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APPENDIX A: GLOBAL IDENTIFICATION OF THE CONSTANT COEFFICIENTS SVAR

Consider the constant coefficients version of the SVAR model used in Section 5:
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To verify that the system is globally identified, we rewrite the model using the no-
tation of Rubio Ramirez et al. (2010). Let y, = (GDP,, P;, U;, R;, M;, Pcom,)’ and ¢; =
(e, &F, 84, P, eMd gy, Premultiplying by 3!, we obtain
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with &; ~ N(0, I). Define A), = 31 4(a) and A/(L) = 3-1 A1 (L). Then
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Denoting Ag = [a;], we have
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The matrices Q;, j=1, ..., 6, present in Theorem 1 of Rubio Ramirez et al. (2010) are
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Since all M; have full column rank, the model is globally identified.



4 Canova and Pérez Forero Supplementary Material

APPENDIX B: SINGLE-MOVE METROPOLIS FOR DRAWING B;

Koop and Potter’s (2011) approach for drawing the elements of the BY sequence sep-
arately works as follows. Given (fi=HT, (3-1)T Q1 V=1 wi-1 the measurement
equation is

Vi=XBi+ Ale) ' Sie
and the transition equation is
Bi=B; 1+ vy,

with v, ~ N(0, Q), By given, and A(a) 36, =u, ~N(0,02,). To sample the individual
elements of BT, all ¢ > 1, the steps are as follows.

1. Draw a candidate BZ ~ N (us, Vi), where

Bi_ + Bi—l Bi_ + Bi—l

B,_, + G|y — X{(B_,)], t=T,

1 . B
G EQl—l)(t()(;Q’—l)(tJrQ[) Vo,
t

0 1X,(X, 01X, +0), =T,

1 i
v — Sk = GX)) Q' Lot<r,

(Ik - G X))O"!, t=T.

2. Construct the companion form matrix Ej and evaluate Z(max | eig(ﬁj)l < 1), where
Z(-) is an indicator function taking the value of 1 if the condition within the parentheses
is satisfied.

3. The acceptance rate of B] is

T(max| eig(B))| < 1)
MBS, Q1)
1
AB{™!, Qi)

wR,; = min o1

. {I(max|eig(§f)|<1)A(B;'—1,Qi—1) }
= min D i1 ’1 >
AB;, OF)

where A(-) is an integrating constant measuring the proportion of draws that sat-

isfy the inequality constraint. To compute A(-), first one draws B;T’l ~N (B}L, 0’1y for
— . . =T,

[ =1,...,L, constructs the companion form matrix Bj , and evaluates A; =



Supplementary Material Estimating structural VARs 5

— . L .
I(max|eig(Bj’l)| < 1). Second, one evaluates A(B], Q""!) = % and A(B,; 1,0,
and computes the acceptance probability. When ¢ = T, this probability is

w7 =T(max|eig(B] )| < 1).
4. Drawav~ U(0, 1). Set Bi = B¢ if v < wp,, and set B = B:~! otherwise.

Since Q depends on B;, we need to change the sampling scheme also for this ma-
trix. Assume that 9~ ~ W (v, Q‘l) so that the unrestricted posterioris Q—! ~ W (v, Q_l)
withv=v+ T and Q_l =[Q+ Zthl(B,,,» —B;_1,) (B — Bt,u)/]‘l. Then draw a candi-

date (Q")~! ~ W (v, é_l), and fort=1,..., T, evaluate /\(Bi, 0") and A(Bi, 01 for a
fixed L, and calculate

T . .
. A(BL, Q71
= min — 1.
e {E A(BI, OF) }

Finally, we draw a v ~ U (0, 1), set Q' = Q° if v < wp, and set Q' = 0"~ In the exercise of
Section 5, we set L = 25 when evaluating the integrating constants A(-) at each ¢.

Note that in a multi-move approach, A(-) = 1 when sampling both BT and Q. There-
fore, Koop and Potter’s approach generalizes the multi-move procedure at the cost of
making convergence to the posterior, in general, much slower and, because A(-) needs
to be simulated at each ¢, of adding considerable computational time.

APPENDIX C: A SHRINKAGE APPROACH TO DRAW BT WHEN 5 1S KNOWN

The model still consists of
Vi=X,Bi+ A7 Siey,
ar=ar-1+ &,
log(om,:) =108(0m,1—1) + Mm, 1,
but now
Bi=B; 1+ v;
is substituted by
Bi=E0;+ v, vi~N(,D), (C.1
0:=0,-1+pr, p:t~N(O,Q), (C.2)

where dim(6;) « dim(B;) and where the matrix = is known, as in Canova and Ciccarelli
(2009). Using (C.2) into (C.1), we have

vi=XZ0,+A(a) 'Sie,+ X v =X,50,+ ¥, (C.3)

where l/ft ~ N(O, H[) with Ht = A(al)_lztE;(A(at)_l)’ + X;Xt
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To estimate the unknowns, we do the following:

1. We sample 67 with a multi-move routine using (C.3) and (C.2).

2. Given 67, we compute y, = y, — X5 6,. Pre-multiplying by 4(«,), we get the con-
centrated structural model

A(a)yr = A(ay)ér = S+ A(a) X vy
As before,

(Vt ® IM)(SAfz +54) =2 + A(a) X v,
so that the second state space system is

Vi=Zifi + 30+ A(a) X[vy, (C.4)
fi=fii+ & (C.5)

and we draw f7 using our proposed Metropolis step. The variance of the measurement
erroris 3,3, + A;(a;) X;X; A} (a;) and it is evaluated at f;;_;.

3. Given (67, fT),
Z(at)j’\t =3+ Z(at)X;vt-

Since g(at)X; is known, let the lower triangular P; satisfy Pt(;l\(at)X,’Xt;l\(at)/)P{ =1.
Then

Pt;{(at)y\t =y =P 3g +Pz2(at)X;Ut

with var(P; A(e;)X|v;) = I and where P,3,3,P, + P,(A(,)X|X;A(e;) )P, is a diago-
nal matrix. This transformation is similar to Cogley and Sargent (2005); however, since
Z(at)X ; is known, we only need to sample the variances of ¢,, ;. We do this using the
log(x?) approximation of a mixture of J normals.

4. Given (07, fT,3T), sample Q, V, and W from independent inverted Wishart distri-
butions.

5. Given new values of g, ;, we construct A(a,)~'3,3,(A(a;)~!) + X, X, and go back
to step 1.

APPENDIX D: A SHRINKAGE APPROACH TO DRAW BY WHEN 5 1S UNKNOWN

When the Z’s are known, the algorithm needs to be modified as follows.
The TVC-SVAR model is

yi=XBi+ A(e) ' Sre,
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where X{ =1y ®[D},y,_;,...,,_;], with

B,=50t+w,,

6[ = 0171 + vy,
fi=fi1+ &,
log(ay) =log(or—1) + ny,
&t I 0 0 0 O
oy, 0 Qg 0 0 O
Var vy =|/0 0 R 0 0|,
e 0O 0 0 V¥V 0
ur 0o 0 0 0 wWw

where O and R are diagonal matrices. We exploit the hierarchical structure of the model
to simulate the posterior distribution as in Chib and Greenberg (1995):

1. Given (A(ay), 0:Q), sample B; using
yi=X;B: + A(a) 3¢
with A(a;) '3, =u, ~ N(0, H;). Thatis, foreacht =1, ..., T, draw

B,~N(B;,VB,),

where
VBi=(VB' +X.H X)),
B =VB/(VB™'B, + X.H; 'y,)
and priors

VB=Q, B,=56.

2. Given (B, 60;), compute the residuals (B, — 56,) and sample Q using an inverse
Wishart distribution.

3. Given By, sample 6, using the state space form

Bt = Eﬁt + wy,
91 = 9171 + vy

4. Given 6;, sample R using an inverse Wishart distribution.

5. Given (By, 0, Q), draw 5 using

B;=:0t+w,, t=1,...,T,
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where, to achieve identification, we normalize the first upper block of 5 to be an identity
matrix, as in Koop and Korobilis (2010). That is, denote F = dim(6;) and K = dim(By).
Then = is a K x F matrix. The first 7 rows of 5 are

Ea.mxa:7 =1Ir.

Moreover, since w; ~ N (0, Q) and we have assumed that Q is diagonal, we draw the
loadings row by row for each element of B;. That is, foreach f = F +1,..., K, draw

Eixa:m~NELVER

with
— - B »
Ey=(WVE T4 Q(f?f)(gT)(ar)/) )

E,=VE,WVE 7 —1 T BT
Er=VE;VE 1f+Q(f,f)0 Bf),

<

where 67 is an F x T matrix of explanatory variables, B]f isa T x 1 vector that contains
the dependent variable, and Qy, r) is the corresponding element of matrix Q drawn pre-
viously. The priors are 5 ; = 07,1 and VZ = kI r with the hyperparameter k% = 0.01.

6. Given (B, Q), sample (A(a;), V, o, W) as before. Then go back to step 1.

APPENDIX E: NONLINEAR MODELS
E.1 Thesetup

Consider the general nonlinear state space model

Ve =2z((Br, ar) +ui(or, §1r), (E.1)
Bt =wi(Bi—1) + 5:(Bi-1, §21)5 (E.2)
ar = ti(o—1) +ri(e—1, §31), (E.3)
filor) = hi(or—1) + ki (w1 (o1, E1i-1)), (E.4)

where y;, and &;; are M x 1 vectors, B; and &, are Kg x 1 vectors, a; and £3; are K, x 1 vec-
tors, &1, ~ N (0, O1/), é2: ~ N(0, Qy), and &3, ~ N(0, Q3,). Assume that z,(-), us(-), wi(-),
s:(4), t(), (), fr(+), he(+), and k,(-) are continuous and differentiable vector-valued
functions. To estimate this system, we can linearize it around the previous forecast of
the state vector, so that

zi(Br, o) = Zt(bz|t—1,at\t—1) + 21t([31 - bt\t—l) + 22t(011 —at\t—1)>

ur(or, 1) = u(Gy4-1,0) + Ug, i (0r — Oge—1) + Ugy 11,1

w(Br—1) = wt(Z)\t,”,,l) + Wi (Br—1 _Btfﬂtfl)a

St(Bi—1, &) St(El—Ht—l’ 0) +58,:(Bi—1 — bi—1)i—1) +5¢,,:2,15
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t(a—1) = t(@r—1-1) + ﬁ(atq —r—1)1-1)»
re(a—1, €30) =1 (0—111—1, 0) + Taye (@1 — Q—1j1—1) +T&5,:€3,15
filor) = fi(@yi—1) + filor = Ty1),
hi(0-1) = hy(@r—1-1) + hi(1-1 — Gr_1je-1),
ki(ui—i (o1, E1i-1)) > ki(Tgy —161,-1),
where Zi,[, i=1,2, and Uy, Ug, 1, Wi, 7, SB,1» 8¢y, 1r Ta,r, and Tg, ; are matrices corre-

sponding to the Jacobian of z;(-), u,(-), w¢(-), t(-), s¢:(-), and r;(-), evaluated at B; = 5,”_1,
o =dy—1, 0y = Oy—1, and &1, = & ; = &3, = 0. Thus, the approximated model is

Ve~ Z1Bre + Zogas + d, + g €1, (E.5)

¢ =W Br—1+ 8 +58,62,15 (E.6)
ar = Tray1 +C +Tg 1630, (E.7)
fior=hior_1 + ke(Ug, —1€1,0-1), (E.8)

where

d; = th(bt|t—1) - thbt\t—l + ZZt(aﬂt—l) - Zztﬁznq

(E.9)

+ u(04)1-1,0) — Uq, (Crj1—1 — 0v),
Cr = t(Ar—1)1-1) — Ttb\t—ﬂt—l + r(@i—1,0) = To 1 Qg1 — a4-1), (E.10)
8= wt(i’\tfutfl) - I’T/ti;tfﬂtfl + St(gt\tfl, 0) —'S\ﬁ,t(ﬁmq —bi1). (E.11)

When (@) z:(), w(), t;(-), and u,(-) are linear, (ii) s;(-) is independent of B, (iii) r/(-) is
independent of «;, and (iv) u(-) is independent of oy, fi\, =0,¢ =0, g =0. In one of
the cases considered by Rubio Ramirez et al. (2010), d; # 0, while if the law of motion of
the structural coefficient is nonlinear or there are nonlinear identification restrictions,
¢ #0o0rg; #0.

E.2 Estimation

Since (E.5)—(E.8) are linear, the algorithm described in Section 4 can now be applied. The
only difference is that we now draw from distributions or proposals that are centered at
the extended Kalman smoother estimates. For example, given (f, yT, 3T, we construct
updated estimates according to

fre = fri—1 + Kelye — zefrji-11, (E.12)
Pyi =Pyt = Pyua Z ZiPy,_y, (E.13)

where fi;-1 = tfi1-1, Pre—1 = TP 1T +/r\§2,tQ2t?{§2’[Kt = Pt|,,1Z;F,—1, and I} =
ZiPy—1Z; +ﬁ§1,tQ2tﬁ§1,f
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Smoothed estimates are I7r = fnrs Pryr =Pyt and

ftTt+1 = fue + Pt|tZ;Pt__i_11|t(f:i|.1|t+2 —tf(an)), (E.14)

-~ —~ _1/\
P =Puoe = PiZy[Priay + 75,0007, | ZePpyy_y (E.15)
fort=T —1,...,1. Hence, when f(«a,) is nonlinear, we draw f7 from a proposal cen-

tered at (E.14)—(E.15). Notice that the approximate model is used only in predicting and
updating the mean squared error of f(a;).

Depending on the exact specification of the nonlinear model, one or more steps in
the algorithm may require some adjustments.

E.3 Sampling the GARCH model

To sample volatilities when their law of motion is assumed to be a GARCH(1, 1), we need
to modify the transition and the measurement equations used in step 3 of the algorithm
of Section 4. The mth equation of the model is

Y;knftza'm,tgm,ty (E.16)
where oy, ; is the mth diagonal element of 3;. Assume
2
T =(1=8+80, 1 +8(sk 1))+ m,e (E.17)

with n; ~ N(0, W), where 6 and W are known parameters.
The system (E.16)—(E.17) is now nonlinear. Equation (E.16) can be written as

Yot = 2(Om,1) + Ut(Tm 15 Eme)-
Since z(opm,;) =0, the linear approximation is
T, tEm,t = Ut (O, 111—1,0) + Ut (Om,t — Om,1j1—1) +ﬁsm,,8m,t = O, t/i—1Em,t
because
L4 ut(ﬁm,ﬂz—l, 0)= 5m,t|t—1 x0=0,

o~ ut(om,t,em,t)
b ua',[ - (70'm,1 |(0'm,t:0'm,z|t—1,5m,t:0) - 8m,t|(U'm,t:0'm,1|t—1,5m,l:0) - 0’

~ ut(om,t,8m,t) ~
® Ugy, = Jem.1 |(Um,t:0-m,t\t717€m,t=0) = O-ms[|(Um,t=Un1,t|t—1>8m,t=0) = Om,tt—1-

The transition equation (E.17) can be written as
O'rzn,z = filom,) = hi(Om,1—1) + ki (Tm,1—1, Mm,1)
= (1 -6+ 60—;31,:—1 + B(y:nft—l)z) + Mm,t-
Linearizing the two sides of the equation, we have
fi(om,) = ft(b\'m,ﬂt—l) + ]/C;(a'm,t—ut—l)(o'm,t—l - a'm,t—l\z—l)9
he(Om,i—1) = he(Cm,i—1)0-1) +;l\t(am,t—1|t—l)(0'm,t—1 — Om,i—1)i-1)>

where £ (G, 11t-1,0) = 20m,1l (G, ,-1,0) A0 1t (T, 1111, 0) = 280,115 11-1,0)-
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E.4 Long-run restrictions
Long-run restrictions are nonlinear in the SVAR coefficients, but linear in the impulse

responses. For the sake of presentation, we omit the intercept By ;. Let

-1
V=B i1+ +Bpiyi—p+ [A(Olt)] e

Then we only need to modify how draws for the B; block are made, in particular, as
follows:

1. Atiteration i, given A(c;)""! and Zﬁ_l, sample {Bi}tT:1 using Carter and Kohn’s rou-
tine or one of the other routines described in Section 5. With the sampled vector, com-
pute the companion matrix

By, - B, Bp,
. Iy - Omxm Omxm
Bi =
! : .. : : ’
Opvxm - Im Opxm
where Bf = [Vec(Bi,t)/, ... ,VeC(B;,t)/]/.

2. Given Bi, A(e)~1, and Effl, compute the long-run matrix for each ¢,

D = J(Iyr, — B)) 'V [A(a) ] 37
. o o (E.18)
= (Iu = Bj, =+ = B, ) [A@)™ '3

whereJ=[Iy; Opxm - Oprxas]is aselection matrix.

3. Impose long-run restrictions, i.e., construct D = RDi, where R is matrix restricting
the entries of Dj.
4. Given 1~)§, then A(a;) 1, 2?‘1, and B!

o j=1,..., p—1,solve for B;’[ using (E.18),
so that

B, =Iy—-Bi,— - —B | —[A) ] 57D,

and with this construct the restricted draw Bi = [Vec(Bi D Vec(B;, DT

5. Evaluate whether

Bll,t ... Bi

i
Bl’,t

p—1,t
iy Iy o Oy Opscm
Bt = . . .
Orvxm -+ Inm Opxm

has all its eigenvalues inside the unit circle. If so, we accept B; otherwise discard it.

Given a draw for B;, the sampling of the remaining blocks (A(«;), 3¢, s, V) is un-
changed.
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