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Climate change and U.S. agriculture: Accounting for
multidimensional slope heterogeneity in panel data
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We study potential impacts of future climate change on U.S. agricultural produc-
tivity using county-level yield and weather data from 1950 to 2015. To account for
adaptation of production to different weather conditions, it is crucial to allow for
both spatial and temporal variation in the production process mapping weather
to crop yields. We present a new panel data estimation technique, called mean
observation OLS (MO-OLS) that allows for spatial and temporal heterogeneity in
all regression parameters (intercepts and slopes). Both forms of heterogeneity are
important: We find strong evidence that production function parameters adapt
to local climate, and also that sensitivity of yield to high temperature declined
from 1950–89. We use our estimates to project corn yields to 2100 using 19 climate
models and three greenhouse gas emission scenarios. We predict unmitigated cli-
mate change will greatly reduce yield. Our mean prediction (over climate models)
is that adaptation alone can mitigate 36% of the damage, while emissions reduc-
tions consistent with the Paris targets would mitigate 76%.
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Leading scientific and environmental institutions warn that future climate change
may severely impact agricultural productivity and global food supply (Porter et al.
(2014)). But studies that estimate the sensitivity of agriculture to climate, in hopes of ob-
taining insight into effects of future climate change, have given mixed results. Projected
impacts of climate change on U.S. agriculture in particular range from severe damage to
productivity (e.g., Schlenker and Roberts (2009)) to negligible damage (e.g., Butler and
Huybers (2013)). Resolving this uncertainty is one of the top priorities for improving cli-
mate change impact assessments (Lobell and Burke (2008)).
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The impact of climate change on crop yield will depend critically on adaptation by
agricultural producers. This may entail using more heat tolerant hybrids, improved wa-
ter retention in fields, irrigation, adjusting sowing density, etc. The existence of adapta-
tion in the historical data implies spatial and temporal heterogeneity in the production
process mapping weather to crop yields. Thus, we would expect the production func-
tion to exhibit region and time fixed effects in both intercepts and slopes, where the
fixed effects are correlated with regional and temporal variation in climate. This com-
plex heterogeneity structure creates important challenges for the proper econometric
modelling of climate impacts—challenges that have not been fully addressed in prior
literature.

We investigate these issues using weather and crop yield data for U.S. counties from
1950 to 2015. We focus on corn, as it is historically the largest crop in the U.S. in terms
of tonnage. Prior to our work, several authors investigated agricultural adaptation us-
ing panel data regressions of yield on temperature and precipitation (see, e.g., Schlenker
and Roberts (2009), Burke and Emerick (2016)). Particularly relevant are Butler and Huy-
bers (2013), who allow for heterogeneity in heat sensitivity across counties, and Roberts
and Schlenker (2012), who allow for variation over time (common to all counties). But
prior work has not accommodated adaptation across both regions and time in a flexible
way.

Our first main contribution is to present a new panel data method that allows us
to flexibly estimate the extent of historical adaptation to high temperatures. As in the
literature cited above, we define “adaptation” broadly as including all sources of covari-
ation between heat and heat sensitivity.1 As variation in heat sensitivity can occur across
space and over time, we develop a method we call “mean observation OLS” (MO-OLS)
that is able to feasibly estimate in large panel datasets a model that contains both county
and time fixed effects in both the intercept and slope coefficients. It is a more flexible
approach for modelling adaptation than in prior studies, and we find that it offers sub-
stantial improvements in fit over existing econometric models of yield.2

The MO-OLS approach we develop here should be useful in contexts beyond the
present application. There are many cases where both cross-sectional heterogeneity and
temporal parameter variation are of interest, so a method that can handle both in a com-
putationally feasible manner should have broad applicability.3 For example, in macroe-
conomics, time-varying parameter models are often used to study how key economic
relationships—such as fiscal multipliers or the Beveridge curve—change over time in re-
sponse to government policy or changes in the economic environment. Modeling unit-

1Adaptation as defined here includes farmers’ active adaptation of growing techniques to temperature,
as well as any other factors (not under farmers control) that cause yields to be less heat sensitive under
hotter conditions.

2In a follow-up article, Keane and Neal (2020a) show a MO-OLS model can produce more accurate out-
of-sample forecasts of corn yield than a deep neural net using the same inputs.

3Notably, it may be important to model slope heterogeneity both across units and over time even if one
is only interested in average marginal effects. Appendix D shows how conventional panel data methods
like fixed-effects or mean-group regression can give severely biased estimates of average marginal effects
in environments where both dimensions of heterogeneity exist.
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specific slope heterogeneity at the same time would allow one to expand this analysis to
account for heterogeneity in those relationships by country, region, or industry.4

Returning to our study of corn yields, we also consider a simple parametric alter-
native to MO-OLS where, in the yield regression, we let the coefficient on high tempera-
tures be a theoretically motivated nonlinear function of temperature itself—allowing the
sensitivity of yield to high temperatures to decline as the frequency of high temperatures
increases. We find a fairly close agreement between the parametric estimates of temper-
ature sensitivity and the MO-OLS (fixed-effects) estimates. Both approaches imply that
the heat sensitivity of corn yields declines with temperature according to a log-linear
relationship similar to that implied by our simple theory.5

Using both MO-OLS and the parametric approach, we find that significant adapta-
tion occurred across hot/cool counties, as well as over time from 1950 to 1989.6 This
is contrary to earlier conclusions of Schlenker and Roberts (2009) and Burke and Em-
erick (2016) that there is little evidence for adaptation in corn yields. Yet, we also find
that adaptation stalled after 1989. This is consistent with a trend toward higher sowing
densities, which generate higher yield in good years, but worsen heat stress in drought
years (see Lobell et al. (2014)). The substantial expansion of crop insurance in the early
1990s may have encouraged this trend, by reducing the incentives for farmers to adapt
to extreme heat (see Annan and Schlenker (2015)).

Our second main contribution is to use our econometric models to project future
corn yields annually until 2100, using temperature and precipitation projections from
19 climate models under three greenhouse gas emissions scenarios. We provide pro-
jections both with and without adaptation, utilizing our estimated historical relation-
ship between temperature and heat sensitivity to predict adaptation. This approach re-
lies on the admittedly strong assumption that future adaptation to high temperatures
can be forecast based on historical adaptation patterns. But we argue this is an impor-
tant benchmark for assessing how much damage mitigation may be plausibly be ex-
pected from adaptation. Given this assumption, our econometric models allow us to
compare the effectiveness of adaptation versus emissions reduction as ways to mitigate
crop damage. By using 19 climate models, we also quantify the variability in forecast
outcomes across models.

4For example, Auerbach and Gorodnichenko (2012) studied how fiscal multipliers vary over business cy-
cles, while Auerbach, Gorodnichenko, and Murphy (2020) studied heterogeneity across regions/industries,
but neither paper considers both. Benati and Lubik (2014) studied how the Beveridge curve changes over
time, while many papers study how it varies by country/region, but we are unaware of work that stud-
ies both. Johnson and Papageorgiou (2020) reviewed work on cross-country growth regressions, including
work that models either cross-sectional heterogeneity or time-variation in convergence rates, but not both.
For additional examples, see Hsiao and Pesaran (2008) who survey econometric models with slope hetero-
geneity across either time or space.

5Our approach is related to Butler and Huybers (2013), who let the sensitivity of yield to high temperature
depend on average temperature in a county. But they only allow for heterogeneity in heat sensitivity across
counties and not over time. We show that time effects are also very important.

6We also show, in Appendix B, that ignoring adaptation across counties (i.e., ignoring fixed effects in
slopes) in econometric models of crop yield leads to underestimation of yield sensitivity to high tempera-
tures. Our estimates imply this underestimation is on the order of 60 to 85%.
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The UN-IPCC uses a set of “representative concentration pathways” (RCPs) for
greenhouse gas emissions based on different policy scenarios. We predict “business as
usual” emissions growth (the RCP85 scenario), combined with no adaptation to climate
change, will cause catastrophic damage to corn yield. Our central projection is a 70%
reduction in yield by 2100, with an 80% prediction interval from 51 to 89%.7 We pre-
dict adaptation consistent with that observed in the historical data may avert from 29 to
44% of the total damage over 2020–2100. Thus, while adaptation may be important, it
seems implausible that the U.S. can rely on adaptation alone to protect corn yields from
substantial impacts.

Next, we consider “moderate” emissions reductions, consistent with the UN-IPCC’s
“RCP45” scenario, which is somewhat more ambitious than current government
pledges. Our central projection is that this would avert 55% of the total damage to corn
yield without any adaptation, or 61% if we factor in adaptation. Finally, we consider sub-
stantial emissions reductions, consistent with the RCP26 scenario, which follows from
the most ambitious targets under the Paris agreement. We predict this would avert 76%
of damage, even without adaptation. Thus, while adaption has the potential to avert a
meaningful fraction of yield damage, it seems that substantial emissions reductions will
be necessary to avert most of the potential damage from climate change.

The paper is structured as follows: Section 1 presents a simple model of agricul-
tural yield with adaptation, to provide a coherent framework for the empirical work.
Section 2 discusses our econometric methods, including the MO-OLS estimator. Sec-
tion 3 describes our data. Section 4 presents our main econometric results for corn
yield. Section 5 presents our projections for corn yield through to 2100. Section 6 con-
cludes. A Mathematical Appendix provides proofs of MO-OLS properties. Eight Online
Appendices are found in the Online Supplementary Material (Keane and Neal (2020b))
and extend the results of the article, including Monte Carlo simulations and results for
soybeans.

1. A simple model of agricultural yield with weather and adaptation

There is a long tradition in agricultural economics of estimating production functions
for corn yield. Starting from the classic work by Wallace (1920), researchers have esti-
mated regressions for annual yield as a function of temperature and precipitation dur-
ing the growing season. Recent work uses modern panel-data techniques to control for
county fixed effects (e.g., to account for soil quality) and common time effects. Here, we
present a simple model that (i) rationalizes the conventional econometric specification
and (ii) shows how adaptation generates fixed-effects heterogeneity in slopes.

We start with a production function for corn that incorporates measures of temper-
ature:

Yit/Cit =AtμiIit
(
1 +β1(GDDit − GDDmin)+β2KDDit

)
� (1)

7The wide prediction interval stems from substantial disagreement across climate models about future
weather conditions in the corn growing counties of the U.S. In the results section, we will show that un-
certainty about future yields is due more to uncertainty across climate models than across econometric
models.
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Here, Yit is output of corn for farmer i at time t and Cit is the number of acres planted, so
the dependent variable is yield. At is total factor productivity at time t and μi is an area
effect (e.g., soil quality). The term Iit is a composite of conventional inputs; for example,
capital, labor, fertilizer. We assume the functional form of Iit is common for all i.

The variables GDDit and KDDit capture effects of temperature. “Growing degree
days,” or GDDit , is the total hours in the growing season that the crop experiences ben-
eficial temperature. “Killing degree days,” or KDDit , is the total hours of harmful tem-
peratures. GDDmin is the minimum level of GDD needed to obtain a positive yield. The
percent shift in yield due to temperature factors is x = β1(GDDit − GDDmin)+β2KDDit .
We omit precipitation for simplicity, but it is included in the econometric models.

Now we show how the simple model in (1) can rationalize the yield models estimated
in the literature. Taking the log of crop yield and using the approximation ln(1 + x) ≈ x,
which is accurate, as values of x outside the +20% to −20% range are rare, we obtain

yit = ln(At)+ (
ln(μi)−β1GDDmin

) + ln(Iit)+β1GDDit +β2KDDit � (2)

where yit = ln(Yit/Cit). Equation (2) is akin to that estimated in several recent papers.
Typically, these papers use fixed effects over i and t to capture the At , μi, and Iit terms.

This approach is valid if we can write ln(Iit)= fi+ft +εit , where fi and ft denote vari-
ation in inputs over farms/time that are captured by unit and time fixed effects,8 while
εit is an idiosyncratic factor uncorrelated with time t weather shocks. Then εit provides
the econometric error for estimation of (2). As a practical matter, research on corn yield
emphasizes the role of weather in the production function (using i and t dummies to
capture other inputs) for two reasons: variation in yield over time—beyond what is ex-
plained by farm/time effects—is well explained by variation in weather (Tannura, Irwin,
and Good (2008), Westcott and Jewison (2013), Wang, Holan, Nandram, Barboza, Toto,
Anderson (2012)), and modification of conventional inputs after weather shocks are re-
vealed has only minor effects on yield.9

Next, we extend this simple model to account for adaptation. Assume that by bearing
a cost farmers can reduce sensitivity of yield to high temperature (e.g., paying a premium
for drought resistant seed). To capture this, let the KDD coefficient be β2it = s/(1 + αit),
where s < 0 is the effect of high temperatures on yield absent any adaptation, while αit

denotes units of adaptation purchased by farmer i in period t. Letting γ denote the price
of adaptation, profit for farmer i at time t is πit = ptYit −γαit − rtIit where pt is the price
of the crop, and rt is the rental rate per unit of Iit .10 To maximize profit, farmers purchase

8For instance, if farmers use a common technology and face common input and output prices, then
the time factor ft will capture proportional year-to-year shifts in inputs across all farmers in response to
changes in input or expected output prices.

9In contrast, if changes in Iit could mitigate unanticipated shocks to KDD, then β2 would be biased
toward zero. The traditional agricultural economics literature (implicitly) rules this out when it estimates
versions of (2). But (2) could still be interpreted as a reduced form, provided input prices are captured by
the fixed effects.

10Recall Iit is a composite of conventional inputs such as capital and labor. Given a common homothetic
technology (to rule out scale effects) and common factor prices, all farmers will use inputs in the same
proportions. Then rt can be interpreted as the constant unit price of the optimal bundle of inputs.
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Figure 1. Relationship between α∗
it , β

∗
2it , and KDDit . Note: This graph presents optimal values

of β∗
2it and α∗

it (secondary vertical axis) as a function of KDDit . We use a normalization of p such
that pCitAtIit = 1 and s = −0�01, which produce values of β∗

2it that is within a range consistent
with our econometric analysis.

the optimal level of adaptation. Setting ∂π/∂α = 0, we obtain

α∗
it =

√
pt(CitAtμiIit)(−s)KDDit

γ
− 1�

Thus as KDDit increases the optimal level of adaptation increases. Farms in hotter
counties/time periods have more incentive to adapt. Figure 1 plots the optimal level of
adaptation α∗

it and the implied coefficient β2it against KDDit . As we see, the relationship
between KDDit and the heterogeneous coefficient β2it closely resembles a log-linear
function. Of course, this depends on the functional form in (2). However, this prediction
of the simple model is testable, and it is supported by our estimates. More importantly,
the model illustrates how adaptation renders the coefficient on KDDit heterogeneous,
and the heterogeneity will be correlated with the regressor itself. To capture this requires
an econometric method that allows for fixed effects in slopes (not just intercepts).

Letting both the KDDit and GDDit coefficients be heterogeneous across i and t, and
using time and area fixed-effects (which we denote by τt and ci) to pick up the At , μi, ft
and fi terms, we obtain a modified version of equation (2) of the form:

yit = τt + ci +β1itGDDit +β2itKDDit + εit � (3)

In Section 2.3, we explain how MO-OLS makes it feasible to estimate models like (3) with
fixed effects in intercepts and slopes in large panels. In Section 4, we use versions of (3)
to study the effects of temperature on crop yield across U.S. counties and over time.

Note that our simple model is at the farmer level, while in Section 4 we will estimate
models at the county level. In Appendix A, we show that the main predictions of the
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farmer-level model (i.e., that β2it is positively correlated with KDDit and the relationship
is approximately log-linear) carry over to a county-level model.

2. Econometric methods

2.1 Previous approaches to modelling crop yield

Several recent papers estimate effects of temperature on crop yield using the “degree
day” approach. This recognizes that moderate temperatures are beneficial for yield,
while high temperatures cause damage. For instance, Schlenker and Roberts (2009) es-
timated county-level panel-data yield regressions of the following form:

yit = ci + τt +
39∑

j=0�3����

βj(DDj�it − DDj+3�it)+β40PRECit +β41PREC2
it + εit� (4)

where yit is log yield for county i, year t. The degree day measure DDj�it is total time over
the growing season that the crop experiences temperatures above j◦C. This model allows
the effects of temperature to differ across 3◦ degree bands. PRECit is total precipitation
during the growing season. The ci and τt are county and time fixed effects.

Other authors simplify this model by splitting degree days into those above and be-
low 29◦C, which is considered a critical threshold for corn.11 Cumulative beneficial tem-
peratures (“growing degree days”) are given by GDDit = DD0�it − DD29�it and harmful
temperatures (“killing degree days”) are given by KDDit = DD29�it . For instance, Lobell,
Banziger, Magorokosho, and Vivek (2011) and Burke and Emerick (2016) estimate equa-
tions similar to the following:

yit = ci + τt +β1GDDit +β2KDDit +β3PRECit +β4PREC2
it + εit � (5)

This is basically equation (2) of Section 1, with county and time effects used to capture
the At , μi and Iit terms, and precipitation added. In equations (4) and (5), the key pa-
rameter of interest is β2 < 0, which captures the extent to which high temperatures re-
duce crop yield. The county fixed effects ci capture intercept heterogeneity that is county
i specific (such as soil quality), while the time effects τt capture changes in total factor
productivity that are common across counties but vary between years t.

Several studies use the degree day approach to estimate the extent of adaptation to
high temperatures, motivated by the idea that the extent of historical adaptation informs
us about the scope for future adaptation. For instance, Schlenker and Roberts (2009)
test for evidence of historical adaptation to high temperatures by running regressions
like (4) and (5), splitting the sample into northern and southern U.S. states and also
by 1950–1977 and 1978–2005 periods. Surprisingly, they find coefficients do not differ

11At temperatures below 29◦C, the corn plant can be viewed as a machine for converting heat, water, and
nutrients into corn. But temperatures above 29◦C hamper photosynthesis, predominantly by increasing the
need for soil water to sustain carbon assimilation, and by increasing the rate of transpiration (which drains
the plant’s water supply). Both factors contribute to water stress by increasing the vapour pressure deficit
(see Lobell, Hammer, McLean, Messina, Roberts, and Schlenker (2013) for details). High temperature can
also damage plant tissue directly through heat stress.
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significantly by region or time, which they take as evidence that historical adaptation
has been very limited.

Burke and Emerick (2016) noted that, in conventional county fixed-effects models
with homogeneous slopes, effects of temperature are identified off of short-run (i.e., an-
nual) deviations of temperature from county means. They adopt a “long difference” ap-
proach to try to estimate the response of yields to long-term changes in temperature.
Specifically, they estimate a “long difference” regression similar to

�yis = cs +β1�GDDis +β2�KDDis +β3�PRECis +β4�PREC2
is +�εis� (6)

where �Xis is defined as the change in the average value of X in county i of State s from
1998–2002 to 1978–82. Comparing estimates of (6) with a conventional panel-data fixed
effects model (5) estimated on annual county-level from 1980 to 2000, they find similar
coefficients on KDD. Thus, they infer that adaptation was fairly minor over this period.12

It is important to recognize that all the approaches we have discussed rely on fixed-
effects models with homogeneous slopes to provide consistent estimates of the sensi-
tivity of crop yield to temperature. Appendix B demonstrates that this assumption is un-
likely to hold in practice, as correlation between the (heterogeneous) slope coefficients
and temperature, arising due to adaptation, leads to bias in estimating temperature ef-
fects.

In contrast to studies we have discussed so far, Butler and Huybers (2013) ran sepa-
rate regressions by county for 1981 to 2008, and conclude from the county-specific coef-
ficients that substantial adaptation has occurred across counties with different climates.
In projecting effects of climate change on crop yields, they argue that losses could be
halved by adaptation. The use of county-specific regressions avoids the criticism that the
coefficients on temperature are identified from short-run variation (i.e., weather rather
than climate). Roberts and Schlenker (2012) studied whether corn yield has become less
sensitive to high temperatures over time, by estimating time-varying regression param-
eters, and conclude it has not. These approaches are related to ours, in that slope pa-
rameters are either county-specific or time-varying. We generalize these approaches by
allowing for both county and time effects in slopes, thus allowing for adaptation both
across counties and over time.

Finally, outside of agriculture, Deschênes and Greenstone (2011) modeled adapta-
tion by interacting current temperature with mean temperature of a region in order to
estimate effects of climate change on mortality. Dell, Jones, and Olken (2012) used this
approach to estimate effects of climate change on economic growth. Neither paper finds
evidence of systematic heterogeneity in the marginal effect that would be indicative of
adaptation.

2.2 Two approaches to modeling adaptation

Here, we propose two complementary approaches to modeling crop yield that account
for potential adaptation to high temperatures. A useful starting point is the conventional

12Liang et al. (2017) and Ortiz-Bobea, Knippenberg, and Chambers (2018) considered a related question
of whether total factor productivity of U.S. agriculture (across multiple crops) has become more sensitive
to the climate over time.



Quantitative Economics 11 (2020) Climate change and U.S. agriculture 1399

two-way fixed effects specification (FE-OLS) that we repeat for convenience:

yit = ci + τt +β1GDDit +β2KDDit +β3PRECit +β4PREC2
it + εit � (7)

In Appendix B, we show how, given heterogeneity in the KDD coefficient (β2it ) induced
by adaptation, the FE-OLS estimate of β2 in (7) is likely to be an upward biased (i.e.,
toward 0) estimate of the mean KDD coefficient.13

In Section 1, we presented a simple model that rationalized the widely-used speci-
fication in (7). When we extended the model to include adaptation, it implied that the
effect of high temperatures on crop yield is log-linear function of KDDit . Thus, one way
to capture adaptation is the parametric specification:

yit = ci + τt +β1GDDit +β20KDDit +β21
(
ln(KDDit) ∗ KDDit − KDDit

)
+β3PRECit +β4PREC2

it + εit (8)

which implies that the marginal effect of KDDit on yit is the log-linear function:

∂yit
∂KDDit

= β̂20 + β̂21 ln(KDDit)� (9)

The model in equation (8) can be simply estimated using FE-OLS. If β̂21 > 0, it implies
that the adverse KDD effect is smaller in hotter counties or time periods.14 But this ap-
proach relies on the parametric assumptions in Section 1 being correct.

Our second—and more novel—approach to estimating adaptation is to estimate a
model with both spatial and temporal heterogeneity in the slope coefficients, as in

yit = ci + τt +β1itGDDit +β2itKDDit +β3itPRECit +β4itPREC2
it + εit � (10)

This approach is more flexible, as we do not have to specify a particular form of non-
linearity for the KDD coefficient. Instead, we allow the slope heterogeneity to be corre-
lated with the regressors. Then, by analyzing the distribution of the estimates β̂2it post-
estimation, we can determine the nature of the relationship between KDDit and β̂2it (if
any). Of course, estimating (10) without further restrictions would result in more un-
known parameters than data points. To achieve identification, we restrict attention to
additive heterogeneity across the county/time dimensions, as in

βkit = βk + λki + θkt� k= 1� � � � �4� (11)

This set up captures adaptation across both counties and time periods.15 The implica-
tion of additive fixed effects in slopes is that each county’s relative sensitivity to weather

13This is because FE-OLS ignores the correlation between KDDit and β2it generated by adaptation.
14Alternatively, we could allow the KDD coefficient to be a log-linear function of a measure of average

temperature in a county, as in Butler and Huybers (2013). But this does not capture adaptation over time
within counties.

15Note the three terms βk, λit , and θit are only separately identified given location normalizations. The
reason for writing βkit as the sum of these three terms will become apparent in Section 2.3.
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is fixed over time. Time effects shift all county’s sensitivities up or down to the same
degree.

The direct way to estimate (10)–(11) is via OLS, where each regressor is interacted
with a full set of dummies for each i and t. We call this the “brute force” approach. In a
panel with large N and T , this is infeasible as the regressor matrix grows extremely large.

Recall that in large panels it is standard to estimate models with fixed effects in in-
tercepts by demeaning the data for each unit prior to running OLS. Frisch and Waugh
(1933) showed this simple procedure gives the fixed effects estimator. Similarly, one can
estimate models with unit fixed effects in both intercepts and slopes by running OLS re-
gressions at the unit level (Pesaran and Smith (1995)). But this approach is not possible
for models with time effects, which exhaust all degrees of freedom at the unit level. As a
result, the literature lacks a computationally practical approach to estimate models with
heterogeneous slopes in large panels in the presence of time effects.

Accordingly, in Section 2.3 we present a computationally practical method to esti-
mate models with additive slope heterogeneity over two dimensions that may be corre-
lated with the regressors, as in (10)–(11). We call this the ‘mean observation OLS’ esti-
mator (MO-OLS), and it is numerically equivalent to the “brute force” OLS approach.

Importantly, the data variation that identifies the KDD coefficient(s) in (10)–(11), us-
ing the MO-OLS approach, is fundamentally different from that in the FE-OLS model
(7). In FE-OLS, slopes are identified from the response of yield to idiosyncratic variation
in the regressors (i.e., local weather shocks). But, as we show in Appendix E, if KDD has a
permanent/transitory structure, and we use MO-OLS, then the λi will be identified from
the response of yield to permanent differences in counties’ climates, while the θt will
be identified from responses to aggregate time effects in U.S. weather. Thus, MO-OLS
can identify long-term adaptation by farmers (in the form of slope heterogeneity) that is
driven by county level climate, or by common time effects.

It is important to be clear about the types of adaptation our approach captures.
We define “adaptation” broadly as including all factors that alter sensitivity of yield to
weather, which we model as heterogeneity across counties/time in marginal effect of
KDD on crop yield. This captures several forms of active farmer adaptation to weather,
including adoption of heat resistant seed hybrids, irrigation, improved water retention
in the fields, and sowing density. But it does not capture other adaptations such as crop
switching, changes to the growing season, or land use changes.16 Heterogeneity in slope
parameters will also capture “natural” adaptation, by which we mean any inherent non-
linearity in the relation between temperature and yield generated by plant biology. For
the purpose of obtaining unbiased projections of effects of climate change on crop yield,
a model should account for both farmer and natural adaptations. But a limitation of our
approach is we may subsume cross-county variation in heat sensitivity due to factors
that cannot be altered further.

16However, in Section 5.4 we examine heterogeneity in the effects of climate change across counties. This
sheds light on the potential for land use changes to mitigate damage.
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2.3 The MO-OLS algorithm

Here, we present the mean observation OLS (MO-OLS) procedure that we use to esti-
mate (10)–(11). This is the first computationally feasible panel-data estimator that al-
lows for fixed-effects slope heterogeneity over space and time. Consider the following
generic model that includes fixed effects in both intercept and slopes:

yit = β′
itxit + uit (12)

for units i = 1� � � � �N and time periods t = 1� � � � �T , where xit = (1�x1it � � � � � xKit)
′ is a

(K + 1) × 1 vector of regressors, βit = (β0it �β1it � � � � �βKit)
′ is a (K + 1) × 1 vector of co-

efficients that vary across individuals and over time, and uit is the idiosyncratic error
term. Note that xit includes a constant term, which accordingly allows for intercept het-
erogeneity across i and t. xit may also include lags of the dependent variable or any of
the regressors as needed. We assume A.1: uit is i.i.d., A.2: the regressors are weakly ex-
ogenous E(xkisuit)= 0 ∀k for s ≥ t, and A.3: E(u2

it |xkit) < ∞ ∀k.
We further assume A.4: the coefficient heterogeneity is additively separable, such

that βit = β + λi + θt , where β = (β0�β1� � � � �βK)
′ is the constant effect across all ob-

servations, λi = (λ0i� λ1i� � � � � λKi)
′ are the individual effects that vary across every unit

in the panel, and θt = (θ0t � θ1t � � � � � θKt)
′ are time effects that vary between each time

period.
A “brute force” approach to estimating (12) is to run OLS on a model that includes:

(i) dummy variables for each i and t (to capture fixed effects in the intercept), and
(ii) a complete set of interaction terms between the regressors and the i and t dum-
mies (to capture unit/time fixed effects in slopes). This is computationally infeasible in
medium to large panels, as it involves (N + T)(K + 1) regressors, making it impractical
to store and invert X ′X , or to solve the linear system (X ′X)β = X ′Y .17 See Appendix C
for details.

Instead, MO-OLS constructs consistent estimates of βit by running a series of feasi-
ble regressions and then removing the resulting bias. MO-OLS does this by combining
three types of regressions: pooled, i-specific, and t-specific. First, rewrite (12) as

yit = x′
itβ+ vit�

vit = x′
itλi + x′

itθt + uit �

Consider the pooled OLS estimator of β:

β̂=
(

1
NT

N∑
i=1

T∑
t=1

xitx
′
it

)−1(
1

NT

N∑
i=1

T∑
t=1

xityit

)
�

17In panels with very large N , such as marketing datasets with many products, even models with fixed
effects in the intercept alone are computationally daunting, unless one uses the Frisch and Waugh (1933)
“within” transformation.
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Expanding on yit and simplifying yields

β̂ = β+Q−1
xx�NT

(
1

NT

N∑
i=1

T∑
t=1

xitx
′
itλi

)

+Q−1
xx�NT

(
1

NT

N∑
i=1

T∑
t=1

xitx
′
itθt

)
+Q−1

xx�NT

(
1

NT

N∑
i=1

T∑
t=1

xituit

)
� (13)

where Q−1
xx�NT = ( 1

NT

∑N
i=1

∑T
t=1 xitx

′
it)

−1. Next, consider the unit-specific regressions:

yit = x′
it (β+λi)+ vit�

vit = x′
itθt + uit �

The unit-specific OLS regressions yield

β̂i =
(

1
T

T∑
t=1

xitx
′
it

)−1(
1
T

T∑
t=1

xityit

)
�

Expanding on yit and simplifying yields

β̂i = β+λi +Q−1
xx�T

(
1
T

T∑
t=1

xitx
′
itθt

)
+Q−1

xx�T

(
1
T

T∑
t=1

xituit

)
� (14)

where Q−1
xx�T = ( 1

T

∑T
t=1 xitx

′
it)

−1. Next, consider the set of time-specific regressions:

yit = x′
it(β+ θt )+ vit�

vit = x′
itλi + uit �

The time-specific OLS regressions yield

β̂t = β+ θt +Q−1
xx�N

(
1
N

N∑
i=1

xitx
′
itλi

)
+Q−1

xx�N

(
1
N

N∑
i=1

xituit

)
� (15)

where Q−1
xx�N = ( 1

N

∑N
i=1 xitx

′
it)

−1.

Given the pooled, unit-specific and time-specific regression results, we construct a

preliminary estimate of βit as follows:

β̂
Prel
it = β̂i + β̂t − β̂� (16)
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This preliminary estimate is biased, but we can understand the nature of the bias by

substituting (13), (14), and (15) into (16) to obtain the expression:

β̂
Prel
it = β̂i + β̂t − β̂

= β+λi +Q−1
xx�T

(
1
T

T∑
t=1

xitx
′
itθt

)
+Q−1

xx�T

(
1
T

T∑
t=1

xituit

)

+β+ θt +Q−1
xx�N

(
1
N

N∑
i=1

xitx
′
itλi

)
+Q−1

xx�N

(
1
N

N∑
i=1

xituit

)

−β−Q−1
xx�NT

(
1

NT

N∑
i=1

T∑
t=1

xitx
′
itλi

)

−Q−1
xx�NT

(
1

NT

N∑
i=1

T∑
t=1

xitx
′
itθt

)
−Q−1

xx�NT

(
1

NT

N∑
i=1

T∑
t=1

xituit

)
� (17)

This can be written more compactly as

β̂
Prel
it = β+λi + θt + (RN −Ri�NT )+ (RT −Rt�NT )+ (Qxu�N +Qxu�T −Qxu�NT )� (18)

where RN ≡ Q−1
xx�N( 1

N

∑N
i=1 xitx

′
itλi), Rt�NT ≡ Q−1

xx�NT (
1

NT

∑N
i=1

∑T
t=1 xitx

′
itθt ), and

Qxu�N ≡Q−1
xx�N( 1

N

∑N
i=1 xituit), and RT , Ri�NT , Qxu�T , and Qxu�NT are defined similarly.

The expression in (18) can be decomposed into three parts: First, the true observa-

tion (i� t) level coefficients β+λi +θt , second, the bias term (RN −Ri�NT )+(RT −Rt�NT )

that arises from correlation between the regressors and the heterogeneity (including the

fixed effects in the intercept), and finally terms (Qxu�N + Qxu�T − Qxu�NT ) involving the

errors. The latter vanish asymptotically given our assumptions on the xit and uit .

Crucially, the bias term (RN −Ri�NT )+(RT −Rt�NT ) can be calculated to arbitrary ac-

curacy and eliminated from (18), leaving a consistent estimator of βit.18 We now explain

the procedure: MO-OLS uses β̂i as a first stage approximation for λi in (RN − Ri�NT ) to

form R̂N and R̂i�NT , and also uses β̂t as a first stage approximation for θt in (RT −Rt�NT )

to form R̂T and R̂t�NT . Substituting the definitions of β̂i and β̂t given by equations (14)

18In the special case that the slope heterogeneity is independent of the regressors, the FE-OLS estimator

of equation (7), obtained via a two-way within transformation followed by OLS estimation, gives a con-
sistent estimator of the mean coefficient vector β̄, while the preliminary estimate of βit in (17) will give a
consistent estimate of the observation-level coefficients. However, as we discuss in Appendix B, we would
expect adaptation to generate correlation between the slope heterogeneity and the regressors (in particu-
lar, a positive correlation between KDD and β2it ). In that case, FE-OLS will generally deliver inconsistent
estimates of the mean coefficient vector β̄.



1404 Keane and Neal Quantitative Economics 11 (2020)

and (15) into the bias term (RN −Ri�NT )+ (RT −Rt�NT ) we obtain:

(R̂N − R̂i�NT )+ (R̂T − R̂t�NT )

= (RN −Ri�NT )+ (RT −Rt�NT )

+Q−1
xx�N

1
N

N∑
i=1

(
xitx

′
itRT + xitx

′
itQxu�N

) +Q−1
xx�T

1
T

T∑
t=1

(
xitx

′
itRN + xitx

′
itQxu�T

)

−Q−1
xx�NT

1
NT

N∑
i=1

T∑
t=1

(
xitx

′
itRT + xitx

′
itRN + xitx

′
itQxu�N + xitx

′
itQxu�T

)
� (19)

This expression is equal to the original bias (RN − Ri�NT ) + (RT − Rt�NT ), plus ad-
ditional bias terms that relate to Qxu (which is op(1) under these assumptions) as well
as the slope heterogeneity. By subtracting (19) from (18), we eliminate the original bias

from β̂
Prel
it , while introducing a new bias. Importantly, the new bias must be smaller in

magnitude than the original bias. This is stated as Lemma 1 of the Mathematical Ap-
pendix, where we prove the result.

We can repeat this process, again using the R̂N , R̂i�NT , R̂T , and R̂t�NT to approximate
the new bias term in (19). As we show in Lemma 1, this in turn produces a new bias term
that is even smaller in magnitude. Thus, this process can be iterated L times to render
the bias arbitrarily small, forming the bias removed estimates:

β̂it = β̂i + β̂t − β̂+
L∑

�=0

(−1)�+1

(
Q−1

xx�N

1
N

N∑
i=1

xitx
′
it�1�� +Q−1

xx�T

1
T

T∑
t=1

xitx
′
it�2��

−Q−1
xx�NT

1
NT

N∑
i=1

T∑
t=1

(
xitx

′
it�1�� + xitx

′
it�2��

))
� (20)

where �1�� = Q−1
xx�T (

1
T

∑T
t=1 xitx

′
it�2��−1) and �2�� = Q−1

xx�N( 1
N

∑N
i=1 xitx

′
it�1��−1) when � >

0, and where �1�0 = β̂i and �2�0 = β̂t . This is a Cauchy sequence in �, so a suitable L

can be chosen by terminating the sequence once it converges to a desired tolerance. In
practice, small values of L are usually adequate. Equation (20) is simple to construct, as
it is a function of only the preliminary estimates (β̂i, β̂t , β̂) and the covariates xit .

Theorem 1 states consistency of MO-OLS estimates of the observation-level coeffi-
cients βit as L goes to infinity, and then N and T jointly go to infinity. As MO-OLS is
numerically equivalent to “brute force” OLS, the proof is relegated to the Mathematical
Appendix.

Theorem 1 (Consistency of β̂it ). For the model in (12), with A.1–A.4, if L→ ∞ and sub-

sequently (N�T)
j→ ∞, then

β̂it −βit
p→ 0�

Proof. See the Mathematical Appendix.
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Remark. Recall that A.4 imposes that βit = β+λi+θt . As in OLS, it does not make sense
to discuss consistent estimates of the separate components (β, λi, θt ) as they are only
identified up to location normalizations.

Given consistent estimates of βit = β+λi + θt , a researcher may study them ex post
as desired. In some cases, a researcher may be interested in the mean coefficient vector
β̄= (β+E(λi)+E(θt )). Given consistent estimates of the observation-level coefficients,
the mean coefficient vector can be estimated by taking a simple average:

β̂MO = 1
NT

N∑
i=1

T∑
t=1

β̂it � (21)

We refer to this as the Mean Observation OLS (MO-OLS) estimate, as it averages the
observation-level coefficients. The following theorems provide results for consistency
and asymptotic normality. The proofs are given in the Mathematical Appendix.

Theorem 2 (Consistency of β̂MO). For the model in (12), with A.1–A.4, if L → ∞ and

subsequently (N�T)
j→ ∞, then

β̂MO − β̄
p→ 0�

Proof. See the Mathematical Appendix.

Theorem 3 (Asymptotic Normality of β̂MO). For the model in (12), with A.1–A.4, if L →
∞ and subsequently (N�T)

j→ ∞ such that N/T → χ and 0 <χ<∞, then

√
NT(β̂MO − β̄)

d→N(0�ΣMO)�

where ΣMO = Var(λi) + Var(θt ). The asymptotic variance can be consistently estimated
nonparametrically by

Σ̂MO = 1
NT−1

N∑
i=1

T∑
t=1

(
(β̂it − β̂t̄ )(β̂it − β̂t̄ )

′ + (β̂it − β̂ī)(β̂it − β̂ī)
′)� (22)

where β̂ī = 1
T

∑T
t=1 β̂it and β̂t̄ = 1

N

∑N
i=1 β̂it .

19

Proof. See the Mathematical Appendix.

Remark. MO-OLS extends the “mean group regression” (MG-OLS) of Pesaran and
Smith (1995) by providing a consistent estimate of the average effect β̄ in the presence
of time fixed effects. Time fixed effects would render the MG-OLS estimate inconsistent.

19Restrictions on the relative rate of convergence of N and T are required due to the small sample time
series bias O(T−1), noted by Hurwicz (1950) in the case of weakly exogenous regressors (such as a lagged
dependent variable), and to prevent an incidental parameter problem. Thus, the estimator is not appropri-
ate for panels with small T .



1406 Keane and Neal Quantitative Economics 11 (2020)

In this article, we are not primarily interested in the average effect of weather on
crop yield. Rather, we are primarily interested in the observation-level coefficients β̂it .
We examine the distribution of the β̂it to determine if they are correlated with KDDit ,
and to determine if there are trends in the mean of β̂it over time. We use these patterns
to quantify and understand historical adaptation.

In Appendix D, we present Monte Carlo simulation results where we compare the
performance of MO-OLS against several traditional panel data estimators in an envi-
ronment with multidimensional slope heterogeneity that is correlated with the regres-
sors. Our results show that MO-OLS is able to consistently and efficiently estimate the
coefficients in this environment at reasonable sample sizes. Our results also reveal how
poorly traditional panel data estimators can perform in this environment. Fixed effects
and mean group estimators generate biased estimates of average effects, and depending
on the underlying structure of the heterogeneity the bias can be very severe.

3. Data and variable construction

We use temperature and precipitation data from Schlenker and Roberts (2009). These
data contain daily observations on maximum and minimum temperature, and precipi-
tation, on a grid across the continental U.S., from 1950 to 2015.20 We map the grid-based
data onto counties, weighting grid locations by the location of corn production in each
county. Using the daily max/min temperatures, we approximate the hours each day that
a crop is exposed to one-degree Celsius temperature intervals using a sinusoidal func-
tion:

DDC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if C > Tmax�

Tavg −C if C < Tmin�(
(Tavg −C) cos−1(S)+ (Tmax − Tmin) sin(S)/2

)
π−1 otherwise�

(23)

where C is the temperature in Celsius, Tmax and Tmin are the daily max/min temperature,
Tavg = Tmax+Tmin

2 and S = cos−1( 2C−Tmax−Tmin
Tmax−Tmin

). This is consistent with the literature.
The threshold separating GDD from KDD is 29◦C, while the minimum GDD thresh-

old is set at 0◦C, following the literature.21 Using results from (23), we calculate daily de-
gree day values by forming GDDid = DD0 − DD29 and KDDid = DD29 for each county i

and day d. We aggregate to annual values of GDDit and KDDit by summing over the days
of the growing season, which we assume is May 1st to September 30th (in line with the
literature).22 Precipitation is measured as total inches of rain over the growing season.

20Schlenker and Roberts subsequently extended the dataset to 2015 after the publication of their paper.
They used daily weather observations from stations to construct the dataset. Temperature observations
prior to 1950 are available, but it is harder to convert them to a national grid as fewer weather stations were
operational.

21Butler and Huybers (2013) noted that while 29 degrees may appear low as a threshold for damaging
temperatures, the temperature experienced by the plant itself is higher than the measured air temperature
above the crop canopy.

22When we let the growing season vary by county and over time, it did not meaningfully change the
results.
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Our county-level yield data is from the U.S. Department of Agriculture (USDA) Na-
tional Agricultural Statistics Service. It covers the 1950 to 2015 period. Following the lit-
erature, we exclude counties west of the 100th Meridian.23 We also exclude counties with
less than 30 years of data. This gives N = 2209 corn growing counties with an average of
57 observations per county. 32% of counties have full coverage over the sample period.
The 15% with less than 45 years of data are mostly found in the Northeast and Southern
states.

4. Results

4.1 Conventional fixed effects models (FE-OLS)

Table 1 presents results from corn yield regressions that incorporate county and/or time
fixed effects but do not allow for heterogeneous slope coefficients. As in Section 2, we
refer to these as FE-OLS models. The model in column (1) is similar to ones in the ex-
tant literature (see equation (7), Lobell et al. (2011), Burke and Emerick (2016)). The
estimated KDD coefficient is −0�0052, implying an additional degree-day above 29◦C
leads to a decrease in overall corn yield of 0�52%. This effect is precisely estimated with

Table 1. FE-OLS estimates of the impacts of temperature on
U.S. corn yields.

Specification (1) (2) (3)

GDD 0�0002 0�0003 0�0004
(0�0001) (0�0001) (0�0001)

KDD −0�0052 −0�0054 −0�0158
(0�0006) (0�0006) (0�0023)

ln(KDD) ∗ KDD − KDD 0�0022
(0�0005)

Precipitation 0�0008 0�0010 0�0007
(0�0002) (0�0002) (0�0002)

Precipitation2 (÷1000) −0�0006 −0�0007 −0�0006
(0�0002) (0�0001) (0�0002)

Constant 2�6755 2�3552 2�1977
(0�2564) (0�2509) (0�2399)

Fixed effects Cty, Yr Cty Cty, Yr
Quad. Time trend N/A State-specific N/A
R-squared 0�82 0�82 0�83
Obs. 126,373 126,373 126,373

Note: Results exclude counties west of the 100th Meridian. The sample pe-
riod is 1950–2015, and N = 2209. Models (1)–(3) differ by type of fixed effects
and whether the adaptation variable is included. Standard errors are reported in
parentheses, and are clustered at the state level.

23The 100th Meridian separates the Great Plains to the east from the semi-arid lands to the west. The
western counties are much more reliant on irrigation. We tried including them but it did not meaningfully
affect our results.
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standard errors that are clustered at the State level.24 The model in column (2) restricts
time effects to be quadratic trends at the State level (as in Schlenker and Roberts (2009),
Roberts and Schlenker (2012)). But the estimate of KDD sensitivity is not significantly
different. Neither model (1) or (2) includes adaptation.

The model in column (3), which is motivated by the simple theory in Section 1,
includes as an additional regressor a nonlinear function of KDD designed to capture
adaptation to harsh temperatures (see equation (8)). The added regressor is positive and
highly significant, implying that as KDD increases the negative marginal effect of KDD
on crop yield gets smaller.25 This may be due to both farmer and natural adaptations,
and we argue that to predict future corn yield it is important to capture both.

According to model (3), the average marginal effect of KDD is −0�0082. This is signif-
icantly more negative than the average marginal effect in specifications (1)–(2), illustrat-
ing the bias in standard FE-OLS models that ignore adaptation (see Appendix B). How-
ever, while model (3) implies the average marginal effect of KDD on corn yield is 58%
more negative than in model (1), it also implies the effect diminishes as KDD increases.

4.2 Heterogeneous slope models (MO-OLS)

In this section, we use MO-OLS to estimate a model that allows for both county and
time fixed effects in coefficients on temperature and precipitation, as in equations (10)
and (11). In contrast to the FE-OLS model in (8), the heterogeneous slope model allows
us to model adaptation without imposing a particular functional form a priori. We can
use the estimates to investigate the nature of the relationship between the slope hetero-
geneity and KDD, which is informative about the nature of adaptation. Table 2 presents
the results. It gives unweighted and weighted means of the estimated slope coefficients
(using average crop acreage of each county as weights), as well as other moments.

The unweighted mean coefficient on KDD is −0�0096, implying one extra degree day
of temperatures over 29◦C causes a 0�96% reduction in crop yield. This effect is slightly
larger than the average marginal effect of −0�0082 we obtained Table 1 column (3) when
we modelled adaptation parametrically using the nonlinear KDD coefficient. Further-
more, our MO-OLS estimate of the mean KDD coefficient is about 80% more negative
than we obtained using the conventional FE-OLS models in Table 1 columns (1)–(2).
This illustrates the substantial bias in estimators that ignore slope heterogeneity.

The MO-OLS estimates imply substantial heterogeneity in the model coefficients.
The standard deviation of the KDD coefficient is 0�0069, with a 90/10 percentile range
of −0�0034 to −0�0161. Notice R2 improves from 0�82 to 0�88 when slope heterogeneity is
include in the model. Figure 2 plots the distribution of the KDD coefficients across coun-
ties and over time. Clearly, there is significant heterogeneity across counties. The 90/10

24It is also possible to adopt spatial standard errors as in Conley (1999), where the correlation between
county errors are assumed to decline with distance. Since doing this leads to less conservative standard
errors, we report the standard errors that are clustered by state in the results.

25Note that the coefficient on KDD itself becomes significantly more negative at −0�0158 when the non-
linear term is added. The results for the other variables do not change meaningfully from the first two
specifications.
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Table 2. MO-OLS estimates of the impacts of temperature on U.S. corn yields.

Mean
Weighted

Mean Median
Standard
Deviation

10th
Percentile

90th
Percentile

GDD 0�0005 0�0005 0�0005 0�0005 −0�0001 0�0011
(0�0000)

KDD −0�0096 −0�0089 −0�0085 0�0069 −0�0161 −0�0034
(0�0003)

Precipitation 0�0011 0�0015 0�0010 0�0028 −0�0020 0�0044
(0�0002)

Precipitation2 (÷1000) −0�0011 −0�0014 −0�0008 0�0025 −0�0038 0�0014
(0�0001)

Constant 2�7060 2�8957 2�8224 2�1357 0�1684 4�8397
(0�1209)

R-squared 0�88
Obs. 126,373

Note: Results exclude counties west of the 100th Meridian. The sample period is 1950–2015, and N = 2209. Standard errors
are reported in parentheses.

percentile range of KDD coefficients is over 0�010 units in each year. The 25/10 percentile
range (i.e., the lower light grey area), is much wider than the 90/75 range, so the distri-
bution has a fat left tail. Figure 2 also shows that the median KDD coefficient follows a
clear trend over time. It increases from 1950 until the late 1980s, and then stagnates.

Table 3 presents a regression of the median coefficient for each year on a linear time
trend, as well as tests for a structural trend break, using the method of Andrews (1993).
The results imply a positive trend in the KDD coefficient until 1988, implying reduced

Figure 2. Distribution of KDD slope coefficients across time and counties for U.S. corn. Note:
The black line plots the median KDD coefficient from the MO-OLS model in Table 2. The the
dark (light) grey areas represent the 25th to 75th, and 10th to 90th percentiles, respectively.
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Table 3. Analyzing trends in the median KDD coefficient for corn over time.

Regression Results β Std. Err. β Std. Err.

t/10 0�0008 0�0001 0�0020 0�0002
Constant −0�0112 0�0005 −0�0133 0�0006
(t/10)*dt>break −0�0022 0�0004
dt>break 0�0070 0�0020

Structural Break Test Statistic p-Value

Supremum Wald 49�14 0�00
Average Wald 31�57 0�00
Supremum LR 38�52 0�00
Average LR 26�82 0�00

Note: HC3 standard errors are reported for the regression results. The estimated structural break date
in the trend and constant is 1989 for corn.

heat sensitivity of yield—which we view as evidence of adaptation. However, a signif-
icant break occurred in 1989, coinciding with an extreme drought in the Midwest in
1988–89. After that, the time trend on the KDD coefficient becomes small and insignif-
icant. The median KDD coefficient in 2015 is similar to that in the 1970s, suggesting a
lack of sustained progress in adaptation to high temperatures over the last four decades.

The stalling of adaptation may be explained by the results of Lobell et al. (2014), who
find that while average corn yield increased from 1995 to 2010, sensitivity to droughts
and high heat increased because of a trend toward higher sowing densities. This, in turn,
may be due to an expansion of crop insurance; see Annan and Schlenker (2015). Our
results do differ from Lobell et al. (2014), as they find heat sensitivity increased in the
latter period, while we only find that the trend toward reduced heat sensitivity stalled.

We emphasize, however, that Figure 2 and Table 3 provide clear evidence of adap-
tation of corn yield in the U.S. to heat between the 1950s and 1980s, due to the strong
upward trend in the KDD coefficient over the first half of the sample period. This con-
tradicts the conclusion of Schlenker and Roberts (2009) that there has been no signifi-
cant adaptation. Notably, however, if we implement their simple test for adaptation, by
splitting the sample in half (by time) and estimating the two-way fixed effects model of
Table 1, column (1), for each subsample, we find the KDD coefficient decreases signif-
icantly from −0�0055 to −0�0046, giving evidence of adaptation between the first- and
second-half of the sample.26

Next, we consider the geographic pattern of corn’s sensitivity to heat. This is mapped
in Figure 3, which presents the average value of the KDD coefficient from the MO-OLS
model for each county in the estimation sample. The highest category of sensitivity,

26Schlenker and Roberts (2009) concluded there is no evidence of a changing relationship between yield
and temperature in the second-half of their sample period (1978–2005) relative to the first-half (1950–1977).
But Figures A11 and A12 of their Supplementary Appendix do show a significant decline in heat sensitivity
for corn using their “piecewise linear” model, which is similar to the two-way fixed effects model in our
Table 1, column (1).
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Figure 3. Distribution of KDD slope coefficients across counties for U.S. corn. Note: This graph
maps for each country of the United States in the estimation sample the average value of β̂2it

from the MO-OLS model (see Table 2).

from −0�08 to −0�015, is common in North and South Dakota, Minnesota, and the north-
eastern region of the country. Most of the Corn Belt, along with much of the southeast,
contains counties with moderate sensitivities between −0�01 and −0�005. The counties
with low heat sensitivities are concentrated in Texas, Oklahoma, and Kansas. Thus, there
is systematic variation in heat sensitivity across regions, as KDD sensitivity is typically
greater in the cooler northern states. Adaptation is the most obvious explanation for this
pattern.

The main prediction of the simple model of Section 1 is that KDD sensitivity should
decrease as KDD increases, as farmers have more incentive to adapt. The correlation be-
tween β̂2it and KDDit is 0�43, supporting this prediction. Figure 4 presents a scatter plot
of β̂2it and KDDit , as well as a regression of β̂2it on log(KDDit), which is the best fitting
curve to the approximately log-linear relationship. This is remarkably consistent with
the simple parametric model of Section 1, which also generates a log-linear relation.

In Figure 5, we compare the relationship between β̂2it and KDDit that we obtain from
the MO-OLS estimated fixed effects versus the FE-OLS parametric model in Table 1, col-
umn (3). The MO-OLS curve implies a more negative marginal effect across all levels of
KDDit , but it still lies within the 95% confidence interval of the FE-OLS curve.

Note that our fitted log-linear relation (based on both models) implies considerable
scope for adaptation as KDD moves from 0 to 100, but at higher levels the curve flattens
and adaptation is more modest. This has important implications for the potential for
adaptation to mitigate future damage from climate change, if we assume the scope for



1412 Keane and Neal Quantitative Economics 11 (2020)

Figure 4. Relationship between β̂2it and KDDit for U.S. corn. Note: This graph is a scatter plot
of a random 3% subsample of the coefficients on KDDit from the MO-OLS model (see Table 2)
against KDDit itself. The fitted line was obtained from the regression β̂2it = α1 + α2 ln(KDDit ).
The estimates are α1 = −0�0183 and α2 = 0�0025 and the 95% confidence interval for the curve is
shaded.

future adaptation is similar to what we see historically. In particular, adaptation will be-
come less effective at mitigating marginal damage under scenarios where typical KDD
levels start to exceed about 100. We now turn to projecting climate change impacts.

Figure 5. Comparison of log-linear relationships derived under MO-OLS and FE-OLS for corn.
Note: This graph compares the fitted log-linear relationships between β̂2it and KDDit obtained
from the county/time specific coefficients estimated with MO-OLS (see Figure 4) and the FE-OLS
regression results with adaptation, presented in Table 1, column (3).
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5. Projecting the effect of climate change on crop yield

5.1 Forecast methodology

Here, we project the effects of climate change on U.S. corn yields through to 2100. We
present projections using FE-OLS and MO-OLS models with and without adaptation,
and we assess the effectiveness of adaptation and emissions reductions in mitigating ef-
fects of climate change. We also assess the extent of disagreement in the projections that
arises from differences between climate models versus differences between economet-
ric models.

To project future corn yields, we need predictions of temperature and precipitation
for every corn growing county in the U.S. through to 2100. This requires predictions from
a climate model, which further requires us to input a greenhouse gas emissions scenario.
To assess sensitivity of our predictions to climate model assumptions, we use 19 different
climate models and three emissions scenarios. We now describe the procedure in detail:

We utilize weather predictions from 19 general circulation models (GCMs), or simply
“climate models,” from the Coupled Model Intercomparison Project v5 (CMIP5).27 Cli-
mate models differ in how they represent a number of processes, such as chemical reac-
tions, cloud formation, and vegetation growth. As we will see, they can generate rather
different predictions of how the climate will respond to increased greenhouse gas emis-
sions.

Each climate model requires, as an exogenous input, a path for the atmospheric
concentration of greenhouse gases. In order to compare the output of climate models
consistently, CMIP5 uses four representative concentration pathways: RCP26, RCP45,
RCP60, and RCP85.28 Each RCP embeds assumptions regarding the future trajectory of
population growth, technological development, and government policies.

We call RCP85 the “business as usual” scenario, as little is done to curb emissions,
so atmospheric concentrations of greenhouse gases grow at present rates until 2100.
We call RCP45 the “moderate” emissions reduction scenario. It corresponds to policies
somewhat more ambitious than current government pledges. Under RCP45, greenhouse
gas concentrations climb until 2100, but the growth rate significantly declines after 2060.

Finally, the RCP26 scenario represents “substantial” emissions reductions. It is con-
sistent with the most ambitious targets under the Paris agreement. Greenhouse gas con-

27The core of every GCM is a set of equations that describe the behavior of rotating spheres of contin-
uous fluid that simulate the Earth’s atmosphere and oceans. The models we use are: ACCESS 1.0, BNU-
ESM, CANESM2, CCSM4, CESM1(CAM5), CSIRO-Mk3.6.0, EC-EARTH, FGOALS-g2, FIO-ESM, GFDL-CM3,
GFDL-ESM2G, GISS-E2-R, HadGEM2-ES, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM, MIROC-ESM-
CHEM, MPI-ESM-LR, and NorESM1-M. The CMIP protocol was introduced by The World Climate Research
Program as part of the Working Group on Coupled Modeling. It ensures the outputs of GCMs are compara-
ble, allowing scientists to analyze them systematically. The fifth version of CMIP is part of the broader effort
for the IPCC Fifth Assessment Report.

28The RCP scenarios correspond to different radiative forcing values in 2100. For instance, RCP26 results

in a forcing value of +2�6 W/m2 above pre-industrial levels. We do not consider RCP60 due to its similarity
to RCP45.
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centrations peak in 2040 and then slowly decline until 2100.29 This would require signif-
icant immediate action, as emissions must start to decline substantially in the very near
future.

The 19 climate models use greenhouse gas concentrations from the RCP scenar-
ios to produce projections of daily min/max temperature and precipitation, across a
12 × 12 km grid of the contiguous U.S. The grid level projections are converted to county
level projections using an interpolation procedure known as “bias-correction and spa-
tial disaggregation” (BCSD). We obtain BCSD output for our 19 climate models from the
U.S. Geological Survey Geo Data Portal, who in turn rely on Brekke, Thrasher, Maurer,
and Pruitt (2013).

Finally, we convert the daily temperature and precipitation projections into grow-
ing season specific values of GDDitrm, KDDitrm, and PRECitrm for county i, year t, RCP
scenario r and climate model m. This is done using the sinusoidal function in (23).

Each climate model was run from 2006 to 2100, so the county-specific projection
errors for weather in 2006–15 are observable. We center the projections so the average
county-specific projection error of each model for 2006 to 2015 is zero. This corrects for
level biases that a particular climate model may have for specific counties, and provides
a more accurate picture of the future paths that would be optimally predicted by each
model (as optimal predictions should take into account already observed errors). Let

˜KDDitrm, ˜GDDitrm and ˜PRECitrm denote the centered projections of the weather vari-
ables.

We are now in a position to use the econometric models in Section 4, paired with
each climate model and greenhouse gas emissions scenario, to project future corn yields
with and without adaptation. First, we project yields using the conventional FE-OLS
model from Table 1, column (1) that does not account for adaptation. This gives

ŷ1itrm = 2�6755 + ĉi + 1�3486 + 0�0002( ˜GDDitrm)− 0�0052( ˜KDDitrm)

+ 0�0007( ˜PRECitrm)− 0�00000091
( ˜PREC

2
itrm

)
� (24)

where all parameters can be read from Table 1, except for ĉi, which is the estimate of
the county-specific fixed effect, and 1�3486, which is the 2006–15 mean of the time fixed
effect.

Next, we use the FE-OLS specification in Table 1, column (3) that allows for adapta-
tion:

ŷ2itrm = 2�1977 + ĉi + 1�3574 + 0�0004( ˜GDDitrm)− 0�0158( ˜KDDitrm)

+ 0�0022
(
ln( ˜KDDitrm) ∗ ˜KDDitrm − ˜KDDitrm

)
+ 0�0007( ˜PRECitrm)− 0�00000063

( ˜PREC
2
itrm

)
� (25)

All parameters are from Table 1, except ĉi and 1�3574 (the 2006–15 average time effect).

29To be precise, atmospheric concentrations of CO2 (and all other forcing agents converted to CO2 equiv-
alence) reach 1240 parts per million by 2100 under RCP85, 575 pp million under RCP45, and 435 ppm under
RCP26.
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Our MO-OLS model can provide yield projections with or without adaptation. De-

fine ¯̂
βki as the mean of β̂kit over the 2016–15 period for k = 1� � � � �4, and similarly for ¯̂ci

and ¯̂τt . Then, a yield projection that does not allow for future adaptation can be obtained
as

ŷ3itrm =ĉi + ¯̂τt + ¯̂
β1i ˜GDDitrm + ¯̂

β2i ˜KDDitrm + ¯̂
β3i ˜PRECitrm + ¯̂

β4i ˜PREC
2
itrm� (26)

where the marginal effect of each variable is fixed at the 2006–2015 mean for each
county.30

Alternatively, the MO-OLS model can allow for adaptation by setting the coefficient
on ˜KDDitrm equal to the predicted value from log-linear relationship shown in Fig-
ure 4.31 That is, we set β̂2it = α1 + α2 ln( ˜KDDit) where α̂1 = −0�0183 and α̂2 = 0�0025:

ŷ4itrm = ĉi + ¯̂τt + ¯̂
β1i ˜GDDitrm + (

log( ˜KDDitrm) ∗ 0�0025 − 0�0183
) ˜KDDitrm

+ ¯̂
β3i ˜PRECitrm + ¯̂

β4i ˜PREC
2
itrm� (27)

Finally, we aggregate our county-level yield projections to the national level using
county average crop areas wi, as in ŷtrm = ∑N

n=1 ŷitrmwi/
∑N

n=1 wi.

5.2 Projections of future crop yield

Here, we present projections of corn yield from 2015 to 2100 using four econometric
models, three RCP scenarios and 19 climate models. This gives 4 · 19 · 3 = 228 scenar-
ios. For each econometric model and emissions scenario r, we report the mean pro-
jection across all climate models, ŷtr , and 80% prediction intervals around this mean
derived from the standard deviation of ŷtrm across climate models m. This quantifies the
extent of disagreement between climate models, as suggested by Auffhammer, Hsiang,
Schlenker, and Sobel (2013).

We present the predictions as percentage changes relative to the 2006–2015 histori-
cal average yield. Finally, we apply a five-period moving average to the ensemble average
prediction and prediction intervals, simply to reduce noise so as to help visualize trends.

Appendix F describes the temperature predictions of the 19 climate models. The
mean annual KDD level across all years/counties in the historical data is 41, while the
projected means (across models) in 2050 are 69, 82, and 107 under the RCP26, 45, and

30Recall that our estimates capture both farmer and natural adaptation (i.e., inherent nonlinearity in the
relation between yield and temperature). By shutting down both, we may exaggerate the impact of farmer
adaptation.

31There is an asymmetry in (27) in that we allow the KDD coefficient to adapt over time, but we do not
let other coefficients change over time. This is because we find no evidence that other parameters adapt to
high temperatures. The correlations of (ĉi + τ̂t ) and β̂1it with KDDit are only 0�02 and −0�04, respectively, in
sharp contrast to the strong relationship between β̂2it and KDDit depicted in Figure 4. It is crucial to recall
the distinction between adaptation per se (which we can project from historical data) and general technical
progress. Predicting changes in τt and β1it due to general technical progress is a more speculative exercise
that we take up in Appendix G.
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Table 4. Effects of climate change on U.S. corn yield (pct change).

Year
Conventional

FE-OLS

MO-OLS
w/o future
adaptation

FE-OLS
with

adaptation

MO-OLS
with future
adaptation

RCP85
2030 −04 (−13�05) −06 (−17�05) −04 (−16�07) −06 (−14�02)
2050 −19 (−34�−05) −24 (−41�−07) −21 (−36�−05) −15 (−24�−05)
2080 −44 (−62�−25) −51 (−72�−30) −42 (−59�−26) −26 (−37�−15)
2100 −62 (−81�−43) −70 (−89�−51) −57 (−73�−42) −36 (−47�−25)

RCP45
2030 −02 (−13�09) −04 (−16�09) −02 (−15�11) −04 (−13�04)
2050 −11 (−24�02) −15 (−30�01) −12 (−26�02) −11 (−20�−01)
2080 −21 (−36�−06) −27 (−44�−09) −23 (−38�−07) −16 (−25�−07)
2100 −21 (−39�−03) −26 (−47�−06) −22 (−40�−04) −16 (−27�−05)

RCP26
2030 −04 (−14�05) −07 (−17�04) −06 (−16�05) −07 (−13�−00)
2050 −07 (−17�03) −09 (−20�01) −08 (−19�03) −08 (−14�−02)
2080 −06 (−16�05) −09 (−20�03) −07 (−19�05) −08 (−15�−00)
2100 −07 (−20�06) −10 (−25�05) −08 (−23�06) −08 (−17�01)

Note: Results are expressed in terms of percentage change from the 2006–2015 histor-
ical weighted average crop yield. Each number represents the ensemble average over 19
climate models, while the figures in brackets are the 80% (1�28 standard deviation) predic-
tion intervals.

85 scenarios, respectively. Figures for 2100 are 70, 115, and 306, respectively. The mod-
els also predict increases in GDD, which may counteract some of the negative effects of
higher KDD.

Table 4 summarizes our main results for corn yield. We report projections from four
econometric models: the conventional FE-OLS model in (24), the FE-OLS model with
adaptation in (25), and MO-OLS without and with adaptation in (26) and (27). We report
results for the three RCP scenarios at four points in time: 2030, 2050, 2080, and 2100. The
effect of climate change on corn yield is expressed as a percentage change relative to the
2006–2015 average. We present the ensemble average projection and the 80% (i.e., 1�28
standard deviation) prediction interval (in brackets).

First, consider scenarios that ignore adaptation. As we see in Table 4, we predict
catastrophic damage to corn yields in the pessimistic RCP85 scenario. The model en-
semble average reduction in yield is 70% by 2100 according to the MO-OLS model, and
62% according to the conventional FE-OLS model. As we discussed earlier, the conven-
tional FE-OLS model is likely to understate the impact of climate change because it ig-
nores parameter heterogeneity. Yet we see that it still predicts a very severe impact.

With “moderate” emissions reductions (the RCP45 scenario) we observe smaller,
but still significant, reductions in yield, with an ensemble average loss of 26% by 2100
(according to the MO-OLS model). And with “substantial” emissions reductions (as in
RCP26, which requires significant immediate action on emissions) we see only a 10%
model average reduction in yield (using MO-OLS), and the 80% prediction interval indi-
cates that some climate models even predict no losses.
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Turning to projections that incorporate adaptation to future climate change, recall
that our parametric (FE-OLS) and fixed-effect (MO-OLS) models predict future adapta-
tion based on the historical adaptation patterns shown in Figure 5. The results are re-
ported in the right columns of Table 4. Both models predict adaptation will appreciably
mitigate the damage from climate change in the RCP85 scenario. The FE-OLS model pre-
dicts adaptation will cause the decline in corn yield in 2100 to drop to 57%. The MO-OLS
model implies adaptation is even more effective at mitigating damage: the reduction in
crop yield in 2100 decreases from 70% to ‘only’ 36%.32

Of course, with greater emissions reductions KDD increases are smaller, and the
scope for adaptation is reduced. For example, given the RCP45 scenario and the MO-OLS
model, the mean predicted drop in yield in 2100 is 26% without and 16% with adapta-
tion. And under RCP26 the analogous figures are 10% and 8%, so adaptation is almost
irrelevant.

A key takeaway from Table 4 is that adaptation may substantially mitigate damage in
the “business as usual” scenario, but damage remains severe. In contrast, even moderate
emission reductions are quite effective at reducing damage, for example, for MO-OLS,
compare the 36% mean drop in yield under RCP85 with adaptation with the 26% drop
in yield achieved under RCP45 even without adaptation (falling to 16% when adaptation
is included). Thus, we find that adaptation on a scale consistent with historical patterns
cannot mitigate most of the damage from climate change—substantial emissions reduc-
tions are also required.

Figure 6 presents annual projections of corn yield using the MO-OLS model with and
without adaptation. Under RCP85, most climate models predict the decline in yields
by 2100 without adaptation will be catastrophic. Adaptation reigns in the most nega-
tive projections, and reduces the degree of disagreement between climate models (as is
also clear in Table 4), yet the declines in yield remain severe. Under RCP45 with adapta-
tion, we predict a moderate mean decline in yield. But there is substantial disagreement
between climate models, with the 80% prediction interval ranging from roughly 5% to
27%.

5.3 Cumulative losses from 2020–2100

Next, we examine the effectiveness of adaptation and emissions reductions at averting
yield loss over the whole projection horizon. We calculate total loss of future yield as

Lossr�ad = M−1
M∑

m=1

2100∑
t=2020

(ŷtrm�ad − ȳm)� (28)

32Thus, the MO-OLS estimates imply greater scope for adaptation to reduce yield loses than the FE-
OLS estimates. This is in part because these two approaches model how the effect of KDDit on yit depends
on KDDit in different ways. In the MO-OLS approach in (27), the average effect of KDDit is equal to the
marginal effect, so adaptation shifts both equally. But in the FE-OLS approach in (25), the average effect of
KDDit on yit is given by β̂20 + β̂21(ln(KDDit )− 1), which is always less than the marginal effect in (9). Thus,
adaptation in the FE-OLS approach leads to a slower decrease in the average effect relative to the MO-OLS
approach. We argue the MO-OLS specification is more intuitive, as it implies that adaptation alters the
impact of all units of KDDit on the crop, not just the additional units.
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Figure 6. The effect of climate change on corn yield by scenario (MO-OLS). Note: This graph
presents projections of the percentage change in corn yield (relative to the 2006–2015 historical
average) for three RCP scenarios, where the solid line is the average projection across nineteen
CMIP5 climate models, and we also report the 80% prediction intervals.

where r is the RCP scenario, ad is the adaptation scenario, and ȳm is average crop yield
from 2006 to 2015 according to the MO-OLS model in the worst-case baseline sce-
nario (i.e., “business as usual” emissions, r = RCP85, and no adaptation, ad = 0).33 The
share of damage averted under emissions and adaptation scenario (RCPn�ad = k) for

n = 26�45�85, and k= 0�1 is then defined as 1 − LossRCPn�ad=k

LossRCP85�ad=0
.

Table 5 presents the share of damage averted under four scenarios. According to the
third column of Table 5, the MO-OLS model predicts a shift from the most pessimistic
baseline of RCP85�0 (“business as usual,” no adaptation) to RCP45�0 (“moderate reduc-
tions,” no adaptation) will avert 55% of damage on average, with a 80% prediction in-
terval of 32% to 79%. If we factor in adaptation (RCP45�1) the share of damage averted
improves to 61%, and the 80% prediction interval narrows to 49% to 74%. Thus, our

Table 5. Proportion of climate change damage averted (pct).

Model RCP85 + Adaptation RCP45 RCP45 + Adaptation RCP26

MO-OLS 36 (29�44) 55 (32�79) 61 (49�74) 76 (60�91)
FE-OLS 15 (13�17) 62 (38�86)

Note: Figures are the % reduction in damage relative to the RCP85 scenario with no adaptation using
the MO-OLS model.

33We could of course discount future losses in (28), but the proper way to discount losses of future gen-
erations is highly controversial. Many have argued against discounting on ethical grounds. In our case,
discounting scales down losses, but has almost no effect on relative losses across scenarios, which is our
focus.
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point projection is that moderate emissions reductions combined with adaptation will
avert more than half the damage to corn yields. But the extent of disagreement across
climate models is substantial. Indeed, if we look at the more ambitious RCP26 scenario,
the mean damage abatement is 76%, but the 80% prediction interval ranges from fully
91% to only 60%.

According to column (2) of Table 5, the MO-OLS model predicts adaptation alone
can avert 36% of total damage to yield (on average),34 while FE-OLS gives a much smaller
figure of only 15%. This is a substantial difference. Yet both econometric approaches
agree that adaptation alone (if consistent with historical patterns) cannot avert the ma-
jority of the severe damage to yield that is projected to occur with climate change. Sig-
nificant emissions reductions are necessary to avert substantial reductions in future
yields.35

5.4 Distribution of losses across U.S. counties

Here, we examine the distribution of losses across counties due to future climate change.
Figure 7 graphs the percentage of counties that experience losses as a function of time,
RCP, and adaptation scenario. By 2100, the fraction that experience losses approaches
one under RCP85 without adaptation. Allowing for adaptation reduces this fraction,
but not substantially, as over 80% of counties still experience losses by 2100. While not
definitive, these results cast doubt on the notion that corn production can be shifted to
cooler corn-growing counties as a way to avoid significant damage to yields (at least not
U.S. counties that are already producing corn).

Under more ambitious RCP scenarios, we still find that the proportion of counties
that suffer losses increases over time, but at a much slower rate. In the best case sce-
nario (RCP26 with adaptation) roughly 60% of counties experience losses from about
2040 onward, but about 40% experience gains. This suggests that shifting production to
cooler counties may be a more useful strategy if combined with substantial emissions
reductions.

5.5 Extensions

So far, we have discussed projections holding agricultural technology fixed at current
levels (aside from adaptation). In Appendix G, we report yield projections that incorpo-
rate projections of technical progress. Specifically, we use VARs to forecast the time ef-
fects in the MO-OLS model. We find that under the most optimistic technology forecast

34As the MO-OLS model predicts a mean yield reduction of 70% in 2100 without adaptation and 36%
with adaptation (see Table 4), one might conclude that adaptation averts about half of the damage from
climate change. However, the results in Table 5 are based on all years from 2020 to 2100, not merely 2100.

35Table 5 does not present FE-OLS results for share of losses averted with emissions reductions but no
adaptation. This is because of our earlier finding that the conventional FE-OLS model (without adaptation)
seriously understates damage from climate change. Thus we view share-of-loss-averted calculations based
on the conventional FE-OLS model as unreliable. In contrast to FE-OLS, the MO-OLS model has the ad-
vantage that we can take the estimates from one model and compare results with and without allowing for
adaptation.
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Figure 7. Proportion of corn-growing counties experiencing losses from climate change. Note:
This graph presents the percentage of corn-crowing counties that experiencing losses from cli-
mate change under four combinations of RCP emissions scenario and the MO-OLS model:
(i) RCP26 with future adaptation, (ii) RCP45 with future adaptation, (iii) RCP85 without future
adaptation, and (iv) RCP85 with future adaptation.

combined with RCP26 the mean projection of yield growth keeps pace with population
growth. But there is still substantial uncertainty across climate models.

Finally, in Appendix H we present results for soybeans, the second largest U.S. crop.
This is an interesting contrast, as soybeans are naturally less sensitive to heat than corn.
But the production process for soybeans also exhibits less scope for adaptation (i.e., the
KDD coefficient is less heterogeneous, and less highly correlated with KDD).36 We pre-
dict that, without emissions reductions or adaptation, yields will drop by 34% to 74% by
2100. Adaptation is rather ineffective, reducing damage by only 0 to 22%. But emissions
reductions are very effective—the moderate RCP45 scenario reduces damage by 36 to
85%.

6. Conclusion

We argue that adaptation to high temperatures generates spatial and temporal hetero-
geneity in the parameters of agricultural production functions. This heterogeneity en-
ters slopes as well as intercepts, and it takes a fixed effects form, as it is correlated with
temperature itself. Thus, we propose a new method, that we call “mean observation
OLS” (or “MO-OLS”) that makes it feasible to estimate panel data models with unit and
time fixed effects in both intercepts and slopes in very large panels.

36This is consistent with a relative lack of knowledge on the root architecture and genome of the soybean
through most of the sample period (e.g., see Alsajri, Singh, Wijewardana, Irby, Gao, and Reddy (2019) and
Li et al. (2016)).
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We apply this method to estimate county-level corn yield equations for the U.S. for
the 1950–2015 period. We find significant heterogeneity in the effect of temperature on
yield, and, as expected, it diminishes as harsh temperatures are more common. This
provides strong evidence for historical adaptation between warmer and cooler counties.
We also find strong evidence of adaptation over time (i.e., declining heat sensitivity), but
this has stalled since 1989. We show that models that do not allow for adaptation pro-
duce biased estimates of the effects of high temperatures, and fit the data significantly
worse.

We use our econometric model to generate comprehensive county-level projections
of corn yields through to 2100, based on future weather scenarios obtained from 19 cli-
mate models and three emission growth pathways. Our econometric approach is com-
plimentary to work that uses weather predictions from climate models as input into
biological models of plant growth in order to project future yields (see, e.g., Malcolm,
Marshall, Aillery, Heisey, Livingston, and Day-Rubenstein (2012)).

Our results imply several conclusions regarding the impact of climate change on
corn yield: First, absent emissions reductions or adaptation, we predict very severe ef-
fects on yield. The average prediction across climate models is −70% by 2100. Second,
we predict that almost all corn-growing counties will be adversely affected, implying
there is little scope to avert damage by shifting production to cooler regions. Third, we
predict that adaptation will avert 36% of damage (on average) in the no emissions re-
ductions scenario. Thus adaptation is important, but can avert less than half of damage
to yields.37 Fourth, on a more optimistic note, we predict that adaptation combined with
“moderate” emissions reductions (i.e., similar to current government pledges) can avert
61% of damage to yields, rising to 76% under the more ambitious targets of the Paris
agreement. Thus, plausible emissions reductions may still avert a large fraction of dam-
age from climate change.

We also attempt to project future technical progress based on past trends (admit-
tedly a rather speculative exercise). We predict that technical progress and adaptation
alone (absent emissions reductions) will generate yield growth that lags far behind pop-
ulation growth. But an optimistic projection of technical change, combined with mod-
erate to substantial emissions reductions and adaptation can, together, achieve yield
growth roughly in line with population growth according the mean climate model pro-
jection. Still, these figures deteriorate quickly under slightly less optimistic technology
projections.

A striking feature of our results is the wide variability of projections across cli-
mate models. Indeed, we have focused on mean predictions in this conclusion to
avoid drowning the reader in a morass of prediction intervals (all of which are pre-
sented in detail in the text). Suffice it to say that even our more optimistic emis-
sions/technology/adaptation scenarios put non-negligible mass on rather adverse out-
comes. Furthermore, our projections for the second largest U.S. crop, soybeans, are gen-
erally a bit more pessimistic. So it is fair to say that climate change poses a substantial

37An important potential form of adaptation is irrigation. But results in Marshall, Aillery, Malcolm, and
Williams (2015) suggest that climate change itself will lead to water depletion that will inhibit irrigation in
the latter half of this century.
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risk to U.S. agricultural yields, even under the more benign scenarios where our point
projections of yield losses are moderate.

Appendix: Mathematical appendix

Lemma 1. Consider a M ×N square matrix B and a M × 1 column vector ω:

B=

⎛
⎜⎜⎜⎜⎝
b1�1 b1�2 · · · b1�n

b2�1 b2�2 · · · b2�n
���

���
� � �

���

bm�1 bm�2 · · · bm�n

⎞
⎟⎟⎟⎟⎠ � ω=

⎛
⎜⎜⎜⎜⎝
ω1

ω2
���

ωm

⎞
⎟⎟⎟⎟⎠ �

where bm�n > 0 ∀m and n. Then the M × 1 vector sequence:

a� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1
N

N∑
n=1

bm�n

)−1
1
N

N∑
n=1

bm�na�−1 if � is odd�

(
1
M

M∑
m=1

bm�n

)−1
1
M

M∑
m=1

bm�na�−1 if � is even�

where a0 = ( 1
M

∑M
m=1 bm�n)

−1 1
M

∑M
m=1 bm�nωm is a convergent sequence that has the fol-

lowing pointwise limit in �:

lim
�→∞(a�) = ω̄ =

(
1

MN

M∑
m=1

N∑
n=1

bm�n

)−1
1

MN

M∑
m=1

N∑
n=1

bm�nωm pointwise�

Proof. a0 represents an average of ω over m for each n which is weighted by B:

a0 = [
ω̄n=1

0 � ω̄n=2
0 � � � � � ω̄n=N

0
]
�

where ω̄n
0 = ( 1

M

∑M
m=1 bm�n)

−1 1
M

∑M
m=1 bm�nωm. Each element of a1, in turn, represents a

weighted average of all the elements in a0 over n for each m:

a1 = [
ω̄m=1

1 � ω̄m=2
1 � � � � � ω̄m=M

1
]
�

where ω̄m
1 = ( 1

N

∑N
n=1 bm�n)

−1[bm�n=1ω̄
n=1
0 + bm�n=2ω̄

n=2
0 + · · · + bm�n=Nω̄

n=N
0 ].

Since bm�n > 0 ∀m and n, it follows that inf{a0} ≤ inf{a1} and sup{a0} ≥ sup{a1}. If ∃ an

i� j pair such that ω̄n=i
0 �= ω̄

n=j
0 and i �= j, then it follows that inf{a0}< inf{a1} and sup{a0} >

sup{a1}. Only if ω̄n=i
0 = ω̄

n=j
0 ∀i� j will inf{a0} = inf{a1} and sup{a0} = sup{a1}. The same

argument applies for a2, which is a weighted average of all elements of a1 over n for each
m, and indeed all subsequent values of � in a�.

Thus, for every positive real number ε > 0 there is a positive integer K such that for
all positive integers i� j > K, the distance d(ai� aj) < ε (i.e., the sequence is convergent).

To demonstrate that lim�→∞(a�) = ω̄ pointwise, first note that

sup{a0} ≥ ω̄≥ inf{a0}
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as it is impossible for

(
1
M

M∑
m=1

bm�n

)−1
1
M

M∑
m=1

bm�nωm >

(
1

MN

M∑
m=1

N∑
n=1

bm�n

)−1
1

MN

M∑
m=1

N∑
n=1

bm�nωm ∀n

or

(
1
M

M∑
m=1

bm�n

)−1
1
M

M∑
m=1

bm�nωm <

(
1

MN

M∑
m=1

N∑
n=1

bm�n

)−1
1

MN

M∑
m=1

N∑
n=1

bm�nωm ∀n

when bm�n > 0 ∀m and n.
Then

sup{a1} ≥ ω̄ ≥ inf{a1}

since it is impossible for

(
1
N

N∑
n=1

bm�n

)−1
1
N

N∑
n=1

bm�nω̄
n
0 >

(
1

MN

M∑
m=1

N∑
n=1

bm�n

)−1
1

MN

M∑
m=1

N∑
n=1

bm�nω̄
n
0 ∀m

or

(
1
N

N∑
n=1

bm�n

)−1
1
N

N∑
n=1

bm�nω̄
n
0 <

(
1

MN

M∑
m=1

N∑
n=1

bm�n

)−1
1

MN

M∑
m=1

N∑
n=1

bm�nω̄
n
0 ∀m

when bm�n > 0 ∀m and n, and

(
1

MN

M∑
m=1

N∑
n=1

bm�n

)−1
1

MN

M∑
m=1

N∑
n=1

bm�nω̄
n
0

=
(

1
MN

M∑
m=1

N∑
n=1

bm�n

)−1
1

MN

M∑
m=1

N∑
n=1

bm�n

×
[(

1
MN

M∑
m=1

N∑
n=1

bm�n

)−1
1

MN

M∑
m=1

N∑
n=1

bm�nωm

]

=
(

1
MN

M∑
m=1

N∑
n=1

bm�n

)−1
1

MN

M∑
m=1

N∑
n=1

bm�nωm = ω̄

The same argument can be applied to a� ∀� > 0, so that sup{a�} ≥ ω̄ ≥ inf{a�} ∀�.
Therefore, a� is a convergent sequence of vectors that always contains within it ω̄, which
is accordingly the pointwise limit of the sequence.
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Proof of Theorem 1. Given (13), (14), (15), and (20) then

β̂it −βit = (Qxu�N +Qxu�T −Qxu�NT )+ (−1)L
(
Q−1

xx�N

1
N

N∑
i=1

xitx
′
itΘ1�L

+Q−1
xx�T

1
T

T∑
t=1

xitx
′
itΘ2�L −Q−1

xx�NT

1
NT

N∑
i=1

T∑
t=1

(
xitx

′
itΘ1�L + xitx

′
itΘ2�L

))

+
L∑

�=0

(−1)�+1

(
Q−1

xx�N

1
N

N∑
i=1

xitx
′
itΛ1�� +Q−1

xx�T

1
T

T∑
t=1

xitx
′
itΛ2��

−Q−1
xx�NT

1
NT

N∑
i=1

T∑
t=1

(
xitx

′
itΛ1�� + xitx

′
itΛ2��

))
� (29)

where Θ1�� = Q−1
xx�T (

1
T

∑T
t=1 xitx

′
itΘ2��−1) and Θ2�� = Q−1

xx�N( 1
N

∑N
i=1 xitx

′
itΘ1��−1) for � >

0, Λ1�� = Q−1
xx�T (

1
T

∑T
t=1 xitx

′
itΛ2��−1) and Λ2�� = Q−1

xx�N(
1
N

∑N
i=1 xitx

′
itΛ1��−1) for � > 0,

Θ1�0 = λi, Θ2�0 = θt , Λ1�0 = Qxu�N , and finally Λ2�0 = Qxu�T . First, using Lemma 1, (19),
and (20) then

lim
L→∞

(
Q−1

xx�N

1
N

N∑
i=1

xitx
′
itΘ1�L +Q−1

xx�T

1
T

T∑
t=1

xitx
′
itΘ2�L

−Q−1
xx�NT

1
NT

N∑
i=1

T∑
t=1

(
xitx

′
itΘ1�L + xitx

′
itΘ2�L

)) = 0� (30)

To see this, exchange bm�n and ωm in Lemma 1 for xitx
′
it and either λi or θt . Since

Lemma 1 showed the sequence a� converges pointwise to ω̄ in �, then also the vector
sequence:

q� =Q−1
xx�N

1
N

N∑
i=1

xitx
′
itΘ1�� +Q−1

xx�T

1
T

T∑
t=1

xitx
′
itΘ2��

must converge to Q−1
xx�NT

1
NT

∑N
i=1

∑T
t=1(xitx

′
itΘ1�L + xitx

′
itΘ2�L) in � which gives us the

result in (30).
Furthermore, given the weak law of large numbers, the continuous mapping theo-

rem, and assumptions A.1–A.4, as N → ∞:

Q−1
xx�N

(
1
N

N∑
i=1

xituit

)
p→ E

(
Q−1

xx�N

)
E(xituit)= E

(
Q−1

xx�N

)
0 = 0� (31)

Furthermore, as T → ∞:

Q−1
xx�T

(
1
T

T∑
t=1

xituit

)
p→E

(
Q−1

xx�T

)
E(xituit) = E

(
Q−1

xx�T

)
0 = 0 (32)
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and lastly as (N�T)
j→ ∞:

Q−1
xx�NT

(
1

NT

T∑
t=1

N∑
i=1

xituit

)
p→E

(
Q−1

xx�NT

)
E(xituit) =E

(
Q−1

xx�NT

)
0 = 0� (33)

Given (31)–(33) and the continuous mapping theorem then:

L∑
�=0

(−1)�+1

(
Q−1

xx�N

1
N

N∑
i=1

xitx
′
itΛ1�� +Q−1

xx�T

1
T

T∑
t=1

xitx
′
itΛ2��

−Q−1
xx�NT

1
NT

N∑
i=1

T∑
t=1

(
xitx

′
itΛ1�� + xitx

′
itΛ2��

)) p→ 0�

Therefore, as required for Theorem 1:

β̂it −βit
p→ 0�

Proof of Theorem 2. Since β̄ = β+E(λi)+E(θt ) =E(βit), β̂MO = 1
NT

∑N
i=1

∑T
t=1 β̂it ,

and the result from Theorem 1 that β̂it − βit
p→ 0 when L → ∞ and then (N�T)

j→ ∞,
the weak law of large numbers shows that

β̂MO = 1
NT

N∑
i=1

T∑
t=1

β̂it
p→E(βit)

which implies Theorem 2.

Proof of Theorem 3. Given (29), (30), (21), and β̄ = β + E(λi) + E(θt ) when L → ∞
then

√
NT(β̂MO − β̄) = 1√

NT

N∑
i=1

T∑
t=1

((
λi −E(λi)

) + (
θt −E(θt )

)) + 1√
NT

N∑
i=1

T∑
t=1

(Ψit +Ξit)�

where Ψ it = (Qxu�N +Qxu�T −Qxu�NT ) and, furthermore, Ξ it = ∑L
�=0(−1)�+1(Q−1

xx�N
1
N ×∑N

i=1 xitx
′
itΛ1�� +Q−1

xx�T
1
T

∑T
t=1 xitx

′
itΛ2�� −Q−1

xx�NT
1

NT

∑N
i=1

∑T
t=1(xitx

′
itΛ1�� +xitx

′
itΛ2��)).

Consider now the asymptotics where (N�T)
j→ ∞, assumptions A.1–A.4 and the

weak law of large numbers implies that both Ψ it
p→ 0 and Ξ it

p→ 0 (as shown in The-
orem 1). Accordingly,

√
NT(β̂MO − β̄)

d→ N(0�ΣMO)�

where

ΣMO = Var(λi)+ Var(θt )

since λi and θt are independent by definition.
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Now consider the nonparameteric estimate of ΣMO that was proposed in (22):

Σ̂MO = 1
NT−1

N∑
i=1

T∑
t=1

(
(β̂it − β̂t̄ )(β̂it − β̂t̄ )

′ + (β̂it − β̂ī)(β̂it − β̂ī)
′)�

Given (29) and (30), then

β̂it = β+λi + θt +Ψit +Ξit

and

(β̂it − β̂t̄ ) =
(
λi − 1

N

N∑
i=1

λi

)
+

(
Ψit − 1

T

T∑
t=1

Ψit

)
+

(
Ξit − 1

T

T∑
t=1

Ξit

)
p→ (

λi −E(λi)
)
�

and using a symmetric argument

(β̂it − β̂ī)
p→ (

θt −E(θt )
)
�

where β̂ī = 1
T

∑T
t=1 β̂it and β̂t̄ = 1

N

∑N
i=1 β̂it . Therefore,

1
NT−1

N∑
i=1

T∑
t=1

(
(β̂it − β̂t̄ )(β̂it − β̂t̄ )

′ + (β̂it − β̂ī)(β̂it − β̂ī)
′) p→ Var(λi)+ Var(θt )

and Σ̂MO
p→ΣMO as required.
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