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Semiparametric estimation of the canonical
permanent-transitory model of earnings dynamics
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This paper presents identification and estimation results for a flexible state space
model. Our modification of the canonical model allows the permanent com-
ponent to follow a unit root process and the transitory component to follow a
semiparametric model of a higher-order autoregressive-moving-average (ARMA)
process. Using panel data of observed earnings, we establish identification of
the nonparametric joint distributions for each of the permanent and transitory
components over time. We apply the identification and estimation method to
the earnings dynamics of U.S. men using the Panel Survey of Income Dynamics
(PSID). The results show that the marginal distributions of permanent and transi-
tory earnings components are more dispersed, more skewed, and have fatter tails
than the normal and that earnings mobility is much lower than for the normal. We
also find strong evidence for the existence of higher-order ARMA processes in the
transitory component, which lead to much different estimates of the distributions
of and earnings mobility in the permanent component, implying that misspecifi-
cation of the process for transitory earnings can affect estimated distributions of
the permanent component and estimated earnings dynamics of that component.
Thus our flexible model implies earnings dynamics for U.S. men different from
much of the prior literature.

KeyworbDs. Earnings dynamics, semiparametric estimation, state space model.
JEL crassiFicaTION. C14, C23,]30.

1. INTRODUCTION

Methods of estimating models with panel data have a long history. Those methods were
first developed in the 1950s and 1960s for panel data sets of firms and of state aggregates
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for consumption (see Nerlove (2002) for a recounting of this period of development and
for the key historical references). What we term the “canonical” model was developed
in that period, consisting of a permanent component and a transitory component, dis-
tributed independently of each other. In some variants, the transitory component was
assumed to follow a simple low-order ARMA process. Because of its simplicity, its intu-
ition, and its alignment with economic theories which have permanent and transitory
processes, the model has been enormously influential and has found applications in
dozens of areas. Models of earnings dynamics, consumption dynamics, dynamics for
firms or industries, and dynamics for individual health, student academic achievement,
and other individual outcomes are just a few examples of applications.

This paper considers the identification and estimation of the canonical model under
nonparametric assumptions on the unobservables. While the literature on panel data
models since their development is enormous, most papers have generalized the model
with additional parametric features (random walks, random growth terms, higher-order
ARMAs, and other stochastic processes) and most have concerned themselves with fit-
ting the parameters of the model only to the second moments of the data, and hence
fitting only the second moments of the unobservables. Our goals are to determine un-
der what assumptions the full distribution of the unobservables in the model can be
nonparametrically identified, to provide an estimator for the relevant distributions, and
to provide an empirical application.

We first establish identification for our model, which is a somewhat modified version
of the canonical model in several respects. For example, we allow a slightly generalized
version of the common MA process, allowing it to be nonlinear; we allow the AR pro-
cess to be nonstationary and to change with age; and we do not assume the shocks
in each period to be i.i.d. We prove identification of the model by showing that the
key unobserved elements have repeated measurements with classical measurement er-
rors. We can, therefore, make use of the Kotlarski’s identity (Kotlarski (1967), Rao (1992),
Li and Vuong (1998), Li (2002), Schennach (2004), Bonhomme and Robin (2010), and
Evdokimov (2010)) to provide closed-form identification of the distribution of the un-
observables. In the identification of the generalized MA process, we rely on a recently
developed result for nonlinear measurement error models (Schennach and Hu (2013)).
We also provide an estimator based on deconvolution methods, which is similar to the
existing estimators developed for this closed-form identification results (Li and Vuong
(1998)). An advantage of this closed-form estimator is that it requires many fewer nui-
sance parameters than alternative semiparametric estimators.

Prior work on nonparametric identification and estimation of the canonical model
and expanded versions of it include Horowitz and Markatou (1996) and Bonhomme and
Robin (2010). Our paper differs from those by its approach. While the existing identi-
fication results for dynamic models with latent variables rely on a Markovian property
of the dynamic structure, our paper complements the existing literature by showing the
identification of a semiparametric unit-root process of a permanent state variable and a
semiparametric non-Markovian process of a transitory state variable. In particular, the
transitory state variable is generated by an ARMA process and does not follow a finite-
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order Markov process.! Nonparametric approaches applied to earnings dynamics mod-
els have also been developed by Geweke and Keane (2000), who allow some of the unob-
servables to be a mixture of normals, and by Arellano, Blundell, and Bonhomme (2017),
who replace the unit root process on the permanent component with a nonparametric
autoregressive function while maintaining an independence assumption for the transi-
tory error. Our model keeps the unit root process and allow the transitory shocks to fol-
low a semiparametric ARMA process as in the canonical models. As mentioned above,
such a process of the transitory state is not Markovian and, therefore, can capture differ-
ent dynamic structures. As for methodology, Arellano, Blundell, and Bonhomme (2017)
use the results in Hu and Schennach (2008) for a general nonlinear nonclassical mea-
surement error model with three observables. Our paper uses the Kotlarski’s identity
(Kotlarski (1967), Rao (1992), Li and Vuong (1998), Li (2002), Schennach (2004), Bon-
homme and Robin (2010), and Evdokimov (2010)) and the results in Schennach and Hu
(2013) for a nonlinear model with classical measurement errors when only two observ-
ables are available.

We also provide an application to the earnings dynamics of U.S. men using the Panel
Study on Income Dynamics (PSID), the data set most commonly used in the litera-
ture on estimating models of individual earnings dynamics. There is a very large liter-
ature on applications to earnings dynamics models, going back to early work by Hause
(1980), Lillard and Willis (1978), MaCurdy (1982), and Abowd and Card (1989), followed
by many contributions including those by Horowitz and Markatou (1996), Baker (1997),
Meghir and Pistaferri (2004), Blundell, Pistaferri, and Preston (2008), Guvenen (2009),
Bonhomme and Robin (2010), Browning, Ejrnaes, and Alvarez (2010), Hryshko (2012),
Jensen and Shore (2015), Moffitt and Gottschalk (2014), Arellano, Blundell, and Bon-
homme (2017), and Botosaru and Sasaki (2018). A review of this literature, including
studies which have allowed the dynamic processes to shift with calendar time, can be
found in Moffitt and Zhang (2018).

Our results show that the marginal distributions of log earnings of U.S. men are non-
normal, with significant skewness and fatter tails of both the permanent and transitory
components of earnings than the normal. We also find earnings dynamics very differ-
ent than the normal, for our results show that the likelihood of remaining in a lower
tail of the permanent earnings distribution does not fall over time as much, suggest-
ing considerably less earnings mobility than would be found with a multivariate nor-
mality assumption. Another important finding from our empirical analysis is that the
estimates of the marginal distributions as well of persistence and dynamics of perma-
nent earnings are very sensitive to the degree of persistence in the transitory compo-
nent. We find evidence for the existence of higher-order ARMA processes in the transi-
tory component and that, with such higher-order processes, the permanent component
of earnings has much less variability in marginal distributions and less mobility over
time. Thus the transitory component makes a much stronger relative contribution to the
marginal earnings distributions and to earnings mobility than in much of the prior liter-
ature, which often allows much less persistence in the transitory component. Finally, we

!n fact, the AR process is a higher-order Markov process, but the MA process is not a finite-order Markov.
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consider earnings dynamics in subsamples of men with strong labor force attachment
and of married men (both subsamples have been studied in the literature), finding both
subsamples to have lower variances of permanent and transitory shocks than for the full
population but also more earnings mobility than that population.

The rest of the paper is organized as follows. Section 2 introduces a generalized semi-
parametric canonical model of earnings dynamics. Section 3 presents an informal illus-
tration of the identification strategy. Section 4 presents the formal identification results.
Section 5 proposes estimators. Section 6 presents the empirical application. Section 7
concludes. Mathematical proofs, large sample properties, and additional empirical re-
sults are found in the Appendix that is located within the Replication File in the Online
Supplemental Material (Hu, Moffitt, and Sasaki (2019)).

2. THE SEMIPARAMETRIC STATE SPACE MODEL

We consider the following setup of a semiparametric state space model. The measure-
ment Y, in time ¢ is decomposed into two independent components:

Yi=U+ Vi 2.1
The first one, U; is the permanent state which follows the unit root process:
U=U;i_1+mn (2.2)

with innovation 7;. The second one, V; is the transitory state which follows the
ARMA(p, g) process:

Vi=piVici+p2Viea -+ pe,pViep + Gi(er, 821, ... 81-¢)- (2.3)

For a shorthand notation, we write the vector of the AR coefficients by p; = (ps 1, ...,
pt,p)’. Note that the time effect is the source of nonstationarity in this model both
through the time-varying ARMA specifications (i.e., p; and G;) and through arbitrary
time variations in the distributions of the primitives (i.e., n; and &,). Because of the non-
parametric specification of these time-varying distributions of the primitives, the time
effect may appear in higher-order moments as well as in the first moment, for example,
as commonly introduced by additive time effects in (2.1), as is common in applications.
In contrast to much of the literature, we allow arbitrarily high-order ARMA processes
and this will be a major feature of our empirical application in Section 6.

Our first goal in this paper is the identification of the nonparametric distributions of
U, Vi, m1, and g, as well as the function G, and the AR parameters p; in this state space
model. The following example illustrates an application of this general framework to a
semiparametric model of earnings dynamics.

ExamPLE 1 (The model of earnings dynamics). One application is the model of earn-
ings dynamics, where the measurement Y; is the observed earnings at age ¢, the per-
manent state U, is the permanent component of earnings at age ¢, the innovation 7, is
the permanent shock at age ¢, and the transitory state V4 is the transitory component of
earnings at age ¢.
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3. AN ILLUSTRATION OF THE IDENTIFICATION STRATEGY

For an illustration, we focus on the model where the permanent state follows the unit
root process and the transitory state follows an ARMA(1, 1) process. The general iden-
tification results will follow in Section 4. In a random sample, we observe the joint dis-
tribution of Y; for periods r =1, 2, ..., T. While we keep the parts (2.1) and (2.2) of the
general model, the ARMA part (2.3) simplifies to

Vi=pVic1 + Gi(er, 8-1) (3.1)

in the current section. The unknown coefficient p, and the unknown function G; may
be time-varying. Furthermore, we do not require a parametric or semiparametric speci-
fication of G,. We assume the following independence condition.

AssumpTION 1. (i) The random variables v, ..., n1, Uy, €T, ..., &1, and the random vec-
tor (&g, Vo) are mutually independent, that is,

f(”fIT7 e M UO) ET, ..., &1, &0, I/O) =f(77T) o f("ll)f(UO)f(gT) o 'f(81)f(8(), I/0)

(i) (nr, ..., m, Uy, Vo) have zero means and E[G(&;, &;,1)] =0forte{1,...,T}.

This assumption implies that process {U;} is independent of process {};}. We leave
the marginal distributions of 7; and &; unspecified and allow them to vary arbitrarily
with ¢. In this setup, we are interested in identification of the nonparametric distribu-
tions of the primitives &; and 7;, the structures p; and G;, and the nonparametric distri-
butions of the components U; and V;. Our identification strategy is illustrated below in
four steps.

3.1 Step 1: Identification of fy,

Consider the first difference:
AYii=Y —Yi=WU —U)+ Vg = Vo) =1 + Vi — Ve 3.2)
This equation implies that we may replace V.1 by V;, ;41 and AY;,; as
Viei =V =m0 +AY . (3.3)
Consider the following first difference for the next time period:
AYio=Y 20— Y
= N2+ Viga = Vier = (prs2 — DVt + Graa(£r42, 141) + Misa- (3.4)

Replacing V1 by the expression in equation (3.3), we obtain

AY;0 CAY g =Vi+ Grio(&r42, €141) + Mia2

— N1 =Vi+ e (3.5)
pr+2—1 pri2—1
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With the pair of equations (2.1) and (3.5), we obtain two measurements, :2*}1 —AY;
and Y; up to an unknown scalar parameter p,,,, of the latent variable I; with classi-
cal measurement errors, U; and e, 1, satisfying the mutual independence among V;, U;
and e; 1. By Kotlarski’s identity (under regularity conditions to be formally stated as As-
sumptions 9 and 10 in Section 4 for the general setup), the distribution of V; is identified
up to the unknown scalar parameter p;,, as

fv(v) = ZL /oo f””(byt(T) dr wherei=+—-1
™ —o0
. iE [(&“l - AY:+1> exp(ism] 5.6)
Pt+2 —
= ds|.
e exp[v/o E[exp(isYy)] s]

For the current step, a well definition of the last identifying formula requires the follow-
ing nonunit root assumption for the transitory state.

AssuMPTION 2. p;# 1 forallt.

3.2 Step 2: Identification of p;

The previous step shows identification of fy, up to the unknown scalar parameter p;. We
now discuss alternative routes of identifying the AR parameter p;. Combining (3.1) and
(3.4), we obtain

AY o= (pri2— DVig1 + Gryo(eri2, 8141) + Me42

= (pr42 — D(pi41Vi + Gry1 (€141, €0)) + Grya(€142, €141) + N4 3.7
Eliminating V; with (3.5) yields

AY, AY,
2 ( 2 AY1+1)
(pr42 = Dpis1 pri2—1
_ (pr+2 — DGrp1(er11, &) + Grgo(Er42, 41) + M2
(pt+2 — Dpra
(Gt+2(st+27 E141) + Neg2 )
- — Mi+1 -
pry2—1

Notice that the last expression is independent of Y,_; = V;_1 + U,_1 under Assumption 1,
and we get the moment restriction

1—
cov((¢AYi+z - AYt+1>, Yzl) =0. (3.8)
pi+1(1—pry2)

For a better view, we rewrite it as

1—pio  cov(AYio, Y q)

= . (3.9)
prr1 COV(AY i1, Y1)
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We can see from this equation that, by imposing one restriction on the sequence
Pi+1s Pta2s - - -, We can sequentially identify these AR parameters. Examples of such a
restriction include

pi+1 = aknown constant, or
Pi+1 = Pr+2-

In the former case, one can recursively identify p; >, p;13, ... by iterating (3.9). In the
latter case, (3.9) directly yields the identifying formula

cov(AY;y2, Y1)

) (3.10)
cov(AY;i1, Y1)

Pt+1=

provided that cov(AY,,1, Y,_1) # 0 and Assumption 2. We state this restriction as an as-
sumption below.

AsSUMPTION 3. cov(AY,y1, Y1) #0and p;+1 = pryo forall t.

3.3 Step 3: Identification of fy,, fu,,...u;_, and fv,, vy,

Steps 1 and 2 identify the characteristic function ¢y, by (3.6) for t =2, ..., T — 2. Given
that U; and V; are independent, we identify the marginal distribution of U; via the de-
convolution:

b,
du, = o (3.11)
Similarly and consequently, we also identify the marginal distribution of 5, by
b, = Pu (3.12)
¢Uz—1

Notice that the independence between the permanent state U;_; and the innovation 7,
implies that

Jugu,_ (U, ue—1) = fo, (e — 1) (3.13)
holds. Therefore, the joint distribution of (U,, Us, ..., Ur_») is identified by
fU2,U3,~~~,U772 = fofz\UrfanTa\Usz: T fU3|U2fU2' (3.14)

Moreover, the independence between the process {U;} and the process {};} implies

DYy, Yr 2 =PUs,...Ur 2PV, Vs

where ¢v, .y, , is the joint characteristic function of Y5, ..., Y7_;. Therefore, the joint
distribution of the transitory states (}3, ..., Vr_») is also identified from the correspond-
ing joint characteristic function

KD Y

— . (3.15)
bU,,..Ur_,

This step requires the following assumption.
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AssumpTION 4. (i) by, Ur(S1,...,57) = E[exp(isiUy +---+isyUr)] is not equal to zero
for any real (sq, ..., sr). (ii) For each of (Y1,...,YT), (Uy,...,Ur), V1,..., V1), 7 and
&1, the marginal and joint distributions are absolutely continuous with respect to the
Lebesgue measure, and the marginal and joint characteristic functions are absolutely in-
tegrable.

Part (i) of this assumption is the assumption of nonvanishing characteristic function
asin Li and Vuong (1998) with a multivariate extension. It corresponds to the “complete-
ness” assumption for nonparametric identification as in Hu and Schennach (2008) and
Arellano, Blundell, and Bonhomme (2017); see also D’Haultfoeuille (2011). In the uni-
variate context, this assumption is known to be satisfied by most of the popular contin-
uous distribution families, while counterexamples of distribution families violating this
assumption are the uniform, the truncated normal, and many discrete distributions (Ev-
dokimov and White (2012)). Similar remarks apply to multivariate distribution families,
though there are not many stylized families of multivariate distributions. Particularly,
the assumption is satisfied by the multivariate normal distributions.

We summarize the results as follows.

ProposiTION 1. Suppose that Assumptions 1, 2, 3, and 4 hold. The joint distribution
of (Y1, ..., Yr) uniquely determines the marginal distribution of n, fort =3,4,...,T —
2, the joint distribution of (U, ..., Ur_3), and the joint distribution of (V3,...,Vr_2),
together with p; fort=3,4,...,T.

3.4 Step 4: Identification of f., and G,

Since G, is arbitrarily nonparametric, we cannot identify the nonparametric distribution
of ¢; in general. However, we may identify its distribution if the following restriction is
imposed.?

AssumPTION 5. The MA function G, takes the form G(&;, €,_1) = & + g:(g,_1) With the
location normalizations El[e;] = E[g;(g;,-1)] =0.

Since we have identified p, for t = 3,4, ..., T and the joint distribution fy, 1, ,,
we identify the joint distribution of two composite random variables (V; — p,;V;_1) and
(Vi—1 — ps—1Vi—2). These two random variables can be in turn rewritten as follows:

Vi—piVici=er+ gi(er-1),
(3.16)

Vici —pi—1Vicao=&-1+ gi-1(&81-2)

The three shocks to the transitory states on the right-hand side are mutually indepen-
dent. When the function g;(x) = A;x is linear, Reiersol (1950) shows that the coefficient

2This assumption is testable via the identification result of Hu, Schennach, and Shiu (2018, Theorem 2.1),
where they identify a repeated measurement model with one measurement entailing an additively separa-
ble model and the other measurement entailing a nonseparable model.
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A; is generally identified if ¢; is not normally distributed. Schennach and Hu (2013) gen-

eralized this result to nonlinear cases. We may identify the function g, fort =4,..., T -2
and the marginal distribution of ¢, for =3, ..., T —2 using the results in Schennach and
Hu (2013).

AssuMPTION 6 (Schennach and Hu (2013)). (i) The marginal characteristic functions of
&1, &1, 81(&4_1), and g;_1(&,_2) do not vanish on the real line. (ii) The density function
fe,_, 0f €11 exists and is uniformly bounded. (iii) g, is continuously differentiable, strictly
monotone, and is not exactly of the form g;(e,—1) = a + bln(e“®:-1 + d) fora, b, c,d € R.

This assumption states Assumptions 1-6 and an additional condition of Theorem 1
in Schennach and Hu (2013) in terms of our notation. (The notation in Schennach and
Hu (2013) and our notation are reconciled by y :=V; — p;V;_1, x :=Vi_1 — p;—1Vi—2,
x* = g1, Ay := &, Ax := g,_1(&,_7) and g := g;.) The first part of Assumption 1 in
Schennach and Hu (2013) is implied by our Assumption 1(ii), and hence is not included
in our Assumption 6. Likewise, the second part of Assumption 1 in Schennach and Hu
(2013) is implied by our Assumption 5, and hence is not included in Assumption 6.
Part (i) is similar to Assumption 4(i). As discussed earlier, it corresponds to the “com-
pleteness” assumption for nonparametric identification (D’Haultfoeuille (2011)). This
assumption is known to be satisfied by most of the popular continuous distribution
families, while counterexamples of distribution families violating this assumption are
the uniform, the truncated normal, and many discrete distributions (Evdokimov and
White (2012)). Part (ii) of the assumption is also satisfied by most of the popular con-
tinuous distribution families, with the chi-square distribution of one degree of freedom
being a major counterexample. Part (iii) is a set of requirement for the function g; in the
MA decomposition.

PROPOSITION 2. Suppose that Assumption 5 and 6, in addition to the assumptions in
Proposition 1, are satisfied. The joint distribution of (Y1, ..., Y1) uniquely determines the
marginal distribution of ; and the MA function G;.

This result guarantees nonparametric identification but the identification is not con-
structive and therefore a plug-in estimator is not available. A closed-form estimator is
available at the cost of further assuming the linear MA structure as in Reiersol (1950):

g1 (x) = Ax.
In this case, (3.16) simplifies to the classical repeated measurement model:

Vi—pVici =&+ A&,

Vici—praVico =& 1+ A-1800.
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Therefore, we may use Kotlarski’s identity to obtain the closed-form identifying formula
o

fe(x) = i/ e"™ ¢, (r)dr, where
21

—00

(Vi —pisiVi\ .
 iE [(’”A—”’*“) exp(is(V; — ptvm))}
I:/ t+1 ds},
0

Elexp(V; — pVi1)]

(3.17)

b, (T) =exp

where the expectations can be computed using the closed-form identifying formula
(3.15) for the joint distribution of (V;_1, V4, V;41) obtained in the previous step.

To compute the closed form (3.17), it remains to identify the unknown scalar A, ;.
We can find the moment restrictions

var(e;41) + Ay var(e) =var(Viiy — pri V),
Ay var(e) =cov(Vy — pVi—1, Vigr — peaVo), (3.18)
Arppvar(er) = cov(Vipr — periVi, Vieo — pe2Vis),

where the values on the right-hand sides can be computed again using the closed-form
identifying formula (3.15) for the joint distribution of (V;_1, V;, Vi11, Vi42) obtained in
the previous step. The left-hand sides contain four unknowns, var(e;), var(e; 1), Ari1,
and A,,;. Therefore, one restriction is necessary for identification of A, using (3.18).

4. GENERAL IDENTIFICATION RESULTS
4.1 Nonparametric identification of the distributions

We now return to the general model (2.1), (2.2), and (2.3). Consider

Y, =U+ 1,
Uir=Ui—1 + 1,
Vi=pitVici +pe2Vico+ -+ pi, pViep + Gier, 811, ..., 81—¢)

fort=1,2,...,T, and the following independence and zero mean conditions.

AssumpTION 7 (Serial independence and zero mean). (i) The random variables nr, ...,
11, Uo, &7, ..., &1, and the random vector (e, ..., &1-¢, Vo, ..., Vi_p) are mutually in-
dependent, that is, f(nr,...,n1, Uy, e1,..., 81,8055 &1-¢> V0>, Vi—p) = f(mr) -
fmDfWo f(er)---f(en)f(eo, ..., e1-¢> V5., Vi—p). (ii) The random vector (nr, ...,
11, Uo, Vo, ..., Vi—p) has zero mean and E[G(e, &1, ..., &-¢g)]=0forte(1,...,T}.

The goal is to derive nonparametric identification of the joint distribution of
(Ui, ..., Usyr) and the joint distribution of (V;, ..., Vi+;). In the current subsection, we
derive the identification results up to finite-dimensional AR(p) parameters p;; 441, ...,
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Pi+r+q+1, leaving their identification for Section 4.2. To simplify the writings, we intro-
. e e e . Y n,e

duce the following random and deterministic functions, u;, a1 Vitqil and «, of the AR

parameters p;441.

P
Y
Pipgi1(Pivgr1) = Yipgr1 — Yil — Z Prrq+1,p [ Yirgr1i—p — Yil,

p'=1
q p qtl-p
7]78 —_— J—
Vitqi1(Prigr1) = Z Nitr Z Z Pi+q+1,p Mi+v

=1 p'=1 7=l

+ Giigr1(E14g415 Etgs > E141) T Niggt1s
p

K(Pr+q+1) = Z Ptig+1,p — L.
p'=l1

The first line defines a random function M}; 441 of p;;4+1 which is observed by econo-
metricians (up to the finite dimensional AR parameters), using max{p + 1, g + 2} periods
of panel data (Ymin(s,i+g+1-p}»---> Yi+g+1). The second line defines a random function
v["J;Z +1 Of pr44+1 which is not observed by econometricians. The third line defines a de-
terministic function « of p;; 1. We derive identifying formulas that involve this « func-
tion in denominators, and we make the following assumption to make sense of such

identifying formulas.
AssuMPTION 8 (AR(p) restriction). Zﬁ/:l pt,p # 1 for each t.

Note that Assumption 8 guarantees «(p;44+1) # 0. The following lemma, which fol-
lows from arithmetic operations using our model (2.1), (2.2), and (2.3), provides a rela-

tionship among the three random and deterministic functions, ,u}jr Y thjz Lpand k.

LeMmmA 1 (Restriction for ;). If Assumption 8 is satisfied for the state space model (2.1),
(2.2), and (2.3), then the following restriction holds:

Y n,&
I*L[+q+1(pt+q+l) . Vt+q+1(Pt+q+l)

t (4.1)
K(Pr+q+1) K(Pr+q+1)

The role of this auxiliary lemma is to construct repeated observations for V;. Specifi-
cally, combining (2.1) and (4.1), we obtain the system

Yi=Vi+ U,

Y ,
Piygi1(Prrg+1) V;?+Z+1(Pt+q+1)
A AR L R VAT A A

K(Pr+q+1) K(Pitq+1)

where the left-hand side of each equation is observed (up to finite dimensional pa-
rameters p,,441), the first term on the right-hand side is the common factor V;, and
the second term on the right-hand side is an error. Thus, under the assumptions to
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be listed below, the Kotlarski’s (1967) identity allows us to identify the marginal dis-
tributions of U, and V; as in Li and Vuong (1998). Once U;_; and U, are identified,
we can in turn use the relation (2.2) to identify the marginal distribution of 7, by
the deconvolution. To formally obtain these results, we note with the notation Z; =
o(Us, Vi, U1, Vi1, ..., Uy, 1) for the information available at time ¢ that the following
mean independence conditions hold under Assumption 7:

E[GT(sT, Er1,--esEr—q) | It] =0 whenevert—gqg>t, (4.2)
E[n:;|Z;]=0 whenever 7 > t. (4.3)

The moment condition (4.2) follows from the definition of the model where the mov-
ing average is of order ¢. Equation (4.3) implies that the permanent state U, follows the
martingale process, an assumption which is commonly made in the canonical models.

The marginal characteristic function ¢x of a random variable X is defined by
¢ x (s) = E[¢"¥X]. The marginal characteristic functions of Y;, U, and V; are denoted by
¢v,, ¢y, and ¢y, respectively. The joint characteristic function ¢ x, x, of a random vec-
tor (X1, X,) is defined by ¢ x, x,(s1, 52) = E[e¥1X172X2] The joint characteristic func-
tion of (Y7, Y;) is denoted by ¢y, y,. With these notation, we make the following regu-
larity assumptions.

AssumpTION 9 (Regularity conditions). (i) E[Y;] exists for each t. (ii) The characteristic
functions ¢y, and ¢y, do not vanish on the real line for each t. (iii) The characteristic
function ¢y, is continuous for each t.

Part (i) is sufficient for the existence of the moment E[,ut’;qﬂ( Priqil Yeis'Yt] which
shows up in our closed-form identifying formulas. Part (ii) is to guarantee that the de-
nominator of the identifying formula is nonzero along with Assumption 8. It is satisfied
by the major distribution families, including the normal, chi-squared, Cauchy, gamma,
and exponential distributions. Part (iii) is used to recover the characteristic function of
V; from an ordinary differential equation with an initial value. By the aforementioned
deconvolution approaches, we identify the marginal distributions of U;, V;, and 7, up to
the finite-dimensional parameters p,; 41 as follows.

LeEmma 2 (Identification of the marginal characteristic functions). If Assumptions 7, 8,
and 9 are satisfied for the state space model (2.1), (2.2), and (2.3), then ¢y, is identified up
to the finite-dimensional parameters p 441 by

siE[,U-Y 1(Pt+q+1)€is/Y’]
OV, (S5 Prigr1) = CXP[/ LA 7Y d /] (4.4)
0 K(pryqr1)E[e” 7]
using max{p + 1, g + 2} periods of panel data (Ymin(,1+q—p+1)> - - -» Yiq+1)- Likewise, ¢y,
is identified up to the finite-dimensional parameters p, 41 by
E[eiSYt]
QU (S; preg+1) = (4.5)

bV, (S5 Prig+1)
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using max{p + 1, q + 2} periods of panel data (Ywin(t,t+q—p+1s - - - » Yr+q+1)- Furthermore,
¢, is identified up to the finite-dimensional parameters pq and p;, 441 by

bU,(S; Prig+1)

4.6
¢Ut,1(S; Pt+q) ( )

D0, (S5 Pt4qs Prg+1) =
using max{p + 2, q + 3} periods of panel data (Yin(—1,14+q—p}» -+ - > Yi4q+1)-

Whereas this lemma provides the identification of the marginal distributions, our
goal is to identify the joint distributions. To this goal, we note that the following joint
independence restrictions hold under Assumption 7(i).

(Ut7~-'7Ut-‘rT)J-I—(I/Z)'--aI/t-‘rT), (47)
nt-‘,—t’J—L(UI)"')Ut-‘rt/—l) foranyt/e{l,z,...}. (48)

Furthermore, the following regularity assumptions are made for density representation
of distributions and for the purpose of applying the Fourier transform.

AssumptioN 10 (Regularity). (i) The distribution of U, is absolutely continuous with re-
spect to the Lebesgue measure. (ii) ¢y, is absolutely integrable. (iii) The distribution of
. is absolutely continuous with respect to the Lebesgue measure. (iv) ¢, is absolutely
integrable. (V) ¢v,, ... v,.. is absolutely integrable. (Vi) ¢y, v,..(51,...,54r) # 0 for all
(1, ..., Si4r) € RTHL,

Parts (i) and (iii) allow the density representation of the respective probability distri-
butions. Parts (ii), (iv), and (v) guarantee that we can recover the density functions from
the respective characteristic functions. Part (vi) plays a similar role to Assumption 9 (ii).
Under these conditions, we identify the joint density of (Uy, ..., Us4,) and the joint den-
sity of (V4, ..., Viir) as follows.

THEOREM 1 (Identification of the joint density functions). IfAssumptions7, 8,9, and 10
are satisfied for the state space model (2.1), (2.2), and (2.3), then fy,, .. v,., s identified up

to the finite-dimensional parameters p,y 411, ..., Pr4r+q+1 bY

fU, ..... U,+T(ut, coes Ut r Ptagrls oo pt+7+q+1)
1 —isuy . d
=—— | e """y, s; prrgr1)ds
2

.
1 .
iUy =ty ) . ,
X ljl[ﬁ/e Mg~ -1 D (S5 Prar+qs Prar +q+1)d5i| (4.9)
T =

usingmax{p+7+1, g+ 7+2} periods of panel data (Ywin(,1+g—p+1}s - - - » Yi+r+q+1), Where
DU, (85 prigr1) and ¢y, (S prig» Prg+1) are given by (4.5) and (4.6), respectively. In addi-
tion, fy,,....v,.. is identified up to the finite-dimensional parameters p;1 441, ..., Piyr+q+1
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by
fl/t,...,VHT(Ut, co s Utrs Ptdg+ls -5 pt+7+q+1)
1 T
=— | ... E l_[ elSere Yipr —Vpyr)
7+1 / /( |:
(277) =0
T .
/(/ o / l_[ elst+7/ut+7/fU1,...,Ut+T(ul’ cees Uty
=0
Ptigtls s Pipriqr1) ditg--- dut+r> ds;---dsir (4.10)
usingmax{p+7+1, g+ 7+2} periods of panel data (Ywin(,1+g—p+1)s - - - » Yi+r+q+1), Where
JU o Ur (U5 oo Uiiers Prygids -+ o5 Prarige1) 1S given in (4.9).

In this theorem, (4.9) provides a closed-form identifying formula for the joint den-
sity of the permanent states (U, ..., U, ;) for 7 + 1 periods. Likewise, (4.10) pro-
vides a closed-form identifying formula for the joint density of the transitory states
Vi, ..., Vigr) for 7 + 1 periods. For the both results, we need max{p + 7+ 1, g+ 7 + 2}
periods of panel data (Ymin(s,14-g— p+1}» - - - » Yr4+r+¢+1) Of measurements.

REMARK 1. Itisimportant to observe that our general identification results for the joint
density functions do not require a parametric specification of the MA part. Specifically,
the identification formulae do not involve the MA parameters even if we would impose
a parametric specification. In other words, the identification formulae will remain the
same even if we imposed a parametric MA specification.

4.2 Identification of the AR parameters

The previous subsection derives the nonparametric identification of the marginal and
joint distributions of the permanent state and the transitory state. These nonpara-
metric identification results, however, assume that the finite-dimensional AR param-
eters p; g1, - .., Pr+r+q+1 are already known. The current subsection explores alterna-
tive routes of identifying these remaining parameters. As a useful device to this goal,
we develop the following moment equality that holds under the zero conditional mean
restrictions in Assumption 7.

ProrosiTION 3 (Moment equality). If Assumptions 7 and 8 are satisfied for the state
space model (2.1), (2.2), and (2.3), then the following moment equality holds:

E[K(pt)/-"*[’fi_l(pt-&-l) - K(PH—I)/«L?,(Pt) —k(p)k(pry1)(Yi—g — Yt—q—1)|It—q—l] =0. (4.11)

The following three examples illustrate normalizing restrictions on the AR param-
eters p; to identify them using (4.11). The first example suggests to impose the time-
invariance in the AR parameters, that is, p; = p,11. The second example suggests that
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the initial AR parameters p, are known values, and the succeeding AR parameters p, 1,
pi12, ... are inductively identified. The third example suggests to impose a parametric
life-cycle restriction on the AR parameters, that is, p; = A(t, 6), and to determine 6 via
the moment restriction (4.11).

ExamPLE 2 (Normalizing restriction I). One normalizing restriction is the time-invariant
AR process, that s, p; = p;. 1. In this case, with p := p; = p,; 1, the moment equality (4.11)
reduces to

E[ 1)1 (5) = 1] () = K(B)(Yimg = Yig DI T—q-1| = 0.
Using (Y;—4-1, ..., Yr—q—p) as instruments yields the closed-form identifying formula
_ -1 ’
pP= E[(Yt—q—17 cee Yt—q—p)/(At,l’ e At,p)] E[(Yt—q—l7 cee Yt—q—p) AZ,O]’

where A, =Yy =Y g—Y_py+Y, g 1+Y g—Y,_4qforeach p’e{0,1,..., p}.

ExampLE 3 (Normalizing restriction II). Another normalizing restriction is to set the
initial AR parameters p; to a p-vector of known values, p; = p. In this case, the mo-
ment equality (4.11) can be applied upward-inductively to recover p;;1, p;+2, and so on.
Specifically, given p;, we can identify p,, 1 by the closed-form formula

Pi+1 = E[(Yt,qfl, ey thqu)/(At,l(pt% cees At,p(pt))]_l
X E[(Yt—q—la ceus Yt—q—p)/At,O(Pt)],

where A; ,(pr) == k(p)[Yig1—p — Yi—g—1] —i—p,ty(p;) foreach p' €{0,1,..., p}. O

ExaMPLE 4 (Parametric life-cycle restriction). We may specify the sequence of the AR
parameters p; as a parametric function of ¢, that is, p; = (¢, #). We may then use the
moment equality (4.11) to construct the moment function

8(0) = E[(Yiegots -y Yiegp) | k(h(t, )l (R(2 + 1, 0)) — k(h(t + 1, 0)) ) (h(2, 0))
—k(h(t,))k(h(t+1,0)(Yi—g — Yi—g-1D}]

for a GMM estimation of 6, and thus for p; = (¢, 6) for all ¢. O

For generality to encompass all these examples, we state the conditions for the iden-
tification of the AR parameters as a high-level assumption below.

AssumpTioN 11 (Identification of the AR parameters). The moment equality (4.11) ad-
mits a unique solution (piyg1, - - - » Prr+q+1)-

The main identification result is now stated as the following corollary to Theorem 1.
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CoroLLARY 1 (Identification of the joint density functions). If Assumptions7, 8,9, 10,
and 11 are satisfied for the state space model (2.1), (2.2), and (2.3), then fy,,.. v,., is iden-
tified by (4.9) using max{p + 7 + 1, g + 7 + 2} periods of panel data (Ymin(1,1+g—p+1}» - -+ »
Yiirirq+1). In addition, fy, .y, . is identified by (4.10) using max{p + 7+ 1,q + 7+ 2}
periods of panel data (Ymin(t,1+q—p+1)s -+ +» Yigrrq+1)-

REMARK 2. Recall that we also show the identification of the MA structure G, in Sec-
tion 3.4 under the additive separability restriction (Assumption 5). Given that G, is arbi-
trarily nonparametric and that &, ..., &;_, are nonparametrically distributed, it is diffi-
cult to identify G, unless some model restriction is imposed, such as the additive sep-
arability restriction (Assumption 5). A potential direction to proceed without impos-
ing the additive separability restriction is to impose support restrictions as in Hu and
Sasaki (2017). Under their support restriction assumption, nonseparable repeated mea-
surement models are indeed identifiable, although it is not necessarily easy to argue
that their assumption of support restrictions is satisfied in general for the application to
earnings dynamics. Generalized identification of a nonseparable models with repeated
measurements deserves a topic for future research.

4.3 Relation with an existing approach

Our identification results are based on the deconvolution method with Kotlarski’s iden-
tity (e.g., Kotlarski (1967), Rao (1992), Li and Vuong (1998), Li (2002), Schennach (2004),
Bonhomme and Robin (2010) and Evdokimov (2010)), and are closely related to the re-
cent econometrics literature on identification of latent process models (e.g., Arellano,
Blundell, and Bonhomme (2017)) based on an operator theoretic approach (e.g., Hu and
Schennach (2008)). The objectives are quite similar—one is interested in semi or non-
parametrically identifying the joint and marginal distributions of the latent components
in dynamic processes. The two approaches to identification are distinct, however, and
exhibit tradeoffs in terms of model flexibility and practicality.

On one hand, the framework of Hu and Schennach (2008) and Arellano, Blundell,
and Bonhomme (2017) admit nonparametric and nonseparable models with greater ex-
tents of flexibility. This contrasts with the semiparametric and additive restrictions that
we impose on our model. On the other hand, the approach of Hu and Schennach (2008)
and Arellano, Blundell, and Bonhomme (2017) entail implicit identification without any
closed-form guide to sample counterpart estimators. All the nonparametric parts of our
identification results are accompanied by explicit and closed-form identifying formulas,
which in turn yield closed-form analog estimators presented in the following section.

More importantly, however, our main objective is to allow for a non-Markovian tran-
sitory state process, in particular through the ARMA model. Nonparametric or semi-
parametric identification under this nonconventional setting seems to require partial
additivity, and we hence find the approach based on Kotlarski’s identity to be a natural
path.
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5. ESTIMATION

Sample counterparts of the identification results yield closed-form estimators, since we
derive closed-form identification for the density functions of the permanent state and
the transitory state. In this section, we propose the closed-form estimators. Many de-
tails and additional results are delegated to the Appendix in the Online Supplemental
Material for a concise exposition. Large sample properties are developed by extending
the results of Li and Vuong (1998); see Appendix C in the Online Supplemental Material.
The first step is to estimate the AR coefficients following the sample analog of the
moment restrictions in Example 2, 3, or 4. For Example 2, the analog estimator p'is

N -1
p= |:Z(Yj,t—q—1a v Yiimgp) (Bjits e, Aj,t,p):|
=1

N
X [Z(Y',t—q—l’ KRR Yj,t—q—p)/Aj,t,0:| >
j=1

where Aj; =Y 1y = Yjig—Yji—p + Yji—g—1 + Yji—qg — Yji—q—1 for each p’ €
{0, 1,..., p}. We may of course extend this estimator by pooling the sums across ¢ from
1+ p+qtoT — 1. Example 3 also entails a similarly simple parametric estimator. For
estimation of p, under Example 4, see Appendix B.1 in the Online Supplemental Material
for detailed procedures.

The second step is to estimate the marginal characteristic functions of U;, V;, and 7,
by the sample analog of the identifying formulas displayed in Lemma 2. Specifically, the
analog estimators for (4.4), (4.5), and (4.6) read

N
. Y ~ is'Y;
lZMj,t+q+1(Pt+q+l)e Mt
~ 5=l
v, (S; Pryg+1) = €Xp
0

N
-~ 7 /Y,
K(Pz+q+1)§ e i
j=1

ds’:| fortef{l,...,T—q—1},

N
N1 Z oY
j=1

bU, (51 Proqi1) = = forte(l,...,T —g—1}, and

v, (83 Preg+1)

~ bU, (S Prage1)
G (83 Progs Proge1) = ———950 forre(2,...,T —q—1},
bu, (81 Preq)

respectively, where

p
y ~ .
1Y ivgi1 Prigr) =Yjiergr1 = Yid = Y PrigitpYiirgr—p — Yj] and
p'=l1
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p
K(Pt+g+1) = Z Prig+1,p — L.
p'=1

The final step is to estimate the density functions. Specifically, the marginal density
function V; can be estimated by the regularized Fourier transform of the second-step

estimator ¢y, (s; pryq+1):

- 1 O
th(v;)=E/e‘””’¢V[(s; Prrg+r1) Pk (hs)ds forte{l,...,T —q—1},

where ¢k denotes the Fourier transform of a suitable choice of a kernel function K, and
h denotes the bandwidth parameter—we discuss ¢k and 4 in Appendix C in the Online
Supplemental Material. Likewise, the marginal density functions of U, and 7, can be
estimated by the regularized Fourier transforms

~ 1 N R
fU,(Mz)=%/€_””’¢U,(S; Pryg+1) Pk (hs)ds forte{l,...,T—g—1} and

Iy 1 o
T () = W / e M b (S Piaqs Prrgr1) bk (hs)ds forte{2,....,T —q—1}

respectively.

Furthermore, we can estimate the joint density function of (U, ..., Usy,) and the
joint density function of (14, ..., Viy,) by the sample analog of the identifying formulas
displayed in Theorem 1. Specifically, the analog estimator for (4.9) reads

fU[,...,U,JrT(Mt, ces Ut T Ptygals - e s pt+7+q+1)

I :
=2—/€ oy, (s; Pt+q+1)¢K(hS)dSl_[

a
7'=1

1 [ n o R R
X [2—/6 £t Uy ’1)¢n,+r/(52 Prir+qs Prir+q+1) Pk (hs) dS:|

ks

forte{l,...,T — q—1— 7}. Likewise, the sample analog estimator for (4.10) reads

th,...,V,H(Ut, coos Uttr; ﬁt+q+1, cees ﬁt+r+q+1)

1 NIz
= W/f(N_l Z|:1_[ ezSz+T/(Yj,t+7’vz+T/):| '¢K(Ht)"'¢K(HSt+7-)>

j=1L7"=0
T
is = .
/<// l_[ e H—T/uH—T/fUt,...,UH_T(ul""~>ut+T»
=0

ﬁt+q+1, cees ﬁt+7+q+1) duy--- dul+7> ds;---dsiir

forte{l,...,T — q—1— 7} with the multidimensional regularization, where H denotes
the bandwidth parameter. We use this upper case notation H to distinguish it from the
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previous bandwidth parameter /2, where their asymptotic divergence rates are different;
see Appendix C in the Online Supplemental Material for details. This multivariate den-
sity estimate ]"1\/[1/, .. can be also used to estimate the MA errors ¢, under an additional
model restriction described in Section 3.4; see Appendix B.2 in the Online Supplemental
Material for details.

Finally, we remark that we can also use the estimated characteristic functions in
turn to estimate the moments of the latent components, U; and V;. The estimated
moments can then be used to obtain estimates of the distributional indices, such as
standard deviations, skewness, and kurtosis. Specifically, we estimate the kth moment
of V; by i*k%$w(s; Pi+g+1)|s=0. Furthermore, we estimate the kth moment of U, by

i~k dk $Yt (s)
dsk by, (5:Pr4g41)
plemental Material for the closed-form estimators for the first four moments of V; and

U; that are needed to compute the important distributional indices including the skew-
ness and the kurtosis. They all consist of analytic expressions written in terms of sample
moments of the measurements to admit linear representations, and hence the asymp-
totic normality of these moment and index estimators follows in the standard way by
applications of the central limit theorem and the delta method. Large sample properties
are presented in Appendix C in the Online Supplemental Material.3

ls—o where ¢y, (s) = & Y| ¢*Vir. See Appendix B.3 in the Online Sup-

6. APPLICATION TO EARNINGS DYNAMICS

We apply the identification and estimation methods for our semiparametric model to
the case of earnings dynamics and we estimate the distributions of the error terms and
parameters of the model and show the results. We also focus on three types of analyses
that demonstrate the contributions of our flexible model relative to past work. First, we
analyze higher-order ARMA models for the transitory effect and we study the quantita-
tive implications of omitting higher-order components. Second, we analyze the quan-
titative implications of omitting life-cycle effects in the persistence parameters for life-
cycle earnings dynamics. Third, we analyze the quantitative implications of imposing
Gaussian distributions for the error terms.

We first describe the data that we use for our analysis in Section 6.1, and then dis-
cuss the empirical procedure in Section 6.2. Estimation results and their discussions are
presented in Sections 6.3 and 6.4 with an emphasis on the above three points.

6.1 Data

We use the most commonly used U.S. data set for earnings dynamics, the Panel Study
of Income Dynamics (PSID), 1970-1996.# This data set has been used by Horowitz and
Markatou (1996) and Bonhomme and Robin (2010) for earnings models with related
econometric approaches based on deconvolution.

3Kato, Sasaki, and Ura (2018) developed a method of inference for density functions identified by Kot-
larski’s identity.
4We do not use the data after 1996 where interviews are conducted biannually.
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TaBLE 1. Summary statistics of wage salary, wage rate, weeks worked, and marital status. The
numbers indicate the sample averages and the numbers in parentheses indicate the sample
standard deviations. The statistics are provided under each of the three age groups, 30, 40, and
50, and uncer each of the three sample definitions: the baseline sample of workers, the sample of
workers with strong labor force attachment (defined as 40 weeks or more of work in the previous
year), and the sample of married workers. The currency units are real 1996 US dollars, deflated
by the CPI-U-RS price deflator.

Wage Wage Weeks Marital Number of
Sample Definition Age Salary Rate Worked Status Observations
Baseline 30 34,090 12.706 46.583 0.751 1320
(19,711) (4.879) (8.313) (0.433)
40 46,016 14.296 46.732 0.838 1185
(43,701) (6.198) (7.596) (0.369)
50 46,923 14.682 45.680 0.887 984
(37,883) (5.872) (8.850) (0.317)
Strong labor 30 35,709 12.927 48.950 0.766 1183
Force attachment (19,535) (5.010) (2.376) (0.424)
40 48,123 14.490 48.715 0.849 1076
(44,950) (6.270) (2.336) (0.359)
50 49,053 14.702 48.384 0.890 864
(38,815) (5.826) (2.490) (0.313)
Married 30 35,092 13.250 47.018 1.000 991
(19,145) (4.959) (7.499) (0.000)
40 47,619 14.525 47.050 1.000 993
(45,844) (6.217) (7.084) (0.000)
50 47,929 14.898 45.647 1.000 873
(38,674) (5.778) (8.923) (0.000)

Our sample selection procedure is similar to those of preceding papers on earnings
dynamics using the PSID; see Moffitt and Zhang (2018) for a survey. We select male in-
dividuals aged 25-55 who are recorded as household heads. Full-time students are ex-
cluded from the sample. In the first stage, we estimate a regression of log annual earn-
ings on education, separately by year, and use the residuals Y; to estimate the earnings
dynamics model. Extreme outliers for Y; are trimmed at the top 1 percent and bottom 1
percent, consistent with usual practice in this literature. Allowing for a unbalanced sam-
ple from the above sample selections, we obtain 7 = 31 and NT = 28,436. The cross-
sectional sample sizes are N = 1320 at age 30, N = 1185 at age 40, and N = 984 at age
50 to list a few age groups. The top third of Table 1, labeled as the “baseline” sample,
provides summary statistics of this baseline sample.

In addition to the baseline sample just defined, we also consider two subsamples
that have been studied in the literature. The first is a subsample of those individuals
with strong labor force attachment, defined by 40 weeks or more of work in the previous
year. In the literature, a subsample based on strong labor force attachment is considered
by Guvenen (2009). We examine whether the patterns of earnings dynamics are different
for this subsample and for the baseline sample. The total unbalanced sample has 7" = 31
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and NT = 25,328 while the cross-sectional sample sizes are N = 1183 at age 30, N = 1076
at age 40, and N = 864 at age 50. The middle third of Table 1, labeled as the sample of
individuals with “strong labor force attachment,” provides a summary statistics of this
subsample.

The second subsample we consider is one which selects only married men. This sub-
sample was considered by Arellano, Blundell, and Bonhomme (2017). We test whether
married men have more stable earnings dynamics than for men as a whole. The un-
balanced sample has 7' =31 and NT = 25,328 and the cross-sectional sample sizes are
N =991 at age 30, N =993 at age 40, and N = 873 at age 50. The bottom third of Ta-
ble 1, labeled as the sample of “married” individuals, provides a summary statistics of
this subsample.

6.2 Empirical procedure

In the framework of Example 4 to obtain p;, we set the life-cycle of AR parameters by
the cubic function p; = h(t, 8) = 6y + 01t + 0,¢2 + 63> in the baseline model but we
also try an alternative specification as a sensitivity analysis. The auxiliary parameters
0 = (6y, 01, 02, 63), and thus the AR parameters p; = h(¢, 0) for each ¢ € {26, ...,55} are
estimated using the GMM,; see Appendix B.1 in the Online Supplemental Material. Since
our subsequent identification steps require Assumption 8, the estimation imposes this
additional restriction. Specifically, we impose p; € (0, 1) for all ¢.

For nonparametric density estimation, we use the kernel function given in the sup-
plementary appendix. The bandwidth parameter is chosen to minimize the integrated
squared errors with the reference normal distribution with the variance corresponding
to the negative second derivative of the estimated characteristic function.® We also esti-
mate the MA structure focusing on the simple case of ARMA(1, 1) model described in
Section 3.4. Details of the estimation procedure are described in Appendix B.2 in the On-
line Supplemental Material. Like the AR parameter p;, we set the life-cycle cubic func-
tion A, = (¢, &) = 9 + 1t + 21> + 9323 for the MA parameter A;.

6.3 Results for the baseline sample

6.3.1 Marginal distributions Table 2 shows estimates of the model assuming
ARMA(0, 0) and the top panels of Tables 3, 4, 5, and 6 show, respectively, estimated
indices of the marginal distributions of the permanent and transitory earnings at three
different ages under the ARMA(1, 1), ARMA(2, 2), ARMA(3, 3), and ARMA(4, 4) mod-
els.5 The displayed indices are the mean, the standard deviation, the skewness, and
the kurtosis. The numbers in parentheses indicate the standard errors of the respective
estimates. The last column shows the p-values for the one-sided test of the null hypoth-
esis that kurtosis is less than equal to three, against the alternative hypothesis that it is
greater than three (recall that the Gaussian distribution has the kurtosis of three, and the
p-valued hence indicate results of the test of sub-Gaussianity).

5Delaigle and Gijbels (2004) proposed a number of methods to choose the bandwidth parameter for a
deconvolution estimator, although our framework does not exactly fit theirs.

6In addition to the estimated distributional indices, we also illustrate estimated marginal densities of the
permanent and transitory components of earnings in the Online Supplemental Material.
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TABLE 2. Estimated distributional indices under the ARMA(0, 0) model for the baseline sam-
ple. The indices include the mean, the standard deviation, the skewness, and the kurtosis. The
numbers in parentheses indicate the standard errors of the respective estimates. The last column
shows the p-value of the one-sided test of the null hypothesis that kurtosis is less than equal to
three, against the alternative hypothesis that it is greater than three.

ARMA(0, 0) Mean SD Skewness Kurtosis Hy: Kurtosis <3
Baseline

Usg 0.000 0.441 —1.105 7.665 p-value = 0.002
(0.016) (0.018) (0.284) (1.644)

Uy —0.000 0.512 —1.136 9.748 p-value = 0.002
(0.020) (0.028) (0.437) (2.335)

Usp 0.000 0.547 —1.341 11.169 p-value = 0.000
(0.024) (0.034) (0.469) (2.211)

Vi —0.000 0.297 —4.664 39.881 p-value = 0.000
(0.012) (0.029) (0.721) (8.407)

Vao 0.000 0.227 —2.012 37.239 p-value = 0.499
(0.013) (0.040) (74.459) (13,340.516)

Vs0 —0.000 0.222 —6.195 49.806 p-value = 0.487
(1.422) (3.695) (1.303) (1407.858)

Several patterns appear in all tables, regardless of the ARMA order. The estimated
means are very close zero uniformly across all the models but the standard deviations
are greater for the permanent component than for the transitory. Also, the standard devi-
ations of the permanent component tend to grow with age while those for the transitory
component tend to decline with age. These standard deviation patterns are consistent
with past evidence showing that earnings profiles tend to spread out with age but that
older workers settle into more stable earnings profiles. The distributions are negatively
skewed but are more skewed for the transitory component than for the permanent, and
both are quadratic in age, falling from age 30 to 40 but rising from age 40 to 50. Strong
evidence of kurtosis appears in almost all distributions and Gaussianity is almost al-
ways rejected at conventional confidence levels, implying distributions that are more
fat-tailed than the normal.

On the other hand, several patterns differ across the ARMA orders. For example, the
estimated standard deviations exhibit heterogeneous patterns across models. Specifi-
cally, the standard deviations of the permanent component of earnings tend to decrease
as the order of the ARMA model increases, while the standard deviations of the transitory
component of earnings tend to increase as the order of the ARMA model increases. This
implies that the lower-order models, such as ARMA(O0, 0), erroneously impute larger
portions of cross-sectional variations in earnings to variations in permanent earnings.
As such, omitting higher-order terms in the ARMA models produces biases in estimates
of the distributions of earnings components. The estimated skewness and the estimated
kurtosis exhibit similar patterns to those of the estimated standard deviations.

There is mixed evidence on the importance of time-varying, life-cycle effects in the
ARMA parameters. On the one hand, the top panel of Figure 1 presents the estimated
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TABLE 3. Estimated distributional indices under the ARMA(1, 1) model for the baseline sam-
ple. The indices include the mean, the standard deviation, the skewness, and the kurtosis. The
numbers in parentheses indicate the standard errors of the respective estimates. The last column
shows the p-value of the one-sided test of the null hypothesis that kurtosis is less than equal to
three, against the alternative hypothesis that it is greater than three.

ARMA(1,1) Mean SD Skewness Kurtosis Hj: Kurtosis < 3
Baseline: Time-varying coefficients

Us —0.000 0.391 —0.750 6.721 p-value = 0.068
(0.016) (0.016) (0.367) (2.494)

Uy —0.000 0.458 —0.506 6.858 p-value = 0.000
(0.019) (0.021) (0.333) (1.172)

Usp 0.000 0.492 —0.928 9.681 p-value = 0.011
(0.025) (0.031) (0.523) (2.900)

Vi 0.000 0.328 —-3.991 28.236 p-value = 0.000
(0.014) (0.029) (0.499) (4.681)

Vao 0.000 0.258 -3.016 27.830 p-value = 0.000
(0.014) (0.027) (1.081) (7.260)

Vs0 —0.000 0.232 -5.239 48.314 p-value = 0.362
(0.018) (0.039) (4.439) (128.250)

Baseline: Time-constant coefficients

Uy —0.000 0.388 —0.718 6.672 p-value = 0.076
(0.017) (0.016) (0.372) (2.560)

Uy —0.000 0.458 —0.509 6.886 p-value = 0.000
(0.019) (0.021) (0.339) (1.170)

Us 0.000 0.493 -0.914 9.682 p-value = 0.009
(0.025) (0.030) (0.522) (2.822)

30 0.000 0.332 —3.947 27.514 p-value = 0.000
(0.015) (0.028) (0.491) (4.670)

Vao 0.000 0.258 —2.996 27.508 p-value = 0.000
(0.014) (0.027) (1.075) (7.096)

Vso —0.000 0.231 -5.411 48.554 p-value = 0.499
(0.017) (0.039) (51.590) (16,379.615)

ARMAC(1, 1) parameters and indicates that there exist nontrivial life-cycle effects in the
persistence parameters, with rising AR parameters and falling MA parameters with age.
However, the lower panels of Tables 3, 4, 5, and 6 show that our estimates of the shapes
of the distributions are not much affected if life cycle effects in the ARMA parameters
are ignored.

The third point we focus on, as emphasized at the beginning of Section 6, concerns
the Gaussianity of distributions. The hypothesis that the distributions of the permanent
component of earnings have a sub-Gaussian kurtosis is rejected for ages 40 and 50 at the
level of 0.05 across all the model specifications. The hypothesis that the distributions
of the transitory component of earnings have a sub-Gaussian kurtosis is rejected for
ages 30 and 40 at the level of 0.05 across all the model specifications except under the
most restrictive model, namely ARMA(0, 0). From these results, we conclude that it is
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TABLE 4. Estimated distributional indices under the ARMA(2, 2) model for the baseline sam-
ple. The indices include the mean, the standard deviation, the skewness, and the kurtosis. The
numbers in parentheses indicate the standard errors of the respective estimates. The last column
shows the p-value of the one-sided test of the null hypothesis that kurtosis is less than equal to
three, against the alternative hypothesis that it is greater than three.

ARMA(2,2) Mean SD Skewness Kurtosis Hj: Kurtosis < 3
Baseline: Time-varying coefficients

Usg 0.000 0.394 —0.829 6.737 p-value = 0.040
(0.018) (0.018) (0.352) (2.136)

Uy 0.000 0.433 —0.331 8.027 p-value = 0.000
(0.020) (0.022) (0.410) (1.403)

Usp 0.000 0.457 —0.841 12.093 p-value = 0.009
(0.031) (0.034) (0.708) (3.868)

Vi —0.000 0.321 —4.246 32.980 p-value = 0.000
(0.016) (0.032) (0.638) (6.267)

Vao —0.000 0.284 -3.371 23.843 p-value = 0.000
(0.016) (0.027) (0.929) (5.346)

Vso —0.000 0.270 —4.619 35.106 p-value = 0.053
(0.027) (0.039) (2.309) (19.825)

Baseline: Time-invariant coefficients

Us 0.000 0.391 —0.806 6.628 p-value = 0.049
(0.019) (0.019) (0.370) (2.196)

Uy 0.000 0.432 —0.324 8.074 p-value = 0.000
(0.021) (0.023) (0.416) (1.431)

Usp 0.000 0.464 —0.854 11.766 p-value = 0.008
(0.028) (0.033) (0.686) (3.670)

30 —0.000 0.325 —-4.170 32.056 p-value = 0.000
(0.017) (0.033) (0.657) (6.435)

Vao —0.000 0.285 —3.365 23.471 p-value = 0.000
(0.017) (0.028) (0.945) (5.238)

Vso —0.000 0.258 —4.986 39.363 p-value = 0.347
(0.022) (0.037) (2.164) (92.165)

too restrictive to use Gaussian marginal distributions for canonical models of earnings
dynamics.

To summarize the results of marginal distributions, we find the following three
points. First, omitting higher-order components of the ARMA model imply different
distributions both for the permanent and transitory components of earnings. Second,
omitting life-cycle effects of persistence parameters does not imply different distribu-
tions either for the permanent or transitory components of earnings. Third, it is too re-
strictive to impose Gaussian marginal distributions for earnings dynamics models.

6.3.2 Joint distributions and implications for life-cycle earnings dynamics We now turn
to an analysis of life-cycle earnings dynamics which focuses on the degree of persistence
in the life cycle earnings process. Persistence is often measured with impulse response
functions, showing how shocks to a variable affect the mean of a variable at later dates.
Given our results in the last section, we are more interested in the tails of the distri-
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TaBLE 5. Estimated distributional indices under the ARMA(3, 3) model. The indices include
the mean, the standard deviation, the skewness, and the kurtosis. The numbers in parentheses
indicate the standard errors of the respective estimates. The last column shows the p-value of
the one-sided test of the null hypothesis that kurtosis is less than equal to three, against the
alternative hypothesis that it is greater than three.

ARMAC(3, 3) Mean SD Skewness Kurtosis Hj: Kurtosis < 3
Baseline: Time-varying coefficients

Us 0.000 0.378 —0.949 7.307 p-value =0.124
(0.020) (0.021) (0.497) (3.735)

Uy —0.000 0.418 —0.293 8.846 p-value = 0.000
(0.024) (0.023) (0.453) (1.465)

Usp 0.000 0.455 -0.178 6.954 p-value = 0.002
(0.031) (0.029) (0.432) (1.403)

V3o —0.000 0.314 —4.260 31.880 p-value = 0.000
(0.018) (0.035) (0.696) (6.801)

Vao —0.000 0.283 —3.290 24.914 p-value = 0.000
(0.021) (0.028) (0.879) (6.106)

Vs0 —0.000 0.246 —5.946 47.363 p-value = 0.500
(0.026) (0.049) (3910.480) (833,223.987)

Baseline: Time-invariant coefficients

Uy 0.000 0.376 —0.953 7.371 p-value =0.134
(0.021) (0.022) (0.526) (3.950)

Uy —0.000 0.417 —0.289 8.876 p-value = 0.000
(0.024) (0.023) (0.463) (1.463)

Us 0.000 0.457 —0.198 6.952 p-value = 0.003
(0.029) (0.028) (0.433) (1.434)

30 —0.000 0.317 —4.169 30.937 p-value = 0.000
(0.020) (0.035) (0.711) (6.917)

Vao —0.000 0.284 —-3.275 24.660 p-value = 0.000
(0.021) (0.028) (0.871) (6.043)

Vso —0.000 0.242 —6.101 49.495 p-value = 0.496
(0.023) (0.046) (84.350) (4392.234)

butions rather than the means. We instead measure persistence by using a measure of
lower tail dependence, which is the probability that earnings fall below a particular per-
centile point of the distribution at age ¢ if it was below that percentile point at age = < ¢.
Further, we focus on lower tail dependence in the permanent component and at differ-
ent ages. Thus, for example, provided that the permanent component of earnings of a
worker is in the bottom 1 percent of the distribution at age 30, what is the probability
that it stays in the bottom 1 percent thereafter? To answer this question, we draw trajec-
tories of the probability that the permanent component of earnings at age 30+ A falls be-
low the first percentile in the cross section provided that the worker had the permanent
component of earnings at age 30 below the first percentile in the cross-section.” This

“In addition to the estimated trajectories of these conditional probabilities, we also illustrate estimated
joint densities of the permanent and transitory components of earnings in the Online Supplemental Mate-
rial.
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TABLE 6. Estimated distributional indices under the ARMA(4, 4) model. The indices include
the mean, the standard deviation, the skewness, and the kurtosis. The numbers in parentheses
indicate the standard errors of the respective estimates. The last column shows the p-value of
the one-sided test of the null hypothesis that kurtosis is less than equal to three, against the
alternative hypothesis that it is greater than three.

ARMA(4, 4) Mean SD Skewness Kurtosis Hj: Kurtosis < 3
Baseline: Time-varying coefficients

Us —0.000 0.360 —0.689 6.071 p-value =0.197
(0.020) (0.022) (0.496) (3.603)

Uy —0.000 0.420 —0.311 7.804 p-value = 0.001
(0.024) (0.024) (0.453) (1.520)

Usp 0.000 0.429 —0.612 7.068 p-value = 0.011
(0.032) (0.030) (0.449) (1.769)

Vi 0.000 0.318 —4.434 34.961 p-value = 0.000
(0.020) (0.039) (0.766) (9.531)

Vao —0.000 0.288 —3.431 31.704 p-value = 0.001
(0.020) (0.035) (1.650) (9.283)

Vso —0.000 0.287 -3.711 31.328 p-value = 0.132
(0.029) (0.045) (2.103) (25.319)

Baseline: Time-invariant coefficients

Us —0.000 0.355 —0.640 5.686 p-value = 0.237
(0.022) (0.023) (0.519) (3.748)

Uy —0.000 0.419 —0.305 7.764 p-value = 0.001
(0.025) (0.024) (0.451) (1.539)

Us 0.000 0.436 —0.581 6.992 p-value =0.011
(0.029) (0.028) (0.434) (1.734)

30 0.000 0.323 —4.325 33.745 p-value = 0.000
(0.022) (0.040) (0.817) (9.336)

Vao —0.000 0.289 —3.418 31.635 p-value = 0.002
(0.021) (0.036) (1.770) (9.894)

Vso —0.000 0.276 —4.163 34.864 p-value = 0.456
(0.024) (0.044) (8.261) (289.995)

conditional probability is quantified by )\éo’t(0.0l) =PU; < Fﬁ,l (0.01)|U3p < FL_,310 (0.01))
where ¢t =30 + A; see Section 6.2. Under the bivariate Gaussian copula, it is well known
that lim,_, ¢ ’\éo,t(CI) = (0 must hold, and hence )\130’[(0.01) at ¢ = 0.01 is supposed to be a
very small probability. As such, Gaussian models have limited abilities to describe life-
cycle earnings dynamics of lower tail persistence. On the other hand, our semiparamet-
ric model can allow )‘éo, ,(0.01) to possibly take a high probability unlike the case of the
bivariate Gaussian copula.?

Figures 2a and 2b display trajectories of the lower tail dependence measure
/\130, ;(0.01) of permanent earnings for ages ¢ € {31, ..., 50} following the event of perma-
nent earnings less than or equal to the first percentile at age 30. The solid lines represent
the trajectories under our semiparametric model and the dashed lines represent those

8We considered measures of upper tail dependence as well but these measures were very noisy and we
do not present them.
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FiGure 1. Estimates of the AR parameter (left) and the MA parameter (right) under the
ARMA(1, 1) specification for the baseline sample (top) and the subsample of workers with
strong labor force attachment (bottom). The dashed and dotted curves indicate the boundary
of 90 percent and 95 percent confidence intervals, respectively.

under the bivariate normal distribution. The results are displayed under each of the
ARMA(0,0), ARMA(1, 1), ARMA(2,2), ARMA(3, 3), and ARMA(4, 4) specifications
with time-varying persistence parameters and with time-invariant persistence param-
eters. The figures thus show how lower tail dependence depends on the ARMA order,
whether life cycle effects in the ARMA process are present, and the effect of imposing
Gaussianity.
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F1GURE 2A. Trajectories of the lower tail dependence measure ’\éo, ,0.01) = P(U; < F&}(0.0l)l

U< F 5310(0.01)) of permanent earnings following the event of permanent earnings less than
or equal to the 1 percentile at age 30. The results are based on the baseline sample. The solid
lines represent the trajectories under our semiparametric model, while the dashed lines repre-
sent those under the bivariate normal distribution. The results are displayed under each of the
ARMA(0, 0), ARMA(1, 1), and ARMA(2,2) specifications with time-varying coefficients and
time-invariant coefficients.

In all cases, the probability of remaining in the lower first percentile drops immedi-
ately at the next age and then remains, fairly stably, thereafter. But the probability drops
to avery different level depending on the ARMA order, with persistence (i.e., immobility)
much higher at high-order ARMAs than at low-order ARMAs (i.e., the solid lines tend to
shift upward as the order increases. These results imply again that omitting higher-order
components in the ARMA model can provide restrictive implications for life-cycle earn-
ings dynamics and, specifically, lower-order ARMAs show too little persistence and too
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FiGURE 2B. Trajectories of the lower tail dependence measure /\éo’t(0.0l) =P(U; < F&tl(0.01)|
Uy <F 5310(0.01)) of permanent earnings following the event of permanent earnings less than
or equal to the 1 percentile at age 30. The results are based on the baseline sample. The solid
lines represent the trajectories under our semiparametric model, while the dashed lines repre-
sent those under the bivariate normal distribution. The results are displayed under each of the

ARMA(3, 3) and ARMA(4, 4) specifications with time-varying coefficients and time-invariant
coefficients.

much mobility in the permanent component. For example, under more flexible higher-
order ARMA models, such as ARMA(4, 4), the conditional probability )\130, ,(0.01) of ex-
tremely low permanent earnings remains as high as 0.9 until age 50 under our semipara-
metric model.

Regarding the the importance of age-varying ARMA parameters, we do not detect
qualitative differences in the trajectories between the model with time-varying persis-
tence parameters and the model with time-invariant persistence parameters. As such,
we fail to find different implications of omitting life-cycle effects in the persistence pa-
rameters for life-cycle earnings dynamics through our analysis. This conclusion is con-
sistent with our earlier conclusion from the analysis of marginal distributions.

Finally, regarding normality, we find that the trajectories of )\130, ,(0.01) under the
bivariate Gaussian distribution (dashed lines) are consistently lower than those under
the flexible semiparametric models. In particular, the Gaussian trajectories appear very
close to zero under more flexible higher-order ARMA models, such as the ARMA(4, 4)
model. This is consistent with the well-known fact that lim,_, ¢ /\130’ (@) =0 holds under
the Gaussian copula. On the other hand, as just noted, our semiparametric model allows
the life-cycle earnings dynamics to exhibit greater tail dependence than the Gaussian
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FiGure 3. Trajectories of the lower tail dependence measure )‘éo,t(q) = PWU; < Fljtl(q)l

Usp <F 5310 (¢)) of permanent earnings following the event of permanent earnings less than or
equal to the gth quantile at age 30 for g € {0.10, 0.05, 0.01}. The results are based on the baseline
sample. The solid lines represent the trajectories under our semiparametric model, while the
dashed lines represent those under the bivariate normal distribution. The results are displayed
under each of the ARMA(1, 1) and ARMA(4, 4) specifications with time-varying coefficients.

model can. Thus we find again that our semiparametric model gives a different answer
to earnings dynamics in the tails than would a Gaussian model.

Figure 3 displays trajectories of the lower tail dependence measures, /\éo’t(O.lO) and
Ag,(0.05), as well as Ay (0.01), under each of the ARMA(1, 1) and ARMA(4, 4) mod-
els with time-varying persistent parameters, but for the lower fifth and tenth percentile
points of the permanent component distribution rather than for the first. The results
show that the discrepancies imputed both to the order of the ARMA model and the Gaus-
sianity diminish as the percentile of interest increases. In other words, misspecification
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FiIGURE 4. Trajectories of the lower tail dependence measures )‘éo,t(Q) = P(U; < F, 17,1 (@)
Uz < FE;U (¢)) and )\io’t(q) =PU; < FE: (@|Ugo < FE;O (q)) of permanent earnings following the
event of permanent earnings less than or equal to the gth quantile at age 30 and 40, respectively,
for g € {0.10, 0.05, 0.01}. The results are based on the baseline sample. The solid lines represent
the trajectories under our semiparametric model, while the dashed lines represent those under
the bivariate normal distribution. The results are displayed under the ARMA(4, 4) specification
with time-varying coefficients.

of any of the three types will not cause much difference on the dynamic dependence at
a higher percentile, such as the tenth percentile, of the distribution.

A final issue we consider is whether our findings vary with age. For this, we exam-
ine results for age 40 instead of 30. Figure 4 displays trajectories of the lower tail de-
pendence measure )‘510, ,(0.10), /\207 ,(0.05), and )‘510, ,(0.01) under the ARMA (4, 4) models
with time-varying persistent parameters, as well as /\130, ,(0.10), AL (0.05),and AL, ,(0.01)

30,t 30,t
for the purpose of comparison. The results show that lower-tail persistence is consider-
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TaBLE 7. Estimated distributional indices under the ARMA(0, 0) model for the subsample of
individuals with strong labor force attachment. The indices include the mean, the standard de-
viation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard errors
of the respective estimates. The last column shows the p-value of the one-sided test of the null
hypothesis that kurtosis is less than equal to three, against the alternative hypothesis that it is
greater than three.

ARMA(0, 0) Mean SD Skewness Kurtosis Hy: Kurtosis < 3

Strong labor force attachment

Uso —0.000 0.332 —0.586 2.992 p-value = 0.513
(0.013) (0.009) (0.096) (0.249)

U 0.000 0.379 —0.399 3.240 p-value = 0.112
(0.015) (0.011) (0.093) (0.197)

Uso —0.000 0.382 —0.232 3.212 p-value = 0.326
(0.019) (0.014) (0.151) (0.472)

Vao 0.000 0.187 —1.436 9.240 p-value = 0.001
(0.009) (0.012) (0.439) (2.073)

Vio ~0.000 0.152 ~2.525 24.713 p-value = 0.005
(0.008) (0.016) (1.108) (8.389)

Vso —0.000 0.173 4332 39.945 p-value = 0.044
(0.011) (0.028) (1.832) (21.681)

ably lower at higher ages than at lower ages. This is a surprising result because it implies
that older workers have greater upward mobility if they have very low earnings than do
younger workers. However, the qualitative patterns of the implications of distributional
misspecification are the same between )‘éo,t(Q) and )‘io,t(‘I) for ¢ € {0.01, 0.05, 0.10}, for
the discrepancy between the two types of the lines is the largest for the first percentile
and diminishes as the percentile of interest increases.

6.4 Results for restricted samples

As described in Section 6.1, we consider two of restricted subsamples of the baseline
sample, one a subsample of workers with strong labor force attachment and one a sub-
sample of married workers. These two subsamples yield qualitatively very similar results
to each other, and we hence focus on the subsample of workers with strong labor force
attachment. A complete set of results for the subsample of married workers can be found
in the Online Supplemental Material but we also briefly discuss results for married work-
ers in Section 6.4.3.

6.4.1 Marginal distributions Tables 7, 8, 9, 10, and 11 summarize estimated indices
of the marginal distributions of the permanent and transitory earnings under the
ARMA(0,0), ARMA(1, 1), ARMA(2,2), ARMA(3,3), and ARMA(4,4) models with
time-varying persistence parameters and with time-invariant persistence parameters
for the strong labor force attachment subsample.®

91n addition to the estimated distributional indices, we also illustrate semiparametrically estimated
marginal densities of the permanent and transitory components of earnings in the Online Supplemental
Material.



Quantitative Economics 10 (2019) Semiparametric estimation 1527

TaBLE 8. Estimated distributional indices under the ARMA(1, 1) model for the subsample of
individuals with strong labor force attachment. The indices include the mean, the standard de-
viation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard errors
of the respective estimates. The last column shows the p-value of the one-sided test of the null
hypothesis that kurtosis is less than equal to three, against the alternative hypothesis that it is
greater than three.

ARMA(1, 1) Mean SD Skewness Kurtosis Hy: Kurtosis < 3

Strong labor force attachment: time-varying coefficients

Uso 0.000 0.316 —0.532 2.774 p-value = 0.790
(0.014) (0.010) (0.107) (0.281)

Uy —0.000 0.358 —0.556 3.401 p-value =0.108
(0.016) (0.013) (0.139) (0.324)

Usp —0.000 0.371 —0.351 3.115 p-value =0.413
(0.023) (0.017) (0.158) (0.527)

V30 —0.000 0.192 —1.323 7.837 p-value = 0.006
(0.011) (0.014) (0.420) (1.945)

Vao 0.000 0.184 —1.031 11.349 p-value = 0.004
(0.011) (0.016) (0.859) (3.153)

V50 0.000 0.158 —4.770 64.914 p-value = 0.497
(0.016) (0.040) (132.359) (9677.548)
Strong labor force attachment: time-constant coefficients

Usp 0.000 0.315 —0.535 2.764 p-value = 0.794
(0.015) (0.010) (0.109) (0.288)

Ui —0.000 0.358 —0.560 3.405 p-value =0.111
(0.017) (0.013) (0.144) (0.332)

Uso —0.000 0.370 —0.335 3.085 p-value =0.435
(0.0209) (0.016) (0.153) (0.524)

Va0 —0.000 0.193 —-1.299 7.747 p-value = 0.010
(0.011) (0.014) (0.436) (2.035)

Vio 0.000 0.185 —1.006 11.157 p-value = 0.004
(0.011) (0.017) (0.863) (3.122)

Vso 0.000 0.160 —4.784 61.908 p-value =0.484
(0.014) (0.037) (39.663) (1470.245)

The estimated means are very close to zero uniformly across all the models, as in
the baseline sample. But the standard deviations of the permanent and transitory com-
ponents are almost always somewhat smaller than those in the baseline sample, con-
sistent with the expectation that those with strong labor force attachment have more
stable profiles. Similar to the results for the baseline sample, the standard deviations of
the permanent component of earnings tend to decrease as the order of the ARMA model
increases while the standard deviations of the transitory component of earnings tend to
increase with the order of the ARMA model. Therefore, omitting higher-order terms in
the ARMA specification again can cause specification bias in the component distribu-
tions. On the other hand, similar to the results for the baseline sample, we do not detect
any outstanding evidence that the life-cycle effects in the persistence parameters sig-
nificantly matter for marginal distributions. The model implications for the subsample
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TaBLE 9. Estimated distributional indices under the ARMA(2, 2) model for the subsample of
individuals with strong labor force attachment. The indices include the mean, the standard de-
viation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard errors
of the respective estimates. The last column shows the p-value of the one-sided test of the null
hypothesis that kurtosis is less than equal to three, against the alternative hypothesis that it is
greater than three.

ARMA(2,2) Mean SD Skewness Kurtosis Hy: Kurtosis < 3

Strong labor force attachment: time-varying coefficients

Uso 0.000 0.305 —0.390 2.479 p-value = 0.993
(0.015) (0.010) (0.105) (0.210)

Uy 0.000 0.331 —0.338 3.227 p-value =0.269
(0.018) (0.013) (0.146) (0.369)

Uso 0.000 0.334 —0.298 2.300 p-value = 0.661
(0.024) (0.020) (0.304) (1.688)

V30 —0.000 0.188 —1.503 7.165 p-value = 0.021
(0.012) (0.014) (0.452) (2.055)

Vao —0.000 0.197 —1.640 8.369 p-value =0.016
(0.014) (0.017) (0.522) (2.518)

V50 —0.000 0.223 —2.306 25.355 p-value = 0.072
(0.020) (0.038) (2.083) (15.309)
Strong labor force attachment: time-invariant coefficients

Usp 0.000 0.303 —-0.377 2.442 p-value = 0.995
(0.016) (0.010) (0.110) (0.219)

Ui 0.000 0.330 —0.333 3.223 p-value = 0.281
(0.018) (0.013) (0.147) (0.385)

Uso 0.000 0.341 —0.269 2.449 p-value = 0.660
(0.022) (0.018) (0.253) (1.331)

V30 —0.000 0.191 —-1.513 7.077 p-value = 0.029
(0.013) (0.015) (0.481) (2.155)

Vao —0.000 0.199 —1.638 8.247 p-value =0.017
(0.014) (0.017) (0.526) (2.469)

Vso 0.000 0.212 —2.729 29.773 p-value =0.049
(0.017) (0.037) (2.113) (16.189)

discussed thus far about the mean and the standard deviation are therefore similar to
those for the baseline sample except for the magnitude of the standard deviations.

The estimated distributions of the permanent component of earnings entail signifi-
cantly negative skewness at ages 30 and 40 across all the model specifications. This pat-
tern of the results for the subsample differs from that of the results for the baseline sam-
ple, where the skewness of the permanent component distribution tends to disappear
as the order of the ARMA model increases. The magnitude of the skewness, however, is
always smaller for the restricted sample than for the baseline sample at age 30. Thus,
workers with stronger labor force attachment have less negative skewness than do other
workers, although the skewness does maintain itself later into the life cycle. Also unlike
the results for the baseline model, the hypothesis that the distributions of the perma-
nent component of earnings have a sub-Gaussian kurtosis is not rejected at ages 40 and
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TaBLE 10. Estimated distributional indices under the ARMA(3, 3) model for the subsample of
individuals with strong labor force attachment. The indices include the mean, the standard de-
viation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard errors
of the respective estimates. The last column shows the p-value of the one-sided test of the null
hypothesis that kurtosis is less than equal to three, against the alternative hypothesis that it is
greater than three.

ARMA(3, 3) Mean SD Skewness Kurtosis Hy: Kurtosis < 3

Strong labor force attachment: time-varying coefficients

Uso 0.000 0.292 —0.451 2.459 p-value = 0.983
(0.016) (0.011) (0.120) (0.256)

Uy —0.000 0.330 —0.352 3.355 p-value =0.182
(0.019) (0.013) (0.148) (0.390)

Uso 0.000 0.345 —0.275 2.445 p-value = 0.768
(0.023) (0.017) (0.195) (0.758)

V30 —0.000 0.203 —1.202 5.341 p-value = 0.071
(0.013) (0.015) (0.352) (1.596)

Vao 0.000 0.181 —1.675 10.175 p-value =0.030
(0.014) (0.017) (0.682) (3.829)

V50 —0.000 0.218 —2.589 28.596 p-value = 0.037
(0.017) (0.037) (1.976) (14.329)
Strong labor force attachment: time-invariant coefficients

Uso 0.000 0.291 —0.451 2.456 p-value = 0.984
(0.016) (0.011) (0.120) (0.255)

Ui —0.000 0.330 —0.351 3.354 p-value = 0.183
(0.019) (0.013) (0.148) (0.391)

Uso 0.000 0.345 —0.269 2.445 p-value =0.768
(0.023) (0.017) (0.192) (0.757)

V0 —0.000 0.204 —1.196 5.305 p-value = 0.077
(0.013) (0.015) (0.356) (1.613)

Vao 0.000 0.181 —1.676 10.167 p-value = 0.028
(0.014) (0.017) (0.683) (3.759)

Vso —0.000 0.218 —2.638 29.049 p-value =0.032
(0.017) (0.038) (1.965) (14.085)

50 at the level of 0.05 in any of the model specifications (hence less fat-tailed than the
overall population). On the other hand, the hypothesis that the distributions of the tran-
sitory component of earnings have a sub-Gaussian kurtosis is still rejected at ages 30
and 40 at the level of 0.05 across all the model specifications, similar to the results for
the baseline model. However, the kurtosis of the transitory component for the restricted
sample is always smaller than the kurtosis for the baseline sample under all the model
specifications at ages 30 and 40. Hence the subsample of workers with strong labor force
attachment has less evidence of fat tails in the transitory component of earnings.

6.4.2 Joint distributions and implications for life-cycle earnings dynamics Figures 5a
and 5b display trajectories of the lower tail dependence measure )\éo’t(0.0l) of perma-
nent earnings for ages ¢ € {31, ..., 50} following the event of permanent earnings less
than or equal to the first percentile at age 30 for the strong labor force attachment
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TaBLE 11. Estimated distributional indices under the ARMA(4, 4) model for the subsample of
individuals with strong labor force attachment. The indices include the mean, the standard de-
viation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard errors
of the respective estimates. The last column shows the p-value of the one-sided test of the null
hypothesis that kurtosis is less than equal to three, against the alternative hypothesis that it is
greater than three.

ARMA(4, 4) Mean SD Skewness Kurtosis Hy: Kurtosis < 3

Strong labor force attachment: time-varying coefficients

Uso —0.000 0.277 —-0.315 2.371 p-value = 0.978
(0.017) (0.012) (0.139) (0.313)

Uy 0.000 0.323 —0.617 3.473 p-value =0.180
(0.020) (0.015) (0.169) (0.517)

Usg 0.000 0.337 —0.280 2.021 p-value = 0.895
(0.025) (0.018) (0.184) (0.779)

V30 0.000 0.205 —1.355 5.507 p-value = 0.080
(0.014) (0.016) (0.368) (1.781)

Vao 0.000 0.191 —0.999 9.042 p-value =0.044
(0.015) (0.019) (0.710) (3.537)

V50 —0.000 0.228 —2.337 28.495 p-value = 0.041
(0.021) (0.043) (2.273) (14.647)
Strong labor force attachment: time-invariant coefficients

Uso —0.000 0.277 —0.309 2.359 p-value = 0.977
(0.017) (0.012) (0.142) 0.321)

Ui 0.000 0.323 —0.618 3.473 p-value =0.176
(0.020) (0.015) (0.167) (0.507)

Uso 0.000 0.337 —0.270 2.021 p-value =0.890
(0.026) (0.018) (0.184) (0.799)

V30 0.000 0.206 —-1.357 5.483 p-value = 0.080
(0.015) (0.016) (0.363) (1.764)

Vio —0.000 0.191 —0.997 9.031 p-value =0.043
(0.015) (0.019) (0.714) (3.520)

Vso —0.000 0.227 —2.386 28.827 p-value =0.097
(0.021) (0.043) (2.329) (19.870)

subsample. The solid lines again represent the trajectories under our semiparametric
model and the dashed lines again represent those under the bivariate normal distribu-
tion. The results are displayed under each of the ARMA(0, 0), ARMAC(1, 1), ARMA(2, 2),
ARMA(3, 3), and ARMA(4, 4) specifications with time-varying persistence parameters
and with time-invariant persistence parameters.

We obtain qualitatively the same results as those we obtained for the baseline sam-
ple. Comparing the life-cycle dynamics between the baseline sample and the restricted
sample, we see persistence patterns that are very close to one another in the baseline
and restricted samples under the ARMA(1, 1) and ARMA(2, 2) models but less per-
sistence in the restricted sample than in the baseline sample for the ARMA(3, 3) and
ARMA(4,4) models. Thus, at least for these measures of persistence, we find that, for
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F1GURE 5A. Trajectories of the lower tail dependence measure ’\éo, ,0.01) = P(U; < F{,}(0.0l)|

U< F 5310(0.01)) of permanent earnings following the event of permanent earnings less than
or equal to the 1 percentile at age 30. The sample consists of individuals with strong labor force
attachment. The solid lines represent the trajectories under our semiparametric model, while the
dashed lines represent those under the bivariate normal distribution. The results are displayed
under each of the ARMA(0, 0), ARMA(1, 1), and ARMA(2, 2) specifications with time-varying
coefficients and time-invariant coefficients.

higher-order ARMA models, those with strong labor force attachment are more likely to
move out of their initial quantile than the full population.

Regarding the three points of the focus of our analysis emphasized at the begin-
ning of Section 6, we once again conclude the following three points. First, under more
flexible higher-order ARMA models, such as ARMA(4, 4), the conditional probability
’\éo, ;(0.01) of permanent earnings at the first percentile remains as high as 0.7 under
the semiparametric model, while it stays as low as 0.2 under the bivariate Gaussian dis-
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FIGURE 5B. Trajectories of the lower tail dependence measure )‘éo [0.01) = P(U; < F&}(0.0l)l

Uy < F 17310(0.01)) of permanent earnings following the event of permanent earnings less than
or equal to the 1 percentile at age 30. The sample consists of individuals with strong labor force
attachment. The solid lines represent the trajectories under our semiparametric model, while the
dashed lines represent those under the bivariate normal distribution. The results are displayed
under each of the ARMA(3,3) and ARMA(4, 4) specifications with time-varying coefficients
and time-invariant coefficients.

tribution. Second, we fail to find different implications of omitting life-cycle effects in
the persistence parameters for life-cycle earnings dynamics through our analysis. Third,
our more flexible semiparametric model gives different answers to questions regarding
life-cycle dynamics of earnings than would a Gaussian model. These three points of the
conclusion are the same as for the case of the baseline sample.

6.4.3 Married workers In addition to the subsample of workers with strong labor force
attachment, we also estimate the model for the subsample of married workers. All the
results look similar to those presented for the subsample of workers with strong labor
force attachment; see the Online Supplemental Material for a complete set of results.
Therefore, we do not repeat discussions of the results for this subsample. However, two
remarks on the results are in order. First, the standard deviations of both the permanent
and transitory component distributions are smaller for this subsample than for the base-
line sample. Married men, therefore, have more stable earnings profiles than for men as
a whole. Furthermore, married men are more likely to exit the bottom 1 percentile than
was the case for men as a whole. This finding echoes that for men with strong labor force
attachment.
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7. CONCLUSIONS

In this paper, we have investigated identification and estimation of flexible state space
models. In our version of the canonical model, the permanent state U, follows a unit
root process and the transitory transitory state V; follows a semiparametric model of
ARMA(p, q) process. Using panel data of measurements Y;, we establish identification
of the nonparametric joint distributions for each of the permanent state and transitory
state variables over time. The constructive identification allows for closed-form sample
counterpart estimators.

We apply the identification and estimation method to the earnings dynamics of
U.S. men using the Panel Survey of Income Dynamics (PSID). Our results show that
the marginal distributions of log earnings of U.S. men are nonnormal, with significant
skewness and fatter tails of both the permanent and transitory components of earnings
than the normal. We also find earnings dynamics very different than the normal, for
our results show that the likelihood of remaining in a lower tail of the permanent earn-
ings distribution does not fall over time as much, suggesting considerably more earn-
ings mobility than would be found with a multivariate normality assumption. Another
important finding from our empirical analysis is that the estimates of the marginal dis-
tributions as well of persistence and dynamics of permanent earnings are very sensitive
to the degree of persistence in the transitory component. We find evidence for the exis-
tence of higher-order ARMA processes in the transitory component and that, with such
higher-order processes, the permanent component of earnings has much less variabil-
ity in marginal distributions and less mobility over time. Thus the transitory component
makes a much stronger relative contribution to the marginal earnings distributions and
to earnings mobility than in much of the prior literature, which often allows much less
persistence in the transitory component. We also consider earnings dynamics in sub-
samples of men with strong labor force attachment and of married men, finding both
subsamples to have lower variances of permanent and transitory shocks than for the
full population but also more earnings mobility than that population.

As for future research, further generalizations of the state space model would be use-
ful but the restrictions on the permanent state model and the transitory state model
cannot be relaxed to the full extent simultaneously, because the permanent and tran-
sitory states are unobserved and cannot be distinguished without model restrictions.
But there are a couple of directions for future research. One direction is to partially relax
the independence of the innovation 7, in the permanent state transition, for instance,
by accommodating heteroskedastic or dependently skewed distributions of permanent
shocks, while keeping the Martingale feature of the canonical model. The other direc-
tion is to relax the semiparametric specification of the ARMA model for the transitory
state variable by accommodating general nonparametric ARMA processes. Both direc-
tions are desirable, but it is essential to maintain nonparametric distributional assump-
tions and higher orders of the ARMA specification for the transitory state process as we
stressed in discussing the empirical results.

As for applications, it would be helpful to modify our model to allow for changes in
the earnings dynamic process with calendar time, for the growing literature on whether
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earnings volatility has been growing in the U.S. over time has only used simpler models
of that process. An extension of our model to the earnings dynamics of women would
also be of interest, for that would require adding a process for moving in and out of a
zero-earnings state. Finally, applying our model to data sets drawn from administrative
records (Social Security earnings, unemployment insurance earnings) would, given the
large sample sizes of those data sets, allow more precise estimates of the distributions of
the components, particularly in the tails.

ONLINE SUPPLEMENTAL MATERIAL

The Online Supplemental Material contains proofs for the identification (Appendix A),
further details on estimation (Appendix B), large sample theories of the proposed esti-
mator (Appendix C), and additional results of the application (Appendix D).
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