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Abstract

This note contains additional model derivation and numerical details of the main text Cheng,

Dou, and Liao (2021). Section A derives the Euler equations that serve as the asset pricing

moment conditions in the disaster risk model and the long-run risk model. Section B considers

the long-run risk model and shows that the Gaussian limit is an innocuous assumption. Section

C provides derivations for the time-varying disaster risk model in the empirical application of the

main text and some additional discussions on the literature. Section D contains an additional

robustness check for the simulation results in the main text.
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A Derivations of Asset Pricing Moments in Examples

A.1 Solution of the Disaster Risk Model

The dividend-price ratio is constant in the equilibrium, denoted by C/P . The stock return is

Rt = (Ct + Pt)/Pt−1 = (C/P + 1)Ct/Ct−1 = (C/P + 1)eσεt−ζt . (A.1)

Thus, the expected log stock return is

Et−1 [lnRt] = ln(C/P + 1)− p (v + 1/α) . (A.2)

The equilibrium dividend-price ratio is characterized by

P/C = Et−1

[
e−δ (Ct/Ct−1)−γ (Pt/Ct + 1)Ct/Ct−1

]
= (P/C + 1)e−δEt−1

[
(Ct/Ct−1)1−γ

]
= (P/C + 1)e−δ+

1
2

(1−γ)2σ2

[
1− p+ pe−(1−γ)v α

α− γ + 1

]
. (A.3)

As a result, the term ln(C/P + 1) in (A.1) equals to

ln(C/P + 1) = δ − 1

2
(1− γ)2σ2 − ln

[
1− p+ pe−(1−γ)v α

α− γ + 1

]
≈ δ − 1

2
(1− γ)2σ2 + p− pe−(1−γ)v α

α− γ + 1
. (A.4)

Define the log return as rt ≡ lnRt. Equations (A.4) and (A.2) imply the following relation:

Et−1 [rt] ≈ δ −
1

2
(1− γ)2σ2 − p (v + 1/α) + p− pe(γ−1)v α

α− γ + 1
. (A.5)

The equilibrium risk-free rate satisfies that

Rf = Et−1

[
e−δ(Ct/Ct−1)−γ

]−1
= eδ−

1
2
γ2σ2

[
1− p+ peγv

α

α− γ

]−1

. (A.6)

Define the log risk-free rate as rf ≡ lnRf . Thus, the log risk-free rate satisfies

rf = δ − 1

2
γ2σ2 − ln

[
1− p+ peγv

α

α− γ

]
≈ δ − 1

2
γ2σ2 + p− peγv α

α− γ
. (A.7)
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The excess log return, defined as ret ≡ rt − rf , is

Et−1 [ret ] = γσ2 − 1

2
σ2 − p(v + 1/α) + pα

[
eγv

α− γ
− e(γ−1)v

α− γ + 1

]
. (A.8)

The excess log return ret has the same conditional exposure to the shocks as the log return rt since

the log risk-free rate rf has zero exposure to the shocks. Therefore, the excess log return in the

equilibrium can be represented as follows:

ret = γσ2 − 1

2
σ2 − p(v + 1/α) + pα

[
eγv

α− γ
− e(γ−1)v

α− γ + 1

]
+ εe`,t, (A.9)

where εe`,t ≡ σεt − [xt(v + Jt)− p(v + 1/α)] + σrε`,t. The shock of the consumption growth is εt,

the jump shock of the consumption growth is −[xt(v + Jt) − p(v + 1/α)], and the shock of the

measurement error is ε`,t. The measurement error ε`,t is i.i.d. standard normal and is independent

of other shocks.

A.2 Solution of the Long-Run Risk Model

The stochastic discount factor (SDF) can be expressed as follows:

Mt = δϑ
(

Ct
Ct−1

)−ϑ/ψ
Rϑ−1
c,t , with ϑ ≡ 1− γ

1− 1/ψ
, (A.10)

where Rc,t is the return on the consumption claim. The log SDF can be written as

mt = ϑ log δ − ϑ

ψ
∆ct + (ϑ− 1)rt. (A.11)

The state variable in the simplest long-run risk model is xt. To turn the system into an affine

model, we first exploit the Campbell-Shiller log-linearization approximation:

rt = κ0 + κ1zt + ∆ct − zt−1, (A.12)

where zt−1 = ln(Wt−1/Ct−1) is the log wealth-consumption ratio and wealth is the “price” of

consumption claims. The log-linearization constants are determined by long-run steady state:

κ0 = ln(1 + ez)− κ1z and κ1 =
ez

1 + ez
, (A.13)

where z is the mean of the log price-consumption ratio. Given the log-linearization approximation
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(A.12) – (A.13), we can search the equilibrium characterized by

zt = A0 +A1xt, (A.14)

where the constants A0 and A1 are to be determined by the equilibrium conditions.

Thus, the log return on consumption claim can be written as

rt = κ0 + κ1 (A0 +A1xt) + ∆ct − (A0 +A1xt−1) . (A.15)

Therefore, the log SDF can be re-written in terms of state variables and exogenous shocks

mt = Γ0 + Γ1xt−1 − λcσcεc,t − λxφεx,t, (A.16)

where predictive coefficients are

Γ0 = ln δ and Γ1 = −ψ−1, (A.17)

and the market price of risk coefficients are

λc = γ and λx =
(
γ − ψ−1

) κ1φ

1− κ1ρ
. (A.18)

The coefficients Aj ’s are determined by the equilibrium condition (i.e., the Euler equation for

the price of consumption claim) as follows:

1 = Et−1 [MtRc,t] = Et−1

[
emt+rt

]
, (A.19)

where Et−1[·] denote the expectation given the information at time t−1. It leads to the equilibrium

conditions:

A0 =
1

1− κ1
(ln δ + κ0) and A1 =

1− ψ−1

1− κ1ρ
φ. (A.20)

The long-run mean z is also determined endogenously in the equilibrium. In the long-run

steady state, we have

z = A0. (A.21)

We first derive κ1 in equilibrium. After taking log on the both sides of (A.13) and plugging

(A.20) and (A.21) into the equation, we can obtain the following relation:

lnκ1 = z − ln(1 + ez) = z − κ0 + κ1z

= (1− κ1)z − κ0 = ln δ. (A.22)
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Thus, the equilibrium log-linearization coefficient is equal to the representative agent’s time pref-

erence parameter; that is, κ1 = δ, in equilibrium.

From (A.15) and (A.20), it follows that

rt − Et−1 [rt] = βcσcεc,t + βxεx,t, (A.23)

where the betas are

βc = 1 and βx = κ1A1. (A.24)

The Euler equation for the log market return, denoted by rt, and the risk free rate, denoted

by rf,t−1, can be written in one equation

Et−1 [emt ] = Et−1

[
emt+r

e
t
]
, (A.25)

where ret ≡ rt − rf,t−1 is the excess log return.

The Euler equation (A.25) leads to

Et−1 [ret ] = λcβcσ
2
c + λxβx −

1

2

(
β2
cσ

2
c + β2

xφ
2
)

= γσ2
c −

1

2
σ2
c +

1

2
(2γ − ψ−1 − 1)(1− ψ−1)

κ2
1φ

2

(1− κ1ρ)2

= γσ2
c −

1

2
σ2
c +

1

2
(2γ − ψ−1 − 1)(1− ψ−1)

φ2

(δ−1 − ρ)2
. (A.26)

The excess log return ret has the same conditional exposure to the shocks as the log return rt

since the log risk-free rate rf,t−1 has zero conditional exposure to the shocks εc,t and εx,t. Therefore,

combining (A.20), (A.24), and (A.26), we can obtain that the excess log return in the equilibrium

can be represented as follows:

ret = γσ2
c −

1

2
σ2
c +

1

2
(2γ − ψ−1 − 1)(1− ψ−1)

φ2

(δ−1 − ρ)2
+ εed,t, (A.27)

where εed,t ≡ σcεc,t+(1−ψ−1)(1−ρ)−1φεx,t+σrεd,t. The shock of the contemporaneous consumption

growth is εc,t, the shock of the low-frequency component is εx,t, and the shock of the measurement

error is εd,t. The measurement error εd,t is i.i.d. standard normal and is independent of other

shocks.

B Gaussian Limit in the Long-Run Risk Model

For the long-run risk model, we show that the Gaussian limit for the moment conditions is an

innocuous assumption even if ρn → 1 and φn → 0 at any rate, as long as θn = (1 − ρn)/φn is
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bounded from above and below by some finite positive constants, where the subscript n denotes

the sample size n.

We start with the first moment condition. The observed process ∆ct satisfies

∆ct+1 − ρ∆ct = φn (ρnxt−1 + εx,t) + σcεc,t+1 − ρ (φnxt−1 + σcεc,t)

= φn(ρn − ρ)xt−1 + φnεx,t + σcεc,t+1 − ρσcεc,t. (B.1)

Multiply the first difference ∆ct+1 − ρ∆ct in (B.1) by ∆ct−1 = φnxt−2 + σcεc,t−1. We obtain

M1t ≡ ∆ct−1 (∆ct+1 − ρ∆ct) = M1a,t +M1b,t +M1c,t +M1d,t + µ1, (B.2)

where

µ1 ≡ E [∆ct−1 (∆ct+1 − ρ∆ct)] = φ2
n(ρn − ρ)ρnE[x2

t−2],

M1a,t ≡ φ2
n(ρn − ρ)ρn

(
x2
t−2 − E[x2

t−2]
)
,

M1b,t ≡ φn(ρn − ρ) (σcxt−1εc,t−1 + φnxt−2εx,t−1) ,

M1c,t ≡ φnxt−2 (φnεx,t + σcεc,t+1 − ρσcεc,t) ,

M1d,t ≡ σcεc,t−1 (φnεx,t + σcεc,t+1 − ρσcεc,t) . (B.3)

The moment condition satisfies

M1 ≡ n−1/2
n∑
t=1

(M1t − E [M1t]) = M1a +M1b +M1c +M1d, (B.4)

where M1j ≡ n−1/2
∑n

t=1M1j,t for j = a, b, c, d.

Below we consider three separate cases: (i) ρn is bounded away from 1; (ii) ρn converges to 1

at the rate slower than n−1, i.e., (1− ρn)n→∞; (iii) ρn converges to 1 at the rate n−1 or faster,

i.e., (1 − ρn)n → c ∈ [0,∞). In all three cases, θn = (1 − ρn)/φn is bounded below from 0 and

above from infinity. Therefore, φn always converges to 0 at the same rate at which ρn converges

to 1.

In case (i), we can apply the central limit theorem (CLT) for weakly dependent triangular

arrays and M1 has a Gaussian limit.

Now we consider case (ii). We assume the initial condition satisfies E[x2
0] = o(n1/2) as in GP.

Following Lemma 1 of Giraitis and Phillips (2006) (hereafter GP),

(1− ρ2
n)1/2

n1/2

n∑
t=1

xt−1εx,t →d N(0, 1) (B.5)
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using V ar(εx,t) = 1. We assume the initial condition satisfies E[x2
0] = o(n1/2) as in GP. Following

the proof for Lemma 1 of GP we also have

(1− ρ2
n)1/2

n1/2

n∑
t=1

xt−1εx,t+1 →d N(0, 1),

(1− ρ2
n)1/2

n1/2

n∑
t=1

xt−1εc,t+j →d N(0, σ2
c ), (B.6)

for any j following the independence of εx,t and εc,t′ for any t 6= t′. Following equation (20) in the

proof of Lemma 2 of GP,

n−1/2
n∑
t=1

(
x2
t−1 − E[x2

t−1]
)

=
(
1− ρ2

n

)−3/2
2ρnZ1 +

(
1− ρ2

n

)−1
Z2 + Z3, (B.7)

where

Z1 ≡
(1− ρ2

n)1/2

n1/2

n∑
t=1

xt−1εx,t →d N(0, 1),

Z2 ≡ n−1/2
n∑
t=1

(
ε2x,t − 1

)
→d N(0, Vx2),

Z3 ≡
x2

0 − E[x2
0]

n1/2 (1− ρ2
n)
− x2

n − E[x2
n]

n1/2 (1− ρ2
n)
, (B.8)

where the convergence for Z1 holds by (B.5), the convergence for Z2 follows from the CLT with

Vx2 being the variance of ε2x,t. Then, we have M1a = op(1) because

φ2
n

(
1− ρ2

n

)−3/2
2ρnZ1 = op(1),

φ2
n

(
1− ρ2

n

)−1
Z2 = op(1),

φ2
nZ3 = op(1), (B.9)

which in turn holds because θn = (1 − ρn)/φn is bounded, x2
0 = op(n

1/2) by the initial condition,

and φ2
n

(
1− ρ2

n

)−1
n−1/2x2

n = op(1) by Lemma 3 of GP and the Markov inequality.

The other terms satisfy

M1b = φnOp((1− ρ2
n)−1/2) = op(1),

M1c = φnOp((1− ρ2
n)−1/2) = op(1), (B.10)

by φn = O((1 − ρn)), (B.5) and (B.6). Then we can apply the CLT for triangular array of i.i.d.

random variables to M1d and the Gaussian limit holds for M1.
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Finally, we consider the case (iii), where n(1−ρn)→ c for c ∈ [0,∞). Following Phillips (1987),

n−2
n∑
t=1

x2
t−1 = Op(1), n−1

n∑
t=1

xt−1εx,t = Op(1). (B.11)

We also have

n−1
n∑
t=1

xt−1εx,t+1 = Op(1) and n−1
n∑
t=1

xt−1εc,t+j = Op(1) (B.12)

for any j, because εx,t is i.i.d. with mean zero and it is independent of εc,t+j , following results for

a vector process, see Park and Phillips (1988). Therefore,

M1a = φ2
n

[
Op(n

3/2)−O(n1/2)(1− ρ2
n)−1

]
= op(1),

M1b = φnOp(n
1/2) = op(1) and M1c = φnOp(n

1/2) = op(1), (B.13)

because φn = O(n−1). As in case (ii), we can apply the CLT to M1d to obtain the Gaussian limit

for M1.

Next, we consider multiplying the first difference ∆ct+1−ρ∆ct in (B.1) by ∆ct = φnxt−1+σcεc,t.

We obtain

M2,t ≡ ∆ct (∆ct+1 − ρ∆ct) = M2a,t +M2b,t +M2c,t +M2d,t + µ2, (B.14)

where

µ2 ≡ E [∆ct (∆ct+1 − ρ∆ct)] = φ2
n(ρn − ρ)E[x2

t−1]− ρσ2
c ,

M2a,t ≡ φ2
n(ρn − ρ)(x2

t−1 − E[x2
t−1]),

M2b,t ≡ φn(ρn − ρ)σcxt−1εc,t,

M2c,t ≡ φnxt−1 (φnεx,t + σcεc,t+1 − ρσcεc,t) ,

M2d,t ≡ σcεc,t (φnεx,t + σcεc,t+1 − ρσcεc,t) . (B.15)

As above, we consider three cases. In case (i) where ρ is bounded away from 1, we can apply the

CLT directly. In case (ii),

M2a = n−1/2
n∑
t=1

M2a,t = φ2
n(ρn − ρ)n−1/2

n∑
t=1

(
x2
t−1 − E[x2

t−1]
)

= op(1) (B.16)

following the same arguments for M1a. Similarly, we can show that M2b and M2c, defined similarly

to M1b and M1c respectively, are both op(1) following the arguments for M1b and M1c. Finally, the

CLT always applies to M2d, the counterpart of M1d. In case (iii), same arguments for M1a give

M2a = φ2
n

[
Op(n

3/2)−O(n1/2)(1− ρ2
n)−1

]
= op(1). (B.17)
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Arguments for M1b, M1c and M1d can be used to show the same results hold for their counterparts

M2b, M2c and M2d respectively.

Finally, the asset pricing moment condition always has a Gaussian limit because it is a location

model with an i.i.d. error.

C Additional Materials for the Empirical Application

First, we start with a discussion on the importance of studying the robust evaluation of time-

varying disaster risk models. After that, we verify the baseline moment conditions since they do

not depend on the model solution. Then, we solve the model and derive the equilibrium relations.

Lastly, we verify the asset pricing moment conditions.

Motivation. The time-varying disaster risk model has been one of the most influential frame-

works in the literature. For instance, the time-varying disaster risk mechanism has been used

to explain important empirical patterns in macroeconomic quantities (e.g., Gourio, 2012, 2013),

exchange rates and international capital flows (e.g., Gourio, Siemer, and Verdelhan, 2013; Martin,

2013; Farhi and Gabaix, 2015; Dou and Verdelhan, 2017; Lewis and Liu, 2017), global imbalances

(e.g., Gourinchas, Rey, and Govillot, 2017), volatile unemployment flows (e.g., Kilic and Wachter,

2018; Petrosky-Nadeau, Zhang, and Kuehn, 2018), prices of derivatives (e.g., Gabaix, 2012; Farhi

and Gabaix, 2015; Seo and Wachter, 2018, 2019), credit spreads (e.g., Gourio, 2013), and term

structure of return volatility and risk premia (e.g., Hasler and Marfè, 2016). Tsai and Wachter

(2015) and Welch (2016) provide lucid summaries of (time-varying) disaster risk mechanisms.

The feature of information imbalance is ubiquitous in macro asset pricing structural models,

especially in time-varying rare-disaster risk models (e.g., Chen, Dou, and Kogan, 2021). However,

the literature lacks a robust and efficient way to statistically evaluate these influential models or

reliably quantify model uncertainty embedded in these potentially fragile structural models. Using

this full-fledged example of the time-varying disaster risk mechanism, we show how to use the real

data, the structural asset pricing model, and our robust specification test procedure to construct

joint uncertainty sets of average return and volatility for the optimal robust portfolio problem.

Besides robust portfolio problems, data-driven model uncertainty sets are crucial for robustness

analysis of structural economic models in other dimensions (e.g., Hansen and Sargent, 2001, 2008,

2020; Cagetti, Hansen, Sargent, and Williams, 2002; Hansen, 2014; Bidder and Dew-Becker, 2016).

In particular, model uncertainty is intrinsic to climate change and thus is an essential element in

climate economics (e.g., Brock and Hansen, 2019; Barnett, Brock, and Hansen, 2020; Diebold and

Rudebusch, 2021). In practice, constructing statistically valid uncertainty sets of structural models

is also useful for formal econometric analysis accounting for model misspecifications (e.g., Andrews,

Gentzkow, and Shapiro, 2017; Cheng, Liao, and Shi, 2019; Bonhomme and Weidner, 2020; Arm-
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strong and Kolesar, 2021). Robust inference methods with various identification problems recently

also are considered by Chen, Christensen, and Tamer (2018), Chen and Santos (2018), Andrews

and Guggenberger (2019), Andrews, Marmer, and Yu (2019), Han and McCloskey (2019), Mor-

eira and Moreira (2019), Cox (2020), Evdokimov and Zeleneev (2020), Kaji (2021), Montiel Olea

(2020), among others. Hansen, Lunde, and Nason (2011) provide a model confidence set for the

selection of forecasting models.

Although we focus on a real-data application on structural asset pricing models in the paper,

we emphasize that the proposed conditional specification test can also be applied to the setting

of linear asset pricing models studied by Kan and Zhang (1999), Kleibergen (2009), Beaulieu,

Dufour, and Khalaf (2013), Beaulieu, Dufour, and Khalaf (2020), Gospodinov, Kan, and Robotti

(2014), Burnside (2015); Kleibergen and Zhan (2015), Kleibergen and Zhan (2020), Anatolyev and

Mikusheva (2020), Antoine, Proulx, and Renault (2020), Laurinaityte, Meinerding, Schlag, and

Thimme (2020), and Manresa, Penaranda, and Sentana (2020).1 Recently, as a complementary

contribution, a growing body of literature has started to apply machine learning techniques to

evaluate linear asset pricing models (e.g., Kelly, Pruitt, and Su, 2019; Feng, Giglio, and Xiu, 2020;

Giglio and Xiu, 2020).

Verifying the Baseline Moment Conditions. We now verify the baseline moment conditions.

The first moment condition is:

E [(∆ct − gc) + pµ1(α)] = E [σcεc,t+1 − ζt+1] + pµ1(α)

= −E [xt+1(v + Jt+1)] + pµ1(α)

= −E [pt]µ1(α) + pµ1(α) = 0. (C.1)

The second moment condition can be derived similarly. The third moment condition can also be

easily verified as follows:

E
[
(∆ct − gc)2 − σ2

c − pµ2(α)
]

= E
[
(σcεc,t+1 − ζt+1)2 − σ2

c − pµ2(α)
]

= E
[
σ2
cε

2
c,t+1 + xt+1(v + Jt+1)2

]
− σ2

c − pµ2(α)

= E [pt]µ2(α)− pµ2(α) = 0. (C.2)

1Instead of focusing on the test statistic itself, Lewellen, Nagel, and Shanken (2010), Daniel and Titman (2012),
Ahn, Conrad, and Dittmar (2009), and Nagel and Singleton (2011) emphasize and propose new methods for con-
structing informative test assets to increase the power of testing linear factor models.
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The fourth moment condition can be verified in the same way. The fifth moment condition is

verified below.

E [∆ct−1 [∆ct+1 − ρ∆ct + (1− ρ)(pµ1(α)− gc)]]

= E [∆ct−1 [(σcεc,t+1 − ζt+1)− ρ(σcεc,t − ζt) + (1− ρ)pµ1(α)]] . (C.3)

The law of iterated expectation further leads to

E [∆ct−1 [(σcεc,t+1 − ζt+1)− ρ(σcεc,t − ζt) + (1− ρ)pµ1(α)]]

= −E [∆ct−1Et−1 [ζt+1 − ρζt − (1− ρ)pµ1(α)]]

= −E [∆ct−1Et−1 [xt+1(v + Jt+1)− ρxt(v + Jt)− (1− ρ)pµ1(α)]] . (C.4)

Applying again the law of iterated expectation leads to

E [∆ct−1Et−1 [xt+1(v + Jt+1)− ρxt(v + Jt)− (1− ρ)pµ1(α)]]

= E [∆ct−1Et−1 [Et [xt+1(v + Jt+1)]− ρpt−1µ1(α)− (1− ρ)pµ1(α)]]

= E [∆ct−1Et−1 [pt − ρpt−1 − (1− ρ)p]]µ1(α)

= E [∆ct−1Et−1 [σppεp,t]]µ1(α) = 0. (C.5)

The sixth moment condition can be verified in the same way.

Model Solution. We next derive the equilibrium of the model. Because the EIS coefficient is

one, the first-order condition of optimal consumption leads to Ct = (1 − δ)Wt. Because of the

homotheticity of the preference, it is natural to conjecture that

Vt = I(pt)Ct, (C.6)

where I(pt) is a deterministic function of pt, capturing the marginal value of net worth. The

specification of the dynamics is consistent with the exponential-affine models, and thus, we further

conjecture that

I(pt) = eI0+I1pt , (C.7)

with constants I0 and I1 to be determined by the equilibrium conditions.

The constants I0 and I1 can be solved by plugging (C.6) and (C.7) into the recursive value

function relation. Specifically, it holds that

I0 + I1pt + lnCt = (1− δ) lnCt + (1− γ)−1δ lnEt
[
e(1−γ)(I0+I1pt+1)C1−γ

t+1

]
. (C.8)
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The relation above can be rewritten as

I0 + I1pt = δ [I0 + I1(1− ρ)p+ I1ρpt + gc] +
1

2
δ(1− γ)

(
I2

1σ
2
pp

2 + σ2
c

)
+ (1− γ)−1δ

[
1{pt≥0}pt`(α, γ − 1)− 1{pt<0}pt`(α, 1− γ)

]
, (C.9)

with `(α, x) ≡ exv α
α− x − 1.

Because 1{pt<0}pt ≈ 0 under the relevant calibrations, we can rewrite (C.9) as

I0 + I1pt ≈ δ [I0 + I1(1− ρ)p+ I1ρpt + gc] +
1

2
δ(1− γ)

(
I2

1σ
2
pp

2 + σ2
c

)
+ (1− γ)−1δ1{pt≥0}pt`(α, γ − 1). (C.10)

By matching the constant term and pt term, we obtain that

I1 ≈ δI1ρ+ (1− γ)−1δ`(α, γ − 1) (C.11)

I0 ≈ δI0 + δI1(1− ρ)p+ δgc +
1

2
δ(1− γ)

(
I2

1σ
2
pp

2 + σ2
c

)
. (C.12)

Equation (C.11) has one root, which is the solution for I1 in equilibrium:

I1 =
`(α, γ − 1)

(1− γ)(δ−1 − ρ)
. (C.13)

Thus, after plugging (C.13) into (C.12), we can obtain the solution for I0 in equilibrium:

I0 =
δ

1− δ

[
I1(1− ρ)p+ gc +

1

2
(1− γ)(I2

1σ
2
pp

2 + σ2
c )

]
. (C.14)

The equilibrium stochastic discount factor (SDF) is

Mt+1 = δ

(
Ct+1

Ct

)−1 V 1−γ
t+1

Et
[
V 1−γ
t+1

] . (C.15)

Thus, by combining (C.6), (C.7), (C.13), and (C.14), the SDF expression in (C.15) can be rewritten

as follows:

Mt+1 = δ

(
Ct+1

Ct

)−γ e(1−γ)(I0+I1pt+1)

Et
[
e(1−γ)(I0+I1pt+1)(Ct+1/Ct)1−γ

]
= δ

(
Ct+1

Ct

)−γ e(1−γ)[I0+I1(1−ρ)p+I1ρpt+I1σppεp,t+1]

Et
[
e(1−γ)(I0+I1pt+1)(Ct+1/Ct)1−γ

] . (C.16)
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Here, the expected value function with power 1− γ can be computed as follows:

Et
[
e(1−γ)(I0+I1pt+1)(Ct+1/Ct)

1−γ
]

= Et
[
e(1−γ)(I0+I1(1−ρ)p+I1ρpt+I1σppεp,t+1+gc+σcεc,t+1−ζt+1)

]
= e(1−γ)(I0+I1(1−ρ)p+I1ρpt+gc)+

1
2

(1−γ)2(I21σ
2
pp

2+σ2
c )Et

[
e−(1−γ)ζt+1

]
= e(1−γ)(I0+I1(1−ρ)p+I1ρpt+gc)+

1
2

(1−γ)2(I21σ
2
pp

2+σ2
c ) [1 + pt`(α, γ − 1)] . (C.17)

After plugging in the equilibrium value function and rearranging the terms, we get the log SDF,

denoted by mt+1 ≡ lnMt+1 as follows:

mt+1 = ln δ − γ(gc + σcεc,t+1 − ζt+1) + (1− γ)I1σppεp,t+1

− (1− γ)gc −
1

2
(1− γ)2(I2

1σ
2
pp

2 + σ2
c )− pt`(α, γ − 1). (C.18)

Re-arranging terms leads to

mt+1 = Γ0 + Γ1pt − λcσcεc,t+1 − λpσppεp,t+1 + λζζt+1, (C.19)

where the predictive coefficients are

Γ0 = ln δ − gc −
1

2
(1− γ)2

(
I2

1σ
2
pp

2 + σ2
c

)
Γ1 = −`(α, γ − 1), (C.20)

and the loading coefficients are

λc = γ, λp = (γ − 1)I1, and λζ = γ. (C.21)

The log risk-free rate, denoted by rf,t = − lnEt [Mt+1], is

rf,t = − lnEt [emt+1 ]

= −Γ0 −
1

2

(
λ2
cσ

2
c + λ2

pσ
2
pp

2
)
− [Γ1 + `(α, λζ)] pt

= − ln δ + gc −
1

2
(2γ − 1)σ2

c − [`(α, γ)− `(α, γ − 1)] pt. (C.22)

Using the Campbell-Shiller decomposition and log-linearization approximation, we can repre-

sent the log return in terms of log price-dividend ratio and log dividend growth:

rm,t+1 = κm,0 + κm,1zm,t+1 + ∆dt+1 − zm,t, (C.23)
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where

κm,0 = ln(1 + ezm)− κm,1zm (C.24)

and

κm,1 =
ezm

1 + ezm
(C.25)

and zm is long-run mean of market log price-dividend ratio.

Using the log-linearization approximation, we search the equilibrium characterized by

zm,t = Am,0 +Am,1pt, (C.26)

where the constants Am,0 and Am,1 can be computed recursively as follows.

Define the period-t price of the dividend strip paid at the period t + n as H(Dt, pt, n) =

Et [Mt,t+nDt+n] where Mt,t+n ≡ e
∑n
i=1mt+i . The price function H(Dt, pt, n) satisfies the following

recursive relations:

H(Dt, pt, n) = Et [emt+1H(Dt+1, pt+1, n− 1)] (C.27)

H(Dt, pt, 0) = Dt, (C.28)

for arbitrary t and n ≥ 1.

We conjecture that H(Dt, pt, n) = Dte
An+Bnpt . Then, the recursive relations in (C.27) and

(C.28) can be rewritten as follows:

eAn+Bnpt = Et
[
e∆dt+1+mt+1+An−1+Bn−1pt+1

]
= Et

[
e(gd+φσcεc,t+1−φζt+1)+(Γ0+Γ1pt−λcσcεc,t+1−λpσppεp,t+1+λζζt+1)+(An−1+Bn−1pt+1)

]
= eÃn+B̃nptEt

[
e(φ−λc)σcεc,t+1+(Bn−1−λp)σppεp,t+1+(λζ−φ)ζt+1

]
= eÃn+B̃npt+

1
2

(φ−γ)2σ2
c+ 1

2
[Bn−1−(γ−1)I1]2σ2

pp
2
Et
[
e(γ−φ)ζt+1

]
, (C.29)

where Ãn = gd + Γ0 +An−1 +Bn−1(1− ρ)p, and B̃n = Γ1 +Bn−1ρ.

The moment generating function of ζt+1 gives

lnEt
[
e(γ−φ)ζt+1

]
≈ pt`(α, γ − φ). (C.30)
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Thus, An has the following recursive relation:

An = Ãn +
1

2
(φ− γ)2σ2

c +
1

2
[Bn−1 − (γ − 1)I1]2 σ2

pp
2

= gd + Γ0 +An−1 +Bn−1(1− ρ)p+
1

2
(φ− γ)2σ2

c +
1

2
[Bn−1 − (γ − 1)I1]2 σ2

pp
2

= ln δ + (gd − gc)−
1

2
(1− γ)2

(
I2

1σ
2
pp

2 + σ2
c

)
+

1

2
(φ− γ)2σ2

c

+An−1 +Bn−1(1− ρ)p+
1

2
[Bn−1 − (γ − 1)I1]2 σ2

pp
2, (C.31)

and Bn has the following recursive relation:

Bn = B̃n + `(α, γ − φ)

= ρBn−1 + `(α, γ − φ)− `(α, γ − 1), (C.32)

with initial values A0 = B0 = 0.

Therefore, it holds that

Bn =
1− ρn

1− ρ
[`(α, γ − φ)− `(α, γ − 1)] . (C.33)

Because σ2
pp ≈ 0, equation (C.35) can be rewritten as

An −An−1 ≈ ln δ + (gd − gc) +
1

2
(φ− 1)(φ+ 1− 2γ)σ2

c

+ (1− ρn) [`(α, γ − φ)− `(α, γ − 1)] p. (C.34)

Thus, it holds that

An = n ln δ̄ − 1− ρn

1− ρ
[`(α, γ − φ)− `(α, γ − 1)] p, (C.35)

where δ̄ is referred to as the effective time preference coefficient (Barro, 2009), and the log of the

effective time preference coefficient is equal to

ln δ̄ ≡ ln δ + (gd − gc) +
1

2
(φ− 1)(φ+ 1− 2γ)σ2

c + [`(α, γ − φ)− `(α, γ − 1)] p. (C.36)

Therefore, the log price-dividend ratio is

zm,t = ln

[
+∞∑
n=1

eAn+Bnpt

]
. (C.37)
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According to Taylor expansion in terms of pt around p, it follows that

Am,0 = ln

[
+∞∑
n=1

eAn+Bnp

]
−Am,1p and Am,1 =

∑+∞
n=1Bne

An+Bnp∑+∞
n=1 e

An+Bnp
. (C.38)

And thus, it holds that

Am,1 =
1

1− ρ
[`(α, γ − φ)− `(α, γ − 1)]−

∑+∞
n=1 e

n(ln δ̄+ln ρ)∑+∞
n=1 e

n ln δ̄

1

1− ρ
[`(α, γ − φ)− `(α, γ − 1)]

=

[
1

1− ρ
− ρ

1− ρ
1− δ̄
1− ρδ̄

]
[`(α, γ − φ)− `(α, γ − 1)]

=
1− ρδ̄ − ρ(1− δ̄)
(1− ρ)(1− ρδ̄)

[`(α, γ − φ)− `(α, γ − 1)]

=
1− ρ

(1− ρ)(1− ρδ̄)
[`(α, γ − φ)− `(α, γ − 1)]

=
1

1− ρδ̄
[`(α, γ − φ)− `(α, γ − 1)] . (C.39)

In principle, the persistence parameter ρ can be infinitely close to 1, and thus, we require the

effective time preference coefficient to be less than one (i.e., δ̄ < 1).

According to (C.33) and (C.35), it follows that

Am,0 = ln

[ ∞∑
n=1

en ln δ̄

]
−Am,1p

= ln

[
δ̄

1− δ̄

]
−Am,1p, (C.40)

and the long-run average log price-dividend ratio is

zm = Am,0 +Am,1p = ln

[
δ̄

1− δ̄

]
. (C.41)

Plugging back into (C.25), we obtain that

κm,1 = δ̄ = δe(gd−gc)+ 1
2

(φ−1)(φ+1−2γ)σ2
c+[`(α,γ−φ)−`(α,γ−1)]p. (C.42)

Because σ2
c ≈ 0 and p ≈ 0, the following approximation works well for relevant parameter regions:

κm,1 = δ̄ ≈ δe(gd−gc). (C.43)

16



According to (C.23) and (C.26), the log market return can be rewritten as

rm,t+1 − Et [rm,t+1] = βcσcεc,t+1 + βpσppεp,t+1 − βζ [ζt+1 − ptµ1(α)] , (C.44)

where βc = φ, βp = κm,1Am,1, and βζ = φ. The Euler equation for the log market return is

1 = Et
[
erm,t+1+mt+1

]
, (C.45)

which leads to

Et [emt+1 ] = Et
[
erm,t+1−rf,t+mt+1

]
. (C.46)

It further leads to

eEt[mt+1]+ 1
2 [γ2σ2

c+λ2pσ
2
pp

2]−γptµ1(α)Et
[
eγζt+1

]
= eEt[mt+1]+Et[rm,t+1]−rf,t+ 1

2 [(φ−γ)2σ2
c+(βp−λp)2σ2

pp
2]−(γ−φ)ptµ1(α)Et

[
e(γ−φ)ζt+1

]
. (C.47)

Finally, rearranging terms leads to

Et [rm,t+1]− rf,t = φγσ2
c + βpλpσ

2
pp

2 + [`(α, γ)− `(α, γ − φ)− φµ1(α)] pt −
1

2

(
φ2σ2

c + β2
pσ

2
pp

2
)
.

Now, we derive the yield of the defaultable government bond, denoted by yb,t, and we express

the log government bond return as follows:

rb,t+1 = yb,t − xb,t+1(v + Jt+1). (C.48)

A default on the government bond occurs with probability q conditional on the occurrence of a

disaster. Thus, by definition, it holds that

Et [rb,t+1] = yb,t − ptqµ1(α). (C.49)

According to the Euler equation of the defaultable government bond and the risk-free bond, it

holds that

Et
[
emt+1+rb,t+1−rf,t

]
= Et [emt+1 ] . (C.50)
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Some calculations show that the following relation approximately holds:

lnEt
[
emt+1+rb,t+1−rf,t

]
= Γ0 + Γ1pt + yb,t − rf,t +

1

2
γ2σ2

c +
1

2
λ2
pσ

2
pp

2 + lnEt
[
eγxt+1vt+1−xb,t+1vt+1

]
= Γ0 + Γ1pt + yb,t − rf,t +

1

2
γ2σ2

c +
1

2
λ2
pσ

2
pp

2 + [(1− q)`(α, γ) + q`(α, γ − 1)] pt. (C.51)

Combining (C.22), (C.50), and (C.51), it follows that

yb,t − rf,t = q [`(α, γ)− `(α, γ − 1)] pt. (C.52)

Further, putting (C.49) and (C.52) together, we obtain the following relation:

Et [rb,t+1]− rf,t = q [`(α, γ)− `(α, γ − 1)− µ1(α)] pt. (C.53)

Therefore, the conditional mean of excess log returns of the market portfolio relative to the de-

faultable government bill is

Et [rm,t+1 − rb,t+1] = φγσ2
c + βpλpσ

2
pp

2 + [`(α, γ)− `(α, γ − φ)− φµ1(α)] pt (C.54)

− 1

2

(
φ2σ2

c + β2
pσ

2
pp

2
)
− q [`(α, γ)− `(α, γ − 1)− µ1(α)] pt,

and the conditional variance of excess returns of the market portfolio relative to the defaultable

government bill is

Vart [rm,t+1 − rb,t+1] = Vart [φσcεc,t+1 + βpσppεp,t+1 − (φxt+1 − xb,t+1)(v + Jt+1)]

= φ2σ2
c + β2

pσ
2
pp

2 +
(
φ2 − 2φq + q

)
ptµ2(α)− (φ− q)2p2

tµ1(α)2. (C.55)

Verifying the Asset Pricing Moment Conditions. Lastly, we verify the asset pricing mo-

ment conditions. The first moment condition is the expected log return of defaultable government

bills:

E [rb,t]− ω1(ϑ) = (E [rb,t]− rf,t−1) + rf,t−1 − ω1(ϑ). (C.56)
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Plugging (C.22) and (C.53) into the equation above, it follows that

E [rb,t]− ω1(ϑ) = q [`(α, γ)− `(α, γ − 1)− µ1(α)]E [pt−1]

− ln δ + gc −
1

2
(2γ − 1)σ2

c − [`(α, γ)− `(α, γ − 1)]E [pt−1]− ω1(ϑ)

= − ln δ + gc −
1

2
(2γ − 1)σ2

c − (1− q)p [`(α, γ)− `(α, γ − 1)]− qpµ1(α)− ω1(ϑ)

= − ln δ + gc −
1

2
(2γ − 1)σ2

c − qpµ1(α)− (1− q)h1(ϑ)
p

α− γ
− ω1(ϑ)

= 0, (C.57)

where h1(ϑ) ≡ α
[
evγ − ev(γ−1) α− γ

α− γ + 1

]
.

The second asset pricing moment condition is the unconditional variance of the log government

bill return:

E [rb,t − ω1(ϑ)]2 − ω2(ϑ) = Var [Et−1(rb,t)] + E [Vart−1(rb,t)]− ω2(ϑ) (C.58)

Plugging in the equilibrium expressions for Var [Et−1(rb,t)] and E [Vart−1(rb,t)], the equation above

can further lead to

E [rb,t − ω1(ϑ)]2 − ω2(ϑ)

= [(1− q)(`(α, γ)− `(α, γ − 1)) + qµ1(α)]2
σ2
pp

2

1− ρ2

+ qpµ2(α)− q2p2µ1(α)2

(
1 +

σ2
p

1− ρ2

)
− ω2(ϑ). (C.59)

According to the definition of the function ω2(ϑ) and the equation above, it follows that

E [rb,t − ω1(ϑ)]2 − ω2(ϑ) = 0. (C.60)

The third asset pricing moment condition is the unconditional mean of the excess log market

return relative to the defaultable government bills. The excess log market return is

rem,t = Et−1

[
rem,t

]
+ φσcεc,t + βpσp

√
pεp,t (C.61)

− φ [xt(v + Jt)− pt−1µ1(α)] + [xb,t(v + Jt)− qpt−1µ1(α)] ,
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with the conditional expected excess log market return to be

Et−1

[
rem,t

]
= φγσ2

c + βpλpσ
2
pp

2 + [`(α, γ)− `(α, γ − φ)− φµ1(α)] pt−1

− 1

2

(
φ2σ2

c + β2
pσ

2
pp

2
)
− q [`(α, γ)− `(α, γ − 1)− µ1(α)] pt−1. (C.62)

Therefore, the unconditional mean of excess log market returns is

E
[
rem,t

]
= h0(ϑ) + h3(ϑ)

p

α− γ
, (C.63)

where h0(ϑ) = φγσ2
c + βpλpσ

2
pp

2 − 1

2

(
φ2σ2

c + β2
pσ

2
pp

2
)
,

h3(ϑ) = α

[
(1− q)evγ − ev(γ−φ) α− γ

α− γ + φ
+ qev(γ−1) α− γ

α− γ + 1

]
− (α− γ)(φ− q)µ1(α).

The fourth asset pricing moment condition is the unconditional variance of the excess log

market return relative to the defaultable government bills. The unconditional variance has the

following decomposition:

Var
[
rem,t+1

]
= E

[
Vart(rem,t+1)

]
+ Var

[
Et
(
rem,t+1

)]
. (C.64)

The unconditional mean of the conditional variance is

E
[
Vart

(
rem,t+1

)]
= E

[
φ2σ2

c + β2
pσ

2
pp

2 + pt(q − 2φq + φ2)µ2(α)− p2
t (q − φ)2µ1(α)2

]
(C.65)

= φ2σ2
c + β2

pσ
2
pp

2 + (q − 2φq + φ2)µ2(α)p− (q − φ)2µ1(α)2

(
σ2
pp

2

1− ρ2
+ p2

)
.

The unconditional variance of the conditional mean is

Var
[
Et
(
rem,t+1

)]
= Var [((1− q)`(α, γ)− `(α, γ − φ) + q`(α, γ − 1)− (φ− q)µ1(α)) pt]

= [(1− q)`(α, γ)− `(α, γ − φ) + q`(α, γ − 1)− (φ− q)µ1(α)]2
σ2
pp

2

1− ρ2

= h3(ϑ)2 1

(α− γ)2

σ2
pp

2

1− ρ2
. (C.66)

The sixth asset pricing moment condition can be derived as follows, and the fifth asset pricing

moment can be derived similarly. The excess log market return in period t+ 1 is

rem,t+1 = h0(ϑ) + h3(ϑ)
pt

α− γ
+ et+1, (C.67)

where et+1 is a random variable such that Et [et+1] = 0. Thus, the excess log market return in
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period t+ 1 can further expressed in terms of pt−1:

rem,t+1 = h0(ϑ) + h3(ϑ)(α− γ)−1 [(1− ρ)p+ ρpt−1 + σppεp,t] + et+1

= h0(ϑ) + h3(ϑ)
p

α− γ
+ h3(ϑ)(α− γ)−1ρ(pt−1 − p) + ẽt, (C.68)

where Et−1 [ẽt] = 0 with ẽt ≡ h3(ϑ)(α− γ)σppεp,t + et+1.

The log price-dividend ratio is

zm,t − zm =
1

1− ρδ
h2(ϑ)(pt − p). (C.69)

Plugging (C.69) into (C.68), it follows that

rem,t+1 = ω3(ϑ) +
ρ(1− ρδ)
α− γ

h2(ϑ)−1h3(ϑ)(zm,t−1 − zm) + ẽt. (C.70)

Therefore, according to the definition of ω6(ϑ) and the equation above, the asset pricing moment

condition follows,

Et−1

[
rem,t+1 − ω6(ϑ)(zm,t−1 − zm)− ω3(ϑ)

]
= 0. (C.71)

D Robustness Check for the Simulation Result

In Figure 1 of the main text, for each model, the true value of θ and its parameter space are

both calibrated based on the asset pricing moment condition, which links the equity premium to

the structural parameter θ. Specifically, the true value of θ is calibrated to match an annual equity

premium of 6% and the bounds of the parameter spaces are calibrated to match 3% and 9%. Here

we report a figure similar to Figure 1 of the main text, but the parameter spaces for both models

are calibrate to match equity premium between 2% and 10%, as robustness checks. Compared to

Figure 1 of the main text, this additional figure demonstrates similar patterns. For each test, the

level of the local power does slightly vary with the parameter space because the baseline moments

are nearly flat.
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Figure 1: Parameter space calibrated with equity premium between 2% and 10%
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