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Risk aversion in share auctions: Estimating import rents from
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This paper analyzes risk aversion in discriminatory share auctions. I generalize the
k-step share auction model of Kastl (2011, 2012) and establish that marginal prof-
its are set-identified for any given coefficient of constant absolute risk aversion.
I also derive necessary conditions for best-response behavior, which allows deter-
mining risk preferences from bidding data. Further, I show how the bidders’ opti-
mality conditions allow computing bounds on the marginal profits that are tighter
than those currently available. I use my results to estimate import rents from Swiss
tariff-rate quotas on high-quality beef. Rents are overestimated when ignoring risk
aversion, and rent extraction is underestimated. Small bidders (small, privately
owned butcheries) are more risk averse than large bidders (general retailers). Best
response violations are few and uniform across bidder sizes.
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1. Introduction

Risk neutrality is often a convenient assumption when estimating auctions. Yet, in many
settings, it is unclear whether it is also accurate. In this paper, I analyze this question
in the context of share auctions. I generalize the current state-of-the-art model (Kastl
(2011, 2012)) to risk aversion, develop a method to determine risk preferences from ob-
served bids, and show with real-life data how properly accounting for risk aversion af-
fects rent estimation.

Share auctions are widely used mechanisms to sell (almost) perfectly divisible goods
such as large quantities of treasury bills or electricity. A bid typically consists of a finite
number of price-quantity pairs, indicating a bidder’s marginal willingness to pay. The
central insight from the literature is that, under the assumption of risk neutrality, the
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observed bids allow point estimating bidders’ marginal values at the submitted quantity
points (see Kastl (2017, 2020) for excellent overviews). Risk neutrality is a natural as-
sumption in the context of treasury bill auctions or electricity markets (e.g., Nyborg, Ry-
dqvist, and Sundaresan (2002)). It is potentially problematic in other contexts, though.
In particular, bidders that are small relative to the goods on sale are often suspected—
and found—to be risk averse (e.g., Li, Lu, and Zhao (2015), Kong (2020)).1

In this paper, I consider data from tariff-rate quota auctions run by the Swiss Fed-
eral Office for Agriculture. These auctions allocate rights to import high-quality beef
at a (low) in-quota tariff. The number of bidders in the auctions is relatively high (72
on average), and most of the bidders only bid for a small fraction of the overall quota
(cf. Section 2 for more details). These bidders act on behalf of small- or medium-sized
butcheries that serve distinct customer bases in restricted geographical areas and make
up a substantial part of the Swiss retail meat market. The bidders are often the owners
of the butcheries, lack financial flexibility, and rely on the highly lucrative high-quality
beef imports. We might thus worry that the bidders are risk averse, which would render
the current estimation methods inapplicable.2 Having an accurate picture of the import
rents and how well the auctions capture these rents is of quite some policy relevance.

The analysis starts with the theoretical model in Section 3. There is a fixed quan-
tity of a perfectly divisible good on auction. Bids correspond to (fixed-length) tuples
of price-quantity pairs, and payment is discriminatory. Each bidder acts on behalf of a
firm, which obtains decreasing marginal profit from the good. The firm’s marginal profit
function is private information of the respective bidder. The bidders evaluate the value
of the received quantity in the auction, net of the resulting payment, with a commonly
known, possibly nonlinear utility function. I allow for arbitrary increasing utility func-
tions in the general model, for which I establish equilibrium existence (Proposition 1)
and derive the equilibrium characterization (Proposition 2). I restrict attention to the
class of CARA utility functions in all results relevant to the empirical analysis.

I present three main theoretical results in Section 4. First, I show that for any given
CARA parameter, the optimality conditions for the quantity points together with the as-
sumption of decreasing marginal profits allow us to set identify a firm’s marginal profit
function at the submitted quantity points in a straightforward way (Lemma 1). The cen-
tral insight is that under CARA preferences, the optimal choice of a quantity point is
independent of the marginal profits on inframarginal quantities. This gives a recursive
formulation, starting with the highest quantity point, of upper and lower bounds on the
marginal profits that can rationalize the observed bids (Proposition 3). Under risk neu-
trality, the bounds correspond to the bounds in Kastl (2012).

Second, I formulate necessary conditions for best-response behavior. I derive the
conditions from the bidders’ optimality conditions. The first set of conditions stems

1More recent papers on risk aversion in (procurement) auctions include Bolotnyy and Vasserman (2019),
Luo and Takahashi (2019), and Aryal et al. (2022).

2Indeed, the butcheries consider fluctuating import rights a major issue. In a survey by the Federal Office
for Agriculture from 2010, the Swiss association of meat producers complained that, especially for smaller
firms, the allocation through auctions was just too uncertain: “For the individual firm, the allocation resem-
bles a lottery [...], impeding planning security also towards the customers” (my translation). The report (in
German) is available under http://www.news.admin.ch/NSBSubscriber/message/attachments/20686.pdf.
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from the optimality of the quantity points, requiring that the submitted quantity points
are consistent with the existence of a decreasing marginal profit function. The second
set of conditions requires that, among the decreasing marginal profit functions that are
consistent with the quantity points, there are functions that are also consistent with the
optimality conditions of the price points. The conditions are inequalities and stated in
Proposition 4. The inequalities depend on a bidder’s risk parameter and are the basis for
my empirical strategy to determine risk preferences.

Third, I address a caveat from Proposition 3: The marginal profits at the quantity
points are merely set-identified under risk aversion. Hence, the corresponding upper
and lower bounds on the possible marginal profit functions are unlikely to be very tight.
Here, the optimality conditions for the price points again turn out to be helpful, allowing
me to formulate tighter upper and lower bounds as the least fixed point of a mapping
that we can estimate from the data (Proposition 5). In particular, we can obtain the least
fixed point through a fixed-point iteration that uses the bounds derived from Proposi-
tion 3 as initial conditions.

The empirical part (Section 5) proceeds in three steps. First, I estimate the equilib-
rium distribution of opponent demand (Section 5.1). To do so, I follow the recent lit-
erature and use a resampling procedure that draws from observed bids (Hortaçsu and
McAdams (2010), Kastl (2011)). To account for potential heterogeneity among the bid-
ders, I follow Kastl (2011) and divide the bidders into three groups g = 1, 2, 3 based
on average quantity bids, where I assume symmetry in the bid distribution among the
members of a group.

In a second step, I determine risk preferences (Section 5.2). To do so, I plug the op-
ponent demand distribution estimates into the necessary inequality conditions for best-
response behavior. Assuming that all bidders are risk-neutral, I find that more than 50%
of the estimated inequalities fail to hold. To account for risk aversion, I assume that all
bidders in a bidder group g = 1, 2, 3 have an identical CARA parameter ρg. I find that the
share of the best-response violations is U-shaped in ρ for all three groups. At the val-
ues that minimize the percentage of best-response violations in the respective group, a
mere 21% of all estimated inequalities fail to hold. The average number of price-quantity
pairs that a bidder submits is 4.4, so there is a best-response violation in less than one
price-quantity pair per bidder.

Of the submitted bids, only a tiny fraction violates the necessary conditions from
quantity point optimality. I take this as a justification for the assumption of decreas-
ing marginal profits and conclude that most best-response violations are due to sub-
optimally chosen price points. Overall, the number of best response violations is com-
parable to what Chapman, McAdams, and Paarsch (2006) find for Canadian term deposit
auctions under risk neutrality. Chapman, McAdams, and Paarsch (2006) consider a mul-
tiunit auction with a discrete bid space. Their setting yields optimality conditions that
differ from the ones derived in this paper, which require both optimal price and quantity
bids.

The values of the CARA parameter that minimizes the share of best-response viola-
tions in a given group, ρ∗

g, are inversely related to the average quantity bidders bid for
in a group. In other words, small bidders are more risk averse than large bidders. Such a
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finding is intuitive given the structure of the Swiss meat market. The large bidders cor-
respond to large general retail chains that have the necessary means to mitigate some
of the auction-specific risks. The small bidders are smaller local butcheries that do not
have these means.

In a third step, I estimate upper and lower bounds on the firms’ average profits per
kg of imported beef (Section 5.3). My results show that assuming risk aversion indeed
makes the bounds from the optimality conditions for the quantity points less precise.
Nevertheless, we can fully compensate for this loss by considering the tighter bounds
that also use the optimality conditions for the price points. Moreover, appropriately ac-
counting for risk aversion considerably affects the estimates. For example, the upper
bound on average profits per kg after auction payments is estimated at CHF 7.93 under
risk neutrality but only at CHF 3.83 under risk aversion. Also, the lower bound decreases
from CHF 1.82 to CHF 0.80. This corresponds to drops of 52% and 55%, respectively.

The sign of the bias is intuitive: Because risk-averse bidders bid closer to their
marginal profit than risk-neutral bidders do, not accounting for risk aversion yields
upward-biased estimates. In particular, the results imply that import rents are much
lower, and the auctions perform much better in extracting rents than they would appear
when assuming risk neutrality. As we will see, appropriately accounting for risk prefer-
ences yields magnitudes of rent extraction that are comparable to what the literature has
found for treasury bill auctions (cf. Kastl (2011, 2017)).

The empirical literature on share auctions was pioneered by Hortaçsu and McAdams
(2010) and Kastl (2011, 2012) and has been fast-growing since then. Recent contribu-
tions include Hortaçsu, Kastl, and Zhang (2018) who assess the market power of primary
dealers in the US treasury market, and Elsinger, Schmidt-Dengler, and Zulehner (2019)
who analyze the role of competition in Austrian treasury auctions (cf. Kastl (2017, 2020)
for overviews and further references). Hortaçsu and McAdams (2010) analyze a share
auction without restricting bid schedules to step functions, akin to the original share
auction model proposed by Wilson (1979). They apply their model to Turkish treasury
auctions.3 All these papers consider the risk-neutral case.

There is also related theoretical literature on share auctions comparing uniform and
discriminatory pricing (Back and Zender (1993)), considering endogenous supply (Back
and Zender (2001)), and analyzing risk aversion with mean-variance preferences (Wang
and Zender (2002)). In contrast to the model I study, these papers assume common val-
ues and constant marginal profits. More recent contributions include Anderson, Holm-
berg, and Philpott (2013) and Pycia and Woodward (2020), both analyzing discrimina-
tory payment in models with complete information about preferences and stochastic
supply.

Further, my study is related to the seminal analysis of the Texas electricity spot mar-
ket in Hortaçsu and Puller (2008).4 Restricting attention to linear bid schedules, Hor-
taçsu and Puller (2008) find that large bidders comply with behavior predicted by Nash
equilibrium while smaller firms submit demand schedules that are too steep. In a recent

3See Marszalec (2017) for a discussion and an application to Polish treasury auction.
4Other empirical studies of electricity auctions include Wolak (2000, 2003) and Fabra and Reguant (2014).
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follow-up study, Hortaçsu et al. (2019) show that this can be rationalized by a cogni-
tive hierarchy model in which small bidders are less sophisticated than large bidders.
My analysis suggests that risk aversion gives rise to a similar pattern in the TRQ auc-
tions: risk aversion goes along with less bid-shading, and smaller bidders are substan-
tially more risk averse.

Last, my paper contributes to the literature on estimating risk preferences in the field
(cf. Barseghyan et al. (2018) for a recent overview). Due to the complexities of the share
auction, I restrict myself to a particular class of risk aversion. For first-price auctions,
the identification of more general risk preferences is explored in the seminal papers of
Guerre, Perrigne, and Vuong (2009) and Campo et al. (2011). The former uses fluctuating
participation across auctions for identification, while the latter uses heterogeneity in ob-
jects across auctions.5 In contrast, I frame the problem of determining risk preferences
as a model selection problem, where the number of best response violations serves as
a metric for model fit. While certainly an avenue for future research, a formal test for a
given degree of risk aversion in the share auction is out of the scope of this paper.

2. The Swiss TRQ auctions for high-quality beef

Worldwide, many imports of agricultural products are managed by so-called tariff-rate
quotas. A tariff-rate quota (TRQ) is a two-tiered tariff regime that allows imports up to a
given quota at a low in-quota tariff and puts a high over-quota tariff on imports outside
the quota. In 2016, the WTO counted a total of 1128 tariff-rate quotas in more than 40
countries (cf. WTO Committee on Agriculture (2018)).

Tariff-rate quotas naturally entail rents for the importers that can import at the in-
quota tariff (e.g., Boughner, de Gorter, and Sheldon (2000)). Many countries have thus
adopted some form of a sale mechanism for the in-quota import rights to distribute
these import rents back to the general public. Given a specific tariff-rate quota and its
allocation mechanism, two natural and related questions are the following. What is the
magnitude of the import rents that the TRQ creates? And how well does the sale mech-
anism perform in capturing these rents? Accurately answering these questions is a pre-
requisite for any informed policy debate about the TRQ and its allocation mechanism.
Yet, this requires profit estimates at a very disaggregated level, which are typically not
readily available. If the sale mechanism is an auction—which is the case in about 5%
of all TRQs worldwide (WTO Committee on Agriculture (2018))—we may obtain profit
estimates from the bidders’ behavior.

In this paper, I obtain rent estimates from TRQs on meat imports to Switzerland. The
Federal Office for Agriculture (FOA) runs the TRQ auctions. Bidding is open to all resi-
dents of Switzerland, but prior registration is required. Depending on the meat category,
the quota periods last between 1 to 3 months, and the quotas vary from period to period.
The FOA sets and announces the quotas a couple of days before the respective periods.
The FOA is required to set the quotas in a manner that accommodates seasonally fluctu-
ating domestic demand without affecting domestic prices. After every auction, the FOA

5Lu and Perrigne (2008) use the fact that both ascending and sealed-bid auctions are used in timber sales
to identify risk preferences.
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publishes an online report containing the names of the firms in the auction, their allo-
cated quantities, the market-clearing price, and the average price per kg that the suc-
cessful bidders paid. Allocated import rights must be executed during the quota period
and expire after that.6

The TRQs for high-quality beef My data set covers 39 auctions from 01/2008 to 12/2010
for the category of high-quality beef. High-quality beef subsumes beef cuts and car-
casses of superior quality, such as tenderloin and sirloin steaks.7 Imported beef—most of
which originates from Germany—amounts to roughly 20% of total domestic beef con-
sumption (Loi, Esposti, and Gentile (2016)). Switzerland is one of the most expensive
countries for beef worldwide (cf. the 2017 Caterwings Meat-Price Index). The average re-
tail price for sirloin steak in Switzerland between 2008 and 2010 was 60.67 CHF/kg (not
discriminating between imported and domestically produced meat). The average US re-
tail price for USDA Choice sirloin steak was 5.58 USD/lb. USD and CHF were roughly at
parity during that period.8

The quota periods last roughly 30 days, and the quotas range from 67.5 tons to 630
tons, with a mean of 311.5 tons (cf. Table 1). The subcategories of high-quality beef are
subject to different in-quota and over-quota tariffs, which remained unchanged over
the period I consider. The highest spread between an in-quota tariff and the respec-
tive over-quota tariff is CHF 20.53 (CHF 1.59 vs. CHF 22.12).9 The over-quota tariffs are

Table 1. Summary of the high-quality beef TRQ auction characteristics.

Mean Min Pctl(25) Pctl(75) Max

Quotas, t 311.5 67.5 213.75 360 630
Bid-to-Cover ratio 2.96 1.80 2.41 3.37 5.43
Number of bidders 71.6 58 68 76 82
Market clearing price, CHF 8.22 3.21 6.125 9.52 14.41
Revenue, CHF mio. 2.76 0.67 1.71 3.46 7.98

Average total quantity bid per bidder, kg 8592 30 851 7785 143,072
Share of successful bidders 0.64 0.04 0.44 0.83 0.97
Success rate per bidder 0.60 0 0.47 0.84 1
Success rate per bidder* 0.71 0.28 0.58 0.85 1
Share of allocated quantity 0.0216 0.0001 0.0022 0.0222 0.4741

6Import rights are transferrable. In the meat category that I look at, high-quality beef, most imports are
managed by one large firm (that does not bid itself). Unfortunately, little is known about after-auction in-
teractions (Loi, Esposti, and Gentile (2016)).

7For further information, complare the memo “Definition of High-Quality-Beef,” available at https://
www.blw.admin.ch.

8The prices for Switzerland that I use are available from https://www.blw.admin.ch/blw/de/home/
markt/marktbeobachtung/fleisch.html. The prices for the US are available from the Bureau of Labor Statis-
tics, https://data.bls.gov/cgi-bin/srgate, using the series ID APU0000703613.

9Specifically, the beef subsumed under the category of high-quality beef is associated with four differ-
ent tariff-numbers: 0201.2091/018 and 019 (fresh or chilled carcasses and half-carcasses with bone in),
0201.3091/018 and 019 (boneless), 0202.2091/018 and 019 (frozen carcasses and half-carcasses with bone
in), 0202.3091/018 and 019 (boneless), where 018 stands for the in-quota tariff and 019 for the over-quota

https://www.blw.admin.ch
https://www.blw.admin.ch/blw/de/home/markt/marktbeobachtung/fleisch.html
https://data.bls.gov/cgi-bin/srgate
https://www.blw.admin.ch
https://www.blw.admin.ch/blw/de/home/markt/marktbeobachtung/fleisch.html
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prohibitive; that is, high-quality beef imports generally do not exceed the quota (Loi,
Esposti, and Gentile (2016)).

The auctions The bidders can submit at most 5 pairs of price-quantity points. The sub-
mitted prices are in CHF, and the quantities are in kg. The average number of price-
quantity pairs per bid is 4.42. There are a total number of 123 registered bidders. The
number of active bidders in an auction varies between 58 and 82, with a mean of 72 bid-
ders. The average bid-to-cover ratio is 2.96. With five exceptions, the bid-to-cover ratio
is higher than 2; in one auction, it is more than 5.10 The market-clearing prices range
from 3.21 CHF/kg to 14.41 CHF/kg. Revenues per auction range from CHF 0.7 million
to CHF 8 million, with a mean revenue per auction of CHF 2.8 million. The cumulated
revenue over the 39 auctions amounts to CHF 107 million.

As mentioned in the Introduction, most bidders are relatively small compared to the
total market size. This can be seen from Table 1, considering the average total quantity
bid per bidder: for 75% of all bidders, the average quantity for which that bidder submits
a positive price (conditional on being active) is below 7.8t, and thus corresponds to less
than 3% of the average quota, which is 311.5t. These average quantity bids are heavily
skewed to the right, with the mean of 8.5t being higher than the 75% quantile. A similar
observation holds for the allocated share of the total quota, which ranges from a mini-
mum of 0.0001 for a single bidder to a maximum of 0.47, with an average roughly equal
to the 75% quantile. This heterogeneity, both in the bids and the outcomes, reflects the
structure of the Swiss retail market for meat, consisting of a few large retailers and many
smaller to medium-sized butcheries.

Despite this heterogeneity in the bids and the outcomes, it seems that the chances
of obtaining a nonzero quantity are intact for everyone. The average share of successful
bidders is 64% per auction. The minimum of 4% successful bidders is an outlier as the
reported first quartile of 44% suggests. Moreover, the mean individual success rate for an
active bidder (i.e., the ratio of auctions in which the bidder was successful to the number
of auctions in which the bidder was active) amounts to 60%. For the 44 bidders who were
active in at least 35 out of the 39 auctions, the mean success rate is even higher, at 71%;
and the minimum success rate is 28% (marked with an asterisk * in Table 1).

3. Theoretical model

3.1 Types, strategies, and equilibrium

There are n ≥ 2 bidders with corresponding firms i = 1, � � � , n. Bidder i bids on behalf
of firm i, which has decreasing and Lipschitz-continuous marginal profit vi(q) from im-
porting a quantity q ≥ 0 of meat. I assume that bidder i privately knows vi and I call vi
the type of bidder i.

tariff. These tariffs are, respectively, 1.59 and 13.68 CHF/kg, 1.59 and 22.12 CHF/kg, 1.59 and 12.33 CHF/kg,
and 1.09 and 20.57 CHF/kg (cf. https://xtares.admin.ch for the tariffs).

10I compute the bid-to-cover ratio by dividing the aggregate amount of quantities for which bidders
submitted a positive price by the total quota on sale.

https://xtares.admin.ch
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Remark 1 (Marginal profits). Although I take marginal profits vi as the primitives of the
model, they can be derived from a stylized partial equilibrium model of the market for
imported high-quality beef as follows. There are n ≥ 2 firms that compete in quantities.
Each firm i has a private, weakly convex cost Ci(q) of acquiring, importing, and process-
ing a quantity q ≥ 0 of beef. The market demand for imported meat is given by some
inverse demand function P(q). Imports are regulated with a TRQ. Motivated by the dis-
cussion in the previous section, we may assume that the over-quota tariff is prohibitively
high so that the total quantity in the market is effectively restricted to the quota, Q> 0.
If the in-quota-tariff is τ > 0, then the (decreasing) marginal profit of a firm i when being
allowed to import q ≤Q is

vi(q) = max
{
P(Q) − τ −C ′

i(q), 0
}

,

where the max-operator reflects that the firm will not import any additional quantity
when the marginal gain is negative.

I assume that all types vi are bounded above by some bidder-independent v > 0 and
let V be the space of all non-increasing, Lipschitz-continuous marginal profit functions
vi : [0, Q] → [0, v] with a uniform (finite) Lipschitz constant. Throughout, I assume that
V is equipped with the metric dv induced by the supremum norm. Such a type space
includes constant marginal profit functions on all quantities but excludes discontinuous
marginal profits like, for example, step functions.11

The commonly known distribution of profit profiles v = (v1, � � � , vn ) ∈ Vn is described
by a probability measure η on the Borel subsets of Vn with a marginal distribution ηi on
V for each bidder i.

(A1) The marginal profits vi ∈ V are independently distributed.

(A2) For all bidders i = 1, � � � , n, it holds that, if X ⊂ V satisfies ηi(X ) > 0, then there
are X ′, X ′′ ⊂ X with ηi(X ′ ), ηi(X ′′ ) > 0 where ∀f ∈ X ′ and ∀g ∈ X ′′ it holds that
f (q) > g(q), ∀q ∈ [0, Q].

Technically, Assumption (A1) can be weakened to type distributions η that are ab-
solutely continuous with respect to the product of their marginals. Independence will
be crucial for estimation later on, though. Assumption (A2) says that any set of profits
with positive measure contains two sets also of nonzero measure, where all elements of
one set dominate all elements of the other set in the pointwise partial order. This will
be key for establishing equilibrium existence. Note that Assumption (A2) entails the as-
sumption that η is atomless. I write v−i = (v1, � � � , vi−1, vi+1, � � � , vn ) for the elements of
the profit profile v other than bidder i’s type, and denote the distribution of opponent
types v−i by η−i(v−i ).

11The theoretical results in this and the next section hold for any finite Lipschitz constant. The set V
may include functions that are very close to step functions in the pointwise order if the Lipschitz constant
is sufficiently high. While monotonicity alone is sufficient for equilibrium existence, continuity is required
to characterize the optimal bids. A Lipschitz constant must be imposed so that the type space is compact
(cf. the proof to Proposition 1 in the Supplementary Appendix). The upper bound on the marginal valua-
tions, v, will be important for the application (cf. also footnote 23).
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I assume that all bidders evaluate their firms’ monetary gains from the auction with
a commonly known utility function φ : R→ R. That is, if the quantity that bidder i’s firm
receives after the auction is q and the total payment is P , then his utility is

φ

(∫ q

0
vi(x) dx− P

)
.

When φ(x) = x, the bidders are risk-neutral, and the utility function corresponds
to that in Kastl (2012). An extension to heterogeneous (commonly known) utility func-
tions φi is straightforward but omitted for a clean notation. All results go through when
replacing φ with a bidder-dependent φi.12

Whereas the application will assume that φ is in the class of CARA utility functions,
the general model only requires that the bidders’ utility from the net profit in the auction
is strictly monotone. Specifically, we have the following:

(A3) The function φ is strictly increasing, twice continuously differentiable, and sat-
isfies φ(0) = 0.

Bidders simultaneously submit their bids. Each bidder i submits k ≥ 1 price-
quantity pairs (p

j
i , q

j
i ) ∈ [0, p] × [0, Q], j = 1, � � � , k, where p is finite and denotes the

maximum price point that can be submitted. A feasible action of bidder i is a k-tuple bi
of price-quantity pairs,

bi =
{(
p1
i , q1

i

)
,
(
p2
i , q2

i

)
, � � � ,

(
pk
i , qki

)}
,

where the price points are decreasing, and the quantity points are increasing. This gives
us the set B of feasible actions,

B =
{
bi ∈

[
[0, p] × [0, Q]

]k
:
p ≥ p

j
i ≥ p

j+1
i ≥ 0,

0 ≤ q
j
i ≤ q

j+1
i ≤Q,

∀j ∈ {1, � � � , k− 1}

}
.

The bids of all bidders are taken together in the vector b ≡ (b1, � � � , bn ) ∈ Bn, which I call
a bid profile.

It will be convenient to use the price-quantity pairs in bi ∈ B to define left-
continuous step functions βbi : [0, Q] → [0, p],

βbi(q) = p1
i +

k+1∑
j=2

(
p
j
i −p1

i

) · 1
q∈(q

j−1
i ,qji ]

,

where 1x denotes the indicator function, I let (pk+1
i , qk+1

i ) ≡ (0, Q), and I assume that
(q, q] = ∅ for any q ∈ [0, Q].13 Further, I write β−1

bi
(p) for the inverse of βbi , returning the

quantity demanded by player i at price p.

12As mentioned in the Introduction, the application in Section 5 will assume that we can group the bid-
ders so that risk preferences differ across groups but are identical within groups.

13That is, when some submitted quantity points are equal, that is, qji = q
j+1
i = · · · = q

j+m
i for some j ∈

{1, � � � , k} and m ∈ {1, � � � , k − j}, then βbi (q
j
i ) = p

j
i . This amounts to assuming that the auctioneer always

considers the highest price bid on any quantity, and ignores the other price points.
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Remark 2 (Bidders Submitting less than k price-quantity pairs). In the application, we
will have k= 5; that is, bidders can submit at most five price-quantity pairs. Yet, bidders
do not always submit five price-quantity pairs (the average number of price-quantity
pairs per bidder is 4.4). Such behavior can be explained with a binding monotonicity
constraint on at least one of the price points or quantity points, leading to a step function
βbi whose graph has less than k steps. I will use the term distinct price-quantity pairs
to refer to the smallest set of price-quantity pairs that are required to characterize the
graph of such a step function (see Definition 2 in Section 3.2). As we will see, knowing
the distinct price-quantity pairs of a bid is sufficient to apply the theoretical results to
the data. Hence, we can treat the submitted price-quantity pairs as the distinct pairs of
a bid (whose other price-quantity pairs need not be known).

For a realized bid profile b ∈ Bn with at least one bidder submitting at least one
strictly positive price point, the auctioneer determines the price pc > 0 of the lowest
served bid. The price pc either corresponds to the market-clearing price or, if there is no
such price, to the lowest strictly positive price point submitted; that is,

pc = max

{
sup

{
p ∈ [0, p] :

n∑
i=1

β−1
bi

(p) ≥Q

}
,

min
{
p ∈ {

p
j
i

}
i∈{1, ���,n},j∈{1, ���,k} : p> 0

}}
,

where the supremum of the empty set is taken to be 0. The auctioneer retains the goods
if no strictly positive price point is submitted.

If total demand at pc is weakly smaller than Q, then all demand at pc is served. If,
on the other hand, total demand at pc is strictly greater than Q, then at least one bidder
will be rationed according to some prespecified rationing rule. To capture rationing for-
mally, I say that, for any bid profile b ∈ Bn and any bidder i, the rationing rule induces
a cumulative distribution Hb

i : [0, Q] → [0, 1] of the allocated quantity q ∈ [0, Q], so that
the payoff ui that bidder i of type vi receives when bids (bi, b−i ) are submitted can be
written as

ui(bi, b−i, vi ) =
∫ Q

0
φ

(∫ q

0

[
vi(q̂) −βbi(q̂)

]
dq̂

)
dHb

i (q). (1)

Specifically, the rationing rule used is pro-rata-on-the-margin, which is the standard
rationing rule in share auctions (cf. Kastl (2011)). Suppose there are m ≥ 1 bidders, col-
lected in the set M , submitting a price point equal to pc . For every bidder i ∈M , let

Qi ≡ β−1
bi

(
pc

) − lim
p↓pc

β−1
bi

(p)

be the marginal demand at pc . Then, for any bidder i ∈M , the allocated quantity is

qci ≡ lim
p↓pc

β−1
bi

(p) + Qi∑
j∈M

Qj

·
[
Q−

∑
j∈N

lim
p↓pc

β−1
bj

(p)

]
,
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where N = {1, � � � , n} is the set of all bidders. For all the other bidders i ∈ {1, � � � , n} \ M ,
the allocated quantity is β−1

bi
(pc ). This gives the following.

(A4) The cumulative distribution function Hb
i (q) of the allocated quantity for bidder

i under a bid profile b is given by

Hb
i (q) =

⎧⎪⎪⎨
⎪⎪⎩

0, if q ∈ [0, qci ) and there is j ∈ {1, � � � , k} such that pj
i = pc ,

0, if q ∈ [0, β−1
bi

(pc )) and there is no j ∈ {1, � � � , k} such that pj
i = pc ,

1, else.

Following Kastl (2012), I consider distributional strategies (Milgrom and Weber
(1985)): A feasible strategy for bidder i consists in a probability measure μi over the
product of bidder i’s action space and type space, where the marginal distribution of
the type space is equal to the type distribution. In other words, for any X ⊂ V we have
μi(B × X ) = ηi(X ). The set of all such probability measures is denoted by M, and the
individual strategies are collected in the strategy profile μ = (μ1, � � � , μn ) ∈ Mn. I write
μi(.|vi ) for bidder i’s distribution over B conditional on being of type vi.

Definition 1 (Equilibrium). An equilibrium is a strategy profile μ∗ ∈ Mn satisfying

μ∗
i ∈ arg max

μi∈M

∫
Bn×Vn

ui(bi, b−i, vi ) dμ∗
1(b1|v1 ) � � � dμ∗

i−1(bi−1|vi−1 )

× dμi(bi|vi ) dμ∗
i+1(bi+1|vi+1 ) � � � dμ∗

n(bn|vn ) dη(v)

for all bidders i = 1, � � � , n.

3.2 Equilibrium existence and best-response characterization

I first establish existence of an equilibrium. A tie is when two or more bidders submit a
price point equal to pc , and total demand at pc strictly exceeds the quota (i.e., rationing
occurs). I can state the following result.14

Proposition 1. An equilibrium exists. In any equilibrium, ties happen with probability
zero.

For risk-neutral bidders and continuous type distributions, the absence of ties in
equilibrium is well known (Kastl (2011)). The strict monotonicity of φ posited in (A4)
together with Assumption (A2) ensures that this continues to hold for alternative risk

14The proof, found in the Supplementary Appendix, first considers an auction with a discrete action
space for which I establish existence by using the results of Milgrom and Weber (1985). Letting the dis-
crete action space become dense in the continuous action space then allows me to construct a sequence of
equilibria for which I show the limit to be an equilibrium of the auction with the continuous action space
(using results developed in Reny (1999, 2011)). This approach is an alternative to that employed in Kastl
(2012) who uses results from Reny and Zamir (2004). Note, however, that Kastl (2012) does not allow for risk
aversion. A more direct proof of Proposition 1 could be obtained by extending the results of Olszewski and
Siegel (2019) to the present setting, along analogous lines they suggest for multiunit auctions.
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preferences. Roughly speaking, whenever ties were to happen, there would be a set of
tying bidders with positive measure who would strictly prefer to avoid the tie.

Next, I turn to the characterization of the equilibrium bids. To this end, let

Bp,q =
{
b−i ∈ Bn−1 : Q−

∑
j∈{1, ���,n}\i

β−1
bj

(p) ≥ q

}

be the set of opponent bid profiles b−i such that the residual supply faced by bidder i at
price p ∈ (0, p̄] is weakly greater than q ∈ (−∞, Q]. This allows to define

W ∗
i (p, q)

=
∫
Vn−1

∫
Bp,q

dμ∗
1(b1|v1 )... dμ∗

i−1(bi−1|vi−1 ) dμ∗
i+1(bi+1|vi+1 )... dμ∗

n(bn|vn ) dη−i(v−i ),

which corresponds to the probability that the residual supply faced by bidder i at a
price p> 0 when the other bidders play according to their equilibrium strategies in the
strategy profile μ∗ ∈ Mn is greater than q. The absence of ties in equilibrium gives that
W ∗

i (p, q) corresponds to the probability of winning at least a quantity of q when submit-
ting a price p for that quantity. Let w∗

i (p, q) denote the derivative of W ∗ with respect to
p; that is, w∗

i (p, q) ≡ ∂W ∗
i (p, q)/∂p.

As observed in Remark 2 above, the restriction of the action space to decreasing p
j
i

and increasing q
j
i might bind for some bidders. The optimal bid schedule bi of a bidder

for whom at least one of the restrictions binds either has pj
i = p

j+1
i , or qji = q

j−1
i , or both,

for at least one j ∈ {1, � � � , k}. Such a bid bi yields a step function βbi whose graph has
less than k steps. The characterization of this graph only requires knowledge of a subset
of the price-quantity pairs in bi. In the following, I call the members of this subset the
distinct price-quantity pairs. Formally, we have the following.

Definition 2 (Distinct price-quantity pairs). Let bi, b′
i ∈ B satisfy βbi(q) = βb′

i
(q) for all

q ∈ [0, Q], where bi is of the following form: there is 	i ≤ k such that the price-quantity
pairs in bi satisfy p

j
i > p

j+1
i and q

j+1
i > q

j
i for all j = 1, � � � , 	i − 1, and if 	i < k, (p

j
i , q

j
i ) =

(0, Q) for all j = 	i + 1, � � � , k. Then the price-quantity pairs {p
j
i , q

j
i }	ij=1 are called the

distinct price-quantity pairs of b′
i.

The following characterization result and those in Section 4 only require knowledge
of the distinct price-quantity pairs. As mentioned in Remark 2, the application will take
the submitted price-quantity pairs of a bidder to be the distinct price-quantity pairs of
her bids, that is, 	i will correspond to the number of submitted price-quantity pairs by
bidder i.

Writing Vi(q) = ∫ q
0 vi(x) dx for the gross value and Bi(q) = ∫ q

0 βbi(x) dx for the gross
bid, we obtain our main characterization result.
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Proposition 2. Consider a bidder i that has submitted an equilibrium bid bi with dis-
tinct price-quantity pairs {p

j
i , q

j
i }	ij=1. Any price-quantity pair (p

j
i , q

j
i ) ∈ (0, p̄)×(0, Q) sat-

isfies

[
vi

(
q
j
i

) −p
j
i

]
W ∗

i

(
p
j
i , q

j
i

) − [
vi

(
q
j
i

) −p
j+1
i

]
W ∗

i

(
p
j+1
i , qji

)

− [
p
j
i −p

j+1
i

] 	i∑
m=j

∫ qm+1
i

qmi

φ′′(Vi(q) −Bi(q)
)

φ′(Vi(qji ) −Bi

(
q
j
i

))[
vi(q) −pm+1

i

]
W ∗

i

(
pm+1
i , q

)
dq

= 0. (2)

Furthermore, if w∗
i (p, q) exists for the quantities q ∈ [q

j−1
i , qji ] and is continuous in p, then

∫ q
j
i

q
j−1
i

[
φ′(Vi(q) −Bi(q)

)[[
vi(q) −p

j
i

]
w∗
i

(
p
j
i , q

) −W ∗
i

(
p
j
i , q

)]

−φ′′(Vi(q) −Bi(q)
)[
q− q

j−1
i

][
vi(q) −p

j
i

]
W ∗

i

(
p
j
i , q

)]
dq

− [
q
j
i − q

j−1
i

] 	i∑
m=j

∫ qm+1
i

qmi

φ′′(Vi(q) −Bi(q)
)[
vi(q) −pm+1

i

]
W ∗

i

(
pm+1
i , q

)
dq

= 0. (3)

Equation (2) follows from the bidder’s optimality conditions for the quantity points,
and equation (3) follows from the optimality conditions for the price points. When the
utility function φ is an affine function, then φ′′(q) = 0 and (2) corresponds to the opti-
mality condition identified by Kastl (2012).

3.3 Discussion

How does risk aversion affect incentives and equilibrium behavior? The proof to Propo-
sition 2 shows that when all other bidders follow their strategies in an equilibrium profile
μ∗, then the interim utility for bidder i submitting bi and being of type vi is


i

(
bi, vi, μ

∗
−i

) =
k+1∑
j=1

∫ q
j
i

q
j−1
i

φ′(Vi(q) −Bi(q)
)[
vi(q) −βbi(q)

]
W ∗

i

(
p
j
i , q

)
dq. (4)

In the standard risk-neutral case, we have φ′(x) = 1, and hence, the relevant weight
on the net profit from winning a certain amount q, vi(q) − βbi(q), under the integral

in above expression is equal to the probability of winning at least q when bidding p
j
i

for it, W ∗
i (p

j
i , q). In the case of risk aversion, this probability is multiplied by the factor

φ′(Vi(q) −Bi(q)), which decreases in q. Other than under risk neutrality, higher quanti-
ties receive relatively less weight than lower quantities.

From (4), we further see that under risk neutrality the price point submitted for a
given quantity q, pj

i = βbi(q), just affects the winning probability, and thus the weight,
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for the quantities at this price, q ∈ (q
j−1
i , qji ]. Absent risk neutrality this is not true, be-

cause in that case the weights on all higher quantities are affected, too. This changes
the marginal considerations, as can be seen from the additional terms in the optimality
conditions (2) and (3) when φ′(x) �= 1 and φ′′(x) �= 0.

In particular, under the assumption of risk aversion, the additional, subtracted terms
in the optimality conditions (2) and (3) are all negative. Because W ∗

i increases in its first
argument, (2) gives that, of two bidders submitting the same price-quantity pairs, the
profit function of the risk-averse bidder is closer to the price points (at the respective
quantity points) than that of the risk-neutral bidder. So, loosely speaking and in line with
what we know about equilibrium behavior in single-good auctions, we would expect
risk-averse bidders to bid “closer” to their marginal profit functions than risk-neutral
bidders do. The empirical results in Section 5 align with this intuition, showing that the
average per-kg shading factor is lower when assuming risk aversion than when assuming
risk neutrality.15

4. Marginal profits and risk preferences

For the results in this section, I assume that bidders have CARA utility,

φ(x) =

⎧⎪⎨
⎪⎩

1 − e−ρx

ρ
, for ρ > 0,

x, for ρ= 0,
(5)

where ρ is the (commonly known) risk preference parameter of the bidders. For a dis-
tinct price-quantity pair j ∈ {1, � � � , 	i} in a bid schedule bi, let



j
i (bi, vi, ρ) =

	i∑
m=j

∫ qm+1
i

qmi

exp
(

−ρ

∫ q

q
j
i

[
vi(x) −βbi(x)

]
dx

)

× [
vi(q) −pm+1

i

]
W ∗

i

(
pm+1
i , q

)
dq (6)

be the (normalized) equilibrium interim utility of bidder i from quantities above q
j
i when

having type vi (cf. the expression for interim utility in (4) above). Using (5) and the opti-
mality conditions from Proposition 2, we get the following corollary to Proposition 2.

Corollary 1. Consider a bidder i that has submitted an equilibrium bid bi with distinct
price-quantity pairs {p

j
i , q

j
i }	ij=1. Any price-quantity pair (p

j
i , q

j
i ) ∈ (0, p̄) × (0, Q) satisfies

vi
(
q
j
i

) = p
j
i + [

p
j
i −p

j+1
i

]W ∗
i

(
p
j+1
i , qji

) − ρ

j
i (bi, vi, ρ)

W ∗
i

(
p
j
i , q

j
i

) −W ∗
i

(
p
j+1
i , qji

) ≥ p
j
i . (7)

15Risk aversion likely also affects the number of distinct price-quantity pairs a bidder would want to
submit for a given profit function vi . However, to analyze this question, we would require to know more
about how risk aversion affects the distribution of residual supply (and consequently W ∗

i ). In particular,
this would necessitate obtaining an analytical solution of the bidders’ bid functions, which is currently
unavailable even for the risk-neutral case.
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Furthermore, if w∗
i (p, q) exists for the quantities q ∈ [q

j−1
i , qji ] and is continuous in p, then

∫ q
j
i

q
j−1
i

exp
(
ρ

∫ q
j
i

q

[
vi(x) −βbi(x)

]
dx

)[[
vi(q) −p

j
i

]

× [
w∗
i

(
p
j
i , q

) + ρ
[
q− q

j−1
i

]
W ∗

i

(
p
j
i , q

)] −W ∗
i

(
p
j
i , q

)]
dq

+ ρ
[
q
j
i − q

j−1
i

]



j
i (bi, vi, ρ) = 0. (8)

From the equality in (7), we immediately see that, for two bidders submitting the
same bid, bid shading at the submitted quantity points is lower under risk aversion (ρ >

0) than it is under risk neutrality (ρ = 0). Nevertheless, the price bid is always below the
marginal profit at the corresponding quantity point for any risk preference ρ > 0, as the
inequality in (7) asserts.

When ρ = 0, then the right-hand side of the equality in (7) is independent of vi, and
hence, provides a mapping from the submitted bid, bi, and the distribution of the resid-
ual supply function, W ∗

i , to the marginal profit function vi at the submitted quantity

points q
j
i . This corresponds to the core observation of Kastl (2012): the marginal profit

function vi is point identified at the submitted quantities. Yet, when ρ > 0 then point
identification of vi(q

j
i ), j = 1, � � � , 	i − 1, fails because the right-hand side of the inequal-

ity in (7) is not independent of vi. Set identification still holds, though. And as we will see
next, it has a particularly straightforward characterization in the case of CARA utility.

4.1 Constructing bounds on the profits

A crucial observation for the following is that, for every j ∈ {1, � � � , 	i}, the right side of the
equality in (7) only depends on the segment of vi that is on [q

j
i , Q]; that is, on the quan-

tities greater than q
j
i .16 Further, as the proof to Lemma 1 below shows, 


j
i is monotone

in vi under the pointwise partial order on V .

Definition 3 (Order on V). Let vi, ṽi ∈ V . We have vi ≥ ṽi iff vi(q) ≥ ṽi(q), ∀q ∈ [0, Q].

With the assumption that marginal profits are decreasing, I recursively obtain
bounds on the marginal profit function at the submitted quantity points as follows.

Lemma 1. Consider a bidder i that has submitted an equilibrium bid bi with distinct
price-quantity pairs {p

j
i , q

j
i }	ij=1. The tuples {v

j
i , v

j
i }, j = 1, � � � , 	i, recursively satisfying

v
	i
i = v

	i
i = p

	i
i , (9)

16To get an intuition for this, observe that for any quantity point qji , the inframarginal expected profits
are unaffected by the particular choice of qji , and hence, can be interpreted as a bidders’ wealth. Because
wealth effects are absent under CARA, these inframarginal profits are irrelevant for the optimal choice and,
therefore, do not appear in (7). For other forms of risk aversion (e.g., CRRA), this does not hold, and hence,
the constructions in the following are not possible.
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as well as, for j ∈ {1, � � � , 	i − 1},

v
j
i = p

j
i + [

p
j
i −p

j+1
i

]W ∗
i

(
p
j+1
i , qji

) − ρ

j
i (bi, vl, ρ)

W ∗
i

(
p
j
i , q

j
i

) −W ∗
i

(
p
j+1
i , qji

) ,

where vl(q) =
	i−1∑
m=j

1q∈(qmi ,qm+1
i ] · vm+1

i for q ∈ [
q
j
i , Q

]
, (10)

and

v
j
i = p

j
i + [

p
j
i −p

j+1
i

]W ∗
i

(
p
j+1
i , qji

) − ρ

j
i (bi, vu, ρ)

W ∗
i

(
p
j
i , q

j
i

) −W ∗
i

(
p
j+1
i , qji

) ,

where vu(q) =
	i∑

m=j

1q∈(qmi ,qm+1
i ] · vmi for q ∈ [

q
j
i , Q

]
(11)

satisfy v
j
i ≤ vi(q

j
i ) ≤ v

j
i for all j = 1, � � � , 	i.

If ρ = 0, then v
j
i = vi(q

j
i ) = v

j
i for all j = 1, � � � , 	i, and the formulation boils down to

the mapping from the data to the marginal profit identified in Kastl (2012). For ρ > 0,
Proposition 5 establishes that the marginal profit function of any bidder is set identified
at the submitted quantity points.

The proof makes use of the fact that the marginal profit function is point-identified
at the last quantity point q	ii because the normalized interim utility beyond q

	i
i is zero,



	i (bi, vi, ρ) = 0. Then, because the normalized interim utility 


j
(bi, vi, ρ) is increasing

in vi and v
j
i provides a lower bound for the (decreasing) marginal profit vi on the segment

(q	i−1
i , q	ii ], we obtain an upper bound v

	i−1
i on the marginal profit at the second-to-last

quantity point. Now, v	i−1
i is an upper bound for the marginal profit vi on (q	i−1

i , q	ii ],
which in turn yields a lower bound on the marginal profit at the second-to-last quantity
point, q	i−2

i , and so on.
From Lemma 1 together with the upper bound v on the marginal profit functions in

V , we obtain the following upper and lower bounds on the marginal profit function of a
bidder.

Proposition 3. Consider bidder i with type vi ∈ V having submitted an equilibrium bid
with distinct price-quantity pairs {p

j
i , q

j
i }	ij=1. Then the marginal profit function vi satisfies

vi(q) ≤ vi(q) ≤ vi(q) for all q ∈ [0, Q], where

vi(q) ≡ v +
	i∑
j=1

(
min
m≤j

{
vmi

} − v
)

· 1
q∈(q

j
i ,qj+1

i ]
(12)

and

vi(q) ≡ v1
i +

	i∑
j=1

(
max

m≥j+1

{
vmi

} − v1
i

)
· 1

q∈(q
j
i ,qj+1

i ]
(13)

with q	i+1 =Q and v
	i+1
i = 0.
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The functions vi(q) and vi(q) are least upper and highest lower bounds on the (de-
creasing) marginal profit functions that are consistent with the optimality conditions
(7). Again, if ρ = 0 then the bounds (12)–(13) correspond to the bounds used in Kastl
(2011). The top panel of Figure 1 depicts a risk-neutral case. When ρ > 0, the bounds are
less tight because point identification at the quantity points does not hold. The middle
panel of Figure 1 depicts a case of risk aversion. The bottom panel of Figure 1 shows what
happens when the upper and lower bounds from Lemma 1 are nonmonotone—which is
not ruled out by the constructions in (10)–(11). In that case, the definitions in (12)–(13)
give functions vi and vi that are sometimes tighter than the bounds from Lemma 1.

4.2 Necessary conditions for best-response behavior

The results of the last two sections allow us to formulate two sets of necessary conditions
for best-response behavior for a given risk preference. The conditions are inequalities
and formulated in Proposition 4 below.

The first set of conditions, (15), follows from the optimality conditions for the quan-
tity points. The conditions require that there exists a decreasing marginal profit function
between the bounds vi and vi defined in Proposition 3. In other words, (15) ensures that
vi(q) ≥ vi(q) holds for all q ∈ [0, Q]. The second set of condition, (16), follows from the
optimality conditions for the prices. Here, I use the left side of the optimality condition
(8) to define

F
j
i (bi, vi, ρ) ≡

∫ q
j
i

q
j−1
i

exp
(
ρ

∫ q
j
i

q

[
vi(x) −βbi(x)

]
dx

)[[
vi(q) −p

j
i

]

× [
w∗
i

(
p
j
i , q

) + ρ
[
q− q

j−1
i

]
W ∗

i

(
p
j
i , q

)] −W ∗
i

(
p
j
i , q

)]
dq

+ ρ
[
q
j
i − q

j−1
i

]



j
i (bi, vi, ρ). (14)

Then (16) must hold because vi and vi lie (in the pointwise partial order) below and
above the (true) profit vi that solves the optimality condition (8); that is, satisfies
F
j
i (bi, vi, ρ) = 0.

Proposition 4. Consider a bidder i that has submitted an equilibrium bid bi with dis-
tinct price-quantity pairs {p

j
i , q

j
i }	ij=1. Then it must hold for any j ∈ {1, � � � , 	i − 1} that

min
m≤j

{
vmi

} ≥ max
m≥j+1

{
vmi

}
. (15)

Further, assume that the function F
j
i (bi, vi, ρ) increases in vi for vi ≤ vi ≤ vi for some j ∈

{1, � � � , 	i}. Then it must hold

F
j
i (bi, vi, ρ) ≥ 0 ≥ F

j
i (bi, vi, ρ). (16)

In the application, the inequalities in (15) and (16) will be key for determining best-
response violations. The interpretation of these conditions is as follows: If either of the
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Figure 1. Each figure shows a bid function βbi (solid lines) constructed from the submitted

price-quantity pairs {p
j
i , qji } depicted as diamonds. Further, each figure shows (hypothetical)

upper and lower bounds vi(q) and vi(q) from Proposition 3 (dashed lines), constructed from
bounds on the profit function at the submitted quantities, depicted as solid dots. The shaded
area corresponds to the space of profit functions between vi(q) and vi(q). The top panel shows

the risk-neutral case. Here, vji = v
j
i for all j as explained after Lemma 1. The middle panel depicts

a case of risk aversion. Here, vji > v
j
i for all j. The bottom panel also shows a case of risk aversion.

Here, neither v
j
i nor v

j
i are monotone, resulting in bounds vi and vi that are sometimes tighter

than the bounds from Lemma 1.



Quantitative Economics 14 (2023) Risk aversion in share auctions 437

inequalities were to fail for some j, there would be no (decreasing) marginal profit func-
tion that could rationalize this bidder’s bid. More precisely, if the inequality in (15) were
to fail for any j < 	i, then there would be no decreasing profit function consistent with
the quantity points’ optimality conditions. On the other hand, if one of the inequali-
ties in (16) were to fail, there would be, among the monotone profit functions vi that are
consistent with quantity point optimality, no vi that is also consistent with the respective
price point’s optimality condition.

The function w∗
i (p

j
i , q), which affects F

j
i but not the bounds vi and vi, is key to un-

derstanding violations of (16). The function w∗
i (p

j
i , q) measures the marginal effect of

raising p
j
i on winning at least a quantity q between q

j−1
i and q

j
i . Considering the case

ρ = 0, we see from (14) that the right inequality in (16) will fail even for the lowest pos-
sible marginal profit function, vi, when the estimated values of w∗

i (p
j
i , q) are large for

all relevant q. In other words, if the marginal gain in winning probability from raising
p
j
i is higher than the additional payment, the bidder would fare better by increasing p

j
i

for any marginal profit function vi between the bounds vi and vi. A similar intuition

applies for low values of w∗
i (p

j
i , q), implying that the marginal gain in winning probabil-

ity is lower than the associated additional cost when raising p
j
i , thus making it optimal

to reduce p
j
i . For ρ > 0, these effects are not so clear-cut. Qualitatively, the impact of

w∗
i (p

j
i , q) on the value of Fj

i is the same, though.

On a technical note, observe that the function F
j
i (bi, vi, ρ) always increases in vi

when ρ = 0. This can be directly seen from (14) because φ′(.) is constant under risk neu-
trality. Under risk aversion, ρ > 0, increasing differences at the submitted bids does not
necessarily hold, though (and thus will have to be verified in the data); that the utility
function under risk aversion might fail increasing differences is well known for multi-
unit auctions (McAdams (2003), Reny (2011)) and the intuition in the share auction is
similar. An increase in vi at some q not only increases the value of winning that par-
ticular quantity but also decreases the weight put on winning higher quantities, thus
potentially decreasing the marginal gain from increasing a price bid.

4.3 Tighter bounds on marginal profits

This section shows how the optimality conditions for the price points, (8), can be used
to derive upper and lower bounds on the true marginal profit function vi that are tighter
than those obtained with Proposition 3.

To this end, let Ṽi be the set of all nonincreasing (but not necessarily Lipschitz-
continuous) functions vi : [0, Q] → [0, v] lying between the upper and the lower en-
velopes vi and vi from (12)–(13); that is, vi(q) ≤ vi(q) ≤ vi(q) for all q ∈ [0, Q]. Then let

VF
i ≡ {

vi ∈ Ṽi : Fj
i (bi, vi, ρ) = 0, ∀j ∈ {1, � � � , 	i}

}
(17)

be the set of nonincreasing functions that satisfy the optimality conditions (8) and lie
between vi and vi. The aim of the following is to characterize functions that lie weakly
above the least upper bound vFi on VF

i and weakly below the greatest lower bound vFi on
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VF
i ,

vFi = ∨VF
i and vFi = ∧VF

i . (18)

Crucially, because the type space V contains functions that are both nonincreasing
and Lipschitz-continuous, the bounds (vFi , vFi ) defined in (18) are also upper and lower
bounds on the marginal profit functions vi ∈ V that satisfy the optimality conditions (8)
and lie between vi and vi.17

The aim of the following is to characterize a vector-valued function whose least fixed
point is a nontrivial bound on (vFi , vFi ). I use the functions ϕu and ϕl, defined for x ∈
[0, Q] with q, v ∈R and vu, vl ∈ V as

ϕu(q, v, vl )(x) =
{

max
{
v, vl(x)

}
if x≤ q,

vl(x) if x > q,
(19)

ϕl(q, v, vu )(x) =
{
vu(x) if x≤ q,

min
{
v, vu(x)

}
if x > q,

(20)

to define

θi,u(vl )(q)

=

⎧⎪⎪⎨
⎪⎪⎩

inf
{
v ∈ [

θi,u(vl )
(
q
j
i

)
, vi(q)

]
: Fj

i

(
bi, ϕu(q, v, vl ), ρ

)
> 0

}
if q ∈ [

q
j−1
i , qji

)
, j < 	i,

inf
{
v ∈ [

vi(q), vi(q)
]

: F	i
(
bi, ϕu(q, v, vl ), ρ

)
> 0

}
if q ∈ [

q
	i−1
i , q	ii

]
,

vi
(
q	i

)
if q ∈ (

q
	i
i , Q

]
and

θi,l(vu )(q)

=

⎧⎪⎪⎨
⎪⎪⎩

sup
{
v ∈ [

θi,l(vu )
(
q
j
i

)
, vi(q)

]
: Fj

i

(
bi, ϕl(q, v, vu ), ρ

)
< 0

}
if q ∈ [

q
j−1
i , qji

)
, j < 	i,

sup
{
v ∈ [

vi(q), vi(q)
]

: F	i
(
bi, ϕl(q, v, vu ), ρ

)
< 0

}
if q ∈ [

q
	i−1
i , q	ii

]
,

0 if q ∈ (
q
	i
i , Q

]
,

where, for given q, the inf of the empty set is vi(q) and the sup of the empty set is the
respective lower bound from which v is to be chosen.

Both ϕu and ϕl are nondecreasing in q and v. Further, both F
j
i (bi, ϕl(q, v, vu ), ρ) and

F
j
i (bi, ϕu(q, v, vl ), ρ) are continuous in v. Hence, under the assumption that Fj

i is non-
decreasing in vi, the function θi,u returns for any given vl ∈ Ṽi another, higher function
in Ṽi, which returns at any q ∈ [0, Q] the highest point such that there is a nonincreasing
function going through that point and satisfying the respective optimality condition (8).

17To verify this, fix some nonincreasing vi and suppose it is not an upper bound on the set of non-
increasing and Lipschitz-continuous functions that satisfy the optimality conditions (8) and lie between
vi and vi . Then there must be v̂i in that set such that v̂i(q) > vi(q) for some q. But then vi is also not an
upper bound on the set of functions that are merely nonincreasing, satisfy the optimality conditions (8),
and lie between vi and vi, because v̂i is also a member of that set.
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Figure 2. The figure schematically depicts a fixed point (vl , vu ) ∈ F(θi ) for bidder i having sub-
mitted a bid function βbi . Loosely speaking, the function ϕu(q̂2, vu(q̂2 ), vl ), depicted on [q2

i , q3
i ],

is among all nonincreasing functions above vl that are equal to vl for q > q̂2 the one with the
highest value at q̂2 for which the left side of (8) evaluates to zero (taking j = 3). Analogously, the
function ϕl(q̂1, vl(q̂1 ), vu ), depicted on [q2

i , q3
i ], is among all nonincreasing functions below vu

and equal to vu for q ≤ q̂1, the one with the lowest value at q̂1 for which the left side of (8) eval-
uates to zero (taking j = 2). Because (vl , vu ) is a fixed point, these characterizations of ϕu and
ϕl are valid for all q. As shown in Proposition 5, if we consider the least element F(θi ), then the
shaded area contains the set of all marginal profit functions between vi and vi that also satisfy
the optimality conditions for the price points.

Conversely, the function θi,l returns for any given vu ∈ Ṽi, another lower function in Ṽi,
which returns at any q ∈ [0, Q] the lowest point such that there is a nonincreasing func-
tion going through that point and satisfying the respective optimality condition (8). The
caption of Figure 2 provides additional explanations.

Now, let v = (vl, vu ) ∈ Ṽi × Ṽi and θi(v) = (θi,l(vu ), θi,u(vl )), and consider the set of
fixed points

F(θi ) ≡ {
v ∈ Ṽi × Ṽi : v = θi(v)

}
. (21)

By construction of (θi,l, θi,u ), the set F(θi ) contains pairs of (nonincreasing) functions
such that if we were to lower the higher of the two functions, call it w, at some point
q ∈ [q

j−1
i , qji ], then there would be another nonincreasing function v̂i, which lies above

the lower of the two functions, call it w, and satisfies F
j
i (bi, v̂i, ρ) = 0, but attains val-

ues that lie above w for some values of q. Conversely, if we were to increase the lower
of the two functions, w, at some point q ∈ [q

j−1
i , qji ], then there would be another non-

increasing function v̂i, which lies below the higher of the two functions, w, and satis-
fies F

j
i (bi, v̂i, ρ) = 0, but attains values that lie below w for some values of q. Figure 2

schematically depicts a fixed point in the set of fixed points F(θi ).
One might expect that the least fixed point of θi, ∧F(θi ) provides upper and lower

bounds on the set VF
i . The ensuing result shows that this intuition is correct. The proof
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makes use of the fact that θi is continuous and order-preserving under the following
partial order on the set Ṽi × Ṽi.

Definition 4 (Order on Ṽi × Ṽi). Let v = (vl, vu ) ∈ Ṽi × Ṽi and ṽ = (ṽl, ṽu ) ∈ Ṽi × Ṽi. We
have v ≥ ṽ iff both vu ≤ ṽu and vl ≥ ṽl hold.

The order defined with Definition 4 orders bounds by their tightness. That is, v =
(vl, vi ) ≥ (ṽl, ṽi ) = ṽ means that v is tighter than ṽ in the sense that both the lower bound
vl is higher than ṽl in the pointwise order and the upper bound vu is lower than ṽu.

The first two parts of the following statement are a consequence of what is alterna-
tively referred to as the Kleene fixed-point theorem or the Tarski–Kantorovitch fixed-
point theorem (cf. Baranga (1991), Jachymski, Gajek, and Pokarowski (2000), respec-
tively).

Proposition 5. Assume that, for bidder i ∈ {1, � � � , n} having submitted an equilibrium
bid bi with distinct price-quantity pairs {p

j
i , q

j
i }	ij=1, the function F

j
i (bi, vi, ρ) increases in

vi for vi ≤ vi ≤ vi and all j ∈ {1, � � � , 	i}. Then:

(i) The set F(θi ) is nonempty, and there is a least fixed point, ∧F(θi ).

(ii) Let the sequence (xm, ym ) for m = 1, 2, � � � be recursively defined as (xm, ym ) =
θi(xm−1, ym−1 ) with (x0, y0 ) = (vi, vi ). Then limm→∞(xm, ym ) = ∧F(θi ).

(iii) ∧F(θi ) ≤ (vFi , vFi ).

The central results for the empirical application in the next section are stated in parts
(ii)–(iii). Part (ii) establishes that we can find the least fixed point ∧F(θi ) by a simple
fixed-point iteration, which takes the bounds (vi, vi ) obtained in (12)–(13) from the char-
acterization in Proposition 3 as the initial condition. Part (iii) asserts that the bounds
given by the least fixed point ∧F(θi ) are indeed less tight than (vFi , vFi ). That is, ∧F(θi )
provides upper and lower bounds on the set VF

i .
In Appendix D, I present an algorithm for the fixed-point iteration. The algorithm

moves backward through the steps j = 1, � � � , 	i of a bid, computing iterates of θi,l ◦
θi,u.18 It starts with the last step, 	i, discretizes the interval [q	i−1

i , q	ii ], and finds,
for each q in the discretized interval, the value v such that the (increasing) function
F	i (bi, ϕu(q, v, vi ), ρ) evaluates to zero. Denoting by ṽi the upper envelope of the func-
tions ϕu(q, v, vi ) thus obtained, the algorithm then seeks, for each q in the discretized
interval, the value v such that the function F	i (bi, ϕl(q, v, ṽi ), ρ) evaluates to zero. Taking
the lower envelope of all functions ϕl(q, v, ṽi ) thus obtained, the algorithm then repeats
with this new lower bound, and so on. In other words, the algorithm iteratively seeks, for
every relevant quantity, the decreasing function with the highest (lowest) feasible value
at that quantity, given the lower (upper) bound from the previous round.

18Whether we iterate θi or θi,l ◦ θi,u yields the same outcome. Take any fixed point of θi,l ◦ θi,u; that is,
vl = θi,l ◦ θi,u(vl ), together with vu = θi,u(vl ). Then v = (vl , vu ) is a fixed point of θi(v) = (θi,l(vu ), θi,u(vl )).
The converse is also true.
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Once convergence is reached, the algorithm moves to the (	i − 1)-th step and re-
peats the procedure, taking the bounds obtained on [q	i−1

i , q	ii ] as given (in case ρ = 0
they are irrelevant). Once convergence on all steps is reached the algorithm stops. From
Point (ii) in Proposition 5 and footnote 18 above, together with the fact that, for every
j ∈ {1, � � � , 	i}, the right side of the equality in (7) only depends on the segment of vi that
is on [q

j
i , Q], we conclude that the outcome (v	, vu ) of this procedure corresponds to the

least fixed point of θi.

5. Application: The TRQ auctions

This section applies the results from Section 4 to the Swiss TRQ auction data described
in Section 2. The data set covers a series of T = 39 auctions indexed by t = 1, � � � , T . There
is a total of 123 registered bidders, taken together in the set N . For every auction t, the
data set contains the quota Qt , the identity of the bidders Nt ⊆ N , and their submitted
bid functions Bt ≡ {βi,t }i∈Nt . The total number of submitted price-quantity pairs in all
39 auctions is 12,398.

In the following, I first discuss estimating the residual supply distribution. Second,
I elaborate on determining risk preferences. And third, I present estimates of import
rents and surplus extraction. I conclude with some discussion.

5.1 Estimating W ∗
i and w∗

i

I make two assumptions about the data generating process. Part (i) of the following first
assumption is standard. It is necessary for the resampling procedure described below.
With Part (ii), I follow Kastl (2011) and consider potential bidder heterogeneity.19

(A5.i) Observed bids are mutually independent both within and across auctions.

(A5.ii) The bidders in N come in m groups g = 1, � � � , m so that, conditional on an
auction t, bids within a group are identically distributed.

Grouping bidders entails a tradeoff. On the one hand, assuming a high number of
groups allows capturing a high proportion of bidder heterogeneity. On the other hand,
having an increased number of groups reduces the number of bids we can use for esti-
mation (cf. below).

For the data at hand, I resolve this tradeoff by assigning the registered bidders to
m = 3 groups g = 1, 2, 3, based on the average quantities for which they submitted a
positive price. We can read off the group assignments in Figure 3. The left panel de-
picts the average quantity bids for all the 123 registered bidders. The right panel gives an
overview of the average bids in the respective groups.20 Reflecting the structure of the

19For a recent discussion of how bidder asymmetry affects equilibrium behavior in uniform price multi-
unit auctions both theoretically and in the laboratory, see Hefti and Shen (2019). An experimental paper
studying the effect of asymmetric capacity constraints is Sade, Schnitzlein, and Zender (2006).

20Other specifications do not seem to alter the results. A systematic analysis of different specifications is
computationally too burdensome, though. See Appendix B for more details.
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Figure 3. The chart on the left depicts the average quantity bids of each of the 123 registered
bidders. Based on these average quantity bids, I divide the bidders in three groups, where the
three different shades indicate the respective group assignment. The table on the right gives an
overview of the average bids in the respective groups.

Swiss meat market, there are a few large bidders (3 in total), some medium-sized bid-
ders (15), and a multitude of smaller ones (105). The average number of active bidders
in each of the groups across all auctions are 58 for group g = 1, 11 for group g = 2, and 3
for group g = 3.

Assumption (A5.ii) gives us that, in any auction t, we can divide the bidder set Nt

into m groups Mg,t ⊆ Nt , whose bids are identically distributed. Together with Assump-
tions (A5.i), this implies that any bidder i in a given group g faces the same distribution
of opponent demand,

∑
j∈Nt\i β

−1
j,t (p) ≥ 0. I write Dg,t(p) for the random opponent de-

mand faced by a bidder i ∈ Mg,t in auction t and make the following assumption on the
distribution of Dg,t(p).

(A6) For any p ∈ (0, p̄), any group g, and any bidder i ∈ Mg,t , the distribution of the
aggregate opponent demand Dg,t(p) follows a gamma distribution on R+.

A parametric approach to estimating residual demand is not standard in the liter-
ature. The main reason I chose it over the more standard nonparametric approach is
that it guarantees full support of Dg,t(p) on R+. This is crucial when it comes to de-
tecting best-response violations. A quantity point q at a price p for which the estimated
probability of winning is one is dominated by price-quantity pairs (p̂, q) with p̂ < p for
which the probability of winning is still one. As I discuss in Remark 4 in Appendix B, such
estimates frequently result when using the empirical CDF. The specific choice of the dis-
tribution is motivated by the observation that the distribution of Dg,t(p) is unimodal for
all relevant p. To verify the robustness of (A6), I compare the gamma specification to a
log-normal specification in the Supplementary Appendix.

Assumptions (A5.i), (A5.ii), and (A6) allow us to estimate W ∗
i (p, q) as follows. For

simplicity, suppose for a moment that we only have bidding data from a single auction t.
Fix some group g and a bidder i ∈ Mg,t and let Bg,t collect all the bids that were submit-

ted by bidders in group g. Then let B
|Mg,t |
g,t be the set of all |Mg,t|-tuples of Bg,t , and write

β = (β1, � � � , β|Nt |−1 ) for an element of B−g ≡ B
|M1,t |
1,t ×· · ·×B

|Mg−1,t |
g−1,t ×B

|Mg,t |−1
g,t ×B

|Mg+1,t |
g+1,t ×

· · · × B
|Mm,t |
m,t . Now let Dβ(p) = ∑

j β
−1
j (p) be the aggregate opponent demand at a given

p ∈ (0, p̄) for some β ∈ B−g and write D(p) = {Dβ(p)}β∈B−g for the set of all aggregate



Quantitative Economics 14 (2023) Risk aversion in share auctions 443

opponent demands at price p. As is well known, the parameters, and hence, the CDF
of the gamma distribution can be consistently estimated (e.g., Forbes et al. (2011)).21

Writing F(·; D(p)) for the estimate of the gamma CDF, we then obtain an estimate of
W ∗

i (p, q) by computing Ŵg,t(p, q) = F(Qt − q; D(p)). Further, we can estimate w∗
i with

ŵ∗
g,t(p, q) = Ŵ ∗

g,t(p+ h, q) − Ŵ ∗
g,t(p, q)

h
, (22)

by choosing some small increment h> 0, where the data constrain the particular choice
of h (again, for more details, cf. Appendix B). Now, if—rather than having a single
auction—we have a set of auctions T ⊂ {1, � � � , T } with identically distributed bid func-
tions within the respective groups for all auctions in T, then this approach can easily be
extended to computing the set of opponent demands, D(p), from all the bid functions
submitted in any of the auctions in T.

As is well known, a direct calculation of the estimator Ŵ ∗
g,t is computationally infea-

sible already for a small number of bid functions because the cardinality of D(p) grows
very fast. I thus employ a resampling procedure to approximate Ŵ ∗

g,t along the lines of
the resampling procedures used in Hortaçsu and McAdams (2010) and Kastl (2011). For
every bidder group, the procedure samples bid functions with replacement from a set
of available bids. It constructs these sets by collecting bids from auctions with a simi-
lar quota, which I take as a proxy for similar covariates.22 The number of bid functions
drawn from a bidder group is equal to the average number of active bidders of that group
across all auctions (minus one if bidder i in question belongs to that particular group).
Doing so yields one instance of the opponent demand function. Iterating this procedure
multiple times then allows to compute a resampled estimate of W ∗

i that approaches Ŵg,t

as the number of iterations grows large (see Kastl (2011) and Appendix B for more expla-
nations).

As regards standard errors, I follow the literature and report bootstrap standard er-
rors (e.g., Kastl (2011)). Other than the literature, however, I resort to bagging of the es-
timates. That is, the reported estimates are the average of the bootstrapped estimates.
This also gives a consistent estimate (Breiman (1996)) and is motivated by the fact that
the variance of the resampled estimator not only stems from sample variance but also
from the sampling procedure itself.

5.2 Determining risk preferences

I now discuss how Proposition 4 allows determining risk preferences from the data.
Technically, I treat this as a model selection problem. The models between which we
want to select differ in their assumptions about the bidders’ risk preferences. The num-
ber of inequality violations from Proposition 4 serves as a metric for model fit.

21To fit the distribution, I use the Distributions.jl package (Lin et al. (2019)); see Besançon et al. (2019)
for an overview.

22This follows an analogous logic to that in Kastl (2011), who collects bids from temporally close auctions.
Alternatively, one could use a kernel that computes weights on the auctions from which bid functions are
sampled based on the quotas and possibly additional covariates, as in Hortaçsu and McAdams (2010).
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Recall that the inequalities (15)–(16) in Proposition 4 provide necessary conditions
for best-response behavior. The inequalities in (15) follow from the quantity points’ op-
timality conditions. If one of the inequalities were to fail for a given risk preference ρ and
a bid bi, the set of decreasing profit functions vi for which the quantity points in bi are
optimal would be empty. The inequalities in (16) follow from the optimality conditions
for the price points. As discussed after Proposition 4, if one of these inequalities were to
fail for some price-quantity pair j, the bidder could gain by changing p

j
i for any vi that

is consistent with the quantity points’ optimality conditions.
To make the inequalities in (15)–(16) operable as a metric for model fit, I assume

that the bidders within each group g = 1, 2, 3 have the same, group-specific and time-
invariant risk-aversion parameter, ρg. For a given risk parameter ρ and a bidder i ∈ Mg,t

in group g and auction t, let v̂
j

i (ρ) and v̂
j
i (ρ) be estimates of vji and v

j
i from Lemma 1,

computed by inserting the estimates Ŵ ∗
g,t and ŵ∗

g,t into the respective expressions. Using

these estimates, let then v̂i(ρ) and v̂i(ρ) be estimates of the upper and lower bounds vi
and vi given in (12) and (13) of Proposition 3.23

Then, letting 	i,t be the number of distinct price-quantity pairs of bidder i in auc-
tion t, I am interested in the function

BRVQ,g,t(ρ) ≡
∑

i∈Mg,t

	i,t−1∑
j=1

1
{

min
m≤j

{
v̂
m

i (ρ)
}
< max

m≥j+1

{
v̂mi (ρ)

}}
,

which returns the total number of violations of the inequality in (15) in group g, given
we assume the risk preference in that group to be ρ.

For all “last” price-quantity pairs j = 	i,t and whenever the inequality in (15) holds
for a price-quantity pair j < 	i,t , I additionally check the inequalities in (16) for that j. To
this end, I let the set of such price-quantity pairs j be L̂i,t and define

BRVP ,g,t(ρ) ≡
∑

i∈Mg,t

∑
j∈L̂i,t

[
1
{(
F
j
i

(
bi, v̂i(ρ), ρ

)
> 0

)
or

(
F
j
i

(
bi, v̂i(ρ), ρ

)
< 0

)}]
,

which returns the total number of violations of the inequalities in (16) in group g, given
we assume the risk preference in that group to be ρ.24

From these two functions, I want to determine the value of ρ that minimizes the
average ratio of violations to the total number of submitted price-quantity pairs by the
bidders of group g across all auctions. More precisely, I am interested to find

ρ∗
g ∈ arg min

ρ≥0

Q,g(ρ) +
P ,g(ρ),

23Because there are hardly any imports at the over-quota tariff (Loi, Esposti, and Gentile (2016)) and bid-

ders compete to import at the in-quota tariff, I assume that the estimates of the bounds vji and v
j
i lie below

the difference in the over-quota tariff and the in-quota tariff. Specifically, I use v = 20.53 CHF, which cor-
responds to the highest spread between the two tariffs across the different subcategories subsuming high-
quality beef (cf. footnote 9). Further, the estimated bounds should lie above the price bid p

j
i (cf. Corollary

1). Of course, either v̂
j

i , v̂ji ≤ v or v̂
j

i , v̂ji ≥ p
j
i might fail if the value of ρ that is used for estimation does not

correspond to the true risk preference. For this reason, I set the estimate equal to v if the value that I obtain
with the construction in Lemma 1 exceeds v and I set it equal to the price bid if it lies below the price bid.

24Here and throughout the following, I compute F
j
i by inserting the estimates Ŵ ∗

g,t and ŵ∗
g,t into (14).
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Figure 4. The figure shows the estimated shares of violations of the inequalities in (15), 
Q,g,
and (16), 
P ,g , among the bidders of the three groups g = 1, 2, 3 for given risk preferences ln(ρ).
Table 2 reports all estimates including standard errors.

where the functions


x,g(ρ) ≡ 1
T∑
t=1

∑
i∈Mg,t

	i,t

T∑
t=1

BRVx,g,t(ρ) for x ∈ {Q, P }

return the average violation ratios for the respective inequality conditions in (15) and
(16).

The estimated values of 
Q,g(ρ) and 
P ,g(ρ) from 200 bootstrap estimates for ρ= 0
and log(ρ) ∈ {−10, −9.5, −9, −8.5, � � � , 0} are depicted in Figure 4; the full list of esti-
mates including standard errors can be found in Table 2.

Remark 3 (Interpretation of ρ∗
g). Strictly speaking, because (15)–(16) are necessary con-

ditions for best response behavior, we cannot take a bid to result from best response be-
havior as soon as one of the inequalities fails for a bid. Nevertheless, the violations that
we observe in reality may also be due to violations of other model assumptions. Possi-
ble violations include alternative risk preferences, nonmonotonicities in vi, misspecified
beliefs, and other cognitive limitations.25 After all, checking for best response violations
always amounts to a joint test of the maintained model assumptions. In that sense, we
may take the values ρ∗

g as the CARA risk preferences that minimize the need to resort to
such alternative explanations.26

We can make three main observations. First, risk neutrality gives a bad model fit.
For each group, we obtain 
Q,g(0) + 
P ,q(0) ≥ 0.5; for the largest group, g = 1, it is
even above 0.55. Second, the violations of (15) as measured by 
Q,g(ρ) are relatively
few across all groups and risk-aversion parameters, lending support to the assumption

25Indeed, if the marginal profits failed to be monotone, then Lemma 1 would not be valid, and the ex-
pressions in (12)–(13) would not provide bounds in the first place.

26If the maintained model assumptions are correct (this includes the risk preference and that the beliefs
of the bidders correspond to the estimated distribution of residual supply in the auctions), then we should
not observe any best-response violations at all.
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of decreasing marginal profit functions. And third, the functions 
P ,g(ρ) appear to be
U-shaped for all groups.27

The estimates give ρ∗
3 = 0.0003 < ρ∗

2 = 0.0009 < ρ∗
1 = 0.0067. At these values, we have


Q,1(ρ∗
1 ) + 
P ,1(ρ∗

1 ) = 0.215, 
Q,2(ρ∗
2 ) + 
P ,2(ρ∗

2 ) = 0.198, and 
Q,3(ρ∗
3 ) + 
P ,3(ρ∗

3 ) =
0.279. That is, the fractions of inequality violations at the respective minima are much
lower than those obtained under risk neutrality. The average fraction of violations under
the selected risk-aversion parameters across groups can be computed by weighting the
minima of 
Q,g + 
P ,g with the average fraction of active bidders from the respective
groups; that is, 0.215 × 58/72 + 0.198 × 11/72 + 0.279 × 3/72 = 0.215. This corresponds
to less than one price-quantity pair per bidder (the average number of price-quantity
pairs per bid is 4.42; cf. Section 2).

From Table 2, we obtain that the 95% confidence band around 
g(ρ∗
g ) = 
Q,g(ρ∗

g ) +

P ,g(ρ∗

g ) does not overlap with that around 
g(ρ∗
1 ) for either of the groups g = 2, 3.

Moreover, the confidence band around 
1(ρ∗
g ) does not overlap with that around


1(ρ∗
1 ). We may thus safely conclude that the risk aversion best explaining the behavior

of the smallest bidders from group g = 1 is higher than the risk aversion best explaining
the behavior of the (larger) bidders from groups g = 2, 3.28 This is not surprising. The
large bidders in the auctions correspond to larger firms (they are, in some cases, retail-
ers that operate on a national level). They thus have potentially more means to mitigate

27As we increase ρ from zero, the estimated bounds v̂i and v̂i will be less tight because the optimality
conditions only set identify vi at the submitted quantity points. Yet, observing a decreasing 
g(ρ) at ρ = 0
is not a foregone conclusion. The reason is that both v̂i and v̂i decrease at least over some range (as can
be inferred from the lower bid-shading under risk aversion reported in Table 3). On the other hand, it is
not surprising that 
g(ρ) eventually grows for large ρ. To see this, pick a bidder i having submitted bi,
a distinct price-quantity pair j ∈ {1, � � � , 	i}, and suppose vi(q) > βbi (q) for some nonmeasure-zero set of

q ∈ [q
j−1
i , qji ]. (Because vi is drawn from a set of Lipschitz-continuous monotone functions, if the number

of submitted price-quantity pairs is at least two, 	i ≥ 2, then there always exists at least one price-quantity
pair for which this holds.) Then, because ρ
̄

j
i (bi, vi, ρ) ≥ 0, the left side of (8) diverges to infinity as ρ → ∞.

But this implies that, for any given uniform Lipschitz constant on the functions in V , no vi can rationalize
bi as ρ → ∞.

A related question is whether it could be the case that bidders are so risk averse that they bid their true
valuation; that is, βbi (q) = vi(q). Even though discontinuous profit functions vi are not covered by the as-
sumptions on the type space V , we may still use parts of our equilibrium characterization to safely answer
this question in the negative for the data at hand. To see this, pick any ρ ≥ 0 and observe that the equilib-
rium interim utility (4) is continuously differentiable in p

j
i ∈ (0, p̄) whenever w∗

i (p, q) exists for the quan-

tities q ∈ [q
j−1
i , qji ] and is continuous in p (as all characterization results assume), even if vi is a decreasing

step function. Consequently, the optimality condition (8) holds, from which it must be true that

∫ q
j
i

q
j−1
i

W ∗
i

(
p
j
i , q

)
dq = (

q
j
i − q

j−1
i

)
ρ


j
i (bi , vi, ρ),

whenever βbi (q) = vi(q) for all q. However, when βbi (q) = vi(q) for all q then clearly ρ

j
i (bi, vi, ρ) = 0. So,

for any positive ρ, a marginal profit function being equal to an observed bid can only ever rationalize that
bid if the left side of above equality is zero for all relevant j, which is refuted for a given bidder whenever the
estimated probability to win at least some nonnegative share is positive.

28One idea to obtain proper estimates and confidence intervals of the minimizers ρ∗
g of the respective

functions 
g(ρ) is to extend the sampling idea in De Haan (1981) by taking into account that the function
to be minimized, 
g(ρ), is itself stochastic. However, this is beyond the scope of the current application in
which I am primarily interested in whether and how risk preferences affect rent estimates.



448 Samuel Häfner Quantitative Economics 14 (2023)

auction-specific risks. Smaller bidders correspond to smaller butcheries that lack these
means. Moreover, among the smaller butcheries, the bidders are often also the owners
of the firms whose very (economic) existence depends on how their firms fare.

To put the values (ρ∗
1, ρ∗

2, ρ∗
3 ) into perspective, it is instructive to compute the cer-

tainty equivalent for a lottery that pays either zero or CHF x ≥ 0 with equal probability,
CE(x) = − 1

ρ∗
g

ln( 1
2 (1 + exp(−ρ∗

gx))). Using the value ρ∗
1 = 0.0067 for the smallest bidders

(which make up the majority of all bidders), this gives CE(50) = 23, CE(100) = 42, and
CE(200) = 69. These certainty equivalents are roughly in line with the average certainty
equivalents that Tversky and Kahneman (1992, Table 3) elicited for the corresponding
lotteries in laboratory experiments (which were 21, 36, and 76, respectively).

Naturally, the stakes of the meat importers in the auctions are higher than those in
these experiments. As we will see in the next section, the estimated net per-kg profit
is between 1 and 4 CHF. In bidder group 1, we have an average bid of 3200 kg and a
risk preference of ρ∗

1 = 0.0067. So, suppose a bidder faces a lottery between winning
x = 2000 CHF and y = 4000 CHF with probability one half each. The certainty equivalent
is computed as CE = − 1

ρ∗
1

ln( 1
2 (e−ρ∗

1x + e−ρ∗
1y )) = 2103. A bidder from group 3 with a risk

preference of ρ∗
3 = 0.0003, would have CE = 2852. On the other hand, in bidder group

3, we have an average bid of 104,200 kg. Assuming such a bidder faces a lottery between
winning x = 80,000 CHF and y = 120,000 CHF with probability one-half each, we get
CE = 82,310. For comparison, a bidder from group 1 would have CE = 80,103. So, risk
aversion among bidders is substantial, which will also be reflected in the rent estimates
to be discussed in Section 5.3 below.

In any case, the number of violations that I find under the risk-preference parame-
ters (ρ∗

1, ρ∗
2, ρ∗

3 ) is comparable to the number of best response violations found in Chap-
man, McAdams, and Paarsch (2006) for Canadian term auctions under risk neutrality.
These term auctions are multiunit auctions in which bidders can submit up to four
price-quantity bids, yet most bidders just submit one price-quantity bid. Using a dis-
crete bid-space Chapman, McAdams, and Paarsch (2006) check for profitable local devi-
ations and find that 34% of all bids (resp., price-quantity pairs) violate best-response be-
havior. When using smoothed kernel estimates for the winning probabilities, this num-
ber drops to 9%.

Finally, we need to verify that the monotonicity condition in Proposition 4 holds
(which is also a prerequisite for the results in the subsequent section). To do so, I first
compute, for all bidders and any potential risk preference parameter ρ, estimates of the
upper and lower bounds vi and vi given in (12) and (13) as above. Then I employ a sim-

ple algorithm that repeatedly checks for every price-quantity point (p
j
i , q

j
i ) submitted

by that bidder whether F
j
i (bi, vi, ρ) ≥ F

j
i (bi, v′

i, ρ) holds for two randomly drawn profit
function vi > v′

i between the estimated bounds. Across all the values for ρ that I consid-
ered a potential risk preference above, I find that monotonicity holds for 95 − 99% of all
the submitted price-quantity pairs. Appendix C provides more details.

5.3 Risk aversion and tighter bounds

Accounting for risk aversion is a two-edged sword. As discussed after Corollary 1, equa-
tion (7) suggests that we underestimate the firms’ profits if we wrongly assume risk neu-
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trality because risk-averse bidders bid closer to their marginal profit function at the sub-
mitted quantity points than risk-neutral bidders do. Yet, once we appropriately account
for risk aversion, the set of marginal profits between the bounds from Proposition 3
likely becomes larger because the marginal profit function at the submitted quantity
points is only set-identified under risk aversion. In the following, I show that this loss in
precision is quite substantial. Nevertheless, using the bounds that additionally take the
optimality conditions for the price points into account (Proposition 5) fully compen-
sates for this loss.

To this end, I estimate upper and lower bounds on each firm’s indirect profits, vi, in
three different ways. First, I estimate the upper and lower bounds (12)–(13) in Propo-
sition 3 under the assumption that the bidders in all three groups are risk neutral,
�ρ = (ρ1, ρ2, ρ3 ) = (0, 0, 0). Second, I estimate the same bounds under the assumption
that all bidders have group-specific risk-aversion parameters �ρ = (ρ∗

1, ρ∗
2, ρ∗

3 ) ≡ �ρ∗ from
above. And third, I use these estimates as initial condition to calculate the least fixed
point, ∧F(θi ), from Proposition 5.29 I will refer to the bounds obtained from Proposi-
tion 3 as the standard bounds, because (as observed above) they reduce to the bounds
that are currently used in the literature when �ρ = (0, 0, 0). On the other hand, I refer to
the bounds obtained from Proposition 5 as the tighter bounds because they make use of
the additional information from the optimality conditions for the price points.

For each of these three types of upper and lower bound estimates, I compute three
statistics of interest. Writing v̂i and v̂i for generic upper and lower bound estimates, I am
first interested in upper and lower bounds on the (ex post) average per-kg profits before
payments,

AvP
pre
u = 1

Q

n∑
i=1

∫ qci

0
v̂i(q) dq and AvP

pre
l = 1

Q

n∑
i=1

∫ qci

0
v̂i(q) dq, (23)

where Q is the quota in the respective auction, qci is the allocation of bidder i, and n is
the number of active bidders. Second, I am interested in bounds on the average per-kg
profits after payments,

AvP
post
u = 1

Q

n∑
i=1

∫ qci

0

[
v̂i(q) −βbi(q)

]
dq and

AvP
post
l = 1

Q

n∑
i=1

∫ qci

0

[
v̂i(q) −βbi(q)

]
dq.

(24)

And third, I compute bounds on the average shading-to-profit ratios among the bidders.
Letting n be the number of bidders that have obtained a strictly positive amount for a

29To estimate the bounds from Proposition 3, I proceed as in the last section. There is a question of
handling estimates when at least one of the necessary conditions in (15) or (16) fails. If the estimates fail
(15) for a bid bi , I take a conservative approach and set v̂i(q) = v̄ for all q ∈ [0, Q] and v̂i = βbi . Similarly,

the algorithm implementing the bounds from Proposition 5 returns the lowest bounds on [q
j−1
i , qji ] that are

consistent with the initial conditions (v̂i, v̂i ) if the right inequality in (16) fails, and the highest consistent
bounds if the left inequality in (16) fails. I provide additional explanations in Appendix D. Figure 5 also
provides more details about the algorithm.
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given auction, this ratio is

AvPrat
u = 1

n

n∑
i=1

∫ qci

0

[
v̂i(q) −βbi(q)

]
dq

∫ qci

0
v̂i(q) dq

and

AvPrat
l = 1

n

n∑
i=1

∫ qci

0

[
v̂i(q) −βbi(q)

]
dq

∫ qci

0
v̂i(q) dq

,

(25)

measuring the average fraction of the import rent across bidders not extracted in the
auction.

The bounds on the profits before payments, AvP
pre
u and AvP

pre
l , give an idea of how

competitive the market for imported high-quality beef is in a given quota period. The
bounds on the other measures provide an idea of how competitive the respective auc-
tions are in absolute and relative terms. Table 3 gives a summary of my estimates for the
individual auctions. The entire set of estimates, including bootstrap standard errors, can
be found in the Supplementary Appendix.

I begin by comparing the estimates obtained under risk neutrality to those obtained
under risk aversion when using the standard bounds from Proposition 3 (cf. the rows

Table 3. Summary of the estimates for the individual auctions obtained under �ρ= 0 and �ρ= �ρ∗,
the latter both using the standard bounds from Proposition 3 (tight is no) and using the tighter
bounds from Proposition 5 (tight is yes).

Estimate Tight �ρ Mean Min Median Max

Average per-kg
profits before
auction
payments (in
CHF)

Upper
bounds
(AvP

pre
u )

no 0 16.85 11.43 16.44 20.53
no �ρ∗ 15.41 10.57 14.07 20.53
yes �ρ∗ 12.75 7.364 11.45 20.21

Lower bounds
(AvP

pre
l )

no 0 10.73 5.072 9.636 18.28
no �ρ∗ 9.459 4.928 8.601 16.43
yes �ρ∗ 9.715 5.734 8.74 16.65

Average per-kg
profits after
auction
payments (in
CHF)

Upper
bounds
(AvP

post
u )

no 0 7.931 5.346 7.522 12.59
no �ρ∗ 6.491 4.166 6.049 10.69
yes �ρ∗ 3.834 1.284 3.723 8.616

Lower bounds
(AvP

post
l )

no 0 1.816 0.1077 0.7469 8.24
no �ρ∗ 0.5449 0.01277 0.09349 4.236
yes �ρ∗ 0.8009 0.03401 0.3044 5.087

Average shading-
to-profit
ratios

Upper
bounds
(AvPratio

u )

no 0 0.4853 0.2838 0.5023 0.6541
no �ρ∗ 0.4478 0.2838 0.4496 0.5713
yes �ρ∗ 0.2811 0.1721 0.2806 0.4437

Lower bounds
(AvPratio

l )
no 0 0.1176 0.0137 0.06406 0.4365
no �ρ∗ 0.03209 0.003632 0.01285 0.1944
yes �ρ∗ 0.0611 0.006088 0.03721 0.2973
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with Tight set to no). Taking risk aversion into account has a substantial effect on the
lower bounds of all three statistics yet only a small effect on the upper bound. Specifi-
cally, the mean estimate of AvP

post
l falls from 1.82 CHF/kg to 0.54 CHF/kg, correspond-

ing to a drop of more than 70%. The estimates of AvPrat
l fall from 0.12 to 0.032. More-

over, the estimates of the earnings before payment, AvP
pre
l , fall from 10.73 CHF/kg to

9.46 CHF/kg.
Once we use the tighter bounds from Proposition 5, though, we do see a substan-

tial effect on the upper bounds, too. For �ρ = �ρ∗, the average tighter upper bounds for
all three measures are well below the standard bounds from Proposition 3 (cf. the rows
where Tight is yes vs. those where Tight is no). For example, the average earnings after
payments are estimated at 6.49 CHF/kg with the standard bounds, while they are esti-
mated at 3.83 CHF/kg with the tighter bounds. A similar decrease, by roughly 37%, is
reported for the shading-to-profit ratio.

Moreover, the range of possible profits and shading-to-profit ratios is considerably
smaller under the tighter than the standard bounds. For example, the difference in the
mean estimates of the upper and lower bounds on the average profits before payments,
AvP

pre
u and AvP

pre
l , is CHF 5.95 under the standard bounds, yet only CHF 3 under the

tighter bounds. This corresponds to a drop of almost 50%. Considering the additional
information from the optimality conditions for the price points thus compensates for
the loss in precision when accounting for risk aversion.

Figure 5 shows how using the optimality conditions for the price points shrinks the
set of possible marginal profit functions. The figure depicts upper and lower bounds
estimates under risk aversion, �ρ= �ρ∗, for two different bidders in two separate auctions.
Each graph shows the estimates of both the standard bounds from Proposition 3 and
the tighter bounds from Proposition 5, including the range between the 5th and the 95th
percentile of the respective bootstrap estimates in a lighter color. For either bidder, the
tighter upper bounds lie well below the standard upper bounds, and the tighter lower
bounds are considerably higher than the standard lower bounds.

Finally, the profit and shading estimates do not differ between bidder groups (cf. Ap-
pendix E for more details). Specifically, small butcheries earn roughly the same per allo-
cated kg of high-quality beef imports as the large retailers do. Moreover, the fraction of
the import rent captured by the auctions does not depend on bidder size, either.

5.4 Discussion of the empirical results

The import rents created by the TRQ are considerable. The average estimated net margin
on imported beef lies between CHF 9.72 and 12.75 per kg (cf. Table 3). If we weigh these
numbers against the average retail price of sirloin steak during the auctions (which was
CHF 60.67, as mentioned above), then we obtain an average net profit margin of 16–21%.
As a comparison, the average profit margin in the global retailing industry is generally
assumed to lie between 2.5–3.5%.30 Moreover, the gross margin on domestically pro-
duced beef in Switzerland is roughly CHF 10 per kg (Bokusheva et al. (2019), Figure 6.2),

30Compare the Global Power of Retailing Reports by Deloitte, 2015–2019; https://www2.deloitte.com/
global/en/pages/consumer-business/articles/global-powers-of-retailing.html

https://www2.deloitte.com/global/en/pages/consumer-business/articles/global-powers-of-retailing.html
https://www2.deloitte.com/global/en/pages/consumer-business/articles/global-powers-of-retailing.html
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Figure 5. The two graphs show estimated upper and lower bounds on the marginal profits vi
for two different bidders under risk aversion, �ρ = �ρ∗. The top panel shows a bidder from bidder
group g = 1 in Auction no. 20, and the bottom panel shows a bidder from group g = 3 in Auction
no. 25. The tighter bounds correspond to the least fixed point ∧F(θi ) from Proposition 5, while
the standard bounds correspond to the bounds from Proposition 3. To obtain an idea of the
estimates’ variance, the shaded areas depict the range between the 5th and the 95th percentile
of 200 bootstrap estimates. The algorithm to compute the tighter bounds divides the segment
between the submitted quantity points in 5 (clearly visible) subintervals in which it takes the
bounds as constant. The algorithm is constructed such that the computed fixed point is a lower
bound on the actual least fixed point, ∧F(θi ), and converges to that fixed point as the number
of subintervals grows large; for details, see Appendix D.

giving a gross profit margin on domestic beef of 16%. Given that this equals the lower

bound on the net profit margin on imported beef, it should not be surprising that the

interest in importing high-quality beef is so considerable.
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Nevertheless, the shading-to-profit ratio estimates suggest that between 72% and
94% of the average profit per kg is captured by the auctions, indicating that the auctions
work pretty well in distributing import rents back to the general public. Such an assess-
ment is close but not as impressive as the results from treasury bill auctions, where the
ex post surplus of the bidders (i.e., the ex post monetary gain from the auction net of
payment) tends to be very small. For example, Kastl (2011) reports for Czech treasury
bill auctions that all but 3 basis points of bidder surplus are captured. Similar results
also hold for other treasury bill auctions studied in the literature (Kastl (2017)).

A natural question is whether the uniform payment rule would be superior to the
discriminatory payment rule. Unfortunately, this is an open question both theoreti-
cally (e.g., Pycia and Woodward (2020)) and empirically (e.g., Chapman, McAdams, and
Paarsch (2007)). Answering this question in the current context would require comput-
ing counterfactual bids, necessitating an analytical solution of the equilibrium bidding
strategies under the uniform payment rule. This is a tough problem, especially because
risk aversion is involved. I leave this question for further research.

6. Concluding remarks

Despite being a convenient assumption, risk neutrality cannot always be taken for
granted in real-world auctions (Li, Lu, and Zhao (2015), Bolotnyy and Vasserman (2019),
Luo and Takahashi (2019), Aryal et al. (2022), Kong (2020)). In this paper, I analyzed share
auctions used by the Swiss government to sell tariff-rate quotas on meat imports. I found
that assuming (constant absolute) risk aversion rather than risk neutrality yields a better
explanation for the data and that accounting for risk aversion considerably affects profit
estimates. Having accurate estimates is important to assess how much rent a given tariff-
rate quota generates and how well the auctions perform in distributing these rents to the
general public.

For my analysis, I introduced risk aversion to a discriminatory k-step share auc-
tion á la Kastl (2012). I showed that the optimality conditions of the bidders allow (1)
to determine the bidders’ CARA parameter from the data, (2) to set identify the bidders’
marginal profits at the submitted quantity points, and (3) to provide tighter bounds on
the marginal profits between the quantity points. The key insight is that the optimal-
ity conditions for the price points contain valuable information when determining risk
preferences and obtaining estimates of the marginal profits.

Risk-averse bidders choose their price points closer to the marginal profit than risk-
neutral bidders. Thus, not accounting for risk aversion results in positively biased esti-
mates of the bidders’ marginal profits. For the Swiss meat tariff-rate quota auctions, this
bias is substantial. For example, properly accounting for risk aversion reduces average
profits per kg estimates after auction payments by as much as 55%, namely the estimates
obtained under risk neutrality. Moreover, I showed that using the information from the
optimality conditions for the price points substantially reduces the set of marginal prof-
its, and hence, the range of rents that can rationalize the data.

My findings are likely to be important for further empirical studies on share auctions,
too, especially when risk aversion is a concern. Of course, the focus on CARA preference
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is quite restrictive, as is the focus on the discriminatory payment rule. Together, these
assumptions imply that inframarginal quantities do not play a role in the optimality of
a given price-quantity pair. This was the key observation for formulating the bounds in
Propositions 3 and Propositions 5. Further research is required to extend these results to
other risk preferences and payment rules.

Appendix A: Proofs

A.1 Proofs of Section 3

Proof of Proposition 1. See the Supplementary Appendix.

Proof of Proposition 2. Because ties happen with zero probability in equilibrium, a
bidder’s interim utility 
i(bi, vi, μ∗

−i ) when submitting a bid bi and all other bidders play
according to their equilibrium strategies in μ∗ can be written as


i

(
bi, vi, μ

∗
−i

) =
∫ Q

0
φ

(
Vi(q) −Bi(q)

)
d
[
1 −W ∗

i

(
βbi(q), q

)]
. (26)

Because φ(Vi(q) − Bi(q)) is continuous and [1 − W ∗
i (βbi(q), q)] is increasing in q, the

inner integral of the right-hand side in (26) can be integrated by parts (cf. Apostol (1974),
Theorem 7.6), yielding


i

(
bi, vi, μ

∗
−i

) = −
∫ Q

0
φ′(Vi(q) −Bi(q)

)[
vi(q) −βbi(q)

][
1 −W ∗

i

(
βbi(q), q

)]
dq

+φ
(
Vi(q) −Bi(q)

)[
1 −W ∗

i

(
βbi(q), q

)]
|Q0 , (27)

which, using φ(0) = 0, is equal to


i

(
bi, vi, μ

∗
−i

) =
k+1∑
j=1

∫ q
j
i

q
j−1
i

φ′(Vi(q) −Bi(q)
)[
vi(q) −βbi(q)

]
W ∗

i

(
p
j
i , q

)
dq. (28)

Then, putting multiplier λj on the constraint that p
j
i ≤ p

j−1
i and multiplier ϕj on the

constraint that q
j
i ≥ q

j−1
i for j = 1, � � � , k + 1, the Lagrangian associated with agent i’s

optimizing problem is given by

L =
k+1∑
j=1

∫ qj

qj−1
φ′(Vi(q) −Bi(q)

)[
vi(q) −p

j
i

]
W ∗

i

(
p
j
i , q

)
dq

−
k+1∑
j=1

λj
(
p
j
i −p

j−1
i

) −
k+1∑
j=1

ϕj

(
q
j−1
i − q

j
i

)
, (29)

where pk+1
i = q0

i = 0, p0
i = p, and qk+1

i = Q. Because (i) vi(q) is continuous, (ii) W ∗
i (p

j
i ,

q
j
i ) is continuous at qji by the absence of ties in equilibrium, and (iii) w∗

i is continuous
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in p by assumption, L is continuously differentiable. Then the optimality conditions
obtained by setting ∂L/∂q

j
i = 0 for some j = 1, � � � , k are given by

φ′(Vi(qji ) −Bi

(
q
j
i

))[[
vi

(
q
j
i

) −p
j
i

]
W ∗

i

(
p
j
i , q

j
i

) − [
vi

(
q
j
i

) −p
j+1
i

]
W ∗

i

(
p
j+1
i , qji

)]

−
k∑

m=j

∫ qm+1
i

qmi

φ′′(Vi(q) −Bi(q)
)[
p
j
i −p

j+1
i

][
vi(q) −pm+1

i

]
W ∗

i

(
pm+1
i , q

)
dq

− (ϕj+1 −ϕj ) = 0. (30)

If neither of the constraints qj+1
i ≥ q

j
i and q

j
i ≥ q

j−1
i binds, then condition (30) holds with

ϕj+1 = ϕj = 0. If, however, the constraint q
j
i ≥ q

j−1
i binds (the argument for the other

constraint, qj+1
i ≥ q

j
i , is analogous), then the optimality condition (30) for step j is given

by

φ′(Vi(qji ) −Bi

(
q
j
i

))[[
vi

(
q
j
i

) −p
j
i

]
W ∗

i

(
p
j
i , q

j
i

) − [
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(
q
j
i

) −p
j+1
i

]
W ∗

i

(
p
j+1
i , qji

)]

−
k∑

m=j

∫ qm+1
i

qmi

φ′′(Vi(q) −Bi(q)
)[
p
j
i −p

j+1
i

][
vi(q) −pm+1

i

]
W ∗

i

(
pm+1
i , q

)
dq

+ϕj = 0. (31)

and the optimality condition (30) for step j − 1 is given by

φ′(Vi(qj−1
i

) −Bi

(
q
j−1
i

))
× [[

vi
(
q
j−1
i

) −p
j
i

]
W ∗

i

(
p
j−1
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i
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(
q
j−1
i
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j
i

]
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(
p
j
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i
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−
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p
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i
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W ∗

i

(
pm+1
i , q

)
dq

−ϕj = 0. (32)

Adding (31) and (32) and taking into account that qj−1
i = q

j
i , we arrive at

φ′(Vi(qj−1
i

) −Bi

(
q
j−1
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(
q
j−1
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j
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(
q
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p
j−1
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j+1
i

][
vi(q) −pm+1
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W ∗

i

(
pm+1
i , q

)
dq

= 0. (33)

Analogous operations can be performed when more than one adjacent constraint binds.
Also, observe that above equation trivially holds when p

j−1
i = p

j+1
i ; that is, whenever

the inequality constraint w.r.t. the price points binds. Finally, we only consider price-
quantity pairs with q

j
i ∈ (0, Q). Hence, (2) follows by appropriately relabeling the ob-

served bid points, as discussed in Definition 2.



456 Samuel Häfner Quantitative Economics 14 (2023)

Turning to the inequality constraint w.r.t. the price points we see, because the deriva-
tive of W ∗

i with respect to p is assumed to exist whenever necessary, that ∂L/∂pj
i = 0 is

equivalent to

∫ qj

qj−1

[
φ′(Vi(q) −Bi(q)

)[[
vi(q) −p

j
i
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i
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p
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q
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]
W ∗

i

(
pm
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)
dq

− (λj − λj+1 ) = 0. (34)

If neither of the constraints p
j+1
i ≤ p

j
i and p

j
i ≤ p

j−1
i binds, then the condition (34) with

λj+1 = λj = 0. If, however, the constraint pj
i ≤ p

j−1
i binds (the argument when constraint

p
j+1
i ≤ p

j
i binds is equivalent), then by a similar manipulation as for the quantity points

above to get (33), we get
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[
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][
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(
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dq = 0.

where, again, analogous operations can be performed when more than one adja-
cent constraint binds. Moreover, observe that the equality above trivially holds when
q
j−1
i = q

j+1
i ; that is, when the constraint on the quantity points binds. Finally, we only

consider price-quantity points with p
j
i ∈ (0, p). Hence, (3) follows by appropriately rela-

beling the observed bid points, as discussed in Definition 2.

A.2 Proofs of Section 4

Proof of Corollary 1. For ρ = 0, φ is linear, and hence, both (7)–(8) follow trivially
from (2)–(3). For ρ > 0, the equality in (7) follows by rearranging (2), appreciating the
fact that the assumption of CARA utility, (5), yields

φ′′(Vi(q) −Bi(q)
)

φ′(Vi(qji ) −Bi

(
q
j
i

)) = −ρφ′(Vi(q) −Bi(q) − (
Vi

(
q
j
i

) −Bi

(
q
j
i

)))
,

and using the definition of 

j
i in (6). The equality in (8) follows analogously by addition-

ally appreciating that under (5), we have

φ′(Vi(q) −Bi(q)
)

φ′(Vi(qji ) −Bi

(
q
j
i

)) =φ′(Vi(q) −Bi(q) − (
Vi

(
q
j
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) −Bi

(
q
j
i

)))
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Last, the inequality in (7) holds, because for j = 	i, we have 

j
i = 0, and, for j < 	i we

have

W ∗
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where the first inequality follows from the fact that Wi(p, q) is increasing in p and de-
creasing in q, Wi(p

	i+1
i , q) = 0, and it must be that pj

i > p
j+1
i for all steps j.

Proof of Lemma 1. To begin, observe that we can use the integration-by-parts argu-
ment from the proof of Proposition 2 to obtain



j
i (bi, vi, ρ) =

∫ Q

q
j
i

φ

(∫ q

q
j
i

[
vi(x) −βbi(x)

]
dx

)
d
[
1 −W ∗

i

(
βbi(q), q

)]
,

which is increasing in vi. Consequently, the claim follows from the following observa-
tions:

1. As a consequence of 

	i (bi, vi, ρ) = W (p	i+1

i , q	ii ) = 0, the equation in (7) gives

vi(q
	i
i ) = p

	i
i , implying that the statement for j = 	i, v

	i
i = v

	i
i = p

j
i , is correct.

2. Next, consider j = 	i − 1. The construction of vl(q) together with v
	i
i obtained

above guarantees that vl(q) is a pointwise lower bound on the profit vi on

[q	i−1
i , q	ii ]. Thus, if we insert this lower bound vl in 


	i−1
, then by the fact that



j
(bi, vi, ρ) is increasing in vi, the equation in (7) provides us with an upper

bound v
	i−1
i on vi(q

	i−1
i ), giving us v	i−1

i ≥ vi(q
	i−1
i ) as desired.

3. Because v
	i−1
i is an upper bound on vi(q

	i−1
i ), vu(q) is a pointwise upper bound

on the profit vi on [q	i−1
i , q	ii ]. Thus, inserting vu in the right-hand side of the

equation in (7) yields a lower bound v
	i−1
i on vi(q

	i−1
i ), giving us v	i−1

i ≤ vi(q
	i−1
i )

as desired.
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4. Repeating the steps 2 – 3 until the first price-quantity pair, j = 1, then yields up-
per and lower bounds for any vi(q

j
i ); that is, vji ≤ vi(q

j
i ) ≤ v

j
i for all j = 1, � � � , 	i−2,

as desired.

Proof of Proposition 5. I proceed in two steps. First, I prove parts (i)–(ii) and then
part (iii).

Parts (i)–(ii): As Ṽi is a complete lattice both under the partial order given in Defini-
tion 3 as well as under the corresponding reversed order, the product set Ṽi × Ṽi is also a
complete lattice under the partial order given in Definition 4. Further, θi,u maps Ṽi into
Ṽi, θi,l maps Ṽi into Ṽi as discussed in the text. Moreover, both θi,u and θi,l are order-
reversing under the order on Ṽi. To see this, it is enough to appreciate that both θi,u and
θi,l are nonincreasing under the pointwise partial order (cf. Definition 3), which follows
from the facts that both ϕu and ϕl are nondecreasing in each of their three arguments
and that Fj

i is nondecreasing in its second argument. Hence, by the order on Ṽi × Ṽi,
the function θi = (θi,l, θi,u ) : Ṽi × Ṽi → Ṽi × Ṽi is order-preserving. Then, because θi is
continuous it is ω-continuous in the sense of Baranga (1991), and thus the statement of
Kleene’s fixed-point theorem therein applies, giving us parts (i) and (ii) directly.

Part (iii): It suffices to establish that (vFi , vFi ) ∈ F(θi ). To do so, I report three obser-
vations that together give us the claim.

Observation I : It must hold for all j ∈ {1, � � � , 	i} and q̃ ∈ [q
j−1
i , qji ] that the functions

vuq̃ : [0, Q] →R and vlq̃ : [0, Q] →R defined as

vuq̃(v)(q) =
{

max
{
v, vFi (q)

}
if q ≤ q̃,

vFi (q) if q > q̃
and vlq̃(v)(q) =

{
vFi (q) if q ≤ q̃,

min
{
v, vFi (q)

}
if q > q̃

satisfy

F
j
i

(
bi, v

u
q̃

(
vFi (q̃)

)
, ρ

) ≤ 0 and F
j
i

(
bi, v

l
q̃

(
vFi (q̃)

)
, ρ

) ≥ 0. (35)

To see this, suppose not; that is, suppose there is q̃ ∈ [q
j−1
i , qji ] such that either or

both of above inequalities is violated. Specifically, assume that Fj
i (bi, vuq̃(vFi (q̃)), ρ) > 0

holds (the argument for the other inequality is analogous). Because F
j
i is increasing and

continuous in its second argument, there is an alternative decreasing function v̂ satis-
fying vFi ≤ v̂ ≤ vi, v̂(q̃) < vFi (q̃) and F

j
i (bi, v̂, ρ) > 0. Together with the fact that vuq̃(vFi (q̃))

is the lowest decreasing function above vFi that goes through the point (q̃, vFi (q̃)) this
contradicts the assumption that vFi is a pointwise least upper bound on the decreasing

functions vi ≥ vi ≥ vi that satisfy F
j
i (bi, vi, ρ) = 0 for all j = 1, � � � , 	i.

Observation II : For all j ∈ {1, � � � , 	i} and any q̃ ∈ [q
j−1
i , qji ], the left inequality in (35) is

strict only if vFi (q̃) = vi(q̃). By contradiction, suppose the left inequality (35) holds with

strict inequality and we have vFi (q̃) < vi(q̃). Because F
j
i is increasing and continuous in

its second argument, there is an alternative decreasing function v̂ satisfying vFi ≤ v̂ ≤
vi, v̂(q̃) > vFi (q̃) and F

j
i (bi, v̂, ρ) < 0. Together with the fact that vuq̃(vFi (q̃)) is the lowest

decreasing function above vFi that goes through the point (q̃, vFi (q̃)) this contradicts the
assumption that vFi is a pointwise least upper bound on the decreasing functions vi ≥
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vi ≥ vi that satisfy F
j
i (bi, vi, ρ) = 0 for all j = 1, � � � , 	i. By an analogous observation for

vlq̃(vFi (q̃)), we get that the right inequality in (35) can only be strict if vFi (q̃) = vi(q̃).

Observation III : If, for any j ∈ {1, � � � , 	i} and q̃ ∈ [q
j−1
i , qji ], the left inequality in (35)

holds with equality, then it must hold

vFi (q̃) = inf
{
v ∈ [

vFi
(
q
j
i

)
, vi(q̃)

]
: Fj

i

(
bi, v

u
q̃(v), ρ

)
> 0

}
.

To see this, suppose the left inequality of (35) holds with equality but the equality above
is not true. This implies that there is a value v̂ > vFi (q̃) such that F

j
i (bi, v̂uq̃(v̂), ρ) = 0.

But this contradicts the assumption that vFi is a pointwise least upper bound on the

decreasing functions vi ≥ vi ≥ vi that satisfy F
j
i (bi, vi, ρ) = 0 for all j = 1, � � � , 	i. By an

analogous argument, we obtain that, if for any q̃ ∈ [q
j−1
i , qji ], the right inequality in (35)

holds with equality then it must hold vFi (q̃) = sup{v ∈ [vFi (q
j
i ), vi(q̃)] : Fj

i (bi, vlq̃(v), ρ) <
0}.

In view of these three observations, inspection of the constructions of θi,u and θi,l
in (21)–(21) then gives us that (vFi , vFi ) = (θi,l(v

F
i ), θi,u(vFi )), or that (vFi , vFi ) ∈ F(θi ), as

desired.

Appendix B: Implementation of the estimators Ŵ ∗
g,t and ŵ∗

g,t

This appendix describes the procedure to approximate the estimators Ŵ ∗
g,t and ŵ∗

g,t (i.e.,
the resampling algorithm) and elaborates on the specific assumptions employed.

Resampling algorithm The procedure to approximate Ŵ ∗
g,t repeatedly draws at random

a sample of size |Nt| −1 from the set Bt of available bid-functions, where |Mj,t| functions
are drawn from Bj,t ⊆ Bt when j �= g and |Mg,t| − 1 functions are drawn from Bg,t ⊆ Bt .
The procedure then constructs the respective aggregate opponent demand functions
from these random bid profiles. This yields a set of demand functions from which we
can estimate the distribution of Dg,t(p). The procedure details are in Algorithm 1.

Algorithm 1 requires the price of interest, p ∈ (0, p̄), the number of resampled sup-
ply functions, R, the sets of bid functions, {Bj,t }mj=1, the number of bidders in any of the
groups, {nj,t }mj=1, and the quota, Q. The algorithm returns the approximated estimator

Algorithm 1 Approximation of Ŵ ∗
g,t .

Require: p, R, {Bj,t }mg=1, {nj,t }mg=1, Q.
1: for r = 1 to R do
2: Construct a set {βj } of bid functions: For all j �= g, randomly draw (with replace-

ment) a set of nj,t bid functions from Bj,t and from Bg,t draw a set of ng,t − 1 bid
functions.

3: From {βj }, compute aggregate opponent demand Dr(p) = ∑
j β

−1
j (p).

4: end for
5: return Ŵ ∗,R

g,t (p, q) = F(Q− q; {Dr(p)}Rr=1 ).
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Ŵ ∗,R
g,t (p, q). Throughout, I use R = 500. As in the text, F(·; X ) corresponds to the esti-

mate of the gamma CDF from a given set of points, X .
Regarding the approximation of ŵ∗

g,t , we have to remember that the number of sub-
mitted price bids is finite. Hence, an estimate of w∗

i that uses the resampling estimator

Ŵ ∗,R
g,t will be zero when the increment h in (22) is too small. A remedy for this problem

is as follows: Let {pm}Mm=1 be the set of all the different submitted price points in auction
t; that is, pm >pm+1 holds for all m ∈ {1, � � � , M − 1}. Then I approximate ŵ∗

g,t with

ŵ∗,R
g,t (pm, q) = Ŵ ∗,R

g,t (pm, q) − Ŵ ∗,R
g,t (pm+1, q)

pm −pm+1
,

for every price point in the set {pm}Mm=1, where I take pM+1 to be zero.

Specific assumptions I not only use the bids from the current auction t when comput-
ing Ŵ ∗,R

g,t but also from auctions with a similar quota. Since the quotas have to be set
by the Federal Office for Agriculture with an eye on the current market conditions, sim-
ilar quotas can be taken to reflect similar market conditions, thus justifying such an ap-
proach.

Specifically, I divide the quotas into three clusters from which I resample. The auc-
tion clusters are depicted in Figure B.1, showing the quotas in the auctions along with a
description of the groups. The Supplementary Appendix shows that the risk preferences
are invariant across groups.

As discussed in Section 5, I assume that there are m = 3 groups of identical bidders.
For all auctions t, the number of bidders {nj,t }mj=1 that I pass to Algorithm 1, correspond
to the average number of active bidders in each of the groups across all auctions, which
are 58 for group g = 1, 11 for group g = 2, and 3 for group g = 3. This amounts to as-
suming that each bidder believes the number of participants and their composition to
be invariant over time.

Remark 4 (The advantage of a parametric approach). Using a parametric approach to
estimating the distribution of Dg,t(p) has a distinct advantage over employing the usu-
ally used, nonparametric strategy in the literature when it comes to determining best-

Figure B.1. The chart on the left shows the quotas for the 39 auctions. Based on the quotas, I di-
vided the auctions into three groups. The three shades indicate the respective group assignment.
The table on the right gives an overview of the quotas in the respective groups.
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Figure B.2. The left figure shows the submitted bid functions in auction no. 36. The right figure
depicts 100 redraws of the residual supply function Q − Dβ(p), using bid functions from the
group of auctions containing auction no. 36.

response behavior. Consider some of the highest bid functions on the left side of Fig-
ure B.2. For the depicted residual supply functions on the right, the empirical CDF of Dβ

would yield a winning probability of one for many of the quantity points in those bid
functions. Yet, such bids can never be best responses because the bidders could always
lower their price bids without winning less. Assuming a particular functional form for
the distribution of Dβ that has full support on the positive reals avoids this problem.

Remark 5 (Ties in the data). The approach to estimate W ∗
i assumes that ties happen

with zero probability. As in Kastl (2011), ties do occur in my data, yet they do so even
less frequently than in Kastl (2011). The ex ante probability of tying on a submitted price
point in my data is 0.004 as opposed to the likelihood of 0.116 reported in footnote 21 in
Kastl (2011). This suggests that we may safely assume that bidders ignore the possibility
of a tie. The likelihood is computed by the probability of a tie in a given auction (0.74)
times the number of tying bidders conditional on a tie (1.8) divided by the product of the
average number of bidders (71.6) and the average number of submitted price-quantity
pairs (4.42). The (unconditional) expected number of tying bidders is much lower in
my data than in Kastl (2011), and both the expected number of bidders and the average
number of submitted price-quantity pairs are much higher.

Appendix C: Testing for increasing differences

This appendix describes the procedure to test for increasing differences as required in
Propositions 4 and 5. The procedure repeatedly and randomly picks, for every bidder
i and every price-quantity point j in the data, two decreasing, possible profit func-
tions vi and v′

i satisfying vi > v′
i in the pointwise partial order and then checks whether

F
j
i (bi, vi, ρ) ≥ F

j
i (bi, v′

i, ρ) indeed holds. Specifically, I proceed as follows:



462 Samuel Häfner Quantitative Economics 14 (2023)

Table C.1. Fraction of price-quantity points j for which monotonicity of Fj
i in vi was violated.

R = 50 R= 100 R = 200

ρ mean se ρ mean se ρ mean se

4.54e−5 0.01093 0.0072 4.54e−5 0.01149 0.007543 4.54e−5 0.01149 0.007543
7.485e−5 0.01028 0.007011 7.485e−5 0.01101 0.007091 7.485e−5 0.01157 0.007572
0.0001234 0.0102 0.006888 0.0001234 0.0106 0.007223 0.0001234 0.01109 0.007728
0.0002035 0.009227 0.007469 0.0002035 0.009874 0.007356 0.0002035 0.01101 0.007829
0.0003355 0.008498 0.006876 0.0003355 0.009713 0.007399 0.0003355 0.01109 0.007521
0.0005531 0.008741 0.006772 0.0005531 0.0102 0.007882 0.0005531 0.01101 0.007381
0.0009119 0.008418 0.006116 0.0009119 0.01044 0.007496 0.0009119 0.01149 0.007916
0.001503 0.009146 0.005918 0.001503 0.01044 0.006109 0.001503 0.01174 0.00713
0.002479 0.00947 0.006313 0.002479 0.01246 0.007019 0.002479 0.01538 0.01019
0.004087 0.01182 0.006343 0.004087 0.01295 0.007992 0.004087 0.01886 0.01224
0.006738 0.01311 0.00775 0.006738 0.0187 0.0127 0.006738 0.02282 0.01589
0.01111 0.01481 0.01027 0.01111 0.02121 0.01464 0.01111 0.02873 0.01943
0.01832 0.01837 0.01239 0.01832 0.02711 0.01827 0.01832 0.03302 0.02233
0.0302 0.02104 0.01257 0.0302 0.03068 0.0185 0.0302 0.03731 0.02379
0.04979 0.02331 0.01483 0.04979 0.03416 0.02171 0.04979 0.04508 0.0256
0.08208 0.02452 0.0154 0.08208 0.03634 0.01942 0.08208 0.04678 0.0245
0.1353 0.02687 0.01303 0.1353 0.04015 0.01826 0.1353 0.05123 0.0238
0.2231 0.02703 0.0111 0.2231 0.03812 0.01757 0.2231 0.04864 0.01798
0.3679 0.02331 0.01083 0.3679 0.03472 0.01214 0.3679 0.04767 0.01586
0.6065 0.02161 0.01097 0.6065 0.031 0.01333 0.6065 0.04176 0.01545

1. Fix ρ and an auction t ∈ {1, � � � , T }.

2. For every submitted bid schedule bi compute the corresponding estimates v̂i and
v̂i of the bounds vi and vi given in (12)–(13), respectively.

3. For every submitted price-quantity pair (p
j
i , q

j
i ) in the data, draw R pairs of de-

creasing functions vi, ṽi satisfying v̂i ≥ vi > ṽi ≥ v̂i (in the pointwise partial order)

that coincide with v̂i on [q
j
i , Q].31 Specifically, I proceed as follows:

(a) Draw a random number m of equidistant values q1, � � � , qm ∈ [q
j−1
i , qji ]; that

is, qκ = q
j−1
i +κ

q
j
i−q

j−1
i

m+1 for κ= 1, � � �m. Draw m+ 1 random rational numbers

ỹ1 ≥ ỹ2 ≥ · · · ≥ ỹm+1 ≥ vi(q
j
i ) satisfying v̂i(qκ ) ≥ ỹκ ≥ v̂i(qκ−1 ), where q0 = q

j−1
i

and qm+1 = q
j
i . These values are then used to define a decreasing step func-

tion ṽi(q) for q ∈ [q
j−1
i , qji ]; that is, ṽi(q) = ỹκ whenever q ∈ (qκ−1, qκ] for

κ= 1, � � � , m+ 1.

(b) Draw another set of random values y1 ≥ y2 ≥ · · · ≥ ym+1 satisfying v̂i(qκ ) ≥
yκ ≥ ỹκ for all κ ∈ {1, � � � , m+ 1} to define, using the same values q1, � � � , qm as
above, a decreasing step function vi(q) ≥ ṽi(q) for q ∈ [q

j−1
i , qji ].

31Because the term involving 

j
i in the expression (14) of Fj

i is increasing in vi , it is sufficient to compare

marginal profit functions vi , ṽi that only differ on the segment [q
j−1
i , qji ].
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Figure D.1. The figure depicts the iterations of Algorithm 2. In this particular instance, the al-
gorithm took 13 iterations. The least tight bounds in the picture are the initial conditions, and
the tightest bounds are the algorithm’s outcome. There are 5 price-quantity pairs to go through,
so it took on average 2.6 iterations per pair. Particular iterations are in light gray, implying that
the darker a bound segment appears, the less often that particular segment changed during the
iterations.

4. Go through all submitted price-quantity pairs (p
j
i , q

j
i ) in the data and increase

the counter of monotonicity violations by one whenever at least one of the corre-
sponding R pairs vi, ṽi drawn in step 3 above violates Fj

i (bi, vi, ρ) ≥ F
j
i (bi, ṽi, ρ).

I repeat this procedure for values log(ρ) ∈ {−12, −11.5, −11, � � � , −0.5} (the same val-
ues for which I compute 
, except for ρ = 0) and for different values of R ∈ {50, 100, 200}.
Table C.1 reports for every value of ρ, the average fraction of price-quantity pairs across
all auctions for which I detected a monotonicity violation. These fractions are computed
by the total number of violations in an auction divided by the product of the average
number of bidders (72) and the average number of price-quantity pairs per bidder (4.4).
Unsurprisingly, the numbers increase in R, yet they do not do so proportionate to R. For
R= 200, the fraction of violations are between 1% and 5%, depending on ρ.

Appendix D: An algorithm to compute ∧F(θi )

This Appendix describes the algorithm to compute the least fixed point of the function
θi = (θi,l, θi,u ) constructed in (21)–(21). As established in point (ii) of Proposition 5, it
is possible to compute the least fixed point by a simple fixed-point iteration procedure
that takes the estimated standard bounds v̂i and v̂i from (12)–(13) as initial conditions
and then iteratively applies θi until convergence is reached. The algorithm computes
the least fixed point by iterating θi,l ◦ θi,u directly (as observed in footnote 18, this yields
the same result). The details are in Algorithm 2.

On a general level, the computation in Algorithm 2 makes use of the fact that for
any j the function F

j
i only depends on the segment of the marginal profit function for
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Algorithm 2 Computing ∧F(θi ).

Require: ε, h, bi, ρ, (v̂i, v̂
i ).

1: Use bi and h to define {Qj }	ij=1 as in (36).

2: u1 ← v̂i
3: l1 ← v̂i
4: r ← 1
5: for j = 	i to 1 do
6: repeat
7: for m= 1 to h− 1 do
8: ur+1,m ← inf{x ∈ [lim

q↓qji
ur(q), v̂i((Qj )m )] : Fj

i (bi, ϕu((Qj )m, x, lr ), ρ) > 0}

9: end for
10: ur+1(q) ← ur(q) + ∑h−1

s=1 [ur+1,s − ur(q)] · 1{q ∈ ((Qj )s , (Qj )s+1]}
11: for m= 1 to h do
12: lr+1,m ←

sup{x ∈ [lim
q↓qji

lr(q), v̂i((Qj )m )] : Fj
i (bi, ϕl((Qj )m, x, ur+1 ), ρ) < 0}

13: end for
14: lr+1(q) ← lr(q) + ∑h

s=1[lr+1,s − lr(q)] · 1{q ∈ ((Qj )s−1, (Qj )s]}
15: r ← r + 1
16: until supq∈Qj |lr(q) − lr−1(q)| + supq∈Qj |ur(q) − ur−1(q)| ≤ ε

17: end for
18: return (l, u)

quantities beyond the (j − 1)-th quantity point. This allows to first compute the least
fixed point of the function θi restricted to the segment [q	i−1

i , q	ii ], because the values

for vu and vl on the segment [q	i−1
i , q	ii ] thus obtained must be part of the least fixed

point (vu, vl ) on the whole interval [0, Q]. Consequently, by keeping these values fixed,
we can then continue by computing the least fixed point of the function θi restricted to
the segment [q	i−2

i , q	ii ]. Having bounds for the segments after the third-to-last quantity
point then allows to compute the values of vu and vl for the segment after the fourth-to-
last quantity point, and so on, proceeding backward through all quantity points.

The algorithm requires a number h ∈ N+ which is used to partition every line seg-
ment [q

j−1
i , qji ] into

Qj ≡
{
q
j−1
i + q

j
i − q

j−1
i

h
, qj−1

i + 2
q
j
i − q

j−1
i

h
, � � � , qji

}
, (36)

with the mth element denoted by (Qj )m, where we define (Qj )0 = q
j−1
i . The algorithm

further requires the risk parameter ρ and a pair of bounds (v̂i, v̂i ) on the values of the
(true) marginal profit, which are used as initial conditions. Throughout, I use the risk-
preference parameter determined in Section 5.2; that is, if a bidder is in bidder group g,
then I set ρ = ρ∗

g. For (v̂i, v̂i ) I use the estimates of the individual upper and lower bounds
in (12)–(13) from Proposition 3.
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Using {Qj }	ij=0, the pseudo-code in Algorithm 2 iterates discrete analogues of θi,l ◦θi,u
with initial condition l1 = v̂i. Starting with the segment after the second-to-last quantity
point, the iteration produces sequences of bound candidates lr ∈ V and ur ∈ V , r = 2, � � �
until the sum of the differences between two iterations of l and u is lower than some
prespecified ε > 0 (cf. steps 6–16). The resulting bounds are then again used to compute
the bounds on the segment after the third-to-last quantity point, and so on, until the
bounds on the whole codomain are computed. Figure D.1 exemplarily shows the itera-
tions of the algorithm for Bidder 8 in Auction 25.

Observe that the iterated bounds lr and ur are constructed such that—by the mono-
tonicity of θi,l and θi,u—the resulting fixed point is below the fixed point that would
obtain with continuous (θi,l, θi,u ). This can be seen in steps 8 and 10 as well as in steps
12 and 14, which take an upper estimate for the upper bound and a lower estimate for
the lower bound, respectively. From this, it also follows that the resulting fixed point
increases in h. In other words, the estimate obtained for any finite h is a conservative es-
timate of the continuous limit case h→ ∞. Throughout, I use h= 5 for the estimation.

As noted in footnote 29, if the initial conditions (v̂i, v̂i ) violate the left inequality in

(16) on a segment [q
j
i , qj+1

i ], then the algorithm returns the highest bounds that are con-
sistent with the initial conditions and the tighter bounds obtained for the segments with
higher q’s. This is motivated by the fact that, because F

j
i is increasing in vi, all vi that

would be consistent with price optimality in such a case must lie above v̂i. On the other
hand, the algorithm returns the lowest consistent bounds if the right inequality in (16)
is violated. This is motivated by the fact that in this case, any feasible vi must lie below
v̂i.

To see the corresponding mechanics in Algorithm 2, suppose the right inequal-
ity fails, Fj

i (bi, v̂i, ρ) > 0. Recall that F
j
i (bi, v, ρ) is increasing in v. Because ϕu(q, x, v)

is bounded below by v for all (q, x) and lr is bounded below by v̂i, the set in the
square brackets in step 8 is equal to [lim

q↓qji
ur(q), v̂i((Qj )m )] for all m, giving ur+1,m =

lim
q↓qji

ur(q) for all m. On the other hand, the functions ϕl((Qj )m, x, ur+1 ) used to eval-

uate F
j
i in step 12 are also bounded below by v̂i. Hence, the set in the square brackets

in step 12 is empty for all m, giving lr+1,m = lim
q↓qji

lr(q) for all m. Consequently, the al-

gorithm will run steps 6 to 16 exactly once. The situation is reversed if Fj
i (bi, v̂i, ρ) < 0,

returning ur+1,m = lr+1,m = v̂i((Qj )m ) for all m.

Appendix E: Bidder group-specific estimates

To compute the bidder group-specific AvPpre and AvPpost for a given group g = 1, 2, 3
in an auction t, I proceed as in (23)–(24) but I only sum over the bidders in that group. I
divide the sum by the aggregate amount obtained within that group, rather than by the
respective quota. To compute AvPratio, I proceed as in (25), but I only sum over those
bidders in the group that have obtained a positive quantity in the auction. Also, rather
than dividing by n, I divide by the number of bidders within the group that have obtained
a positive quantity.
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Table E.1. Bidder group-specific means and medians of the profit and shading-to-profit ratio
estimates. Bidder groups are indexed by g = 1, 2, 3.

g = 1 g = 2 g = 3

Estimate Tight �ρ Mean Median Mean Median Mean Median

AvP
pre
u no 0 17.1 16.8 16.82 16.67 16.3 17.49

no �ρ∗ 15.85 14.88 15.02 13.42 15.25 14.39
yes �ρ∗ 12.91 11.05 12.58 10.74 12.91 11.47

AvP
pre
l no 0 10.81 9.489 10.82 9.316 10.62 9.695

no �ρ∗ 9.568 8.694 9.437 8.623 9.317 8.472
yes �ρ∗ 9.737 8.789 9.707 8.749 9.77 8.542

AvP
post
u no 0 8.204 8.221 7.935 7.584 7.476 7.775

no �ρ∗ 6.955 6.891 6.135 5.707 6.429 6.375
yes �ρ∗ 4.014 3.138 3.694 2.506 4.085 3.385

AvP
post
l no 0 1.912 1.012 1.933 1.001 1.793 0.4783

no �ρ∗ 0.6733 0.09508 0.5517 0.1034 0.4935 0.07064
yes �ρ∗ 0.8427 0.2134 0.8218 0.3026 0.9467 0.3031

AvPratio
u no 0 0.488 0.5028 0.4708 0.4795 0.4682 0.4766

no �ρ∗ 0.4523 0.4548 0.4184 0.4229 0.4366 0.4337
yes �ρ∗ 0.2839 0.2747 0.2647 0.2478 0.2914 0.2993

AvPratio
l no 0 0.1198 0.06965 0.1251 0.07998 0.1119 0.06052

no �ρ∗ 0.03297 0.01398 0.03257 0.01118 0.03356 0.01172
yes �ρ∗ 0.06146 0.03831 0.06119 0.0432 0.08026 0.04187

Table E.1 provides an overview of the results. There is no substantial difference be-
tween the three groups in terms of the range of possible profits and shading-to-profit
ratios. The intervals between the respective upper and lower mean estimates and those
between the respective upper and lower median estimates exhibit substantial overlap
for all three measures. Moreover, the median and the mean estimates do not differ much
between groups.
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