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Abstract

This Appendix contains the proofs of all theoretical results in the paper.
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A Preliminary bounds

In this subsection we collect some preliminary bounds that are used throughout the proof.
They hold both under the null and alternative hypotheses. Here and in the rest of the
proof we assume that Assumptions A1-A3 hold. In fact, following a standard localization
argument, see e.g., Section 4.4.1 of Jacod and Protter (2012), it is enough to prove the results

under the stronger version of assumption Al:
SA1l. We have assumption A1 for s,t € [0,T].
Therefore, the proof below is done under assumptions SA1, A2 and A3 without further

mention in the statements of the theorems, lemmas and propositions. We also assume that
k., < € so that the discrete factor model in equation (19) in the main text holds. This is
not a restriction because k,A, — 0 for all of our theoretical results in the paper. Finally,
we remind the reader the sequence ¢, from assumption A3, the tuning parameters K,,,, and
gnp related to the selection of the number of factors given in equation (22) in the main text,

and the parameter @ from the statement of Theorem 4.1.

Lemma A.1. Let p — oo, A, — 0, k, = o0 and k,A,, — 0. Then, we have for ¢ = a,b:
(i) | RFe|” = Op (pk2 A7)
(it) [UR|* = Op (pkpAY7) .

(iti) |RL|* = Op (pk,AZF) .

Proof. Given the integrability conditions of assumption SA1, we have for any constant ¢ > 0:

i€An
/ o jds
(ig=1)An

forj=1,..,p,t=1,...,k, and ¢ = a,b, some arbitrary small ¢+ > 0, and where C, and C,,

q

= < Coln, E([[feall? + [Eensl”) < Cyp BIALJT < CuuA™, (AL

are constants that depend on ¢ and ¢, only. From here, we also have for ¢ > 2:

Elr..;|9 < C,AP=1/2atl, (A.2)



With these bounds, we can now proceed with the proof of the lemma. Applying the
bounds in (A.1) and Holder’s inequality yields

kn
E <Z T?,Ji,m) < Ch, AL, (A.3)
t=1

and therefore,
HRCFCH2 =Op (pkiA?’L%) . (A.4)

Next, given the C-conditional independence of 3, ;, o, ; and Y; ; across j from A2, we have
E (retj€ctkTesi€esk) = 0, for j # k and s # t. (A.5)

Using conditioning on C, the bounds in (A.1) and (A.2), Hélder’s inequality as well as

assumption SA1, we have

|E (retj€etiTesiCesi) | < CA?, for s #t, (A.6)
IE (ritjzitj) |+E (ritj) < CA*Z. (A.7)

Combining the above three bounds, we get

|U.RL? = Op (pk2AZ7) and ||R.||* = Op (pk,AZ7). (A.8)

Lemma A.2. Let p — o0, A, — 0, k, — oo and k,A,, — 0. We have for ¢,d € {a,b}:

(i) maxy y_F_ [E(€.i€ct|C)| < C, for some positive constant C' > 0.

(ii) |U.|| = Op < (kn 4+ p)Cp 41/ (kn +p)\/pk7">, for the matriz operator norm.

(i11) gz Doije(Ceifenj — E(€eritey|C)) = Op(57=).

() N5 UcFell = Op(\/ ), g BaUcFell = Op( = + Y7

Vknp )
— = == =/
and o= ||FyUUU Bel| = Op(L +1).

5

2
ﬁ > it Bai(Eeti€etj — B(Ecritet;|C))| = OP(]%R + %)

() 157,

(vi) |- BuUT, — BE(UT,|C)Be|l = Op (4= + L2).
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Proof. We start with (i). We have 3°%_, [E(€.1i€.4|C)| = E(€ ,|C) and since sup;», E(€;

c,ti c,ti) <
oo by assumption SA1, the result follows.

To proceed further for (ii), we introduce the following notation

~ 1

€ctj = \/—A_nafCJA%WJ7 for ¢ = CL?ba j = 17 -~ D, = 17 "'7kn7 (Ag)

with o.; = 0|¢c/a,]—kn+1,;- The matrix constructed from €.;; is denoted with [7(;- We first

bound ||U,||. Let %, = éE<ﬁcﬁé|f(\_C/Anjfkn)An), which is a diagonal matrix with entries

2
C7j7

of Vershynin (2018) implies

2 ;, and denote its counterpart in which &7 is replaced with o7 ; with ¥, .. Theorem 4.6.1

_ 1 ~ ~
||Z;1/2—UCU/E_1/2 _ ]H — OP (E + ﬁ) ’

,C . c~u,c kn kn

so we need a bound for ||§]uc|| For this, we can use triangular inequality, assumptions A2
and A3, and the fact that || - || < || - ||, to get

_ ~ k,
[Buell < 1Bl + Xue = Buellr = Op (Cp + P/ g) : (A.10)

As a result, |U.]| = Op ( (kn + )G + 1/ (kn + ) ’%) Therefore, it suffices to show
U, = U.|| = Op(v/En + p) in order to establish the bound for ||U,||. First note that Ele,; —

%VC’tj]? < CA,, because of our assumption for oy ;. From here,

HUc_ﬁCH < HUC_ﬁCHF < C\/pkn\/AnZOP(\/Z_))' (A-ll)
We continue with (iii). Using successive conditioning, we have

E[(€cti€ctj€eri€erjr)|C] = 0, if t # ¢ or one of the indices i,4', j, j" differs from the others,
(A.12)
and of course E[e.€.,;]* < C given our integrability assumptions in SA1. From here, the
result to be proved follows.
For the first of the bounds in (iv), given the definitions of f,, and €., as well as the

integrability assumptions in SA1, we have

=0, if s#t,

' (A.13)
<(C, ifts=t,

E(Ecytj?c,tk) = 07 E(Ecytjfc,tkgc,sjfc,sk) {



and therefore

IF.T.|1* = Op (pk) . (A.14)

from which the first result in (iv) follows.

For the second bound in (iv), we use in addition the following result

kn kn,
E |Bagie > Eetifemn D Cotifem|| < CVhnln, i # 4, kK =1, K, (A.15)
t=1 t=1

for some constant C' > 0. This follows from the C-conditional independence of the processes
B;, o; and WZ from j;, o; and fV[7j, for i # j, as well as the smoothness condition for the
processes o; and A in assumption A2(i). We note that when ¢ = d, the expectation in the
above inequality is equal to zero.

Finally, for the third result in (iv), we apply Cauchy—Schwarz inequality and we have

—l =

— = = =/
[EqUUU Bel| < [FaUalllUU Bell- (A.16)

Given the above bound for ||[F,U,]||, we need only a bound for |U.U,8.|. Given the inde-
pendence of W; and W for i # j, and the integrability conditions for the processes {o;}i>1,

we have

kn

kn
E E Ec,tigc,tj E Ec,tigc,tj’
t=1 t=1

f(Lc/Anj—k'n)An> =0, if i # j and j # j, (A.17)

k 2 e
- Cky,, ifi#j
E( Y eicey | < . A18
(t:f’te’”> { CR2, ifi = j (4-18)

Therefore, given the integrability conditions for the processes f. ;, we have
E (HUCU;&\P) < O (K2 + phy). (A.19)

From here, the third bound in (iv) follows.
We turn next to the bound in (v). Using the C-conditional independence of the processes
Bi, W; and o; from §;, W; and o, for i # j, we have

E ( Z ﬁ:j,iﬁd,i/ (gc,tigc,tj - ]E(gc,tigc,tj‘C))<gc,si/gc,sj - ]E(gc,si’gc,sjlc))) = 07 (AZO)
i#i or s#t

where we denote €., = a(ig,l)AMA%Wi/ vA,. Using the smoothness condition for the



processes {0;};>1 in assumption SA1, we have

> ( > BuiBai Ferieri — BlEouifes;|C)) (Fenirenj — E@m/amc») (A.21)

J 1#£i or s#t

- Z ( Z ﬁ{yl,iﬁd,i/ (Ec,tigc,tj - E(Ec,tigc,tj |C))(Ec,si/gc,sj - E(Ec,si’gc,sj‘c))) = OP (pgkn V An)

J i#i or s#t

From here the result in (v) follows after taking into account the integrability conditions for
the processes 8 and {o;_i > 1. The second result in (vi) can be shown in a similar way.
]

For stating our next result, we need some notation. For ¢ € {a,b}, let @c be the K x K
diagonal matrix consisting of the first K eigenvalues of 7072/ (pky), where K is the true

number of non-redundant factors at time c.
Lemma A.3. We have ||Q.|| + || Q]| + ]%||ﬁch@;1|\ = Op(1).
Proof. Using Lemma A.1 and Lemma A.2, we have:

1

FF
pk

UA4R) ||+ U, +—UR’+—R2 1).
F.(U )Ilpll ||p|| ||p|| |* = op(1)

Let Q. be the K x K diagonal matrix of top K eigenvalues of ﬁﬁcAéAcﬁé- We then have

1Q. — Q.|| = op(1) because, using assumption SA.1, we have i||F/FC — N A = Op(\/Lk—n +
\/%) The eigenvalues of Q. equal those of (ALA.)'/21 BB (ALA 2)Y2, which are bounded
away from zero and infinity, and therefore so are those of Q.. Then, ||Q;!] = Op(1) and
from here 1||3.8.Q. || = Op(1). O

B Estimating the number of factors

Theorem B.1. Let Kyox = 0(\Vky), and g, be such that:

kn+p | Pk 0% _ kn+p
W Gnp = 0(1), ¢, + - = 0(gnp), AF o Gnp | - (B.1)

We then have,

]P([?a = Km [/(\—b = Kba [?mm = szz) — 1.

We note that the condition A2% = o (k"“” gnp> in the statement of the above theorem is
implied by conditions 31-32 in Theorem 4.1. This is because from these conditions, we have
Gnp — 00 and (y/pkn + p)AZZ — 0.



Proof. First, note that for F x and BK being the estimated factors and betas using K eigen-

vectors, we can write

V(E) = |V = B Fil2 = 3 e
Pk m>K
Therefore, the criterion (22) is equivalent to the IC criterion in Bai and Ng (2002). From
here, the proof of the case K < K, is very similar to that of Bai and Ng (2002) so we omit it
for brevity. However, there is a technical flaw in the published version of Bai and Ng (2002)
for the case K > K., so we present a proof of this case here using random matrix theory.
Recall S, = %p?C?’C, ¢ € {a,b}. We first bound max,,,~ i, vcm. Let us separately consider
two cases: K. > 0 (there are factors) and K. = 0 (there are no factors).
Case I: K. > 0. For two semi-positive definition matrices A, B, the a + b largest
eigenvalue satisfy
Aatb(A+ B) < Ai1(A) + No(B).

We will use this inequality and the following decomposition.

Se = T+W
r = k—cbf’fccb’, rank(T') = K,
1 _ _
W= k—p(RCJrUC)ME(RCJrUC)/, (B.2)

where Mz =1 — Pg_, and ® = . + (U, + RC)FC(F;FC)_l. For m > K, thereisi=1,2, ..

so that m = K.+ i. Then, by making use of Lemma A.1 and Lemma A.2, we have

Vern = Am(Sc) = A i(W +T) < A1 (1) + N(W) = \i(W)
2 -
< = 24 2 2 <
< kanRcH + kanUcH < Op(9),

1 1 Dk, .
5 (p+kn)<<p+\/n>+ 2

Let d,,), = (kg;p ) gnp denote the penalty rate. Note that V' (K,) is the rescaled residual sum of

squares when the true number of factors is used, which consistently estimates 119 > E(a2;1C).

So V(K.) > ¢ is bounded away from zero with probability approaching one. When K > K.,

A = logV(K)+ Kd,, — (log V(K.) + K.dp,) = log + (K — K.)d,,



> K.<m<K Ve m)
Z lOg (1 - s 7 + dn Z dn - OP( Uc,m)
V(K.) ’ ’ Kc<r§§:Kmax
2 dnp - OP(ma}? Uc,m)

m>Ke

> dnp - OP((S) > 07

because of the rate condition in (B.1).

Case II: K, = 0. We have S, = ﬁpUCU;, ¢ € {a,b}, whose eigenvalues are bounded
by $||Uc||2 < Op(0). In addition, V(K,) still converges to %ZiE(UgAC) which is bounded
away from zero. Hence A > d,,, — Op(d) > 0.

]

C Proof of Theorem 4.1

C.1 Outline of the proof

Since by Theorem B.1, the number of non-redundant factors over a given period can be
recovered with probability approaching one, we can conduct the proof assuming that the true
number of factors is known. We do so henceforth. The proof of Theorem 4.1 is structured
as follows:

Part I. PCA expansion. As discussed in Section 2, we have the following discrete
factor model:

Y, = BCF;—FUC—FRC, c=a,b, (C.1)

where recall R, is a residual component containing the approximation error to the discrete
factor model. We can apply PCA to Y,. Using the definition of PCA, we will make the

following expansion
HPEa - P@,H% - (Ba + Bb) = /ja +ﬁb - ﬁab + A5,

where B, and B, are certain centering terms, the first three terms on the right hand side of
the above equality are the leading terms that jointly determine the asymptotic distribution
of the statistic under the null hypothesis, and Aj is a higher-order term. In the above, B,

and By, are the leading bias terms. Using the estimates éa and éb for them leads to:
kB |15, = PalI3 = (Ba + By)| = hun/Blia+ fis — in) + hny/Bl 25 + B+ By — (B + By)].

Finally, we also use the bias-mimicking projections that are in the term ﬁmm and hence

and P>

we need to consider Ps B
mix,e

Bmi:c,o

. These two terms are the projection matrices associ-

8



ated with Bmm and Bmme We can get a similar decomposition for

H%‘ - (Bmifr,o + Bmi:p,e), (C2)

6miz,e

—~
Amix = ”PEmiz,o_

where B, iz0o + Bmize 18 the estimated bias term for ”PB = |%. Namely, we can
’ ’ mix,o

Bmir,e

write

kn\/]_)Amw: - kn\/ﬁ(ﬁmim,o + ﬁmix,e - ﬁmzx)
+ kn\/]_j[AS,mix + Bmix,o + Bmiz,e - (B\mix,o + B\mix,e)]-

The terms in the above decomposition are the natural counterparts of the ones for the
projection discrepancy P — P above. Putting things together, this will lead to an expansion
for the test statistic S. This expansion and the definition of all the terms in the above
decompositions will be given in Section C.2.

Part II. higher-order terms. In this part of the proof, we will show that the higher-
order terms are negligible, in the sense that, for ¢ = a,b and d = o, e, the following terms:
kn\/DAs, kn/DA5 mics kny/D(Be — LA?C) and ky/p(Bmiz,d — B\mixd) are all op(1). As a result,
under the null hypothesis,

S = kn\/i_j(ﬁa + ﬁb - ,aab) - kn\/ﬁ(/jmix,o + ﬁmix,e - ﬁmz:{:) + OP(l)-

Part III. Asymptotic null distribution. We will then derive the asymptotic distri-
bution of the leading term. This is done in Section C.4.

Part IV. Bootstrap limit result. In the next step, we characterize the asymptotic
behavior of the bootstrap statistic in Section C.5.

Part V. Asymptotic Test Size. In a final step in Section C.6, we use the results in

Parts I-IV to derive the result in (35) concerning the asymptotic size of the test.

C.2 PCA expansion

Step 1. For ¢ € {a, b}, let @C be the K x K diagonal matrix consisting of the first K eigen-
values of 767/6 /(pky). By the definition of eigenvectors, 707,636/ (pkn) = 3.Q.. Expanding
Y. using (C.1), we can verify that the following identity holds:

~ 1 — — ~
50 - BCHC = k_UCFCAC + A107 (CB)



where

1 — s A 1l — 54 I o354
A = U050+ —URBQ + —RY.B.Q.,
~ 1 o~ ~
A, = —BQBCQ;%
1 ~
Hc — _F Y . - C4
= 3.0 (C4)

Next, Lemma C.2 below shows that H. is invertible with probability approaching one, hence
Ps, = Pg_ p,. As a result,

P

Be _Pﬁc

;w BHT + BubonBL + Bu(B B H - Be — BHLY,  (C5)
where

1 ~ o~
AQC - Hc]_)[Héﬁéﬂch - 62&0](1—];52&0]{0)_1 (06)

From here and building on (C.3), we further expand (after some tedious algebra):

15, = Pl = (B Bi) = Fiu+ o — s + s,
_ 2
fe = ?trA’[F U.U,F.—BIAS]A,., ce€ {a,b},
p
ot
ﬂab = —tl"A;FaUanFbAbG
pk;,
2 2 on
NE N 2
B, = p—kntrA’BIAS A, _k—%;tm;ﬂ,t fl AE(2[C),
BIAS, = ZE(JQC)F;E,
=1
~ ]_’\,A ~1 1 / —1 7 ! —1r7' -1
G = ]_jﬁbﬁa—i_Hb (];ﬁbﬁb) ByBa(BofBa)  H, (C.7)

with Aj being a remainder term, whose lengthy decomposition will be given in Section C.3.1,
and we remind the reader our notation in (16) and (17) in the main text.
We then estimate B, by:

= (@ FEQ.E(@2[C), e € {a.b}.
As a result, we can write
1P5, = P31 — (Ba+ By) = fia + i — fiap + A5 + Ba + By — (Ba + By). (C.8)

10



Step 2. We continue with ./Zl\m,-x, the bias-mimicking statistic. The expansion for this
term requires introducing significantly more notation. For ¢ € {a,b}, and k € {o,e}, let
?c,k, Fqk, Uc,k denote the columns of Y, F. and U, realized on k time points during period
c. Recall that B\mmk is constructed as the eigenvector using data Ymm,k = (?avk,VbJﬁ). Let
Ster = ﬁf;kfc,k. Then

1

_ — 1 1
_Ymiz,kylmim - _6aS ,a,kﬁ; + _ﬁbS ,b,kﬁ/ + A, C.9
k:np k P f p f b ( )

which holds under both null and alternatives, and

1 - — 1 — — 1 — —
A= Z _BCF/c,kU::,k + _Uc,kU/c,k + —UpFerf. + Remy,
cefapy P Pk Phn

with Rem; being a remainder term that depends on R, and R} in (C.1). Let Q\mmk be the
K x K diagonal matrix consisting of the first K eigenvalues of me,k?/mmk /(pky). By the

definition of the eigenvector defining Emmk, we have an identity similar to (C.3):

~ [ [ 1o — 1., A
Bmizge — BavHmiz e = k—Ua,kFa,kz—)ﬁéﬁmm,ka%x,k + k—Ub,ka,kz—jﬂéﬁmkam%x,k

1 — o N 1 _ — -~ ~_
+ﬁUa,kU;,kﬁmix,kaim,k + ﬁUb,kUb,kﬁmm,kaim,k + Re(f.10)

with the following notation:

1 —/ I = N H ;AT k
ﬂab = (6(17 ﬁb)a Hc,mix,k = _kFQqukﬂmix,ka%z,k? Hmix,k = LI 5
Prkn Hy iz i

and where Rem is a remainder term depending on R,, R, similar to that in (C.3).
Let AQmi:p,k = Hmzx,k%[H;Tnng ;bﬁameim,k - ;mx,k;ﬁmi:v,k](H;n%kﬁ;bﬁameix,k)_l- Thena
similar to the identity (C.5), we have

1 ~ . .
— Poy iy, = ];(5mix,k — BavHumiz ) B e + BabDomia kBmiz i

+ﬁameiw,k:(H;mm7k ébﬁameix,k>il(Bmiw,k - 5amei:p,k:)/-(C~11>

Bmiz,k

Identities (C.10) and (C.11) hold under both the null and the alternative hypotheses.
Under the null that £, = 8, H for some invertible matrix H,

6ameix,k = ﬁaka Lk = (Ha,mix,k + HHb,miz,k)- (012)

11



Lemma C.7 below shows ﬁ”ﬁmm — BabHmia, (1). Tt follows that

I = lgylmxkgmmk = lH;zix,kﬂ;bﬁameix,k +op(1) = lL;gﬁéﬁaLk +op(1).
p p p
Also, the eigenvalues of %Bt’lﬂa are bounded away from zero. Hence by Lemma C.1, L is
invertible with probability approaching one. Hence Pg,, g,.,. , = Ps.r, = P, under the null.
Then the left hand side of (C.11) can be replaced by Py o o

Next, define:

- — Fog 2~ o~ ~

) 1

Umix,k - (Ua,ka Ub,k)7 Fmiz,k = | = ) Gmm: - _/Bmigj’o miz,es Amz’x,k _ﬂ Bmm: kawc k-
F b,kH ) p

)

Then under the null, (C.10) can be rewritten as

1 —

6miz,k - ﬁameiz,k = k__Umz:v kazz kAmm k + Almza: k

N
A1miac,k = EUmix,kU/mix,kﬁmix,ka_n};%k+R€m7 (013)

for Rem that depends on R,, Ry
Combine with (C.11) to obtain an identity similar to the one in (C.7) under the null,

2
||F = :umz'z o + /vbmi:v e ,umz'z,oe + A5,mia¢7

|| 6mix,o 16mi:c,e

2 — — — — -~
2 -~ —/ — — — -~ -~
Mmizoe = ka tr Amm ,0 m@x7oUmix7oUmZ'fE,8Fm7;$,€AmiZE,eGmifﬂ7

where Aj i, s a remainder term similar to A;. Let

2
Bz = E tr A, wlFepFurE(og,|C) + H'Fy ka +HE(0;, 1O A
Bmiz,k = tl" Qmm k kFa kazx k ( 2,1|C> + tI‘ Qmm kFl;,kakar_ntx,kE(Jg,l|C)‘
Then
Amiz = HP miz.o - Pgmiz,e %‘ - (Bmix,o + Bmix,e)

= (,umzx,o - Bmiw,o) + (,umi:c,e - Bmix,e) + Hmiz,oe
+<Bmia:,o - Bmix,o) + (Bmia:,e - Bmiz,e) + A5,mi:c~

12



Altogether, we have

1P5, = P55 — (Ba + By) — A
= ﬁa + ,Eb - ﬁab - (Nmim,o - Bmix,o) - (Nmiz,e - Bmia},e) — Mmiz,oe
+A5 + (Ba - Ba) + (Bb - Bb) - (Bmiz,o - Bmiz,o) - (Bmiz,e - Bmix,e) - A5,mz(:cc-]-4)

The term in the second line of the above expression is the leading term, jointly determining
the asymptotic null distribution, while the terms in the third line of the above expression
are higher-order terms. We need to show that, after multiplying them by k,,/p , these terms
are asymptotically negligible.

Lemma C.1. Let Apin(A) and A\pax(A) respectively denote the minimum and mazimum

eigenvalue of a semi-positive definite matriz A. Suppose ¥ is semi-positive definite, and
Amax(X) < C, Apin(L'XL) > ¢

for constants ¢,C > 0. Then Apin(L'L) > ¢/C. If L is a square matriz, then L is invertible.

Proof. Let v be the eigenvector of L'L so that v'L'Lv = Ay (L'L). Let § = Lv. Let I be
a generic identity matrix. Then C'I — ¥ is semi-positive definite, implying />0 < C||6)|?,
which is

Chuin(L'L) = CV'L'Lv > v'L'SLo.

Because L'SL — ¢l is semi-positive definite, v'L'>Lv > ¢. Hence Ay (L'L) > ¢/C. This
shows the singular values of L, which are square roots of the eigenvalues of L'L, are nonzero.

Hence L is invertible if it is a square matrix.

]

C.3 Higher-order terms
According to (C.14), there are four higher-order terms:

A57 (BC - BC)J (Bmzm,k - B\mim,k)a AS,mix, Cc = a, b, k = O, €.

We aim to show that, after multiplication by k,./p, these terms are all asymptotically
negligible.

13



C.3.1 Higher-order terms I: A; and Aj .,

In this subsection, we focus on A; and Aj ;. In particular, A; has a lengthy expression,

given as follows (A i, is defined similarly).

2
A5 = —Z;trk_AgFaUaAlb /Bbﬁa_ptrk_A,F UbAla_ﬁ 61’

2 2
—2—9 tr A] QA1 b—ﬁbﬁa —2(As+ Az + Asp + ]—7||A1,a||p 1—?||A1b||12v)

a a a

1 4 1 o
+ptrk—A’F U Ava+ 5trk—Ag,F;U;ALb. (C.15)

The expression for A; depends on A . and Ay, given in (C.4) and (C.6). It also depends

on As., Ay, which are defined as:

Ng. = 2tr(B. — B.H, >5CA2C+2tr—(ﬁc BeH) Be(BLBe) " HL M (Be — BeH.)' e
+pHﬁCA26HF+2tr5</BC ﬁc c) 1A20_tr<ﬂc ﬁc )A/QC cil(ﬁc_ﬁc c)la
Ay = Ztr =Be(Be — B.H, >5dA2d@d+Ztr—5c e — BeHe) Ba(ByBa) " Hy* (Ba — BaHa)'

c#d C;éd
+ ) tr By BLBa(B45a) " Hy (Ba — BaHa)
c#£d
+Ztr —UF AH (BB) ™ BLBa(ByBa) ™ Hy " Al
cAd n
-t AraHy  (8080) 7 By B B586) T H, T Ay + tr Ba A 18180515, (C.16)

The above expression for Ay can be derived after tedious algebraic calculations. Here we
illustrate the sources of all the terms in As. From (C.5), by substituting the expression for
Ec — BeHe, we have Py — Pg. = g1,c + ... + g5, where

1 — — ~ ~
J1,ec = _UchAcﬁé
pk,
1 ~
92, = _Alcﬁé
p Py
93,c = BCAQCBZ: )
gre = BelB) T H AT,
gse = BelBLB.)TH, A,

Therefore,

1P, = Ps M3 =) Ngaclz+ D tr(ghy cgare) = Y t2(ghy aGann)-
d,c

C,dl ;ﬁdg dl d2
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(1) In 37, |gacll, the leading terms are gy o[|% + ||g4c||F The higher-order terms are:

g2.ell7 + g5, lI% = OP(%HAMH ), and [|gs c[l3 = OP(H 5’(& — B.H.)|)?).
(2) In)", i £ds tr(gfl1 cng’C), all terms are of higher-order, which involves terms like
Op (| ALl? + L FT Bl + [12BL(B. — BH)|? + |5 FLT.Axe).

(3) In >4, 4, t7(9a, a9ds), only tr(g; ,915) and tr(g) ,945) are the leading terms, all other
terms are of higher-order, involving Op (3 [|Arcl® + || 5= F.U. B4 + I BB — BH.)|? +
|~ il cAldH) for ¢,d € {a,b}.

We start with establishing some preliminary bounds in Lemmas C.2-C.5. With their
help, we derive the bounds for A; and As,,;, that we need in Lemmas C.6 and C.7.

Lemma C.2. Assume ¢, = O(Vk, A /D) and pk,A, = Oy(1), as p,n — oo. Under both
null and alternatives,
1B = BeHell < Op(\/ i + & + 61) and ||Alc|| < Op(¥E + %+ 64), where Ay, =

L TO8.07 + - L7 RAG +kaYﬁcQ

| —
—R.Y B (C.17)

5y = B, +
= TR+ =

Also, ||H.|| + ||H:"|| = Op(1).

Proof. Recall that @c is a diagonal matrix consisting of the top K eigenvalues of Y/Y./(k,p).
From Lemma A.3: [|Q.]| = Op(1) = [|Q;Y]|. Also, recall that

—~ 1 — — ~ 1 — — ~ ~ 1 — ~ o~ 1 o~ o~
Bo—BeH, = —UJF A+ —UJU.3.Q:' + —UR.B.Q:" + —R.Y.3.Q.(C.18)

J/

~\~
A1(:

The first term ||ﬁﬁcfcgc|| < ||ﬁUCFC||Op(1) < Op(\/p/ky) by Lemma A.2 (iv). The

second term

1 = =5 A1 1 = n2n \/]_) 1
IO TAQ, | < o) TIPIAL = 002 + )6,

using 3, = Op(y/p), Lemma A.2 (ii), the condition pk,A, = O,(1) and Lemma A.3. For the

third and fourth terms, we have:

1 - A 1 R
|5 UeRBQ + =RV B2 < Op(1)ds

by making again use of Lemma A.3. Together, because ¢, = O(Vky), ||§C — BH.| <
Op(\/# + &+ by).
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Finally, to show ||H.|| + [|[H || = Op(1), we have proved \%ch — B.H.|| = op(1). Hence

= —5 B. = —Hlﬁ BeH. + op(1).

This then implies that all singular values of H, are bounded away from zero and infinity.

O

Lemma C.3. Under both null and alternatives,

1 11 5 s ANt A oAt VA,

~B4(Be = BeH,) = Op(= + —== + —= + —== + S ),

p Y S Y S Y
and

1+~ L 5 S AYY AN \/_A 1 52

for c,d € {a,b}, and where 5 = pk ; U, R’BCQ 't p,i 11) 'R, Y BCQC , and 94 1s defined
in (C.17).

Proof. Recall that, for R, being the matrix of discretization error in the factor model,

1,5 I R 11, s~
pﬁd(ﬁc /BCHC) - k pﬁdU F A + kn 6dU U BCQ
11

"‘7—5(1(] R’BCQ + %—b’dR Y, 6,3@ L

It is easy to see for the first two terms on the right-hand side of the above equality that

1 — — ~ 1 — — ~ 1 VA
A < |l—p < I S
1 1knp/BdUchAc = ”knpﬁdU;FCHHACH = OP(\/— + \/—)OP(U
S BB < Op()=BuTT — BT OB = foHel
+0p<1>||wﬁd<UcUc—E(UcUcw))ﬁcn +0p(p)
1 A4 VA,
< Be — BH,|| + Y22 4 pt
Op(( i F)II 1/|i \/{{; )1/4
1 1 Ay n n
< Oy ( 04 04 JANS GA +\/A )

Ry R iy el Ay

because E(U. U ‘C) is a diagonal matrix with bounded elements and by application of
(vi),

Lemma A.2 (v) and (vi) as well as Lemma C.2. Combining these bounds and using the
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definition of d,, we get the first result of the lemma.

For the second result of the lemma, we have
1~ 1, .~ 1, ~ 9
]_)Bd(/gc - /BCHC> S I_)Bd(/gc - /BCHC) + ]_)Hﬁc - 6ch|| .

From here the result to be proved follows from the bound for the first result of the lemma

derived above plus application of Lemma C.2. O

Lemma C.4. Suppose X—f = O(Cg) and pk,A, = O,(1), as p,n — co. Let
1l ——— 'S A 1 —— 5 A1
56 = EFdUdUCRcﬁCQc + anFdUdRCYCBCQC

and Ay, = 1UUBCQ —i——UR’ﬁch—l— RYﬁch
Under both null and alternatives, for c,d € {a, b},

— = kn p p k"
FdUdAlc = Op (14‘11?"‘(56) + Op <1+/€_n) Cp—FOP (Hk—n—F“?) 54Cp
1 vk,
Vkn

Proof. Recall that F;U;AM = LFPUUU.8.Q; '+ FUURB.Q: +-=FU,RY 5.Q:

First, ( FdUdU U Be)? Op(l—i—k;), |UF.| —Op(\/k_) and ||U,|| —Op( (kn 4+ 0)Cp),
by Lemma A.2 and because pk,A,, = O,(1). Hence, by using Lemma A.2, Lemma C.2 and
the the expression (C.3) for B\c — 6.H., we have

G-

1
prey FdUdU U (B BeH.)

1 - == == =/ ]_
EFdUdU Ucfe+ Op(1 ) SIFT* U H2+—HF UelllTN*[| Al

n

OPG+¢?>+OPQ+ )@+@(¢_'vh>@@

L VR
()¢

1l ——— —
Bc = p_k:anUdUcUcﬂc

IN

IN

O

Lemma C.5. Let p — oo, A, — 0, k, — oo and k,A, — 0. Under both null and

17



alternatives, we have for ¢ = a,b:

2

2 11

— ~ 1 —~ ~

”56” 1 ——— /D A1 ' D A1 AT
= F.UU.R.3. F.U.RY .5, =0p| —=), C.20
pkn pgkg cYc cﬁ Qc + kaTQL c~c C/B Qc P \/E ( )

1 A 1 —r~ =4 -
5 = | 8T RAQ: + o ARYAQ | —or(aF). (c2n

Proof. First, we note that

1BeI” = Op(p), and ||B.|* = Op(p), (C.22)

from the assumption for . and the fact that each column of Ec /+/P is an eigenvector (and
hence has a norm of 1). From here, all results follow by application of Cauchy-Schwartz
inequality and Lemmas A.1 and A.2.

[

Lemma C.6. Suppose k, — oo, p(§ = o(k2), k2C5 = o(p®) and pk,AZ® — 0 as p,n — co.
Then, under both the null and alternatives, k,/pAs = op(1).

Proof. From the definition of A5 and since ||8.]|2 + ||Be]|> = Op(p), it is easy to see that to
bound it, it suffices to derive bounds for the following terms:

1 15, = j— 1 ——
EIIAnHz, H]—jﬂé(ﬁd—ﬁde)IIQ, IITF;UICBdIIz, H@F/CU;AMII, ¢,d € {a,b},

PRn
provided ||H,.|| + ||H; || = Op(1). These terms are bounded in Lemmas A.2,C.2, C.3, C.4
and ||H.|| + |[|[H || = Op(1) is shown Lemma C.2.
Applying these lemmas, for ¢, d € {a, b}, we get
1 —— 9 1 —— 1 9 1+ = 5
As < Op(lo=FUSLall” + I —FeUcAudll + “|[Avell™ + I~ Be(Ba = BaHa)l[")
PRn nD p p
11 6 6 4

1 1 1 1
2 4 2
< OP(k_%+_2+_+k_+65+_2)+OP(E+]€_T21><+OP<kT+_2>

1 1 A,

where 44, d5, 0g are defined in the statements of Lemmas C.2, C.3, C.4, repeated here:

1
pky,

1

54 = || pk

U.R.B. + —R.Y B,
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1 1 — ~ ~ 11 o~ o~
5 = ——ﬁgUCRgﬁcQ;I+p——6;RCY;/3CQ;1

pilfnp ]
5 = - — FU.URB.Q;* +TF U.RY.3.Q:". (C.23)

Hence to show /pkn,A; = op(1), it suffices to have ¢, = o(\/p), ¢ = o(k2), k2¢) = o(p®)
and pk,A, = Op(1) (implied by the requirements of the lemma) and in addition show
that /Pl (s + s ) 16 = o(1) and Bk (3 + 2 + 5 + 62) = 0p(1). The last
results follow by application of Lemma C.5 and the condltlons k, — oo, k,A, — 0 and
pk, A%F — 0.

]

Lemma C.7. Under both the null and alternatives, and under the same condition as in

Lemma C.6, kn\/PAsmiz = op(1). Also, \%Hﬂmm,k — BavHmiz k|| = op(1), for k= o,e.
Proof. The proof is the same as that of Lemma C.6, as the higher-order terms of Aj ,,;, and
Ajs are of the same type. In addition, exactly as the proof of Lemma C.2, we have

1 ~
_Hﬁmwk - 5ameix k“ >~ _OP( Cp

\/ﬁ ) ) \/— \/_+(54) —OP(l) k’:O,e.

C.3.2 Higher-order terms II: bias estimation

Recall the definitions: B, = 2 tr(Q,)E(02,IC) and B, = Z Zf”ltrA’ i AE(02,]C).

Here B. is an estimate of B,, where we estimate E(o?,|C) by

/\

B(0211C) 1= —— T30 + Ko /k) + 5 tr(BLD.5L)
pkn P
with ﬁc = diag{?f\il, ey O p} being the p x p diagonal matrix of estimates of the idiosyncratic
variances, and K, is the number of factors in period ¢ € {a,b}.

The goal of this section is to show that \/ﬁkn(ﬁc — B.) = op(1), and \/z_okn(émmk —
Biiz i) = op(1). This is established in Lemma C.10 below, which uses the auxiliary results in
Lemmas C.8 and C.9. Before giving these results, we provide the rationale behind EQITC)
A naive estimator of E(a?7,|C) is ﬁHfJ\CH%, which however underestimates the volatility
because of a higher-order bias in p%n ||ﬁc||§7 for estimating Z%n |U.||%. This bias can be derived

and estimated as follows. We have
. — 1~— 1~
U.~U. = (B.—B.H)E, + B.H. ﬁ (B.H. — B)H,'F, + BeHeo DU + BoHo LR
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= Lt e
g1 = _UCFCACFC/
n 1
g2 = ﬁch_ﬁéUc
] p
gs = _UCU;ﬂch_lFCI
pky,
1 e _
gs = _2_ﬁch éUcUIc ch_ch_lFlc
P’k
1 . _
gs = _Tﬁch éUchAcHilF:;
PRn
gs = Rems, (C.24)

where Rems means remaining terms that depend on R.. Hence

6
HUCH%“_ HUCH%ZZHgdH%"" Z gdlgd2 Z2tl” ng
d=1

dy,d2=1,..,6: d1 #d2

Here ||g1||2 + || g2||% — 2 tr(U.g1) — 2 tr(U.gs) is the leading term. To estimate its components,
note that Fcﬁc can be estimated by F\C@g and note the identity L o ) F'F, Qc Hence
ﬁlp[”ng% + |lg2||2 = 2tr(Usg1) — 2tr(U.gs)] can be estimated by

K 1 1 -~

Therefore, we can correct the bias of ||U,||2 by:

/\

—— 1~ 1 .
E(02,|C) := —||U.||% — 0. = Ud|2(1 + K, /kn 'D.f3.). C.25
(0241C) pan I oE R TA [kn) + o tr(BeDefe) (C.25)

Lemma C.8. Let p — oo, A, — 0, k, — oo and k,A, — 0. Under both null and

alternatives, we have for ¢ = a,b:

VP P

e knp2 =0p (AY), (C.26)
P ~ 1|2 =
k\n/;z cﬂc = OP (\/]_in ) ) (027)
VU R = 0n (VBAD). 5| AUDORA] = or). (C29)

73

k2 EUU ?/B\C

ol(p)s) e
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= (1 ==~ I = _,»~ I =5
o |[PeRe ;(Y%UCU’C@@J + o URBQ + ERCY;&VJ) H = op(1). (C.30)

Proof. The proof of all results of the lemma follows by application of Cauchy—Schwarz in-
equality and the bounds derived in the proof of Lemma A.1. n

Lemma C.9. Suppose Cp=o(k3), ¢ = o(p**), ¢u = o(Vknp) and pAZZ — 0 and pk,A, =
0,(1). T0.0 5. = on(1).

Proof. We hav U U Bc < vy + v9 + v3 where

v = ﬁ(gc - /BCHC) UCU//B\C \/_ Hlﬁ U U (ﬁ Bc c)

2k, ¢ 2k,
vy = \/k_ H'B.(UU. —EU.U.|C)B.H.
v = Vk_ HISB(T.TIC)5.H

For vy, we apply Lemma C.2 and Cauchy-Schwarz,

0 < Opl >www@ mHu<@J”* gvr}__+a op(D)

For vy, we apply Lemma A.2 (vi) Hp21knﬂ(’1(UcU/C —E(UU.IC)B = OP(#E + \/\/ij:) So
vy = op(1). Finally, vy = Op(p~'/?).

Lemma C.10. Suppose k,, — o0, pCS = o(k?), kifﬁ = o(p®), pA2% — 0 and pk,A,, = O,(1),
as p,n — 0o. Under both null and alternatives, \/ﬁanEC— B.|| = op(1), forc € {a,b}. Also
\/ﬁkn(Bmiz,k - Bmm,k) = OP(l) fork € {0, 6}.

Proof. Define
~ e e o~ 1 & 2 PPN ~
Be= 5> Q. feufl Q' — Z = . tr(Q,  FLE.Q. U

We first show /Pkn||Be — B.|| = 0p(1), and then show \/pky || B. — Be|| = op(1).

First, because ec . are C-conditionally cross-sectionally independent and given assump-

tions SA1 and A2, we have

mekiﬁj 721C) — ) = or(1).

s=1 i=1
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For \/_k‘ B, — B.|| = 0p( ), it remains to show:
ME(AFFA) U — 22 (Q7 FLEQIT3: = op(1).
The left hand side is bounded by the sum of the following three terms:

m = 2 \F.A. - BQ: I + f DIEQ:PIT - Dl

\/_A/ A
kQ(CCQ )

LENF
kn
as = \/_HFQ ll ZZGCm 6ctz 6ctz

g =

To proceed, note that F, = p—l?’ﬁc implies ﬁc@c_l ~T.A, = U;B,;Qc_l/p + Rfﬁc@c_l/p.
Also recall the expansion in (C.24). Then, for a;, by using Lemma A.2, Lemma A.3 and

Lemma C.2, we have

Er— L3 s+ On) L R
Lo < OP(l)pHBc B+ O SRR (o)
+0n(1) u AL
¢ C2 1,1+
< 0@+ %+ %) 0u0 >—||];ﬁCRC||%,
IR0 TR < on 4 CQ) ORNLEEN (©32)
ky, = kT p Pk, L phe el '

Therefore, with Cg =o(y/PN \k/—%), which is implied by the conditions in the statement of the
lemma, we have a; = op(1).

For as, we note %pHUCH% = Op(1). Also, B, — B.H, = ﬁUCFCﬁC + Ay.. Lemma C.4
showed ﬁHF/U/AlCH = op(1) under the conditions of the current lemma. Also, Lemma
C.8 showed Op( )||F BCH = op(1) because \/pAZ — 0. Then combined with Lemma
A.2, and under the condition that p = o(k?),

w < Op(V) || (AF,~ G, F)F.

. op<k£§>uf’ﬁ;ﬁcn +0p<f [F.T

n

<op<f |[F.T Bc||+op<“; \[F.R.A|

7+ f 2P0 Al + on(1) = or (1)
Finally, for a3, we need F‘/f? tr [((76 - UC)’UC] = op(1), which is bounded using (C.24),

az < OP(%)U [(ﬁc —Uc),Uc}
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< or(W) %! [FOTE+ ot f HF U A,
T 1 /P
O - ch c ~— |-B.R.U c
+0p(—0) Lot - ) optl) +or( 2 |13 Ts
D || %
+0P(1>k’\/;2 )/BCR U (B ﬁc c)
< op(1) +0p(1 )k‘/; (1) p2 ‘@RCU’C@
p \/_ 27T 77 TT 7
+Op(1)knp2 ‘I’Op(l)k%p "U.U,U.R.B,
10,022 |AT.T.RT A,
nD
B U.U. E op(1), under the conditions of

the current lemma. Also, Lemma C.3 showed

1 L & +64A,1/4 CpA,l/4+\/_An+ 1 52 L
pVkn \/_n pkn Py Pkn kD2 p\/_ VEn

with the last result due to the conditions of the current lemma. The asymptotic negligibility

B\L(B\c—ﬂch) S OP( ) = Op(].),

of as then follows by application of Lemma C.8 provided pA2% /k,, — 0.
To show \/]_ok;nHEC — B,|| = op(1), note that

~ 2 A~~~ s ~
Bc = thr(Qc 1FC/FCQC 1)HUCH%’
D
o~ 2 AN NN A —_
B, = Zu(Q7 FIF.QE(02,]C), ¢ € {a,b}

From Lemma A.3, Q-] = Op(1) and together with the identity ﬁﬁéﬁc = Q., we have
étr(@glﬁé}i@;l) = Op(1). Also by (C.25), E(02,|C) = ﬁ”ﬁcnfp — 0, where |0, =
Op(é + }D) Hence, using (C.31), Lemma C.2 and Lemma C.8, we have

~ ~ 2k, RTINS 1 —
VBB~ Bl = SV w(@ RO B2 )
< Op(VR) |- 10l - ETGELI0) | = On(y/55)

1
< Or(VP)Op(=+ ) = or(l).
As for \/]_DanEmmk — Bz k||, note that

2
Bmiaz,k = —tI"A

kQ miz k[F(i,kF kE( a 1‘6) + H Fb ka kHE(ab 1’0)] miz
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Bmiz,k = tI‘ sz:c kF/ F kQ;’ix,k]E(o-g,l |C> + tI’ Qmm kFl:,kakar_nix,kE(a-g,l |C)
~ ~ ~ VRN )
AISO, Amix,k - %ﬁ(llﬂmm,kaiak and Fc,k =P 1Yc’k6mix,k lmply
5 A-1 = 1,2 A—1 l— ~ A—1 1., 5 A—1
Fcakaix,k - Fqk{)ﬁcﬁmix,kam’k = ch,kﬁmi%kaix,k + ]_?Rc,kﬁmi%kaim,k

where Fa,k%ﬁ{;ﬁmiz,k’Q;}ix’k = Fa,kAmix,k’ and Fb,k%ﬁéﬁmzz,k@%ix’k = Fb,kHlAmiaz,k when /Bb =
BoH. From here, the proof of |/pky | Bmize — Bmiz,k|l follows from the same arguments, so

we omit it for brevity.
O

C.4 Asymptotic null distribution

Lemmas C.6, C.7 and C.10 show that k,\/pAs = 0p(1), kn\/DAsmiz = 0p(1), \/ﬁkn(ﬁc
B.) = op(1) and \/ﬁk,‘n(émwk—Bmmk} =op(1), for c € {a,b} and k € {o,e}. It then follows
from (C.14) that

— \/pkn [ﬁa + ﬁb - //Zab - (,umix,o - Bmiz,o) — (;umiw,e — Bmim,e) — ,UJmix,oe] + Op(l),
(C.33)

where we recall here the definitions of these terms:

p

. = ,% w AFTTF, — S Eo?|OFFJA, celab)
=1
mb:5%uﬁfvﬁﬁ@£
Hmizk = ]% tr Almm k [_lmm,kU;m,kUmim,kﬁmm,k]Xmim,k
Hmizoe = ]% tr A/mm ofmw OU;W oUmix,eFmix,eA\miaz,eémiza
Buisk = 10 A s FLuFutB(0210) + ' B HE (03, 10)) A

We now derive the asymptotic distribution of the leading term. Using the notation in
(C.41),

\/]_)k;n [ﬁa + /jb - ﬁab - (N/mix,o - Bmix,o) - (Mmix,e - Bmix,e) - Mmiac,oe]
= 2Za(Aa> + 2Za(Aa> — 2Zab(/élcw AbG> - ZZmix,o(Amix,m HAmim,o)
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~ ~ ~ ~ ~ ~

_2Zmix,e(Amix,ea Hle\mix,e) + 2Z\mim(2{miw,oa HAmi;v,m Amiw,eGmiza HAmz:v,eamszC?)4)

Also recall that the left hand side is \/pkn||P; — P3 [IF — (B, + By) — \/ﬁkn./zl\mm + op(1).

Lemma C.11 below shows that EC i A, a5 G, Emmk L A, and @mmk L 21, for
some A., G, and A,,;,. In particular, A,,;, does not depend on k. Hence, by Lemma C.12
below, (C.34) also holds up to op(1) term if on the right hand side (gc, @, ﬁmmk, @mw) is
replaced by (A., G, Apiz, 2I). That is,

\/]_janPAa - P@,H% - (Ea + Eb) - \/ﬁknvz{mzx
= 2Za(/_la) + 2Za(f_la) - QZab(Aaa Abé) - QZmix,O(Amian HAmzw)
_QZ\mzx,e(Amzxa HAmzr) + 2/Z\mzr<lemzm> Hlemm:a 2Amzma 2HAmzm) + OP(l)

1 p
= — ziatop(l), (C.35)
VP i=1
for some z; ,. Lemma C.12 below implies
1 Xp: v 25 V7 (C.36)
VvPiD

where Z is a standard normal random variable defined on an extension of the original proba-
bility space and independent of F and V is some C-adapted strictly positive random variable.
C.4.1 An auxiliary probability bound

We restate here some notation that will be used in showing the next lemma. We define

~ 1~ A~
AC - _ﬁcﬁCQc !
p

G = %Bﬁﬁﬂbwéﬁgﬁb)1ﬁgﬁa<ﬁ;ﬁa>1ﬂ;l

/Almia:,k = lﬁ(lzgmmk@;ixk
A
Gmiz = ~BrizoBmize
)
Yo = /]iéAc
D, = K x K diagonal matrix of the diagonal elements of J/ A’ A.J,
Q. = K x K diagonal matrix of top K eigenvalues of Y.V /(pk,)
Q. = K x K diagonal matrix of top K eigenvalues of %@ALACBQ
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QF = K x K diagonal matrix of top K eigenvalues of E 25 021/2

[

Qmiz = K x K diagonal matrix of top K eigenvalues of ZB, (0 5.+ 05HE, H’)Zl/2

Lemma C.11. Under the null hypothesis, provided (,/p — 0 and pk,A, = O,(1) as p,n —
oo, we have

() 1A= Al 1G = Gl + 1258, — Gl = Op(Ti+ e + &+ ©) = 0p(1), for some
(A, G) adapted to C, where

T, = |- ﬁczfcﬁ YY||

pk,

e || LRF + —T.Y) + —|RY)

\/_ Ky, pky " ph, T
(2) Emmk L Apiw and @mmk L 21, for an A, adapted to C.

Proof. (1) Note that the top K eigenvalues of 1BCA’ A.f. are also those of 21/216/,80 1/2.
Also from Assumptions SA1 and A2, we have ||pﬂcﬁc Ys.ell = Op(p~Y/?). Hence, as the

proof of Lemma A.3, we have
A ) ) oL A ) 1 —
1Qc — Q2 < [1Qc — Q2 + [|Qc — Qe < ”Ef,cH”;ﬁéﬂc Sl + T < Op(T, +p7'/?).

Meanwhile, klnflcfc = Ste4 Op(kn"* + \/kn/n). Hence

1 —/—/

H,= — 1y, A, ,/ —F "B,
c knp BCQ f,c + OP \/— + || CBCH)

This implies that singular values of 2,3 are bounded away from zero and infinity.

We now show that the eigenvalues of J} X .J, converge in probability. We have

1

i DY Y Bt op(T) = Qe Op(T) = Q1+ Op(Ty +577).

I3 edn =

Then || D, — Q|| < Op(T,, + p~/2). We now prove the convergence of .J,, following the same
argument as in Bai (2003). First, singular values of J,, are bounded away from zero, which
follows from the fact that singular values of //l\c and @c are bounded away from zero. From
7Y oY B = B.Qe, left-multiply 15/,

1 N
]—Qﬁgﬁczf,c + Jr0p(T) | T = JQ..
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Note that each column of EJIC/ 52 JoDn /% is a unit vector (whose Euclidean norm is one), so
that they are also eigenvectors. Also D, ! and CA)C are commutable because both are diagonal.
Thus left multiply by X f/ and right multiply by D,, Y 2

1/2—B B2+ I Op(T,) | B2 0D = Y20,Q.D;1% = £Y21,D,2Q...

Then by the assumption that Q* has distinct diagonal elements, the sin-theta theorem im-
plies ||Zl/2J DY — M, | = Op( +p 1/2) where columns of M, are the eigenvectors of
21/2250 1/2 So ||Jn — 2_1/2 .Q%|| = Op(T,,). Recall that A, = J,Q:". Hence

1A — A = Op(T, +p7V/%), A =%, MQ:V2 (C.37)

Finally, we bound G. Lemma C.2 implies, for ¢, defined in (C.17),

1

255 2~ A
Hgﬁéﬁa — 2H Y 0 Hal| + H};Bzﬁﬁa — G|l = O&(

@V\

7l
Sl
-

where Y3, is the probability limit of Z—ljﬁ,’)ﬁa. Meanwhile,

— ~ — -~ 1 E—4 fond e 1
H.— Y5 Acll = || B — ZfcAcl| + || He — Zg A = O +||-—F.R.B| +Tn+—).
| felell = |12, feAell + 1] feAell = Op( Hknp l \/2—9)

(C.38)

1
vk
This implies,

1 ' Cp
F RS, T

where G = 245 .Y 55,3 1. As. The last result above follows by applying Lemma A.1 and

2o A A
158680 = Gl + 16 = Gl = Op(—— 2y~ op()

Lemma A.2, and making use of (,/p — 0, which is assumed in the statement of the lemma.
(3) Recall that @mm r contains top eigenvalues of the sample covariance from (Y, x, Y5 1),
which are equal to the top K eigenvalues of = BaZf o+ BbEf v, up to op(1). Under the
null hypothesis, they also converge to the dlstlnct elgenvalues of Qumiz. Thus we have proved
@mm,k L Qmiz- These eigenvalues are also bounded away from zero and infinity so long as
those of ¥4, Y, and H do.
Under the null, %ﬁaEf o —|—Lﬁb2f By = BaXfmiz, Where X i = 0.537,+0.5HY s, H'.

Then the same argument for ||, —3; 1/2 1/2|| = 0p(T, ») in part (1) can be repeated here
to show .
2 BB = e Minis Qric | = 0p (1) (C.39)
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Hence under the null,

where the columns of M,,;, are the eigenvectors of »Y 28,02 1/2

f mix fymizx*

To find the probability limit of Gmw ks we recall He iz i = c ch kﬁmm kaw o and
Lk = (Ha,mm,k =+ HHb,mzx,k) Then Hc miz,k — = 0. 52]‘0 ﬁ Bmwc kazm k + OP(1)7 which with
(C.39) imply

Ha,mix,k = 0-52]”(1 ﬁ Bmzx kazm k + 0P<1) E) O'5Zf,a/_1mi:m Hb,mix,k E} 05Ef,bH/Amzx

This shows that L, converges in probability to some L that does not depend on k € {o,e}.
From (C.12),

1~ 1~ _
OP(l) - _Hﬁmwk - 6ameim k”F - _Hﬂmim,k - BaLHF + 0P<1)'

VP ’ VP

Thus sz:c k= 2 B ; = mix OﬁaL + Op(l)

maix,0l~ TT,e

plPmixz oﬁmz:c ot OP(l) E) 21. Il

C.4.2 An auxiliary CLT result

Consider the following statistics for ¢ = a,b and k = o, e:

Z\c(fl) = L Z [(Z Ec,tiflc,tcl> (Z glgc,tifc,t) - tr(C{F;FCQ)E (Uélc)] )
t=1

kn
Za(G1,G) = \}_ Z (\/— Zea,tiﬂ,tC1> (\/% ZCéEb,tJb,t) ;

Zniw (1, G2) = 7 Z [H%mﬁ F il = Z (P FenCa)E( 3,1|C)] :
c=a,b
Zm‘z(Cb (G G) = — Z ’Ya 0iG1 + %OZCZ)(C::,% ei t Cibe)s (C.41)

\/_11

for some K x K matrices (1, (s, (3, (4, and where

Eatzfatv Voki = 77— E 6bt1fbt7 ]{3—06

tGT tGT

Ya,ki =

with 7, = {1,3,... 2 (kp — 1)/2] + 1} and T; = {2.4, .., 2| ka/2]}.
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We note that for two K x K matrices A, B, we can write

p kn k"
w(AFOUFB) = Y | eufuBY AT, el
i=1 Lt=1 t=1

—/

p
tr A’ [Fmiz,kU;m:,kUmix,kaix,k]A = Z H'Y:z,k,z’A + 7£,k,iHA|’2>

i=1

where the matrix H in the second line arises from the definition: F,,;, , = (F;k, H ’F;L k) -
We stack together the above random variables into a vector. Let ¢ = ((i, ..., (12), for
{G}iz1,..12 being a set of K x K matrices. We then set

2(0) = (Zo(1): Zal62)s Zat(G3,Ca): ZunioolG5: 68 Zumie (G, G8): Zunia (Go: Gr0, G Gi2)- (C42)
The next theorem states a CLT for Z (€).

:::::

have the following convergence as p — oo, A, — 0 and k,, — oo with k,A, — 0:
=~ Lic 1/2
Z(¢) — V(0L (C.43)

where Z is a standard normal random vector defined on an extension of the original proba-

bility space and independent of C, and V ({) is some C-adapted positive semidefinite matric.

In addition, ng— ¢ =op(1), we have

~

Z(C) — Z(¢) = op(1). (C.44)

Proof. In the proof, we will denote with C), a C-adapted random variable that can change

from line to line, depends on n and k,,, and is Op(1). We can write

Z(¢) = Z %(¢). (C.45)

We will apply Theorem VIII.5.25 in Jacod and Shiryaev (2003) to establish the convergence

in (C.43). It suffices to show the following three convergence results:

ZE(zi(g)\C) Eoo, (C.46)
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p

3 E (5(0)2(Q)IC) —E (5(Q)IC) E ((0)IC)] & V(Q). (C.47)

=1

p

STE(l=(QPe) & 0. (C.48)

i=1
Using assumption SA1 and the fact that E(|& ;|74 | f,||%) < C,, for any ¢ > 1 and C-adapted

random variable that depends on ¢ but not on ¢ and i, we have

zZp;E(zi(QC 0p< ﬁ) andz (|2:(C)1%) — 0. (C.49)

Therefore, to establish the convergence result of the theorem, we need to establish the

convergence of the second conditional moments above. We will show here the convergence of
the top three by three block of the matrix, with the rest of the convergence results in (C.47)
being established in an analogous way. Towards this end, we denote the first three elements

of zz(g ) with 24, 24; and zg;, and we further set

Ve(©) = E(on,IOALC AN
‘/:lb(glaCQ) = E(sz az|c) tr(ClA A C1€2AbA CQ) (050)

With this notation, we will show Y7 | E(z7,[C) LN Vo(G1), Db E(22,10) LN Va(¢o) as well
as Yt E(22,IC) LN Vi(C3,Cs). We start with the first of them. Using the fact that
E (Ewi?b’t‘}"@,lmn N C) = Ogx1 (for Oy being K x 1 vector of zeros) and the integrability

conditions of assumption SA1, we have

- 1 kn, ., 1 kn B 2
‘E _(\/k‘_n ;Ebjifb,tCl) (\/_k’_n ;Eb,tig{fb,t@)] ' C

[ k 2
1 & _, -
-k ko Zgg,tifb,tC1C1fb,t) ‘C (C.51)
mog=1
2 A o
ZE Ebtzebsz(fbtglglfbs ‘C ‘ - .
n t=1 s=1 < ) \/k_n
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In addition, using the smoothness conditions for the processes A and o;, we have

kn kn

E <€b tzeb sz fb,tCIC{?b,s)Q‘C>
n =1 s=1
En (AR WALV (AL WAL W] ™
(Ub z|C) (Ab Z A—Agglgl‘/\b Z TAZC1C1 ' E?
n t=1 n s=1 n
(C.52)

and by CLT for i.i.d. random variables

A”WA”W] C
- Z = Ix + \/1:_ (C.53)

Further, we have

k 2 k 2 9
Lse 7 o7 1§ C
E‘E (k ZGz,tifb,tQleb,t) 'C —E (k} E thsztCllebt ) < T (C.54)
" o=1 (O

for some C-adapted random variable that does not depend on i. From here, we have

P E(z2[C) 5 Vi(¢) and similarly S0 E(22,/C) = Va(G). Next, following simi-

lar steps as above, we get

1 o 1 kn (A"W)2An WA” w’ o
‘ ( abz’c) - _E |:0b ZO— ; tr AaAaC2C1Abk_ Z A2 t AbC3C4 'C:| ’
=t " (C.55)

col( [, 1
—p no k.|

Using Law of Iterated Expectations, we can write

n AT;W QA”Z, WA” w’ ke 2A” WA" w’
E ‘721 Z 2 =E Oba,ib Cl, (C.56)
t=1 t=1

where we denote 7\ = CV o(W,; : s < t) and Opiy = E (aiiaii\ﬁi)), for t < b.
Using a martingale representation theorem (Theorem 11.4.33 of Jacod and Shiryaev (2003)),
we have o, ,, = E (Jiiag’i|féi)) + /; G,:dW,;, for some G,; adapted to F\” and with

E ( fob 5§7ids|C> < oo almost surely. From here, by applying a Law of Iterated Expectations,
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we get

k n (774 2 n n /
—_F 2 2 4 L 2 —E 2 -2 I < n_n' )
kn Opi ; A% Oa,i C (O-b,zo-a,zlc) K = C n (C 57)

As a result, we have Y 7 E(z2,|C) LN Vab(3,Ca). Next, we have

ab,i

E (Z Ea,SiTQ,sclCiga,tifa,tga,u’i?a,ugl |C U Fb)

s,tu

=K ( Z Ei,si?a,sClCi?a,sga,ti?a,tcl|C U ‘Fb) +E ( Z Ea,si?a,sclCigz,ti?a,tfa,tgl‘C U Fb) )

s,tis>t s,tis>t

(C.58)

and from here, by using the integrability conditions of assumption SA1 and applying Cauchy-
Schwarz inequality, we have > 7 (2, ;2ap:|C) L 0. In asimilar way, 37 1 E(2b,i2ab,4|C) 5o

1=

The convergence result in (C.47) for the rest of the elements of the matrix
P E (2:(Q2(Q)IC) — E (2(Q)IC) E (2(¢)|C)] follows the same steps as above. From here,
the CLT result in (C.43) follows.
We are left with showing (C.44). Note that, we can write
J
(C.59)

By applying the CLT result in (C.43) for ¢; being a matrix with 1 at the (k, k) element and

zeros elsewhere, for k =1, ..., K, we see that

1 p 1 kn B _ 1 kn ~ -, 1 , L
% Z [<_]{jn ; €c,tifc,t> (\/_]{j—n ; Ec,tifqt - k_n]E(O-CJ|C)FCFC

i=1

p

~ 1 , 1 o = 1 i _ 2 /
Z(C1) = 7p Z tr {Q [(\/—k—n ; Ec,tifc,t) (\/_k_n ; Ecﬂfifc,t) — E(0;,|C)AA,

=1

— 0p(1).  (C.60)

and similarly

= 0p(1). (C.61)

— Z Etifoe | | 7= Z €atif ot
\/]_9 =1 o t=1 K t=1
From here, if a — (¢ = op(1), for : = 1,...,4, we have the asymptotic negligibility result in

(C.44) for the first four elements of the vector. Similar analysis can be done for the rest as
well. O
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C.5 Bootstrap limit result

The statistic in the cross-sectional bootstrap is given by

+ B L))

mix,e

mix,o

8" = kav/Bll|Ps, = P31 — (Bi + B;) — | P5, — Pa.ll3+ (B;

The following lemma establishes the CLT result that needs to be proved:

Lemma C.13. Suppose conditions (31)-(32) in Theorem 4.1 hold. Under the null,
s -8 45 Wz,

where V is defined in (C.36) and Z is a standard normal random variable defined on an

extension of F and independent from it.

Proof. The asymptotic expansion of the bootstrap statistics is very similar to the expansion
of the original one. We omit the details in order to avoid repeating the same arguments. As

a result, we have

1 p
kn/DS* = — ) 2, +op(1), (C.62)
R

where 2}, is drawn at random with replacement from {z;, : i < p} in (C.35). With the

notation z, := zla P | Zin, we have

p

S oS @(%Zz;n — ) 4 op(1). (C.63)

=1
We note that

1
E(z},|F) = z, and Var(— Zz* |F) =

p
- 7 > 2, -z =V+op(l) (C.64)

i i=1
Indeed, let W, be a p-dim multinomial random vector that extracts p outcomes from z; ,, with
replacement, each with probability 1/p. Let z, = (21...2pn). Then, Var(\/if7 Yo ZialF) =
%Var(z;Wp) = I—lqu’lCov(Wp)zn. From here, the second result in (C.64) follows because
Cov(W,) =1 — 21,1,

In addition, suppose V > 0 is bounded away from zero, a claim we show at the end of
the proof. Then

Var(z;:n\]:)l/2
va%

ai —1
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L|F

ag = Var(z;n|]:)_1/2(8*—3) — N(0,1)
S -8 = Vaas 25 vz, (C.65)

and the result to be proved follows.
We are left thus with showing that the limiting variance V is strictly positive almost
surely. We can decompose z;,, in (C.36) into 21(2 and zl(i), corresponding to the part due to

|P; — P3 || and [P, — Pj3 ||%, respectively. From the above CLT result, we have

1< 2\ ze A
=1 2,

where (Z1), Z?) is C-conditionally zero-mean bivariate normal vector. With this nota-
tion, we have V = Var(ZW|C) + Var(Z?|C) — 2Cov(ZM, Z2?)|C). Since Var(ZW|C) +
Var(Z®)|C) > 0 a.s. (because of our assumption for non-vanishing idiosyncratic volatility in
A2(i)), to establish V > 0 a.s., we need to show that Z(1) and Z® are not C-conditionally
perfectly positively correlated, i.e., that there is no C-adapted random variable ¢ such that
22 = pz0),

To show this, we can look at terms in zl(ln) and zz(zn) of the type € 1€ s (7;&{@7@8). These
(1) 2)

i\n n

summands are uncorrelated with the rest of the summands in z;, and zz( and generate
positive variance in Z( and Z®). However, they generate dependence in Z() and Z® of
the opposite sign depending on whether both s and t correspond to odd or even increments
or whether one of them correspond to odd increment and the other one to even increment.
To see this note that, these summands appear in Z,(Zb) and in: (1) Zm,o(zm, HA,,,) if
s,t both correspond to odd increments, (2) Zm-m,e(zmm HA,,) if 5,1 both correspond to
even increments, and (3) Z\mix,e<zmimy HA v, 2A iz, 2H A,i,) is one of st corresponds to
odd increment and the other one to an even one. Therefore, we cannot have Z(2) = ¢z
for C-adapted random variable ¢. This proves that V > 0 a.s.

]

C.6 Asymptotic test size

Proof. Expressions (C.35), (C.36) (C.63) and Lemma C.13 show the convergences of S and
§* — S under the null. More specifically, these results imply

1 p
8 - Xn + yTw Xn == zi,n; yn - OP(]-)7
2
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1
S —-S§ = X; + yZ, X, = — (Zz',n - Zn)7 y; - OP(1)7
VP Zl
wWix, & z
NS =S

and Z and Z* being standard normal random variables. Let ¢* be the 7-th upper quantile
of §* — & so that P(§* — S > ¢*) = 7. Since V is strictly positive almost surely, we have
P(S* -8 > ¢') = P(S* =8 > §*), where S = \/)_/718, S =V 'S and 7 = \/)_/Aq*.
Therefore, we need to show P(S > ¢*) = P(S > §*) — 7.

To this end, first note that S-S & 7z implies ¢* LN q, for ¢ being the 7-th upper
quantile of Z, by e.g., Lemma 21.2 of Van der Vaart (2000). For any § > 0,

P(S > G+ 6)

P(S > q)

P(S > G+6,|7 —ql <) +B(T — 3l > ) <P(S >3") +o(1),

<
< PS>F7 -3 <0)+0(1) <SPS >G—6)+o(1).

Therefore, P(S > §+6) 4+ 0(1) <P(S > ) <P(S > §— 8) + o(1), which implies

M5>Jw—4 ]Mg>a+®—Thﬂmg>a—®—Tbmg)

<
g‘M§>a+®—P@>a+®qu§>a—®—P@>a—&

+P(Z>q+6)—P(Z>q|+|P(Z>q—0)—P(Z > q)|+o(1)
< o(1) 4+ C6,

for some C' > 0 that depends on the density of Z. Because § > 0 is arbitrarily small,

PS> q¢) =P(S > ) — .
]

D Proof of Theorem 4.2

We remind the reader of following notation, which is going to be used in this section:

. = the true beta, ¢ € {a,b}

BHM = see (4), ce{a,b},k=1,..,4
g = see (5), c¢€{a,b}
ﬁab = (ﬂaa Bb)

Bmiz = unique columns of (.

Recall that ¢* = ¢*{S* — S} is the bootstrap quantile so that P(S* — S > ¢*) = 7, for
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some significance level 7 > 0. We reject the null if § > ¢*. Let

A:=|P; = Py |12 — (B.+ By) — || P

miz,o

- Pge H%«"‘ - (Bmix,o + Bmim,e)-

Also let A* be its bootstrap version. Let g* be the bootstrap quantile so that P(A4* — A >
g*) = 7. Then § = \/pk, A and §* = /pk, A* and ¢* = |/pk,g*. The key to the proof is to
show that under the alternative, A is bounded away from zero and A* — A = op(1).

Specifically, from Proposition D.1 below, P(A > ¢y) — 1 for some constant ¢y > 0. Also,
Lemma D.3 below shows P(g* > ¢y) — 0. Combining these two results, we get

PS<q)=PA<g") <PA<g" g <co)+P(g" > co) <P(A <o)+ 0(1) = 0(1).

Hence P(S > ¢*) — 1 under the two alternatives considered in the theorem.

D.1 The behavior of § under the alternative.

We show in this section that P(A > ¢;) — 1, for some constant ¢ > 0. We start with an

auxiliary result concerning the true factor loadings.

Lemma D.1. Suppose either Alternative hypothesis (1) or (ii) of Theorem 4.2 holds:
Alternative (i): there is an inverible matrizx H so that §, = (,Bél)H, 0pxr;), and By =
(BISI), ﬁég)). Then, there is m > 0 so that

Hpﬁél) - P/D’bH%‘ > m.
Alternative (ii): K, = K, and there are c,C > 0 so that ||3]| < Cp'/? and

1
min  —||8,H — > c.
pmin = Byl
Then, there is m > 0 so that

15, — P, I3 > m.

Proof. (i) We will show that ||PB£1) — P, |13 = Ky — K,.

Write g = 523) and 5, = (ﬁél),g). In addition, let A = ﬁél)lﬁél), and B = @El)/g, T =
g'g — B'’A7'B. Because both A and (3}, are invertible, we have det(3;3,) = det(A)det(T).
Then det(7T) # 0, meaning that T is invertible. We then apply the matrix block inversion

formula:

A1+ A BT 1B'A-1 —A-1BT!
(ByBs) " = ( ) .

~T71B'A™! T
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Next, let M, =1 — Pﬁ(l). Some algebra shows:
b

Py, — Pyoy = MogT'g'M, = LL', L= M,gT /2.
b

Next, T=¢'g— ¢ B9 = ¢M,g. So 'L = T~2¢'M,gT~/? = I. This implies
b

Pﬁb - Pﬁl()l) = L(L/L)flL/.

As such, || Ps, — Py |% =tr(L(L'L)'L') = K} — K,.
b
(ii) Note that the result holds by taking m = ¢/C, because:

1 1 1
< i —||B.H — = —|| P, — = —||(Ps, — P,
c m%%aﬂﬁ Bollr ﬁHMb&M ﬁW& 5,) | 7

1
<W%4MTﬁWKm%K%M-

]

Proposition D.1. Suppose conditions (31)-(32) in Theorem 4.1 hold. Under either the
alternative (i) or the alternative (i), P(A > ¢o) — 1 for some constant ¢y > 0.

Proof. The expansion (C.5) holds for ¢ € {a,b} under either the null or the alternative

hypotheses. Let 3. denote the nonzero unique columns of .. Thus under either alternative

7 = op(1). This implies

= Y |IP; — Ps

ce{a,b}

hypothesis, ||P; — Pg;

1P5, — P3,lr > || Ps; — Pgy F 2 |[|Ps; — Pgrllr — op(1).

By Lemma D.1, under either alternative (i) or alternative (i), ||Ps; — Pp;|lr > ¢ for
some constant ¢; > 0. In addition, Ea + Eb = Op(k; ') because of Lemma C.10 and since
B, = Op(k;') and B, = Op(k,;'). Hence, with probability approaching one,

175,

5 — Pa |3 — (Ba+ By) > c1/2. (D.1)

Next, we show that HPAW — P> 2 - (Emmo +§mw€) = op(1) under the alternative,

iT,0 Bmiz,e

where Bmmk is the PCA estimates for beta from the data matrix Ymmk. As above, we have
(Emim,o + Emm) = op(1), so we focus on proving ||P; ~~—P; 2 =op(1).
From (C.9), which holds also under the alternatives, the eigenvalues of ==Y iz 1Y
knp ’
converge to those of >3,5 7.5, + 35145

We now show that: (1) Diagonal entries of Q\mnk are bounded away from zero;

!
miz,k
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(2) ||\/%(Bmmk — BavHumizs)|| = op(1).

Alternative (i): £, = ( él)H, 0pxk), and B = ( 151)75153)): so Ky + K, = 0. Here H is
a K7 x K invertible matrix. In this case Both , and 3, are p x K, dimensional where
K, = K| + K3.

Recall Sy = %F;,kﬁc,k, which is K, x K, dimensional. Also, let ijgbk denote the
K, x K upper block submatrix of Sy, ;. Then

1 1 1~ ~ H-1s5b H'=1 0
]_)ﬁasf,a,kﬁ; + I_?Bbsf,b,kﬁz/; = ];ﬁbsf,kﬁé7 Stk = Sppr + ( Fak ~

0 0

The top K, eigenvalues are bounded from below by those of (éﬁl’)ﬁb)lﬂgﬁk(%B{,ﬁb)ln, which
are bounded away from zero under the assumption that those of % B;Bp and Sy i are bounded
away from zero. Therefore Qmm &= Op(1).

For (2), using Lemma C.7, we have H%(ﬁmmk — BavHmizx)|| = op(1). They imply that

the eigenvalues of H’

izt BapBabHmiz 1. are bounded away from zero, so Pg,, i exists. In

mix,k
addition, under this alternative, K,,;, = Kj, and Bop H iz = ByHy, for some square matrix
H,. The fact H\/%—,(Emmk — BavHpmizx)|| = op(1) implies H, is invertible with probability

approaching one. Hence Pg , = Pg,. Thus

mix,k

1P, —Fa. e < 1Ps . = Pouttmuollr + 1 Ps,, . — ooyt |lF
+Hpﬁameiz,o - P/Bameiz,e F
S OP(]‘) _I_ ||Pﬁameiac,o - Pﬁameiw,e”F = OP(]‘) (DQ)

where the second inequality follows from the expression in (C.11) that ||[P5 — —Ps,, 1., [lF =
OP(l).

Alternative (ii). [, = ﬁc(bz), By = 152) and K, = K,. Also, there is ¢ > 0 so that with
probability approaching one,

min H — > c.
HERKXK \/—Hﬁa BbHF
Denote with (,,;, a p X K,,;, matrix whose columns are the unique components of the factor

loadings over the two periods. For this matrix, the eigenvalues of . Bmiz are bounded

away from zero. Then %ﬁaS takBh + %ﬂbS o0 = %BmixM Biz for some invertible matrix
M whose eigenvalues are bounded away from zero. As a result, the top K,,;, eigenvalues of
5 Bmie M B}, are bounded from below by those of (} ! o Bmiz) M (5 ! Bmiz)?, which in
turn are bounded away from zero. Therefore Qmm . = Op(1).

In addition, there is a K iy X Kymir matrix H so that BavHmiz e = BaHamiz k+ BoHpmizk =
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Bmmﬁ Applylng Lemma C7> we have ||\/Lﬁ(gmw:,k - Bmzxﬁ)n = ”\/Lﬁ(gmm,k - Bameiac,k)” -
op(1). This implies [ = iA;nkammk = ﬁl%ﬁ;nixﬁmixﬁ + o0p(1). Hence H is invertible, and

therefore

Pﬁameiz,k = P,BmzzH = Pﬁmzz

Thus similar to (D.2), we have ||P;

5mix,o Bmiaz,e

In addition, Emmo + -/B\mi:v,e = op(1). Hence

F S OP(]_).

||PEmiz,o B PBEH%’ - (Bmix,o + Bmix,e) = OP(l)

Combining with (D.1), we have shown that under the two alternatives, there is a constant
co = ¢1/4, such that P(A > ¢p) — 1.
O

D.2 The behavior of the bootstrap quantile under the alternative

Recall that g* is the bootstrap quantile so that P(A* — A > ¢*) = 7 for some significance
level 7 > 0. All results in this subsection hold under either alternative (i) or alternative (ii)
of Theorem 4.2.

Lemma D.2. Suppose conditions (31)-(32) hold. We have A* — A = op(1).

%«“ - (Emzxo +
Em,-x’e) = op(1) under the two alternatives. Similarly, their bootstrap counterpart is op(1).
The proof of this can be established in the same way as showing HPAWZ,O _Pﬁmm,e 2 — (Emm,o—l—
Biize) = op(1), and we omit this for brevity. In addition, B. = op(1) and B} = op(1). It

remains to show the following under the two alternatives,

Proof. In the proof of Proposition D.1, we have shown that ||PAmA — P

1T ,0 ﬁmiz,e

|PL — P2 12— 1P, — Py l% = op(1).

Let ) and 3; denote the bootstrap counterparts of 3, and 3, respectively, obtained by
randomly drawing from the rows of (5,, /) with replacement. We have ||P§ —P5||% = op(1)
and ||P3 — Pg||% = op(1). Thus, it suffices to show

1P5, — Pl — |1 Ps; — Pyl = or(1).

This will be the case if we can show that both ||Pj, — Pj[|% and || Ps; — Pg[|% converge in

probability to the same limiting constant under either alternative.
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For the convergence of || Ps; — Ppr |%, under alternative (i), the proof of Lemma D.1 shows
that || Ps; — Pgr |3 = Ky — K,. Under alternative (i), we have ] = £, and (3 = 3, and

P _ _
|| Psr — Pﬁgn% = K, + Ky — 2tr(P3,Ps,) = K, + K — Qtr(zﬁﬁzzﬁ,abzﬁyiz’ﬂyab).

The proof of the bootstrap counterpart is very similar, noting that % B B = % Bl By+op(l) =
Eﬁﬂb—}—Op(l). L]

Lemma D.3. Suppose conditions (31)-(32) in Theorem 4.1 hold. We have P(g* > ¢o) — 0,

for the constant ¢y > 0 in Proposition D.1.

Proof. From Lemma D.2 we have A* — A = op(1). This implies P(A* — A > ¢y) = op(1).
Let J :=P(A* — A > g*). Because 7 > 0 is the significance level,

P(J>7)<P(J>7,9">c)+Pg"<cy) < PPA —A>c)>7)+P(g" <o)
= o(1) +P(g" < ¢o).

Meanwhile, P(J > 7) — 1 because of the definition of ¢g*. Thus P(¢* > ¢y) — 0.

E Proof of Theorem 4.3

In addition to assumptions SA1, A2 and A3, we will assume throughout this section, without

further mention, that assumption A4 holds as well. Denote
Z\n = /Pkn [fta + 1 — Hab — (Bmiz,o — Bmiz,o) — (Bmiz,e — Bmiz,e) — Pmiz,oe] -
Then the decomposition of S in Section C.2 shows:
Szgn—i-@—ﬁmm
where

RA = \/ﬁknA5 - \/ﬁkn Z (Ec - Bc)7

ce{a,b}

RAmzac = \/pknA&mix - \/ﬁkn Z (-/émza;,k - Bmzx,k)

ke{o,e}
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In Section C.4, we have shown that Z\n converges in distribution, provided k,,p — o0,
¢/p — 0 and pk,A,, = O,(1). Previously we have also shown that both RA and 7/2.,\4mm are
op(1) under the conditions in (31)-(32) in the statement of Theorem 4.1, and in particular
under the assumption éCS — 0.

In this section, by assuming A4, we aim to show that both @ and 7/3./\4%1 have the

same higher-order expansion (proved in Lemmas E.7 and E.8):

~o \/ﬁ \/2—9 1/2
RA = T [tr(B3) — 2M] + 0p(1) + 0p (K) ,
- 1/2
R.Amm = \k/—f [tr(Bg) — QM] + OP(l) + op (}?—f) s (El)

where By = [8BAQ A’ +4C* — 6C*H'S3H|, B := AALE(01|C)?, C = A'AA.E(02,[C)A
and
M = E(02,|C) tr Q' (tr 25, AQA" — 2K,) + 4tr S, AQ, ' A'(E(0?|C))?,

with A, Q, H defined in Lemma E.2. Then, given these result, it will follow that

o 1/2
RAJMm:@m+@(g),
under the rate conditions of the current theorem (and in particular when k%(g — K for some
finite k > 0). So, this weakens the condition from requiring x = 0 to allowing x > 0.
The analysis of |/pk, As and /pk, As iz is done in Section E.1 and of | /pk, (> . (ab} (Ec—
B.) — Zke{o,e}(ﬁmwk — Bpizx)) in Section E.2. Prior to that, we establish the following

preliminary result:
Lemma E.1. Let p — oo, k, — oo and k,, = o(p*?). We then have for c,d € {a,b}:

() LA BT TTT b = on(D)

p2

(ii) W —E(WIC) = op(1), where W := L -LF U UU.UF..

T VBPRE
(i) Wy — E(W5|C) = op(1), where Wy := Z%trF/CU/CUCFC.

Proof. The case ¢ # d is easier than the case ¢ = d, so we focus on the latter case. The proof
is straightforward calculation.
We focus on an arbitrary element, say M = L1 g’UCUICUCU,Ch, where g and h are two

N
arbitrary columns of .. Then, it is straightforward to check that

Kk, 1 1
E(M?C) = Op(—2 4+ = + — + =) = 0p(1
(M7IC) P(p3+p2+kn+p) op(1),
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as long as k, = o(p*/?).

As for W and Wa, it is also straightforward to check that the C-conditional variance of
an arbitrary element of W is of the order Op(kin + 1—1)) = op(1). Similarly, the variance of
Wy = Op(é) = op(1).

O
E.1 Asymptotic expansion of A; and Asj i,
We introduce the following notation related with the higher-order terms of ,Zl\mix:
Aomizk = HmizkImizks Dsmizk = L(dmm 1+ dmiz2),
Agmiz = 2 \/—<gmzx 1+ miz,2 T Gmiz,3),
Asmiz = 7—=(Cmiz1 + Cmiz2) — 2(Dumiz + Asgmizeven + Damizodd) (E.2)

) k,n\/z_)

where, for k, ki, ks = 0, e, we denote

1 N ~ _
iz = 2;[Hfm,k o Humia ke = Brnie 1 Bmiae k) (Fl i B Bav o 1) ™

dmix,l = k \/_tr[pAme k(pAme k) pﬁabﬁab] + 2k \/_tr Bmzac k(/ﬁmzx k — ﬁameim,k)Jmix,k
_kn\/ﬁtr(ﬁmix,k - ﬁameix,k) (Bmwc,k: - ﬁameix,k:)Jmix,k

dmix,Z = an\/ﬁtr(ﬁnlu’x,k - Bamei;t,k>,6abA2mix,k

+2k’n\/ﬁtr _(ﬁmix,k - ﬁameix,k:)lﬁa(ﬁ(/;ﬁa)_lL;g_l(Bmix,k - ﬁameix,k:),ﬁmir,k
gmiaz,l = k \/_tr Azmm o abﬁabA2mia: eﬁ;mjz eﬁmix,o
Imiz2 = k \/_ Z tI‘ mza; kQBmw: k1 (Bmzz ki — Bameim,kl),BabAZmim,kg

k1#k: p
17k2
1 ~ / ’ —-17'-1/72 2
+kn\/z_9 Z tr Z;(ﬁmix,kl - ﬁameix,kl) Ba(ﬁaﬂa) Lk2 <Bmi:c7k2 - Bameix,k:Q) Bmix,kl
k1#ks

+k \/_trAlmzxo ;dld(/B/BCL) 1Le;elnA/1mlze
Imiz,3 = k \/_ Z tl" Tm:): k1 k1 (B ﬁa) 1Ll 1A/lmwc k’QUmimvlemim’kl

k1#ka Fon
+k \/_ Z tr Aszx klﬁabﬁa(ﬁ(lyga)_llf}ggl(Bmix,kg - 5ameix,k2),ﬁmix,k1
k1#k2
2 -~ — 1 -~ -~
Cmizl = — = tr Amzw osza: oUmw oAlmm e Mmix eﬁmix,o
7 P
——tr A;mz eszac eUmza: eAlmzw O_B\:nix ogmi:c,e
VP p
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/ !

4 — 4 - —
+—tr A, U Al’rmac ot — tr A/ Umm eAlmzac e
VP

\/— maix ,0 mzr ,0 mix ,0 maix ,€ mzz ,€
2 -~ -~ 4k 4k
Cmiz2 — —]—9 tr Allmm OAlmix,e;Oﬁ;mx,kQﬁmix,kl - TSHAlmzxo”%‘ - TZHAmmeH% (E3)

We start with showing that some probability limits associated with estimation based on

the different sets of data considered in the construction of the test are the same.

Lemma E.2. There are some matrices H, A , Q such that A\C, gmm L A, G = % ! By L

217 szx :: mix oﬁmzwe _> 2I Qca szxk _> Q and also Hc; 2Hc miz,k E} FI

Proof. (i) Convergence of A\C,Emwk. From Lemma C.2, and expression (C.38), \/LﬁHBC -

B.H.| = op(1) and H, = ;. A. + op(1), where A, = 2;71/2]\/[ Q: Y2, columns of M., are
the eigenvectors of El/ 225 CE}/ 02 ,and QF is a K x K diagonal matrix of top K eigenvalues
of El/ 225 CZ}/ Under assumption A4, ¥3.,%¢. do not vary over time, and hence we can
conclude that H, - H and A, = A, for H and A that do not depend on ¢ € {a,b}.
Therefore, \/%3”//8\0 — B.H|| = op(1). For B, = B,H, and with the identity %3{13@ = I, we can

write
14 1 P A g 7117 17
5ﬁaﬁb = 5Baﬁbe + 0p<1) = 5ﬁaﬁaHH HH + OP(l) =H "HH + 0p<1).

If H = I (assumed in A4), the probability limit of the above is the identity matrix. Also,
(C.37) implies A, LA

In addition, by (C.40), Amwk L A = E;:ﬁm memm where Qpiz is K x K
diagonal matrix of top K eigenvalues of 21/2Ef mmEg/j, Y pmiz =057, +0.5HY, H and

e DsaS . When H = I, and S, = Sg,,

Y. = Xy (assumed in A4), we have Xy, = Xp, QF = Quiz, Me = My This implies
Apiz = A.

(i) Convergence of G, Gpip. From Lemma C.11, G = G + op(1) = %B\,’ﬁa +op(1) 5oar

(iii) Convergence of Q., Qmizx and H., Hpiyp . From the proof of Lemma C.11, Q). =
Q: + op(1) = Quix, Q\miw,k = Qumiz + 0p(1), Homizk = 0.55 0 A iz + 0p(1) and Hy iz r =
0.5% 4y H' Appiz + 0p(1). Also, from (i) we showed H, LGy 7 g ¥;A. Hence, we can simply
write the probability limit as Q := Qumiz, H = % ff_l, and conclude 2H iz & Ry =4

the columns of M,,;, are the eigenvectors of X

]

Lemma E.3. Suppose (0p = o(k}), Gk, = o(p*), kn = 0o(p?), and (¢ = o(v/knp). Recall the
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definitions of A1 and Aypiz i in (C.4) and (C.18). Then, for c¢,d € {a,b},

1 F/ U/ A 0P<1) + %B[AQ_I + OP(1>]7 c=d,
= le =
\/1_9 e OP(l)v C# d7

where B := A A E(02,|C)%. And for ki, ke € {0, e},

1 F/ U/ A 0P<1) + \k/—fB[AQ_l + Op(l)], ki = ko,
=L miz kY miz kb S 1miz,ks —
VP ' ' op(1), ky # k.

Proof. We have the following identity,

1 — — ~ ~ o~
7F2[U:1Alc = WiH.Q.'+ WyA.Q.' + Rem; + Remy,
p

1 1 o —— —
W, = ——Fr,U UcUcﬂm
1 \/12_71?]1% d“¥ d
W, = f kdeUdU O.U.F.,
1
Reml = Tp—FdUdU U AlcQ 1
Remy = —(—— F;U;UCR;@@;1+—F;U;Rc?’ﬁ@;l)-

VPP Phn

Using Cauchy-Schwarz and Lemma C.4, Remy = op(1) because (2p = o(k3), ¢ kn = o(p®)
and ¢} = o(vknp), and Cp54(\/+7n + */T’T") = op(1). In addition, Lemma A.2 implies that
Wy, = op(1) under the condition k, = o(p?), which is needed for the convergence of its
variance.

Using the C-conditional independence of U, from Uy, for ¢ # d, we have E(W;) = 0.
On the other hand, if d = ¢, then E(WW;|C) = ‘[]B% + Op(p~Y/?). Also, Lemma E.1 shows
that the C-conditional variance of each element of Wy is op(1). Then by Lemma E.2 and
assumption A4, WoA, @_1 */ﬁIB%[/_lQ_l + op(1)] + Op(p~'/?).

/

We can bound mem ks Uiz oy D1miz b, 0 @ similar way:

— — _
Fmia:,kl Umix,klAlmiﬂC,kz - OP( ) + E(WQ mlﬂ?|c) miz,k1 mim,kg’

1
N

1 —/ — — — — —
where WQ,miw — Jpp %Fmix,k‘l Umia:,k1 Umi%’@Umia:,szmiu’C7k2Fmiﬂv7k2' If ki =ke=e,
2 : § : § : =2 =2
E(W2,mzz|c E ctfctectz ct]‘c)

™ ¢ is even ce{a,b} 1,5<p
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If £y, is also an even number, then >, i o0 D ccqapy 1 = Kn 50 E(Woi|C) = ‘fIBH—Op( -).
If k, is an odd number, then zt s even Doccfasy L = — 2 50 that E(W,|C) = La=2 ﬁ B+
O p( ) fIBH—O( fk ). The same proof also carries over to the case ky = ko = “0”.
Altogether we have proved E(Wsmiz|C) = fIB% + Op( if k1 = ko. Therefore, by

Lemma E.2,

v

J — Doy ~_
kn\/ﬁ _F/mix,kl U;m‘x,klAlmix,kz = OP(l) + \k{_—BAmifE,kl mix,kg
P \/"_ (E.A4)
P, +=_
Op(l) + k—IB(AQ ! + Op(l)).
Finally, if ky # ko, we trivially have E(W3 ) = 0.
]

Lemma E.4. Recall Ay, = 1 U U 5662 + e U R’BCQ b —R Y BCQ . Assume (;’ =
O(kn\/D), Cop = o(ky,) and /f = o(p*?). Then, \/ﬁHALc!V (1)-

Proof. We write Ay, = I%nU U B\ Q\*l + Rem, where Rem denotes a term that depends on
R.. Then,

Ky,

e
VP \f
B+2trQ '"Hv.H, le—i-Rem

112 < 1 77 N211 R 2
7“ U U (ﬁc Be c) || OP(\/]_7P2kn)HUC” ||Bc_ﬁcHC||

ve = ij’ﬁ U.p..
\/13 P*kn

Lemma A.3 showed ||C§gl|| = Op(1). Using Lemma C.2, we have that ||B\C — BH|| <

Op(y/1& + j—% +04). Lemma A.2 also bounds ||U.|. The assumption that ¢} = O(k,/p),

Cp = o(k}) and k,(* = o(p°/?) then imply that B = op(1). In addition, Lemma E.1 showed

v. = op(1). Combining these two results, we have the result of the lemma.

U UﬁcQ "? + Rem

A\

B

Finally, the term Rem depends on the remainder term R,., whose effect is also negligible.
In fact, the effect of R. is given in d4, defined in (C.23). By Lemma C.5, Rem is negligible

under the conditions of the current lemma.

]
Lemma E.5. SUPPOSG G = o *kn), G = o(p*?), pGy = o(kS), p = o(ky,) and ky, = o(p*?).
(i) Recall Ag, = [H’ﬁ’ﬁcH ﬂ’ﬁc](H’ﬁ’Bc H,)~t. Then,
%(B\C - BCHC)/(B\C - /BCHC) = Cn + /{i[c + OP(l)],
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where A,, B, and C, are such that [||A,||% + || Ball% + |Cull%]kny/p = op(1), and C =
A'ANE(0?,|C)A
(11) Recall DNopiz i = Hpmiz kg Jmizk i (E.2). Then,

1

~ . ) {
]_Q(Bmiw,kl - BameiLkl)/(ﬁmix,kl - ﬁameiz,kl) = Cn + k_[(c + 0P(1)]7
15 3 C[EC o) ik = s,
_B;’LMJW (Bmiﬂ?,kl - Bameix,kl) = An + kn .
! Zf kl 7£ k?)
1
Phuieic = By—-[C+ op(1)]

where A%, By and C}; are such that || AL |5 + || Bill% + |CallF]kn/P = op(1).

Proof. (i) By (C.3),

~Gu— B (B = 1) = s BEFTUFIC) A+ Croa+ o
(B~ 0.1, = ]%A’ (B(F,UUFulC) A+ Croa + Coa + Csa
Ciea = ]%%A&FdU;Alc + _A/1d<§c - B.H,),
Coed = 112 A(F U U.F, —EF,U,UF.)A,

1 1ol (A
CS,cd = ]_?Hdﬂd<ﬁc_ﬁc[—[c)-

From Lemmas C.2, C.3 and C.4, we have [||C1 cql|% + [|Co.call? + [|Cs cal| 3] knr/D = 0p(1),
provided (2 = o(p**k,), 2 = o(p*?), p¢! = o(kS), p = o(k}), kn = o(p*?). Hence,
A, =Crea+ Coeqg+ Csq and Cy, = C g + Co g satisty [||C), ||F + || AL | %]k VP =op(1).

The first term in the above expansion of = (ﬁd — BaHy) (ﬁc B.H,.) is zero, if d # c. If

d = ¢, then by making use of assumption A4,

_QAC(E<FCUCUCFC|C>>A\C = _AI ZZE fC tfctec tz‘c)

z<pt 1

. [A’ACA'C]E(USAC)A +op(1)].
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This implies the expansion result for %'(B\C — BH.) (Bc — BeH.) in the lemma. We can show
the one for %ﬁ;(ﬁc — B.H,) in a similar way.
Next, By Lemma C.3, for G| = %Héﬁé(ﬂch — B¢), we have ||G1||3-kny/p = 0op(1). Then

Mc = %(Héﬁéﬁc]{c - B(/:gc) - Gl + ]19( ﬁ B )B\c Gl - An - %[C + Op(l)],

1 1 1
pAQc = HcMc(]_)HéBéﬁch)_l = Hc Gl - An - k‘_[c + OP(l)] (Z;Hé é/@ch)_l.

Also, \%}HB\C — B.H,.|| = op(1) implies (I—leéﬂéﬂch)_l 5 I, and by Lemma E2, H, 5 H.
Hence, for B, := H.(G1 — A,), we have || B,[|%k,/p = op(1), and

1 -
pAse = By — —[HC +op(1)]

n

(i) By (C.13),

1 ~ ~
_(ﬁmz:c ko — Bameix,kgy(ﬁmim,h - ﬁameim,kl)

2 A/ (E(F;nix,kgﬁinix,kgﬁmi%klFmil",kl |C))A\mim,k1 + Cik + C’;,

miz,ka

S

pk

- ;nim,kg (ﬁmix,/ﬂ - Bameix,kl)

= ]%%A\;nm: ko (E(F,. kQU/rnim ko Uiz oy Fmio 1C)) Amiay + CF + C + CL,
C1 = R Fasa Uit imiass + 8 Pt = Bl
C; = 5 i FoieisT T i Pt = EF i D i Toieis Pl €) A
G5 = 217 miz kgﬁab(ﬁmm by — BavHumia, ey )- (E.5)

Exactly as the proof of Lemmas C.2, C.3 and C.4, we can show that [||C}||% + ||C5]/% +
1C5 [ kn /P = op(1).
Next, if k; # ko, using successive conditioning and assumption A4, we have

E(F;m,kgﬁ;m,kQUmm,klme,kl) =0, if k4 # ke.

We turn to the case k1 = ko. If k; = e, then

:nkaUmll"lekaJC Z Z Z E(f ctfctectzlc)

n p n i<p ce{a b}t is even

9 E(szx ng

pk2

47



If k,, is also even, then the above equals %ACA;]E(UE,1 |C) due to assumption A4. If &, is odd,

then the above equals k’;ﬂ;Q

A\miaz,k = /_1 + Op(l). ThUS,

AcALE(0?,]C), again by assumption A4. Also, Lemma E.2 shows

1 — — — — ~ 1
WA;nix,kz (ECE iz Uiz o, Ui o Fmia b [C)) Ao oy = k—n[C +op(1)].
The case k; = ky = o follows by the same argument. This yields the expression for

% ;nix,kg (ﬁmix,kl - 6ameim,k1) and %(ﬁmim,kl - 6ameim,k1)/<Bmiz,k1 - ﬁameim,kl) in the lemma.
Finally, the expansion for p.J,,,r follows by similar arguments. More specifically, an

expansion for %HB\mwk — BabHmiz x| would imply

1 _ 1~ ~
(5Hr/nix,kﬁflzb6ameix,k) t= ];5/ ix,kﬁmm,k + OP(l) =1+ 0P<1)-

Let Af = Cf + C5 + C, and G = LH! . 8% (BavHmie . — Bimiee), Then,

1
P

1

1 o~
Mmim = ]_7[ 7Inir,k ;bﬂameiI,k - Bqlnim,kﬁmim,k] = GT - A;kz - L [(C + OP(]')]7
1 1
PImiz ke = Mmix(];Hrlm‘m,kﬂfzbﬁameix,k‘)_l = |G] — AZ - /{_[C + OP(l)] [[ + OP(l)]'

We can write B := (G} — A%)[I + op(1)] satisfying || B||Fkn /P = op(1), and from here the
result in the lemma for p.J,,;, x follows:

1
Ky,

1

C+op(D)][L +o0p(1)] =B, — o

meix,k - B:L - [(C + 0P<1)]

]

Lemma E.6. Recall the definitions of Az, Ay in (C.16) and of Asmizk, Damiz 0 (E.2).
Then,

1/2

kn\/]BA&c = 0p<1)—|—0p tr(CQ(}_I’ng_I—I),

1/2

+
Q
T

k:n\/ﬁA4 = Op(l) tr(CQI:I'EBI:I,

1/2

kn/DAsmize = op(l)+ trCZ(H’Eﬁf_f - 1),

+

FHES TN TS

)
e

S~ N/ N, N,

1/2

kn\/]_?A4mm3 = Op(l)+0p tI‘C2H,2ﬂﬁ

N— N
_l’_

SERERERE

W

8



where C = A'AALE(02,]C)A.

Proof. (i) Bound for A, and Ag,i, k. Recall

kn/PAse = di + do,
d = kn\/ﬁtr[PA%(PA%)%ﬁé@c] + 2kn\/ptr B\é(gc — B.H)H 'y,
~kn/ptr(Be = BeHe)' (Be — BeHo) H, ' Ase,
dy = 2kn\/D tr(ﬁcl—Aﬁch)’ﬁcAz,c i i
T2k ypir (B~ BeH) Be(8L0:) " H M (Be — BeHe) Be-

Lemma C.3 gives bounds for %ﬁg(ﬁc — B.H.) and %Bg(ﬁc — B.H.). Hence, using Cauchy-
1/2
Schwarz, we have dy = op(1) + op (X—f) . The term d; is the leading one. From Lemma
E.5, pAs. = B, — ﬁ[H(C + op(1)] and
S B0(Be — BeHe) = An + 5-[C + op(1)], with ([ Anll} + || BallE)kny/D = op(1). Also, by

Lemma E.2, H! Z B, Altogether,

1/2
dl = Op(l) + op (}{{—f) —+ \Ij—f [tr CZ(H/Zﬁﬁ — [) -+ Op(l):| .

The bound for Ag,,; 1 can be shown in a similar way. Recall the definitions of d,;,1 and

1/2
dmiz2 in (E.3). The term do iz = op(1) + op (X—f) , and the term d,,;; 1 is the leading

one. By Lemma E.5, pAogin ik = Hpiz kB — é(@ + op(1))], where || B;||%kn /P = op(1).
Also, by Lemma E.2, By Hpizx = Ba[H + 0op(1)]. Hence

1 ~ ~
dmix,l = kn\/ﬁtr[pA2mm,k (pAZmix,k)/];ﬁ;bﬁab] + an\/ﬁtr ﬁ;mx,k (ﬁmzx,k - Bameix,k>Jmi:p,k
_kn\/ﬁtr(gmm,k - ﬁameix,k)/(Bmim,k - Bameim,k>Jmiz,k

1/2
= op(1) +op (\]g—f) + \k/—f [tr C*(H'SsH — 1) + op(1)] .

This implies the bound for k,\/pAszmick = dmie, + dimiz,2-
(ii) Bound for Ay and Ayi.. We have

kn/DAy = g1+ g2+ 93,
g1 = kn\/}_?tr Al?,aﬂ:zﬂbAZ,bﬁllyﬂaa

1’\/A ) /
g = knﬂoZtrEﬁdﬁc(ﬁc — BeH.) Bl
c£d
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+, \/'Ztr— — BeHe) Ba(BuBa) " Hy ™ (Ba — BaHa) B
c#d
+ky, \/_trAla N(B4Ba) " BB (ByBe) T H, T A,

05 = hayB Yt A (G5 BB 50 T AT

c£d n
+k, \/_ZtrA BB 5d5d) (’[1(@ - 5de)/Bc- (E.6)
c£d

Lemma C.3 provides a bound for %5{1(@, — B.H.) and %B&(BC — B.H.). Also, Lemma C.2
derived bound for A;,. We can then apply Cauchy-Schwarz inequality and Lemma C.3 to
verify that go = op(1)4o0p (X—?) 1/2. As for g3, it follows from Lemmas E.3 and E.5 that, when
¢ #d, P, TNy = op(1) and 158, — B.H.) = A, + op(1), where || A, [[3]kny/P = op(1).
Thus, g3 = op(1).

We are left with the term g, which is the leading one in the expansion of k,/pA,. It

follows from Lemma E.5 that since £, = f,,

1/2 3 3
g = op(l)+op <g) —i—gtr(c?]{'ﬁ]gﬂ.

This leads to the bound for Ay.
We can proceed in an analogous way for Ay,,;;. Recall the definitions of gz 1...Gmiz,3 in
1/2
(E.3). As above, we have gmiz2 + gmmg =op(1)+op (X—f) and gmiz1 is the leading term
in the expansion. From Lemma E.2, i, eﬁmm o =1+o0p(1), and H.mizr = 0.5H + 0p(1).

From Lemma E.5, since 5, = 3, (from assumption A4),

_ 1
pﬁabAQmia:,k = ﬁa(Ha,mix,k + HHb,mix,k)Z)Jmix,k: = Ba(H + OP(1>>(B:; - k_((c + OP(l)))

Thus,

Imiz,1 = k \/_tIAmeo abﬁabAQmiz,eﬁ;mx,eﬁmia:,o

1/2
= op(1)+op (g) +§tr@2H’EﬁHH.

This leads to the expansion result for Ay,,;, in the lemma.
O

Lemma E.7. Recall As iy defined in (E.2). Suppose (’p = o(k3), (kn = o(p?), kn =
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o(p*'?), and ¢; = o(V/knp). Then,

1/2
kfn\/]_?A5 — g tr(]Bg) -+ OP<]_) —+ op <$) ,
1/2
k’n\/]_jAS,mix - g tr(]Bg) —+ 0P<1) +op (g) ,

1/2
ku/B(As = Asia) = op(1) +0p <g> |

where By = [BBAQ ™A' + 4C? — 6C*H'S3H | .

Proof. We use the expression for Ay in (C.15) and write:

kn/PAs = 1+ ca — 2k /P(Ay + Az + Asy),

2 ~ = 1~ 2 S — 1+~
C = ——tI'A;FaUaAlb—ﬁ/ﬂa——tI’A/F UAla_ﬁ(llﬁba
1 \{lﬁ b b4 /P b bR Lel
b—tr A F U, A+ —tr A F, U, A,
\/Z_? ) \/Z_? b b b 17
2 1~~~ 4k 4k
o = ——tr A Ap=BiBa — —||ALallF — —=||AL |3
2 5 AL \/ﬁH LallF \/]3H Lolle

By Lemmas E.2 and E.3, ¢; = %ﬁ [trBAQ A’ + 0p(1)] + op(1). By Lemma C.2, ¢; =
op(1). Also, Lemma E.6 bounds Aj,. and A4. Together, we obtain the desired expansion for

k?n\/]_?Ag)i
1/2
kny/PAs = g [8trBAQ A"+ 4tr C* — 6tr C* H'SH] + op(1) + op (g) :

The expansion of Aj ,;, follows analogously from Lemmas C.2, E.2, E.3, E.5 and E.6. O

E.2 Asymptotic expansion of B, and Emi:z:,k

Recall

k
2 «— TE 7R
B, = ﬁZtrA/cfc,tfc,,tAcE(JZJ’C)’

n =1
Be = o t(@ FEQD
. 2 AT A N\R(a2 ¢
Bc = ﬁ tr(Qc ch/FCQc I)E(Uz,l|c)’
o ~
Bz = ) tr Ao k[ Fo s FarB(021|C) + H'Fy  Fy . HE(07341]C)] Amia
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Emi:ak = terzxk kﬁa,k@;éx,k]E@,ch> term ka,kﬁbyk@r_nix,kE@J\W)’
Buivi = k%tr PPkt Do Hﬁkétr e kBBt Dl
Lemma E.8. We have
kny/D(Be — B.) = \k/—fM+0p(1)+0p< )

o) p
k'n\/]_?(Bmm,k - Bmzaz,k) = k}iM + 0P<1> + op <

n

where
M =E(02,|C) tr Q' (tr 25, AQA" — 2K,) + 4tr B, AQ, ' A'(E(02,[C))>.
Proof. We will analyze separately kn\/]_?(gc — Ec) and kn\/ﬁ(éc — B.). We will denote with

Rem terms that depend on R..
(i) Bound for kn\/ﬁ(ﬁc — EC) and \/ﬁkn(gmmk — Emmk) We have

T o 1 32 Kc 1 =02 1 ~ A~ A~
E(0?,1C) = anHUC”F — 0, Oci= —k—nMHUcHF - Etr(ﬁéDcﬁc)'

From Lemma E.2, - Fo=0. 5 Q, Zﬁ“ﬁcﬂfp LN E(0?2,|C). Therefore,

I PP P T )
BB~ B) = i (@ FEQ 0. = Y2k w( @) 1T + Oplr7)
VP9 K tr(@GE(02]C) + Op(p2) + op (\k/—ﬁ> |

n

As for \/]_jkn(émix,k — émmk), we use the identity éﬁrlmxkﬁmmk = @mmk and note that

from Lemma E.2, @mmk L Q. As a result,

~ ~ 2./kn,
\/ﬁkn(Bmzx,k_Bmzx,k) = - Z \/_ tr szaz kF/ F kamk

c=a,b n

2K ~ ~
= \/_ tr Qmw k:sz:L‘ kaZx,kQ%iw,kE(UﬂC) + OP(1> + OP(

kQ
= B g E(0210) 4 op(1) + 0 (VD).

)

TS

(ii) Bound for kn\/ﬁ(EC—BC) and kn\/]_?(gmwk—Bmwk) Using the identity éﬁéﬁc = @C,
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we have

kn\/]_?(éc - Bc)

a1

az

as

2 P W 2 AFFA
Vi (@R REQD 10 - 2 w AFF ARG 0)

ay + az + as,

2\/'trQ1< A <3,1|c>):0p<k;1/2>,
2/t Q! (||U||F 1UelE)

_— —

2 ~ A 2
NG (k—tr Qc‘lFC’F Q. — k—trA’F F.A ) E(c2,[C).

n

We start with ay and as. Recall (C.24) for the expansion of U, — U, = Z?Zl gj. We can

write

as = 2\/5“"@ !

= 2/ptr @c

1 ~
I - UuF+4ftrczl (0. - U.)T.

TZ||ng|F+4ﬁ7tf Ztrgjgk_m QY Ul
n J n d

]</€

;/5 B'UU.B. < op(1), under the conditions of the current

lemma. Then, using Lemmas A.1, A.2 and A.3, we have

%‘OU( Yigle = 20t 0 %trFUUFcA\CQCAIm
_ zlfmaclrc)tr SAQA tr Q' + op (}g—ﬁ> +or(l),

@Ml = OrIBT TR = or(1),

P (0l - 2£tr@ YO DT TG < O Q{QHU &
< Op(£+%)C2—0P(1)7

P @l = —1/2>|| *f AU BN = 0p(0).

P a@ el = V(@ >||%BCHCHQE;UCFCACHJTLII%

+op(1) + Op(g*%
VP )| I
o gl = or(1).
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As for terms that involve > jen bT 959%, we apply Cauchy-Schwarz inequality:

WG Ztrgjngop,/f o112 op\/f e
j<k i<k

< 0/ +op) <\/,j )+ 0p(1) | = or(1),

under the condition p = O(k?),

In the proof of Lemma C.9, we

BUU.B.H, BUU.B|| < op(1),

under the conditions of the current lemma. In addltlon, Lemma A 2(11) (iv) bounded ||U.||

_—— —

and ||U.F.||. Lemma E.1 showed the variance of each element of f F UU.F.iso(1). Then
the identity H = YA yields, when ¢, = o(p**) and (3p = o(k;g),

4 Y/ R P ——
\k{_trQltrU = \k{;trQ 1trFUUFAH +op(1l) +op (\k{ﬁ)
p n
4
= — /;/_ (o cl|C)tr Q 'K.+op(1) +op <£
4\/_ -1 WP S a T
ok tr U = Rk tr Q. tr BLUU B.H. = op(1),
- ﬁtngltrU’cgg — VP uQ T TOAQE
pkn, pkn
1 3 3/2 p'? _
< Op(—553 R )HU I” <, (p W)—OP(U’
4 ~ — 4
- \/ﬁtch_ltrU/&% = \/_trQ gy U 50 HBUU.B.Q;'"H'F,
Vi
< OngI AT, &H +op(1) = op(1),
4 ~ — 4 1
—ﬂtch_ltrU/&% = \/—trQ 1tlr—HCBU 1F Uﬁc
Pk Pk i Pk
k
< Op(—5 e BT Fell = 0p(1),

4 ~ —
—%tr@cltrU;% = op(1).
PRn

Here term gg depends on Rem which is negligible.

Together, ay = ‘[IE( 02,1C) tr Q' (tr 28, AQA’ — 4K.) 4 op(1) + op (‘[)

Next, we have F.Q- ' —F,A, = U, BC@—l /p+Rem and B, — B.H = LUF,A,+ A, Also
Lemma E.3 showed - F U Ao = Op( ) + op(1). By Lemma C.9, kanB’U U ﬁc < op(1).

ol
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And by Lemma A2, F' UCBC = Op(vknp). Hence

AN ) =) A

2 ~ N o~ A
a; = \/p —tr@‘lﬁéUchleE(ai,ll(J) f — trA’F U.B.Q; E(02,]C) + Rem
— \/_—tr A FCUC(ﬂC—BCHC)@C_IE(UC,JC) \/_— tr A FU.B.H.Q, 'E(02,|C)

—i-\/_ trQ IBU UﬂCQ 'E(o 61|C)+Rem

o Ty gy p———

N
V) + 0p()

_ 4}{{ terAQC_IA’(E(oil|C))2+0p(\/_ )+ on(1).

Together,

kn/D(B. — B,) = \k/—fM + op(1) + op (‘k/—f) :

where M = E(02,|C) tr Q' (tr 28, AQA’ — 4K,) + 4 tr S, AQ A'(E(02,]C))>.
We are left with \/ﬁkn(gmmk — Binizx)- Its proof is analogous to the one for \/ﬁkn(ﬁc —

B.), so we only sketch the leading terms to avoid repetition.

Bmiﬂﬁ,k = 73 tI' Z Amzx kF/quc’kA\mmE(O'Zl’C),
c=a,b
Bmiz,k = tI' Z szx kF/ F mzx kHU HF?
c=a,b
kn\/E(Bmiz,k - Bmm,k) = almm + Aomiz + A3miz, ]
Amiz = 7. tI‘ Z szx kF/ F kazx k( ||UC||%‘ - E(Uz|c)) - 0P<1)7
c=a,b np
1 = 1
amis = VIt QtasFlPuaQitas G IO = IO
c=a,b n n

2 - S
A3miz = \/]_)k_ tr Z < mmk kFC kaz:pk A:nix,kF::,kFcykAmW) E(Ug,1|c)

c=a,b

Recall (C.24) for the expansion of U, — U, = Z?Zl gj. Also, recall the identity,

~ o~

Fc,kQ;%x - Fc k— ﬁ Bmz:p kazx k — kﬁmzm kam k + R/ kﬁmm kazx ko

where Fa ko, B ﬁmm kam k Fa,k:Ami:p,k: and Fb,k%/@l/)ﬁmzx,kQ;;%k = Fb,k:Ami:v,k when ﬁb = ﬁa-
Hence,

iz = VPt Y QPP ol = 2Uio0) + oe(1)

c=a,b

%)



2 ~ S 4 _
= k;iﬁ trQ ' tr S, AQA'E(0L|C) — k—\/]_)IE(afc\C) trQ 'K, +op(1) + op (\k{—z—?> :

4 v w7 5 5 P
A3miz = \/Z_jk,_p tr A;nut,kF:nw},kU;nzm,kﬁmzx,kaix,k]E(o-g|C) + OP(l) +op (k.i)

A
= \/ﬁkTp 6 AL F iz kU iz U i P ik Amie k@t t E(02]C) + 0p (1) + 0p (ﬁ)

kn
4 o
= \/Z_jkTp tr EfAQilAIE(O'ﬂC)z + Op(l) + op (\Ij—ﬁ> .

~

Putting together all of these results, we get the expansion for kn\/]_)(Bmmk — Bz k) in the

lemma.

]
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