = Rm = 1/β only if there is no
liquidity premium.

Assume that the efficiency condition holds at every period. Then loans and deposits are
given by

Bt =�b(1/β)ε
b

and Dt =�d(1/β)1/εd �

From the bank’s budget constraint and portfolio constraints, using these quantities, we
have that

At +�b(1/β)ε
b =�d(1/β)1/εd +Et� (H.5)

Et ≥ 1
κ
�d(1/β)1/εd � (H.6)

At ≥ 0� (H.7)

A condition for stationarity is

1/β= (
āss +Rb

ss(1 + d̄ − ā) −Rd
ssd̄

)
� (H.8)

and replacing the efficiency condition, Rb =Rd = 1/β, yields

1/β= (
1/β− 1/β(1 − ā)

)
�

This condition implies that At ≥ 0.
Combining (H.5) and (H.7), we obtain

Ess =�b(1/β)ε
b −�d(1/β)1/εd �
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Substituting this result into the capital requirement condition yields

�b(1/β)ε
b ≥

(
1 + κ

κ

)
�d(1/β)1/εd �

Hence, the necessary conditions for efficiency in Proposition 13. Q.E.D.

APPENDIX I: PROOF OF PROPOSITION 14

Here, we present the proof of Proposition 14 in Section 5.2 regarding the pass-through
of monetary policy. In this Appendix, we present a more general version of the propo-
sition in the text. Specifically, we derive the comparative statics with respect to changes
in the the interest on reserves under two scenarios: (i) keeping the discount window rate
constant, and (ii) keeping the spread in both policy rates constant. For ease of exposition,
we restrict to the cases in which b̄fed = 0, but the result can be extended along that dimen-
sion without difficulty. Let LPx

y denote the derivative of the liquidity premium of asset x
with respect to portfolio holdings of asset y . The general version of of Proposition 14 is as
follows.

PROPOSITION I.1: Consider stationary equilibria. Consider an increase from a stationary
level of rm that leaves the stationary level of rw constant or leaves the corridor spread, � =
rw − rm, constant. If capital requirements are binding, then the increase in rm unambiguously
increases rb. Then, if capital requirements bind, in the region where capital requirements bind,

drb

drm
=

1 + εd ·
(
b̄+ b̄Fed

)
κ

rb

Rd

1 + εd ·
(
b̄+ b̄Fed

)
κ

rb

Rd
−LPb

a

(
b̄+ b̄Fed

)
Rb

(
εd · b̄

κ
− εb

)

×
(

1 − Eω

[
χ(θ)

]
�

· I[drw = 0
]) ∈ [0�1]�

and drb

drm
= 1, when banks are satiated with reserves. If capital requirements do not bind and

the deposit supply is perfectly elastic at rd , the pass-through is ambiguous and given by

drb

drm
=

((
LPb

d +LPd
d

))
rb + (

LPb
b +LPd

b

)
rd

LPb
br

d +LPd
dr

b + (
LPb

b

(
LPd

b +LPd
d

) −LPd
b

(
LPb

b +LPb
d

))
b̄

×
(

1 − Eω

[
χ(θ)

]
�

· I[drw = 0
])
�

PROOF: We first prove the result for the case with a perfectly elastic deposit supply
schedule and binding capital requirements. We then relax one assumption at a time for
the general result. First, recall that the slopes of the liquidity yield function are given by

χ+ = (
iw − im

)( θ̄

θ

)η(
θηθ̄1−η − θ

θ̄− 1

)
and χ− = (

iw − im
)( θ̄

θ

)η(
θηθ̄1−η − 1

θ̄− 1

)
� (I.1)
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Thus, we can write them as

χ+ = �q+(θ) and χ− = �q−(θ)�

Clearly, {q+� q−}∈ [0�1]2. We proof the results for the case in which drw > 0, but the steps
are the same to obtain the general result above. Q.E.D.

Case #1: Infinitely Elastic Deposit Supply and Binding Capital Requirements. The gist
of the proof is to perform a comparative statics analysis with respect to rm on the following
subsystem of equilibrium equations:

1 = β
(
1 + rb

(
b̄+ b̄Fed

) − rdd̄
)

(I.2)

and

rb = rm +Eω[χ̄]� (I.3)

where

Eω[χ̄] =
∫ ω∗

−1
χ̄−f (ω) dω+

∫ ∞

ω∗
χ̄+f (ω) dω�

This subsystem is the loans premium and the stationarity condition for equity.
Then, taking total differentials with respect to rm on (I.2) and (I.3), respectively, we

obtain

(
b̄+ b̄Fed

) drb
drm

+ rb
db̄

drm
= 0 (I.4)

and

drb

drm
= 1 + d

[
E[χ̄]

]
drm

� (I.5)

Then we have that

d
[
E[χ̄]

]
drm

= −Eω

[
q(θ)

] +�
db̄

drm
� (I.6)

where

LPb
b ≡

[
E

[(
χ̄− − χ̄+)

f
(
ω∗)dω∗

db̄
+Eω

[
χ̄θf (ω) dω

]dθ∗

db̄

]]
> 0�

We employ Leibnitz’s rule. Thus, substituting the expressions we obtain

drb

drm
−LPb

b

db̄

drm
= 1 −Eω

[
q(θ)

]
> 0�

The system (I.4) and (I.5) in matrix form is represented as

[
b̄+ b̄Fed rb

1 −LPb
b

]
·

⎡
⎢⎢⎣
drb

drm

db̄

drm

⎤
⎥⎥⎦ =

[
0

1 −Eω

[
q(θ)

]] � (I.7)
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Inverting the matrix on the left yields the solution to the local comparative statics of (I.2)
and (I.3): ⎡

⎢⎢⎣
drb

drm

db̄

drm

⎤
⎥⎥⎦ =

[
b̄+ b̄Fed rb

1 −LPb
b

]−1 [
0

1 −Eω

[
q(θ)

]] �
To compute the solution, we need only the upper right element of the inverse matrix. By
construction, that term is

drb

drm
= rb

LPb
b

(
b̄+ b̄Fed

) + rb
(
1 −Eω

[
q(θ)

])
> 0�

Similarly, we can also sign the portfolio share:

db̄

drm
= −

(
b̄+ b̄Fed

)
LPb

b

(
b̄+ b̄Fed

) + rb
((

1 −Eω

[
q(θ)

]))
< 0�

Observation 1. Notice that under satiation, q(θ) = LPb
b = 0. Thus, the pass-through is

one for one. Away from satiation, the pass-through is less than one, because LPb
bb̄ > 0.

Observation 2. Notice that for fixed �, the result goes through, since (1 − Eω[q(θ)]) is
replaced by 1.

Case #2: Finitely Elastic Deposit Supply and Binding Capital Requirements. We now
move to a more general result, with an elastic deposit supply schedule. Equilibrium in the
loan supply and deposit requires

(
b̄+ b̄fed

) ·β ·Ess = (
�b

)−1 · (rb + 1
)εb

�

κ ·β ·Ess = (
�d

)−1
(
rd + 1

)εd
�

Combining both conditions yields a single equilibrium condition that we append to the
equilibrium system (I.2) and (I.3):

(
b̄+ b̄fed

)
κ

= �d

�b
·
(
rb + 1

)εb
(
rd + 1

)εd � (I.8)

We write (I.8) in differential form:

1
κ

db̄

drm
− εb

�b

�d
·
(
rb + 1

)εb−1

(
rd + 1

)εd drb

drm
+ εd

�d

�d
·

(
rb + 1

)εb
(
rd + 1

)εd+1

drd

drm
= 0�

Substituting (I.8), this expression is written as

1
κ

db̄

drm
− εb

(
b̄+ b̄fed

)
κ

1
Rb

drb

drm
+ εd ·

(
b̄+ b̄fed

)
κ

1
Rd

drd

drm
= 0�
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In addition, the differential form of (I.2) is now

(
b̄+ b̄Fed

) drb
drm

+ rb
db̄

drm
− κ

drd

drm
= 0� (I.9)

which replaces (I.4).
Hence, in matrix form, the local comparative statics is given by

⎡
⎢⎢⎢⎢⎢⎢⎣

drb

drm

db̄

drm

drd

drm

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

(
b̄+ b̄Fed

)
rb −κ

1 −LPb
b 0

−εb
(
b̄+ b̄fed

)
κ

1
Rb

1
κ

εd ·
(
b̄+ b̄fed

)
κ

1
Rd

⎤
⎥⎥⎦

−1 ⎡
⎣ 0(

1 −Eω

[
q(θ)

])
0

⎤
⎦ �

We can use standard linear algebra tools to obtain the solution to the pass-through to the
credit rate. In this case,

drb

drm
= −

∣∣∣∣
⎡
⎣rb −κ

1
κ

εd ·
(
b̄+ b̄Fed

)
κ

1
Rd

⎤
⎦∣∣∣∣

∣∣∣∣
⎡
⎢⎢⎣

(
b̄+ b̄Fed

)
rb −κ

1 −LPb
b 0

−εb
(
b̄+ b̄fed

)
κ

1
Rb

1
κ

εd ·
(
b̄+ b̄fed

)
κ

1
Rd

⎤
⎥⎥⎦

∣∣∣∣

(
1 −Eω

[
q(θ)

])

= −
εd ·

(
b̄+ b̄fed

)
κ

rb

Rd
+ 1

−LPb
bε

d ·
(
b̄+ b̄fed

)
κ

b̄

Rd
− 1 + εb

(
b̄+ b̄fed

)
κ

1
Rb

κLPb
b − εd ·

(
b̄+ b̄fed

)
κ

rb

Rd

× (
1 −Eω

[
q(θ)

])

=
1 + εd ·

(
b̄+ b̄Fed

)
κ

1
Rd

rb

1 + εd ·
(
b̄+ b̄fed

)
κ

rb

Rd
+LPb

bε
d ·

(
b̄+ b̄fed

)
κ

(
b̄+ b̄Fed

)
Rd

− εb
(
b̄+ b̄fed

)
κ

1
Rb

κLPb
b

× (
1 −Eω

[
q(θ)

])
�

Since all terms are positive, the solution holds (εb < 0); this step proves the first statement
of the Proposition. Note simply that LPb

a = −LPb
b.

Observation 3. Notice that under satiation, q(θ) = ϑ = LPb
b. Thus, the pass-through

is one for one. Away from satiation, the pass-through is less than one, because

LPb
bε

d ·
(
b̄+ b̄Fed

)
κ

(
b̄+ b̄Fed

)
Rd

> εb
(
b̄+ b̄Fed

)
κ

1
Rb

κLPb
b�
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Case #3: Infinitely Elastic Deposit Supply and Nonbinding Capital Requirements. In this
case, the equilibrium system is given by (I.2) and (I.3), but now we also include the deposit
liquidity premium. In this case,

rd = rm +Eω[χ̄] −Eω[χ̄ ·ω]� (I.10)

Once the deposit share is free to move, the differential form of (I.2) is

(
b̄+ b̄Fed

) drb
drm

+ rb
db̄

drm
− rd

dd̄

drm
= 0� (I.11)

which replaces (I.4).
From the loan LP,

drb

drm
= 1 + d

[
E[χ̄]

]
drm

�

where

d
[
E[χ̄]

]
drm

=LPb
b

db̄

drm
+LPb

d

dd̄

drm
�

Following the same notation as before,

LPb
b ≡

[[(
χ̄− − χ̄+)

f
(
ω∗)dω∗

db̄
+E

[
χ̄θf (ω) dω

]dθ∗

db̄

]]
> 0�

and

LPb
d ≡

[[(
χ̄− − χ̄+)

f
(
ω∗)dω∗

dd̄
+E

[
χ̄θf (ω) dω

]dθ∗

dd̄

]]
< 0�

The differential form of (I.10) is

0 = 1 + d
[
Eω[χ̄]

]
drm

+ d
[
Eω[χ̄ ·ω]

]
drm

�

where

d
[
Eω[χ̄ ·ω]

]
drm

= �d
b

db̄

drm
+�d

d

dd̄

drm
�

LPd
b ≡ −

[[(
χ̄− − χ̄+)

ω∗f
(
ω∗)dω∗

db̄
+E

[
ωχ̄θf (ω) dω

]dθ∗

db̄

]]
�

and

LPd
d ≡ −

[[(
χ̄− − χ̄+)

ω∗f
(
ω∗)dω∗

dd̄
+E

[
ωχ̄θf (ω) dω

]dθ∗

dd̄

]]
�

We also have that LPd
b > 0, LPd

d > 0.
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As in the previous two examples, we construct the matrix representation of the com-
parative statics:⎡

⎢⎢⎢⎢⎢⎢⎣

drb

drm

db̄

drm

dd̄

drm

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣

(
b̄+ b̄Fed

)
rb −rd

1 −LPb
b −LPd

b

1 −(
LPb

b +LPd
b

) −(
LPb

d +LPd
d

)
⎤
⎦

−1 ⎡
⎣ 0(

1 −Eω

[
q(θ)

])
0

⎤
⎦ �

To obtain the solution to the pass-through, we do the same calculation as in the earlier
step:

drb

drm
= −

∣∣[ rb −rd

−(
LPb

b +LPd
b

) −((
LPb

d +LPd
d

))]∣∣
∣∣∣∣∣∣
(
b̄+ b̄Fed

)
rb −rd

1 −LPb
b −LPd

b

1 −(
LPb

b +LPb
d

) −(
LPd

b +LPd
d

)
∣∣∣∣∣∣

(I.12)

=
((
LPb

d +LPd
d

))
rb + (

LPb
b +LPd

b

)
rd

LPb
br

d +LPd
dr

b + (
LPb

b

(
LPd

b +LPd
d

) −LPd
b

(
LPb

b +LPb
d

))
b̄
� (I.13)

Using LPb
b = −LPb

a, LPd
b = −LPd

a , we obtain((
LPb

d +LPd
d

))
rb − (

LPb
a +LPd

a

)
rd

−LPb
ar

d +LPd
dr

b − (
LPb

a

(
LPd

b +LPd
d

) +LPd
a

(
LPb

d −LPb
a

))
b̄
�

Observation 4. In this case, the sign is ambiguous and depends on the sign of

LPb
br

d +LPd
dr

b +LPb
b

(
LPd

b +LPd
d

)
b̄≥LPd

b

(
LPb

b +LPb
d

)
b̄�

This concludes the proof of Proposition 14.

APPENDIX J: EXISTENCE, UNIQUENESS, AND CONVERGENCE UNDER
FRIEDMAN RULE

This Appendix characterizes the existence and uniqueness of a stationary equilibria
when the bank has log preferences (γ = 1) and the Fed eliminates all distortions Rm =Rw

and sets Rm low enough that banks do not hold liquid assets. We can treat these results as
holding for an approximation in which bank dividends are close to constant and interbank
market distortions are not too large.

J.1. Dynamical Properties

In this section, we study the dynamical properties of the model. We fully characterize
these dynamics when banks have log utility and the Fed carries out a policy of no dis-
tortions in the interbank market. Both assumptions simplify the analysis. Although the
results are not general, for small deviations around that policy, the dynamic properties
should be similar.
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Stationary Equilibrium and Policy Effects With Satiation. We begin describing the tran-
sitional dynamics of the model when the Fed carries out a policy that satiates the market
with reserves via iwt = imt by setting a sufficiently low value for imt . For simplicity, we set
the supply of government bonds to zero and assume the Fed does not purchase loans.
By inducing satiation and maintaining an equal amount of reserves as Fed loans, the Fed
eliminates the liquidity premium of loans. Thus, a spread between loans and deposits re-
sults only from capital requirements. This characterization is useful because it describes
the dynamics of the model in absence of any distortions.

For this section, it is useful to define the inverse demand elasticity of loans and supply
elasticity of deposits: ε̄x ≡ (εx)−1 for x ∈{d�b}, respectively. Also, intercept of the inverse
demand for loans and supply of deposits are �̄x ≡ (�x)−1/εx for x ∈ {d�b}. We obtain the
following characterization.

PROPOSITION J.1—Transitions Under Friedman Rule: Consider a policy sequence such
that iwt = imt , BFed

t =GFed
t = 0, and Mt =Gt = 0.

(a) Real aggregate bank equity follows:

Et+1 = (
Rb

t + κmin
{(
Rb

t −Rd
t

)
�0

})
βEt� with E0 > 0 given.

The dynamics are given by a critical threshold:

Eκ ≡ 1
β

[
�̄b/�̄d

(1 + κ)−ε̄bκε̄d

] 1
ε̄d−ε̄b

�

If Et > Eκ, then {Rb
t �R

d
t � d̄t} solve

Rb
t = �̄b

(
βEt (1 + d̄t)

)ε̄b = �̄d(βEtd̄t)ε̄
d =Rd

t �

Otherwise, d̄t = κ, and

Rb
t = �̄b

(
βEt (1 + κ)

)ε̄b
� �̄d(βEtκ)ε̄

d =Rd
t �

(b) There ∃! steady-state level of Ess > 0. The steady state features binding capital require-
ments if and only if

�b(1/β)ε
b
< �d(1/β)ε

d(
1 + κ−1

)
� (J.1)

If capital requirements do not bind at steady state, then Ess solves

Ess = �b(1/β)ε
b −�d(1/β)ε

d

β
�

Otherwise, Ess solves

1/β= �̄b
(
βEss(1 + κ)

)ε̄b
(κ+ 1) − κ�̄d(βEssκ)ε̄

d
�

(c) If (1−1/εb)
(1+1/εd)

≥ κ
(1+κ) and capital requirements bind at steady state, then Et converges to Ess

monotonically.

In the paper, the calibration satisfies these parameter restrictions.
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J.2. Proof of Proposition J.1

The proof of the proposition is presented in three steps. First, we derive a threshold
equity level at which capital requirements are binding. Second, we prove that there can be
at most one steady state. Third, we provide conditions such that the equilibrium features
binding reserve requirements. Finally, we derive the sufficient condition for monotone
convergence. We then establish the result for the rate of inflation and the determination
of the price level.

Part 1—Law of Motion of Bank Equity. As shown in the Proof of Proposition 7, under
log utility, c̄t = (1 −β). Then the law of motion in (18) becomes

Et+1 = (
Rb

t + κmin
{(
Rb

t −Rd
t

)
�0

})
βEt� (J.2)

This follows directly by substituting b̄= 1+ d̄ and noticing that the equity constraint binds
if (Rb

t −Rd
t ); if not, deposits do not affect equity. This is enough to show that the law of

motion of bank equity satisfies the difference equation in the proposition. Thus, we have
obtained a law of motion for bank equity in real terms. We use this to establish conver-
gence. Consider now the condition such that capital requirements are binding for a given
Et = E. For that, we need that Rb

t > Rd
t . Using the inverse of the loan demand function,

we can write Rb
t in terms of the supply of loans using the market clearing condition:

Rb
t = �̄b(b̄βEt)ε̄

b
�

If the capital requirement constraint binds,

Rb
t = �̄b

(
βEt (1 + κ)

)ε̄b
�

Using the result that capital requirements are binding when Rb
t > Rd

t , we obtain

�̄b
(
βEt (1 + κ)

)ε̄b ≥ �̄d(βEtκ)ε̄
d
�

Clearing E at equality delivers a threshold:

Eκ ≡ 1
β

[
�̄b/�̄d

(1 + κ)−ε̄bκε̄d

] 1
ε̄d−ε̄b

�

such that for any E < Eκ, capital requirements are binding in a transition. Thus, the law
of motion of capital is broken into a law of motion for the binding and nonbinding capital
requirements regions.

We obtain

Et+1 = �̄b
(
βEt (1 + κ)

)1+ε̄b − �̄d(βEtκ)1+ε̄d for Et ≤Eκ

and

Et+1 = �̄b
(
(1 + dt)βEt

)ε̄b
βEt for Et > Eκ�

Here, we substituted d̄ = κ in (J.2) for the law of motion in the constrained region and
d̄t (Rb

t −Rd
t ) = 0 in the second region.
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Part 2—Uniqueness of Steady State. Here, we show that there cannot be more than
one steady state level of real bank equity. We prove this in a couple of steps. First, we ask
whether there can be more than one steady state in each region—that is, in the binding
and nonbinding regions. We show that there can be only one steady state in each region.
Then, we ask if two steady states can coexist, given that they must lie in separate regions.
The answer is no.

To see this, define

�(E) ≡ �̄b
(
β(1 + κ)

)1+ε̄b

Eε̄b − �̄d
(
β(1 + κ)

)1+ε̄d

Eε̄d �

If a steady state exists in the binding region, it must satisfy the following condition:

1 = �(Ess) and Ess ≤Eκ�

It is straightforward to verify that

�′(E) < 0� lim
E→0

�(E) → ∞� and lim
E→∞

�(E) → −∞�

Since the function is decreasing and starts at infinity and ends at minus infinity, there can
be at most one steady state—with positive E—in the constrained region, Ess < Eκ.

In the unconstrained region, Ess ≥ Eκ, a steady state is occurs only when

1 =Rb
t β�

We need to find the level of equity that satisfies that condition. Also, we know that Rd =
Rb in the unconstrained region. Thus, the supply of loans in the unconstrained region is
given by

βEt + �̄d
(
Rb

)ε̄d
�

the sum of real bank equity plus real deposits. Thus, we can define the equilibrium rate
on loans through the implicit map, R̃b(E), that solves

R̃b(E) ≡ {
R̃|R̃= �̄b

(
βEt + �̄d(R̃)ε̄

d)ε̄b}
�

If we can show that R̃b(E) is a function and R̃b(E) = β−1 for only one E, then we know
that there can be at most one steady state in the unconstrained region. To show that
R̃b(E) is a function, we must show that there is a unique value of R̃b for any E. Note that
R̃b(E) = R̃ for R̃ that solves

�̄b(R̃)ε̄
b − �̄d(R̃)ε̄

d = βE�

Since the first term on the left is decreasing and the second is increasing, this function is
monotone, and thus its inverse is a function; that is, R̃b(E) is a function. Observe that

lim
R̃→0

�̄b(R̃)ε̄
b − �̄d(R̃)ε̄

d = ∞� and lim
R̃→∞

�̄b(R̃)ε̄
b − �̄d(R̃)ε̄

d = −∞�

so R̃b(E) exists for any positive E. Since R̃b is decreasing in E and defined everywhere,
there exists at most one value for E such that R̃b(E) = (β)−1. This shows that there exists
at most one steady state in the unconstrained region.
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Next, we need to show that if there exists a steady state in which Ess ≤Eκ, there cannot
exist another steady state in which Ess ≥ Eκ. To see this, suppose that there ∃ a steady
state in the unconstrained region. Thus, there exists some value Eu > Eκ such that

R̃b(Eu) = 1/β�

Since R̃b is decreasing and Eu > Eκ, by assumption, we obtain that

1/β < R̃b(Eκ) =Rb
(
βEκ(1 + κ)

)
� (J.3)

where the equality follows from the definition of Eκ.
As a false hypothesis, suppose that there is another steady state in which Ec < Eκ. Then,

using the law of motion for equity in the constrained region, we get the result that

Rb
(
βEc(1 + κ)

) = 1/β− κ
(
Rb

(
βEc(1 + κ)

) −Rd(βEcκ)
)
�

Rb
(
βEc(1 + κ)

)
< 1/β�

(J.4)

where the second line follows from Rb > Rd for any Ec < Eκ. Thus,

Rb
(
βEκ(1 + κ)

)
<Rb

(
βEc(1 + κ)

)
<β−1

because Rb is decreasing. However, (J.4) and (J.3) cannot hold at the same time. Thus,
there ∃! steady state with positive real equity.

Part 3—Conditions for Capital Requirements Binding at Steady State. We have shown in
Appendix G.5 that a condition for a steady state with slack capital requirements is

�b(1/β)ε
b ≥�d(1/β)ε

d(
1 + κ−1

)
�

Then the steady state level of equity is

Ess = �b(1/β)ε
b −�d(1/β)ε

d

β
�

If the condition is violated, we use the stationarity condition:

1/β=Rb
(
βE(1 + κ)

) + (
Rb

(
βE(1 + κ)

) −Rd(βEκ)
)
κ�

This allows equity to grow at the point where the constraint begins to bind.

Part 4—Conditions for Monotone Convergence. Assume that parameters satisfy the
conditions for a steady state with binding capital requirements. Observe that if Et > Eκ,
then Et+1 < Et since Rb

t < (β)−1 for all E > Eκ. Thus, any sequence that starts from
E0 >Eκ eventually abandons the region. Thus, without loss of generality, we need only to
establish monotone convergence within the E <Eκ region.

Now consider Et < Ess. We must show that Et+1 also satisfies Et+1 < Ess if that is the
case. Employing the law of motion of equity in the constrained region, we notice that

Et+1 −Ess = �̄b
(
βEt (1 + κ)

)1+ε̄b − �̄d(βEtκ)1+ε̄d −Ess�



40 J. BIANCHI AND S. BIGIO

Define g(E) ≡ �(E)E. Thus,

Et+1 −Ess = �(Et)Et −Ess

= −
∫ Ess

Et

g′(e) de�

It is enough to show that g′(e) > 0 for any e. We verify that under the parameter assump-
tions, this is indeed the case. Note that

g′(e) = (
1 + ε̄b

)
�̄b

(
β(1 + κ)

)1+ε̄b

eε̄
b − (

1 + ε̄d
)
�̄d(βκ)1+ε̄d eε̄

d

= (
1 + ε̄b

)
Rb

(
β(1 + κ)e

)
β(1 + κ) − (

1 + ε̄d
)
Rd(βκe)βκ�

where the second line follows from the definition of Rb and Rd and the result that capital
requirements are binding in E < Ess. Furthermore, since in this region, Rb > Rd for all
E <Eκ, then a sufficient condition for g′(E) > 0 is to have(

1 + ε̄b
)
β(1 + κ) ≥ (

1 + ε̄d
)
βκ�

Thus, a sufficient condition for monotone convergence is

1 + 1/εb

1 + 1/εd
≥ κ

1 + κ
�

APPENDIX K: CALIBRATION

K.1. Data Sources

Most data series are obtained from the Federal Reserve Bank of St. Louis Economic
Research Database (FRED ©) and are available at the FRED ©website. The original
data sources for each series are collected by the Board of Governors of the Federal Re-
serve System (US). We use the following series.

Aggregate Variables. For aggregate variables, we use the following:
• Total reserves:

– Total Reserves of Depository Institutions, Billions of Dollars, Monthly, Not Sea-
sonally Adjusted,

https://fred.stlouisfed.org/series/TOTRESNS
• Bank equity:

– Total Equity Capital for Commercial Banks in United States, Thousands of Dol-
lars, Not Seasonally Adjusted (USTEQC),

https://fred.stlouisfed.org/series/USTEQC
– This data is available only at a quarterly frequency. We interpolate the series lin-

early from quarter to quarter to obtain the monthly series.
• The volume of interbank market loans:

– Board of Governors of the Federal Reserve System (US), Interbank Loans, All
Commercial Banks [IBLACBW027NBOG], H.8 Assets and Liabilities of Commer-
cial Banks in the United States,

https://fred.stlouisfed.org/series/IBLACBW027NBOG
• The volume of discount window loans:

http://research.stlouisfed.org/fred2/
https://fred.stlouisfed.org/series/TOTRESNS
https://fred.stlouisfed.org/series/USTEQC
https://fred.stlouisfed.org/series/IBLACBW027NBOG
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– Discount Window Borrowings of Depository Institutions from the Federal Reserve
[DISCBORR], H.3 Aggregate Reserves of Depository Institutions and the Mone-
tary Base,

https://fred.stlouisfed.org/series/DISCBORR
• Bank deposits:

– Board of Governors of the Federal Reserve System (US), Deposits, All Commer-
cial Banks [DPSACBM027NBOG],

https://fred.stlouisfed.org/series/DPSACBM027NBOG
• Bank credit:

– Board of Governors of the Federal Reserve System (US), Commercial and Indus-
trial Loans, All Commercial Banks [BUSLOANS],

https://fred.stlouisfed.org/series/BUSLOANS

Series for Interest Rates. For series on interest rates, we use the following data sources:
• The interest on discount window loans:

– Board of Governors of the Federal Reserve System (US), Primary Credit Rate
[DPCREDIT],

https://fred.stlouisfed.org/series/DPCREDIT
• The interest on reserves:

– Board of Governors of the Federal Reserve System (US), Interest Rate on Excess
Reserves [IOER],

https://fred.stlouisfed.org/series/IOER
• Interest rate on deposits:

– We use the series used in Drechsler, Savov, and Schnabl (2017),
academic.oup.com/qje/article-abstract/132/4/1819/3857743.

• The government bond rate:
– Board of Governors of the Federal Reserve System (US), 3-Month Treasury bill:

Secondary Market Rate [TB3MS],
https://fred.stlouisfed.org/series/TB3MS

Open-Market Operations. The series that corresponds to open-market operations is
the ratio of a measure of the Fed’s assets, normalized by total bank credit. During the
crisis, the Fed’s balance sheet grows for multiple factors, including swaps to foreign gov-
ernments and direct loans to institutions such as American International Group (AIG).
We consider the purchase of government bonds as the equivalent of conventional OMO.
For unconventional OMO, we consider the sum of mortgage-backed securities and fed-
eral agency securities. These series are weekly and aggregated to the monthly level. The
references for these series are as follows:

• Total bank credit:
– Board of Governors of the Federal Reserve System (US), Bank Credit of All Com-

mercial Banks [TOTBKCR],
https://fred.stlouisfed.org/series/TOTBKCR

• Treasury bills:
– Board of Governors of the Federal Reserve System (US), Assets: Securities Held

Outright: U.S. Treasury Securities [WSHOTS],
https://fred.stlouisfed.org/series/WSHOTS

• Federal agency paper:

https://fred.stlouisfed.org/series/DISCBORR
https://fred.stlouisfed.org/series/DPSACBM027NBOG
https://fred.stlouisfed.org/series/BUSLOANS
https://fred.stlouisfed.org/series/DPCREDIT
https://fred.stlouisfed.org/series/IOER
http://academic.oup.com/qje/article-abstract/132/4/1819/3857743
https://fred.stlouisfed.org/series/TB3MS
https://fred.stlouisfed.org/series/TOTBKCR
https://fred.stlouisfed.org/series/WSHOTS
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– Board of Governors of the Federal Reserve System (US), Assets: Securities Held
Outright: Federal Agency Debt Securities [WSHOFDSL],

https://fred.stlouisfed.org/series/WSHOFDSL
• Mortgage-Backed Securities:

– Board of Governors of the Federal Reserve System (US), Assets: Securities Held
Outright: Mortgage-Backed Securities: Wednesday Level [WSHOMCB],

https://fred.stlouisfed.org/series/WSHOMCB

Ratio Series. The series for ratios are derived as follows:
• Portfolio shares ḡ, d̄:

– The series for the data analogues of {ḡ� d̄} are constructed using the micro data
from commercial banks from Phillip Schnabl. We take the series for Treasury se-
curities that mature in less than 3 months and those that do so between 3 months
and 1 year—typically government bonds are thought of as Treasury securities with
maturity below a year. The series for the data analogue of d̄ is obtained as the sum
of total liabilities divided by equity. Then we aggregate across banks and divide by
the equity series. The raw data are available on Philip Schnabl’s website,

http://pages.stern.nyu.edu/~pschnabl/data.html
• Portfolio shares m̄:

– We take the series for cash assets for all commercial banks. The series includes
vault cash and reserves held by banks. The series is available at the website for
the Board of Governors of the Federal Reserve System (US), (Cash Assets, All
Commercial Banks/Total Assets, All Commercial Banks)*100,

https://fred.stlouisfed.org/graph/?g=IW4
– We divide the series by the difference between all commercial bank assets minus

liabilities.
• Liquidity premium:

– The liquidity premium that is used to construct the return on loans is obtained
from Del Negro, Eggertsson, Ferrero, and Kiyotaki (2017),

https://www.aeaweb.org/articles?id=10.1257/aer.20121660
• Liquidity premia used in the empirical analysis:

– The data are obtained from Nagel (2016). The data extend to December 2011,
https://www.dropbox.com/s/hroo56worw6sueb/LiqPremia.zip?dl=0

Federal Funds Interest Rate Distribution.
• The series for the dispersion in the Fed funds rates are obtained from the New York

Federal Reserve Bank. The NY Fed provides two data sets, one for the daily mini-
mum and maximum and another that includes quantiles. We use both data sets. In
Section 4, we use the max–min spread because the length of the data is longer.
– To construct the series FF Range, we construct the monthly average of the daily

distance between the max and the min of the Fed funds distribution and average
over the month. The original series are found here:

https://apps.newyorkfed.org/markets/autorates/fed-funds-search-page
• When we perform the financial crisis counterfactuals in Section 5.3, we reconstruct

the Fed funds rate among banks. We also use that data in the robustness checks to
Section 4 in the Appendix. We use the quantiles of the Fed funds.
– The data available from the NY Fed also include the max and min, 99, 75, 50, 25,

and 1st quantiles, and the standard deviation of daily Fed funds rate. The data are
available here:

https://fred.stlouisfed.org/series/WSHOFDSL
https://fred.stlouisfed.org/series/WSHOMCB
http://pages.stern.nyu.edu/~pschnabl/data.html
https://fred.stlouisfed.org/graph/?g=IW4
https://www.aeaweb.org/articles?id=10.1257/aer.20121660
https://www.dropbox.com/s/hroo56worw6sueb/LiqPremia.zip?dl=0
https://apps.newyorkfed.org/markets/autorates/fed-funds-search-page
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https://www.newyorkfed.org/medialibrary/media/markets/
ff-volumes-oct2006-feb2016.xlsx

K.2. Construction of Bank and Nonbank Fed Funds

Mapping the model to the data after October 2008 requires accounting for two addi-
tional features. First, in this period, the average Fed funds rate fell below the the inter-
est on reserves, the analogue of Rm in the model. Second, the 1-month T-Bill rate, the
analogue of Rg in the model, also traded below the interest on reserves. One important
consideration in accounting for both features in the model is that many trades in the Fed
funds market are transactions between banks, which were eligible to receive interest on
reserves, and other institutions, which were not. Thus, after 2008, the average Fed funds
rate reflects in part transactions that occur because of that regulatory arbitrage, with an
interest rate below the rate on reserves. We argue that to execute the trade with non-
banks, banks need to use government bonds as collateral. Thus, these trades generate
an additional value of holding government bonds. Next, we describe how we add these
features into the model to address these issues and reconstruct series of Fed funds rate
corresponding to trades only among banks.

Nonbank Fed Funds Participants. We introduce a set of nonbanks (nb) that hold re-
serves and participate in the Fed funds market, but do not receive interest on reserves. In
particular, we assume that by the end of the balancing stage, banks with a surplus of gov-
ernment bonds will match (in one round) with nonbanks—banks in deficit, by that stage,
have already sold all of their government bonds. We assume that all banks are matched
with a nonbank on a per-bond basis. Once a match occurs, banks and nonbanks trade one
unit of government bonds for one unit of reserves. The position is reversed by the end of
the period, but the interest is paid to the agent that holds the asset overnight. We call this
transaction a “Repo.”

When a bank meets a nonbank, they solve the following Nash bargaining problem:

Rf�nb = arg max
R

(
R− 1/(1 +π)

)1−ηb(
Rm −R

)ηb
�

The first term in parentheses is the surplus minus the outside option for the nonbank: the
non-bank earns R instead of storing the reserve at no interest. The second term in paren-
theses is the surplus for the bank: the bank earns Rm but pays R. The bank’s bargaining
power is ηb. The solution to the rate in a Repo transaction is

Rf�nb = 1 + (
1 −ηb

)(
Rm − 1

)
� (K.1)

Now, a bank that ends in surplus not only earns Rm but also the gains from the regulatory
arbitrage, Rm −Rf�nb. Therefore, (Gov. Bond LP) is now modified to obtain

Rg + (
Rm −Rf�nb

) =Rm +χ+� (K.2)

This indifference condition follows the same equilibrium relationship as in the version of
the model without nonbanks. However, it accounts for the fact that the return on govern-
ment bonds is now Rg plus the value that banks can extract from nonbanks by pledging
bonds in the repo market, Rm −Rf�nb. Equations (K.1) and (K.2) account for the fact that
the government bond and the Fed funds rate trade below Rm. To see this, note that for a
sufficiently large ηb and reserves are sufficiently abundant χ+ will be low enough so that
both Rf�nb < Rm and Rg < Rm.

https://www.newyorkfed.org/medialibrary/media/markets/ff-volumes-oct2006-feb2016.xlsx
https://www.newyorkfed.org/medialibrary/media/markets/ff-volumes-oct2006-feb2016.xlsx
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Construction of the Fed Funds Analogue. Next, we explain how we approximate R̂f�nb

and R̂f�ib, the average Fed funds rate among bank trades, using data on the distribution of
Fed funds rates. Conceptually, the average Fed funds rate is the average Fed funds rates
between interbank and non-interbank transactions:

Rf = (
1 − νnb

) ·Rf�ib + νnb ·Rf�nb� (K.3)

where νnb is the fraction of Fed fund trades that occur among banks and nonbanks. From
the data, we observe Rf at a given point in time. Thus, with a data counterpart for ν̂nb

and R̂f�nb we could reconstruct R̂f�ib. We observe data on the 1st, 25th, 75th, and 99th per-
centiles of the Federal funds distribution, respectively {Rf

t�1�R
f
t�25�R

f
t�75�R

f
t�99}, at a given

date t. To reconstruct the data analogue ν̂nbt for each t, we find the pair of contiguous per-
centiles {Rf

t�x�R
f
t�y} such that the interest rate on reserves fell within that interval; that is,

Rm
t ∈ [Rf

t�x�R
f
t�y]. Naturally, we attribute all trades executed below R̂m

t to trades between
banks and nonbanks. Thus, the mass of trades with nonbank trades will be F (Rf

t�x) plus a
fraction of trades that fell within the [Rf

t�x�R
m] interval. We approximate the date assum-

ing a uniform distribution among the trades within that interval. Hence, the data analogue
of νnb is

ν̂nbt = F
(
R

f
t�x

) + Rm −R
f
t�x

R
f
t�y −R

f
t�x

· [F(
R

f
t�y

) − F
(
R

f
t�x

)]
� (K.4)

For the analogue of R̂f�nb, we reconstruct it using the same approximation to the distribu-
tion of rates; that is,

R̂f�nb = 1
2

( ∑
{x�y}∈[���]

(
R

f
t�y −R

f
t�x

) · [F(
R

f
t�y

) − F
(
R

f
t�x

)])

+ 1
2

((
Rm −R

f
t�x

) Rm −R
f
t�x

R
f
t�y −R

f
t�x

· [F(
R

f
t�y

) − F
(
R

f
t�x

)])
�

We use this construction to obtain R̂f�ib and R̂g using (K.3) and (K.2), respectively. We
use the monthly moving average series for R̂f�ib and R̂g in the procedure that follows.

K.3. Calibration Procedure

In the procedure, we infer steady state parameters using data analogues for the volume
of interbank loans; discount window loans, {W�F}; interest rates {Rd

ss�R
m
ss�R

f
ss�R

m
ss�R

w
ss};

the loan liquidity premium {LPss} and bank portfolio shares on reserve and government
bond holdings; and the capital requirement, {m̄ss� ḡss� κ}.

Here, we explain how we deduce {σ̂ss� λ̂ss� η̂ss� σ̂
δ
ss� �̂

b
ss� �̂

d
ss} in Section 5.1.

1. Obtain �̂−
ss from

�̂−
ss = �̂−

ssS
−
ss

S−
ss

= Fss

Wss + Fss

�
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2. Obtain

λ̂ss = log
(

1

1 − �̂−
ss

)

by inverting (30) under the assumption that θss < 1.
3. Deduce ω̂∗

ss from the definition (E.32), substituting ρ = 0 and {ā� d̄} = {m̄ss� ḡss},
and obtain

ω̂∗
ss = −m̄ss + ḡss

κ
/
Rd

ss

Rm
ss

�

4. Deduce σ̂ss as the solution σ̂ that solves

W

A
= (

1 − �̂−
ss

)
�

(
ω̂∗

ss; σ̂
)(m̄ss + ḡss

κ+ 1
+ Rd

ss

Rm
ss

E
[
ω|ω< ω̂∗

ss; σ̂
] κ

κ+ 1

)
� (K.5)

This step uses (E.33), where S−
ss is obtained by integrating (E.30) among all ω< ω̂∗

ss,
dividing by all assets.

5. We deduce a value for θ̂ss from

θ̂ss =
�

(
ω̂∗

ss; σ̂
)(
m̄ss + ḡss + Rd

ss

Rm
ss

E
[
ω|ω< ω̂∗

ss; σ̂
]
κ

)
(
1 −�

(
ω̂∗

ss; σ̂
))(

m̄ss + ḡss + Rd
ss

Rm
ss

E
[
ω|ω> ω̂∗

ss; σ̂
]
κ

)
− ḡss

� (K.6)

This step uses S−
ss obtained by integrating (E.30) among all {ω < ω̂∗

ss} and S+
ss ob-

tained by integrating (E.30) among all ω> ω̂∗
ss and applying the formula (E.31).

6. We deduce �̂+
ss from the clearing condition in the Fed funds market �̂+

ss = �̂−
ss · θ̂ss

7. We deduce ˆ̄χ+
ss using (E.34); thus, ˆ̄χ+

ss = �̂+
ss · (Rf −Rm).

8. We deduce η̂ss, which solves

ˆ̄χ+
ss = (

Rw −Rm
)( ˆ̄θss

θ̂ss

)η̂ss( θ̂ηss
ˆ̄θ1−η̂ss
ss − θ̂ss
ˆ̄θss − 1

)
� (K.7)

where

ˆ̄θss =
{

1 + (θ̂ss − 1) exp(λ̂ss) if θ̂ss ≤ 1�
1 + (

(θ̂ss)−1 − 1
)

exp(λ̂ss))−1 if θ̂ss > 1�

which direct from (31).
9. We also deduce ˆ̄χ−

ss using

ˆ̄χ−
ss = (

Rw
ss −Rm

ss

)( ˆ̄θss
θ̂ss

)η̂ss( θ̂η̂ssss ( ˆ̄θss)1−η̂ss − 1
ˆ̄θss − 1

)
�

which is also obtained from (31).
10. We deduce a volatility of defaults, σ̂δ

ss, and κ from the solution to

(̄bss�1+κ− ¯(bss�κ) ≡ argmax
b̄≤κ�ā+b̄−κ=1

{
E
[
(1−δ)Rb

ssb̄+Rm
ssā−Rd

ssd̄+χ̄ss(ā� d̄�ω)
]1−γ} 1

1−γ �



46 J. BIANCHI AND S. BIGIO

where the expectation E is over δ and ω.
11. We obtain �̂b

ss by inverting (E.25):

�̂b
ss = (

b̄ss + b̄Fed
ss

) · β̂ss ·Ess · (Rss)ε
b
�

12. We obtain �̂d
ss by inverting (E.26):

�̂d
ss = d̄ · β̂ss ·Ess ·

(
Rd

ss

)εd
�

APPENDIX L: APPENDIX TO SECTION 4: ROBUSTNESS ANALYSIS

The next sections present additional corroborating evidence to the evidence presented
in Section 4.

Estimates With Other Liquidity Measures. A first robustness check runs the same re-
gressions as in Table I, but using two other measures of liquidity premia. The first measure
is a classic measure advocated by Stock and Watson (1989) and Friedman and Kuttner
(1993): the 3-month spread between the AAA commercial paper and the 3-month T-Bill.
The second measure is the TED spread, the difference between the 3-month Treasury bill
and the 3-month US dollar LIBOR. In this case, the data availability is longer. It spans
from July 2000 to February 2016, when the NY Fed stopped reporting the daily max and
min values of the Fed Funds market. Table V reports the results. The pattern is consistent
in significance and in magnitude with the earlier estimation in Table I.

The next robustness check compares the results with two popular measures introduced
by Gilchrist and Zakrajšek (2012): the GZ Spread and the GZ excess-bond premium
(EBP). The authors construct these measures by taking individual fixed-income securities
and discounting their promised cash-flows according to zero-coupon US Treasury yields.
This delivers a spread for each security. The “GZ excess bond premium” of each secu-
rity is constructed as the portion of the overall credit spread that cannot be accounted
for by individual predictors of default, nor bond-specific characteristics. Specifically, the
authors regress their credit spreads on a firm-specific measure of expected default and

TABLE V

LIQUIDITY PREMIA AND INTERBANK SPREADS—ROBUSTNESS CHECKS.

(1) (2) (3) (4) (5) (6)
CP Spread CP Spread CP Spread TD Spread TD Spread TD Spread

FF Range 0�352 0�320 0�293 0�587 0�609 0�534
(17�72) (14�71) (13�05) (16�86) (15�63) (13�92)

FFR 0�0206 0�0267 −0�0137 0�00430
(3�26) (4�20) (−1�23) (0�40)

VIX 0�115 0�315
(3�53) (5�70)

Constant 0�00714 −0�00882 −0�345 0�0893 0�101 −0�816
(0�44) (−0�53) (−3�57) (3�13) (3�36) (−5�00)

Observations 184 184 184 188 188 188
Adjusted R2 0�631 0�649 0�670 0�602 0�603 0�661

Note: t statistics in parentheses.
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TABLE VI

LIQUIDITY PREMIA AND INTERBANK SPREADS—ROBUSTNESS CHECKS.

(1) (2) (3) (4) (5) (6)
GZ Spread GZ Spread GZ Spread GZ EBP GZ EBP GZ EBP

FF Range 0�536 0�769 0�150 0�463 0�526 0�112
(4�01) (5�29) (1�87) (4�91) (4�98) (1�62)

FFR −0�147 0�00114 −0�0395 0�0598
(−3�55) (0�05) (−1�31) (3�07)

VIX 2�598 1�738
(22�50) (17�39)

Constant 2�302 2�422 −5�139 −0�127 −0�0947 −5�152
(21�00) (21�70) (−15�07) (−1�64) (−1�17) (−17�46)

Observations 188 188 188 188 188 188
Adjusted R2 0�075 0�129 0�767 0�110 0�113 0�663

Note: t statistics in parentheses.

a vector of bond-specific characteristics; the residual of this regression is the GZ excess
bond premium.

Table VI reports the results. The pattern resembles the earlier estimation in Table I,
but the regressions lose power once we control for the VIX, a measure of dispersion
that remains significant. This feature indicated that bonds can have liquidity premia that
correlate with the cycle, but are independent of the liquidity premia among near-money
assets.

Other Spreads and Placebos. Table VII reports two additional sets of robustness
checks. Regressions (1–3) in Table VII are the same as regression (3) in Table I, except
that the measure “FF Range” is replaced by three alternative measures of interbank mar-

TABLE VII

LIQUIDITY PREMIA AND INTERBANK SPREADS—ROBUSTNESS CHECKS.

(1) (2) (3) (4) (5) (6)
GC Spread GC Spread GC Spread 10y AAA Spr Note Spr OF Spr

FF 99-1 0�207
(7�26)

FFR 0�0555 0�0774 0�0429 −0�0912 −0�00383 0�00384
(6�14) (9�66) (8�36) (−8�33) (−1�84) (4�28)

VIX 0�138 0�200 0�0584 0�851 0�0943 0�00462
(3�05) (4�57) (2�07) (15�12) (8�95) (1�01)

FF 75-25 0�658
(6�48)

FF std 1�051
(10�08)

FF Range −0�0383 0�00375 −0�00146
(−0�98) (0�60) (−0�54)

Constant −0�411 −0�585 −0�184 −0�696 −0�239 −0�0165
(−2�84) (−4�11) (−2�08) (−4�19) (−7�17) (−1�14)

Observations 63 63 138 188 138 138
Adjusted R2 0�791 0�768 0�660 0�685 0�486 0�121

Note: t statistics in parentheses.
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TABLE VIII

LIQUIDITY PREMIA AND INTERBANK SPREADS—ROBUSTNESS CHECKS.

(1) (2) (3) (4) (5) (6)
GC Spread GC Spread GC Spread CD Spread CD Spread CD Spread

FF Range 0�238 0�162 0�157 0�581 0�529 0�513
(8�92) (6�60) (6�19) (13�09) (10�83) (10�23)

FFR 0�0465 0�0482 0�0322 0�0377
(6�72) (6�63) (2�34) (2�62)

VIX 0�0281 0�0886
(0�80) (1�28)

Constant 0�0308 −0�0691 −0�153 −0�0110 −0�0802 −0�345
(1�35) (−2�90) (−1�42) (−0�29) (−1�70) (−1�62)

Observations 90 90 90 90 90 90
Adjusted R2 0�469 0�646 0�645 0�657 0�674 0�676

Note: t statistics in parentheses.

ket dispersion. The first two measures are FF 99-1, which corresponds to the monthly
average of the daily spread between the 99th and 1st quantiles of the Fed Funds distribu-
tion, and FF 75-25, which corresponds to the 75th and 25th quantiles. Finally, FF std is
the monthly average daily standard deviation of the Fed funds rates. The time series for
quantiles are shorter than FF range, ranging only from January 2006 through December
2018. The overall fit is similar, and the magnitude of the coefficient of FF 99-1 series in
particular is very similar to FF Range, not surprisingly. The coefficient for the FF 75-25
series is larger, which is unsurprising, since the standard deviation of this series is larger.
The FF std series is also significantly correlated, and the coefficient is even larger.

Regressions (4–6) in Table VII employ other measures of liquidity premia in Nagel
(2016), which are interpreted as placebo tests. These are the series for the 10y AAA to
T-Bill corporate bond spread, the Note T-Bill spread and the spread between on the run
and off the run bonds. In none of these cases, is the FF Range variable significant.

Subsamples. As final robustness check, we rerun the regressions in Table VIII, but
this time, we limit the sample to the pre-crisis period from July 2000 through December
2007. Again, the pattern is the same. The FF Range variable remains a significantly cor-
related variable with other measures of spreads. By contrast, the VIX index is no longer
significantly correlated with measures of spreads.

APPENDIX M: ALGORITHMS

This Appendix presents the numerical algorithms that we use to solve the model. We
first present the algorithm to solve the stationary equilibrium. We then present the algo-
rithm to solve for transitional dynamics.

M.1. Stationary Equilibrium

The stationary equilibrium of the model can be conveniently reduced to solving a sys-
tem of two nonlinear equations in two unknowns (Rb

ss� θss). In a stationary equilibrium,
all nominal variables grow at a constant rate (in this case, zero) and real variables are
constant. To simplify the presentation, we assume that the intertemporal elasticity of sub-
stitution equals one, which gives rise to a constant dividend-to-equity ratio, a zero nominal
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growth of the nominal balance sheet of the monetary authority, and BFed = 0. We also set
a value for Rd

ss based on the calibration target and infer the intercept term �d , which is
consistent with that value.

1. Guess a stationary value for (Rb
ss� θss), the real return on loans and market tightness.

2. Given market tightness, nominal policy rates, the given long-run inflation, and Rd
ss,

compute the liquidity yield function χ̄ using (9).
3. Solve banks’ optimization problem for the portfolio weights {b̄� d̄� ā}:

max
{b̄�ā�d̄}≥0

{
E
[
Rbb̄+Rmā−Rdd̄ + χ̄(ā� d̄�ω)

]1−γ} 1
1−γ �

b̄+ ā− d̄ = 1� and d̄ ≤ κ� (M.1)

4. Check whether banks’ policies are consistent with steady state:
5. Compute aggregate gross equity growth as

E′/E = (
1 + (

Rb − 1
)
b̄− (

Rd − 1
)
d̄
)
(1 − c̄)�

6. Compute implied market tightness:

S− =
∫ ā/d̄−ρ

(1−ρ)

1
s(ω) d� and S+ =

∫ ∞

ā/d̄−ρ
(1−ρ)

s(ω) d��

where market tightness is defined as

θ̃= S−/S+�

7. If E′/E = 1 and θ̃ = θss, move to step 7. Otherwise, adjust the guess for Rb
ss and θss

and go to step 3.
8. Compute household demand for government bonds, using Rg =Rm +χ+:

Gh

P
=�g

(
Rg

)εg
9. Compute banks’ portfolio weights on government bonds by using market clearing

condition

G

P
− Gh

P
= Eḡ(1 − c̄)

10. Compute the nominal amount of reserves and the intercepts of the loan demand
and deposit supply functions using the fact that real equity and the initial price level
are normalized to one (i.e., P = 1, E = 1) and

M̃Fed = (1 − c̄)(ā− ḡ)EP�

�b

(
1
Rb

)ε

= Eb̄(1 − c̄)�

�d

(
1
Rd

)−ς

= Ed̄(1 − c̄)�
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11. Compute nominal returns using definitions of real returns and transfers T Fed from
the Fed budget constraint:

τ = (1 − c̄)
[(
im −π

)
m̄+ (

ig −π
)
ḡ− (

iw − im
)
w̄

]
�

where

w̄ = (
1 −�−(θ)

)
S−�

Let us comment on some details from the computations. To solve for the pair (Rb
ss� θss),

we use the fsolve command in Matlab. To solve for the portfolio problem, we use the first-
order conditions, which we again solve, using fsolve. Notice that if the capital requirement
binds, there is only one portfolio variable to solve for.

To compute expectations, we use a Newton–Cotes quadrature method. Specifically, we
apply the trapezoid rule with a grid of 2000 equidistant points. To specify the lower and
upper boundaries of the grid, we take the shock values that guarantee 10−5 mass in the
tails of the distribution.

M.2. Transitional Dynamics

The basic procedure to solve for transitional dynamics is to start by conjecturing an
initial price level P0, then solve for all sequences of prices and quantities using market
clearing conditions and bank problems. The price converges to the path of the price level
in the stationary equilibrium. Essentially, the solution can be reduced to one equation
and one unknown.

To simplify the presentation, we assume that the intertemporal elasticity of substitution
equals one, giving rise to a constant dividend-to-equity ratio; a zero nominal growth of
the nominal balance sheet of the monetary authority, BFed

t = 0; and an inelastic demand
for government bonds by households.

1. Establish a finite period T ∈ N for convergence to steady state, a convergence cri-
terion ε, and an initial value for aggregate real equity E0.

2. Guess an initial price level P0.
3. Set t = 0.
4. Given E0, P0 and level of nominal reserves set by the monetary authority M̃Fed, we

can obtain an implied level of real reserve holdings:

m̃0 ≡ M̃Fed

βP0E0
�

5. Compute

g̃0 =
G

P
− Gh

P
E0(1 − c̄)

�

6. Denote ã0 = m̃+ g̃.
7. Find (Rm

1 �R
b
1) that solves

ā0 − ã0 = 0�

βE0

(
1 + d̄0 − (m̃0 + g̃0)

) = �b
0

(
1

1 + rbt+1

)ε

�
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where ā0, d̄0 satisfy

(ā0� d̄0) = arg max
b̄�ā�d̄≤κ

{
E
[
Rb

1 (1 + d̄0 − ā) +Rm
1 ā−Rd

1 d̄ + χ̄(ā� d̄�ω)
]1−γ} 1

1−γ

and χ̄ follows (9).
Given im and Rm

1 , compute inflation between period 0 and 1 as

π1 =
(

1 + im

Rm
1

)
− 1�

8. Given π1 and P0�, compute next-period price P1 = (1 +π1)P0.
9. Compute next-period equity using the law of motion

E1 = (
1 + (

Rb − 1
)
b̄− (

Rd − 1
)
d̄
)
(1 − c̄)E0�

10. Repeat steps 4–9 for t = 1� � � � �T .
11. Compute criteria for convergence of z = PT+1 − P0. Notice that if there is steady-

state inflation, this condition for convergence is replaced by z = PT+1 −P0(1+πss)T .
12. If |z|< ε, exit algorithm. Otherwise, adjust P0 and go to step 4.
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