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S1. ADDITIONAL RESULTS IN MONTE CARLO EVIDENCE
S1.1 Lag order distribution by criterion using Kilian (2001)

As a route to determine the VAR lag length in our simulation study, we follow Kilian
(2001) to obtain the finite-sample distribution of the lag order estimates for each lag
order selection criterion: the Schwarz information criterion (SIC), the Hannan-Quinn
criterion (HQC), and the Akaike information criterion (AIC). We run two sets of simu-
lations where the maximum lag p™# is set to four or eight. Table S1 summarizes the
percentage distribution of lag order estimates using the simulated data for the invert-
ible models DGP1 and DPG2 in the main text, with the sample size of 500 generated
from 1000 Monte Carlo replications. We find that each of the information-based criteria
lends strong support to the first-order VAR (i.e., p=1).

S1.2 Simulation results using additional DGPs

This subsection reports the finite-sample performances of Q' (4) using the DGPs with
non-Gaussian, conditional heteroskedastic errors as well as Gaussian errors. Given the
foresight models, first, under the null hypothesis, we generate the bivariate, invertible
MA representation with no foresight (5.3) using the following DGPs.

DGP-S1. No foresight model with iid shocks {e; ;, £ 4,;}, mutually independent, and
distributed as Gaussian processes; in short, &, ~iid N (0, I,).
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TaBLE S1. Percentage distribution of lag order estimates by criterion.

Number of Lags (1 < p < p™)

1 2 3 4 5 6 7 8

Invertible, Student’s ¢(3) distribution (DGP1)

prx =8 SIC 98.3 1.1 0.3 0.1 0.1 0.1 0.0 0.0
HQC 94.4 3.2 0.9 0.7 0.3 0.4 0.1 0.0
AIC 78.1 94 4.9 2.1 2.1 1.3 0.9 1.2

pr =4 SIC 97.8 1.1 0.7 0.4 - - - -
HQC 94.8 3.1 1.4 0.7 - - - -
AIC 83.3 9.3 5.1 2.3 - - - -

Invertible, x2(3) distribution (DGP2)

prx =8 SIC 99.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0
HQC 96.2 3.1 0.6 0.1 0.0 0.0 0.0 0.0
AIC 79.4 9.0 4.6 3.1 1.8 0.6 1.1 0.4

pr =4 SIC 98.8 1.2 0.0 0.0 - - - -
HQC 96.8 2.7 0.4 0.1 - - - -
AIC 81.6 11.9 4.1 2.4 - - - -

Note: Note that @ =0.4, B =0.99, 7 =0.25, T = 500. The boldface type indicate lag orders preferred by SIC, HQC, or AIC.

DGP-S2. No foresight model with iid shocks {e;;, € 4,;}, mutually independent, and
distributed as generalized autoregressive conditional heteroskedastic (GARCH) (1, 1)
Student’s ¢(3) variable

Et =0Vy,

where v; follows independent Student’s ¢-distributions with 3 degrees of freedom,
and 0,0, =C+ A O (g_1¢,_|) + GO (o,_107_,), with C = diag(1,1) and A =G =
diag(0.3, 0.3), which is called diagonal vectorized GARCH as in Bollerslev, Engle, and
Wooldridge (1988); in short, &; ~ iid GARCH(1, 1)-#(3).

DGP-S3. No foresight model with iid shocks {¢;;, € 4,;}, mutually independent, and
distributed as GARCH(1, 1)-standardized y(3) innovations &, = o;v;, where o, is de-
fined as in the DGP-S2 and v; follows independent standardized chi-square distribu-
tions with 3 degrees of freedom; in short, &, ~ iid GARCH(1, 1)-x?(3).

Next, under the alternative, we generate the noninvertible MA representation with
the tax foresight (5.4) in combination with the following DGPs.
DGP-S4. Two-period foresight model with &, ~iid N (0, I,).
DGP-S5. Two-period foresight model with &; ~iid GARCH(1, 1)-¢(3).
DGP-S6. Two-period foresight model with &, ~ iid GARCH(1, 1)- x:(3).
The DGP-S1 and DGP-$4 are used to examine the effects of Gaussian errors. Our the-
oretical results require {&,} to be iid and, therefore, homoskedastic. However, we employ

DGP-S2 and DPG-S3, and DGP-S5 and DPG-S6 to check the effects of conditional het-
eroskedasticity on the test’s performance. For the baseline calibration, we use a = 0.4,
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TABLE S2. Empirical size of the Q! test using additional DGPs.

T =100 T =250 T =500
h 10% 5% 1% 10% 5% 1% 10% 5% 1%
DGP-S1: Invertible with Gaussian errors &; ~ iid N (0, 1)
VAR(1) 10 6.8 4.6 1.9 10.5 7.2 2.8 8.6 6.0 34
20 6.6 4.4 1.2 12.3 9.1 4.6 12.3 7.9 3.9
30 6.8 3.2 0.7 11.7 8.8 3.9 12.5 8.8 4.0
40 5.7 2.7 0.5 11.2 7.5 3.0 13.1 8.5 4.1
VAR(Psic) 10 6.6 3.8 1.5 8.5 5.8 2.6 9.5 7.1 3.8
20 6.5 33 1.1 9.3 6.5 3.9 13.9 9.7 4.7
30 5.7 2.5 0.4 9.0 6.4 3.4 14.7 9.8 5.4
40 5.7 1.9 0.2 9.1 6.2 2.9 13.9 10.8 4.8
DGP-S2: Invertible with £, ~ iid GARCH(1, 1)-Student’s ¢(3)
VAR(1) 10 11.0 6.5 2.7 13.1 8.9 4.2 18.0 13.3 7.1
20 6.4 3.6 1.4 9.9 5.9 3.1 14.5 10.0 5.2
30 4.1 2.6 0.9 8.3 5.1 2.3 12.7 8.4 3.7
40 3.6 1.5 0.7 6.9 4.4 1.5 11.2 7.3 3.4
VAR(Psic) 10 10.8 6.5 1.9 16.1 11.6 5.8 24.3 19.3 10.3
20 6.3 3.9 1.3 11.9 73 3.2 18.9 13.8 7.2
30 5.0 2.8 0.6 9.4 5.9 1.7 15.7 11.1 4.8
40 4.5 1.8 0.2 7.9 4.4 1.3 14.1 8.6 3.8
DGP-S3: Invertible with &, ~ iid GARCH(1, 1)-x2(3)
VAR(1) 10 7.8 4.5 1.6 11.5 8.0 4.2 12.8 9.3 4.4
20 5.9 3.4 1.2 10.9 7.4 2.7 12.6 8.6 4.9
30 4.7 2.4 0.4 10.5 6.5 2.0 12.1 8.6 4.5
40 4.5 1.7 0.3 9.2 53 1.5 11.4 7.9 35
VAR(psic) 10 7.1 3.7 1.6 9.6 7.0 2.8 13.6 10.1 55
20 6.3 3.0 0.6 8.1 6.2 2.4 13.8 9.5 4.6
30 5.6 2.0 0.5 8.4 5.3 2.1 13.0 8.4 35
40 4.4 1.7 0.2 7.9 5.2 1.3 11.5 7.2 2.4

B =10.99, and 7 = 0.25, consistent with Leeper, Walker, and Yang (2013) and Forni and
Gabetti (2014) to simulate the bivariate processes (5.3) and (5.4) under DGP-S1-DGP-S6.

Table S2 reports the empirical rejection probabilities of Q' (k) under invertible (no
foresight) models under the DGP-S1-DPG-S3 at the 10%, 5%, and 1% levels. There are
some size distortions for the heteroskedastic processes DGP-S2 and DPG-S3, but the
overall performance is satisfactory for sample sizes typically encountered in macroeco-
nomic applications (e.g., T = 250). The simulation results suggest that our characteriza-
tion with iid shocks may hold more generally with mds structural shocks and confirm
that our test is robust to conditional heteroskedasticity of unknown form, which might
be important in applications.

Table S3 reports the empirical power of our proposed test against noninvertible
(two-period foresight) models under DGP-S4-DPG-S6 at the 10%, 5%, and 1% levels.
Under DGP-S4 with Gaussian errors, Ql(h) has no power, which is consistent with our
theoretical results. In contrast, for the non-Gaussian noninvertible processes DGP-S5
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TaBLE S3. Empirical power of the Q! test using additional DGPs.
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T =100 T =250 T =500
h 10% 5% 1% 10% 5% 1% 10% 5% 1%
DGP-S4: Noninvertible with Gaussian errors &, ~ iid N(0, 1)
VAR(1) 10 9.0 5.7 2.2 10.3 7.1 4.5 11.8 9.5 5.4
20 8.0 4.3 1.7 13.0 9.1 5.0 15.4 11.8 6.9
30 7.8 3.6 0.9 12.5 8.3 4.1 17.3 13.1 6.7
40 6.5 3.1 0.8 114 7.2 2.9 17.8 12.7 5.7
VAR (Psic) 10 6.6 4.0 1.4 8.7 6.4 33 11.6 9.2 4.9
20 7.0 35 1.5 9.0 6.3 32 15.9 11.6 6.0
30 5.8 3.3 1.2 9.2 6.2 2.6 16.1 11.7 6.8
40 5.1 3.0 0.5 9.2 5.4 2.0 15.8 11.6 6.2
DGP-S5: Noninvertible with £, ~ iid GARCH(1, 1)-Student’s #(3)
VAR(1) 10 17.2 11.5 6.0 29.7 20.7 13.0 43.3 34.7 22.9
20 12.1 7.6 34 22.1 15.1 7.4 32.2 24.7 16.0
30 9.5 5.8 1.8 18.9 11.9 5.0 27.1 21.2 11.8
40 7.6 3.5 1.3 14.7 9.0 4.0 23.9 17.9 9.1
VAR(Psic) 10 18.7 12.4 6.1 33.8 26.6 15.3 49.0 41.5 29.4
20 11.8 7.1 2.2 24.8 17.5 9.0 40.3 32.6 20.8
30 8.8 4.4 1.1 19.2 13.1 6.1 35.0 26.8 15.0
40 6.7 2.7 0.5 15.6 10.3 4.2 30.3 22.5 11.4
DGP-S6: Noninvertible with £, ~ iid GARCH(1, 1)- X2(3)
VAR(1) 10 32.0 23.8 13.5 70.3 64.5 52.8 96.9 94.5 90.7
20 22.8 14.4 5.9 59.4 51.8 359 92.2 89.5 82.3
30 15.5 8.8 2.9 50.2 41.3 24.0 87.4 82.4 70.7
40 11.8 6.8 1.3 435 33.1 16.5 82.0 76.5 60.1
VAR (Psic) 10 28.7 21.6 13.1 70.5 64.8 53.6 95.3 94.0 91.7
20 20.5 13.3 6.9 57.6 48.9 35.7 91.7 89.6 82.3
30 14.5 10.0 3.9 49.4 39.6 24.2 87.3 82.6 71.0
40 11.7 6.6 2.3 424 32.3 16.6 81.3 75.6 61.3

and DPG-S6 under conditional heteroskedasticity, our test has nontrivial power, partic-
ularly for errors with asymmetric distributions such as the y2. The power increases with
the sample size, as expected.

S1.3 Simulation results for AIC

To examine the sensitivity of the lag length criteria choice, we replicate Tables 1 and 2
in the main text using the AIC criteria for the data-driven lag length p. Tables S4 and S5

show that the overall results for puic are slightly inferior to those for pgic.

S1.4 Simulation results with the degree of persistence varying

We examine the effects of the severity in the noninvertibility problem on the finite-
sample performance of our test by considering values of 6 different from the baseline
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TaBLE S4. Empirical size of the Q' test using alternative lag orders.

T =100 T =250 T =500
h 10% 5% 1% 10% 5% 1% 10% 5% 1%
DGP1.: Invertible with non-Gaussian errors &, ~ iid Student’s #(3)
VAR(1) 10 7.9 4.7 1.7 9.9 6.7 2.8 9.7 6.3 34
20 6.2 2.8 0.7 9.1 5.4 1.3 9.8 6.5 2.4
30 3.7 1.9 0.3 8.0 3.9 0.7 8.4 5.5 2.3
40 2.8 1.0 0.2 5.8 3.1 0.6 7.9 4.9 1.7
VAR (Psic) 10 7.4 4.7 15 9.6 7.1 3.4 10.5 72 3.4
20 5.7 2.5 0.3 8.3 4.9 2.0 10.8 6.9 3.0
30 3.6 1.4 0.0 6.5 4.0 1.1 10.0 5.9 2.2
40 2.3 1.0 0.0 53 3.0 0.7 7.8 4.9 2.0
VAR (Parc) 10 6.1 3.8 1.0 8.1 6.0 2.9 9.9 6.8 2.8
20 4.8 1.9 0.2 6.4 3.8 1.5 9.5 6.0 2.3
30 3.0 1.0 0.0 5.1 3.0 0.7 8.7 53 1.9
40 1.8 0.6 0.0 4.3 2.4 0.4 7.2 4.4 1.9
DGP2: Invertible with non-Gaussian errors &; ~ iid standardized x2(3)
VAR(1) 10 5.8 3.7 1.4 7.6 4.8 2.4 6.9 54 2.6
20 6.3 3.3 1.2 8.2 5.3 2.1 9.2 6.4 2.9
30 53 2.8 0.7 8.4 3.8 1.8 9.3 6.6 2.4
40 3.9 1.9 0.4 7.7 3.9 1.2 9.2 6.2 2.3
VAR(Psic) 10 5.1 34 0.9 7.7 5.1 2.1 6.4 4.6 2.3
20 5.0 2.3 0.4 9.2 5.2 2.1 8.4 5.9 2.3
30 4.1 1.8 0.2 7.7 4.9 1.9 9.5 6.4 2.4
40 3.1 1.2 0.1 7.0 4.1 1.1 9.8 5.6 2.7
VAR (paic) 10 2.3 1.4 0.3 6.1 4.0 1.6 3.7 2.8 1.5
20 2.2 1.0 0.0 6.9 3.6 1.7 6.1 4.1 1.3
30 2.2 0.7 0.0 5.8 3.7 1.5 7.6 4.7 1.8
40 1.5 0.3 0.0 5.2 32 0.8 7.7 4.7 2.0

value of 0.297 used in Tables 1 and 2 in the main text. Here we do this in conjunction with
the sensitivity to the persistence in the process by varying the persistence parameter « €
[0.01,0.1,0.2,...,0.8,0.9,0.99], setting the discount factor and the steady state tax rate to
B =0.99 and = = 0.25, respectively, and computing the corresponding 6 with 6 = a¢B(1 —
7), leading to the values in 6 € [0.007, 0.074, 0.149, 0.223, 0.297, 0.371, 0.446, 0.520, 0.594,
0.668, 0.735].

The results varying the degree of persistence are reported in Figure S1, the right
panel of which suggests that the power results under the alternative (DGP4) are not sen-
sitive to the persistence parameter when compared with Figure 1 in the main text. We
also simulated under the null (DGP2) varying the degree of persistence. The left panel
of Figure S1 exhibits that large values of persistence such as a = 0.99 (i.e., 6 = 0.735)
do seem to have an effect on the empirical size of the test, which suggests a different
asymptotic theory for nonstationary processes. Establishing this theory is beyond the
scope of this study. Hence, practitioners are highly recommended to transform the data
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TaBLE S5. Empirical power of the Q' test using alternative lag orders.
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T =100 T =250 T =500
h 10% 5% 1% 10% 5% 1% 10% 5% 1%
DGP3: Noninvertible with non-Gaussian errors &; ~ iid Student’s #(3)

VAR(1) 10 14.0 8.8 4.7 31.7 24.4 14.1 58.0 51.8 40.4
20 9.6 55 1.7 22.7 15.4 8.2 48.4 40.5 26.0
30 6.9 3.0 0.6 16.2 10.1 4.4 40.2 29.5 17.3
40 4.3 1.7 0.2 13.3 7.7 2.5 31.8 21.9 11.2
VAR (Psic) 10 13.2 9.6 4.3 32.2 26.9 15.7 57.6 51.1 39.9
20 8.4 5.1 1.4 25.7 17.3 7.7 47.2 38.8 26.7
30 5.7 2.8 0.5 19.8 12.2 4.5 39.0 29.5 17.9
40 4.2 1.2 0.1 15.3 8.7 2.6 32.4 23.0 11.6
VAR(Parc) 10 11.9 8.5 3.8 28.8 23.7 13.4 53.1 46.3 353
20 7.0 4.3 1.0 22.2 14.6 6.2 41.8 33.7 22.9
30 4.6 2.2 0.4 16.8 10.1 3.8 34.5 25.7 15.3
40 3.0 1.2 0.0 13.0 6.9 2.1 28.9 20.1 9.5

DGP4: Noninvertible with non-Gaussian errors €; ~ iid standardized y2(3)
VAR(1) 10 33.9 25.9 15.1 79.6 75.9 66.0 98.7 98.4 96.8
20 23.4 14.4 7.0 70.1 62.6 46.5 96.2 95.5 91.6
30 17.1 10.3 3.6 59.7 49.7 32.8 93.3 90.5 83.8
40 13.2 6.7 1.4 51.1 39.2 22.8 89.6 85.2 75.0
VAR(Psic) 10 33.2 26.3 16.3 78.9 74.7 65.9 99.0 98.7 97.0
20 23.5 16.3 6.6 69.5 63.0 48.5 96.2 95.0 91.4
30 16.9 9.8 3.1 61.1 51.5 35.0 93.3 90.6 84.0
40 11.9 6.2 1.4 53.5 42.7 24.4 89.2 84.7 76.5
VAR(Paic) 10 28.4 21.5 12.9 74.4 69.7 61.4 98.8 98.5 96.3
20 17.6 11.9 4.7 63.7 56.9 43.2 95.4 93.9 89.0
30 12.1 6.6 1.3 55.6 46.4 30.9 91.2 88.1 80.5
40 8.4 3.6 0.5 48.2 37.5 20.3 86.8 81.7 72.5

to induce stationarity by conventional methods, for example, differencing, allowing for

trends, or dividing by another variables, before applying our test.

S2. PROOFS OF THE MAIN RESULTS

Throughout this supplement, C denotes a generic positive and bounded constant that

may differ from place to place.

Proor or THEOREM 1. If {x;} is invertible, then {u,} = {(Dal@os,} is a mds. We prove

the reciprocal: if {X;} is noninvertible, then {u,} is not a mds. Suppose on the contrary

that {u;} is a mds. Then we will reach a contradiction by using and extending to the
multivariate case the results of Rosenblatt (2000, Section 5.4).
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F1GURE S1. Sensitivity of Q! test performance to the noninvertibility governing parameter (6)
under DGP2 (size) and the DGP4 (power) with the degree of persistence « varying from 0.01 to
0.99. As the value of # becomes smaller, the problem of noninvertibility becomes increasingly
serious.

Consider first the case r =1 (i.e., Assumption A.1(i)). By Theorem 1 in Lippi and Re-
ichlin (1994) and definition of €, = K; &;, we have
_L-by .
U1 = 1— blLSt,l-
Define the MA(1) process y, = (L — b1)€,,1. Then, by Corollary 5.4.3 in Rosenblatt
(2000), the process y; has a nonlinear one-ahead predictor E[yt|]-"ty_1]. But then, since
(1- blL)”t,l =Yt

Elu 1| F)_ ] = b1E[u—1,11F,_ ]+ E[ylF_].
The condition |b{| < 1 implies that ]—'ty_1 = ]—';’_”11, so that
E[u 1| F, 4] =bius—r1 + E[yil 7] (1)

Therefore, we conclude that if E[u; 1|F, t”_”f] is zero, then E [yt|]-'ty_1] is linear, which con-
tradicts Corollary 5.4.3 in Rosenblatt (2000). Therefore, {u, }, and hence {u,}, is not a
mds.

Consider now the case r > 1 (i.e., Assumption A.1(ii)). Let /() denote the character-
istic function &;. Define the VMA(gq) noninvertible process

Y = @(L)S[
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The characteristic function of {...,y_s,¥_s11, ..., Yo} is given by

o]
Ny Ty Ts—1s x5 T0) =E|:exp<i27}y_1)i|
1=0
o0 o
=]] lﬁ(z T}@k—z>,
k=0 1=0

where the equality follows from the independence of {¢,} and a change of indexes (k =
[+ j), that s,

00 00 q 00 00
Z T;y_l = Z T; (Z @js_l_]) = Z <Z 7;@](_1) E_f.
=0 =0 =0 k=0 \I=0

Note that for a VMA(g) model @, =0 for k <0 and & > gq.
On the other hand, it is well known that

IN(eey Tsy ey T1, T0)
nfo(-“aTSa-";Tl’O)E > ! 0
) 70=0
o0
=F |:iy0 exp <i Z Téy_1>j| 3)
=1

= E|:iE[YO|}'y1] exp (i i Tgy_lﬂ.

=1
Similarly, the joint characteristic function of {...,y_s, y_s+1, ..., V_1} is given by
o o
f’(--'aTh "')71) = l_[ lﬁ(ZT}@kl)
k=0 =1
It then follows from (2) that

alogn("‘7785"'971’70) . 771'0(-”,75,---771:0)

) r0=0 (e Tss e, T1)
0o 00 (4)
=> @m(Z 7;@k_,)
k=0 I=1
for all 71, 75, ..., where
dlog s (7)

h(z) = aT
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Also, forall j > 1,

dlogn(..., 75, ..., T1) N 7]7].(...,73,...,71)
% TG, Ty e, T1)

o0 o0
=Y 0 jh<z 7;@k_,).
k=0

)

If the best predictor E[yy|F”,]is linear, that is,

E[yol 7, ZbJY js
then from (3) we must have
x
nTQ(---,TS5 s 7150) = ijnTj("'aTSa sy T1)-

j=1

Using (4) and (5) we conclude

Zrkh(z 7;@k1> =0, (6)
k=0 =1

where
00
Fk = @k - ij@k—j-
j=1

Let /j(7) be the jth component of h(7), and let y; ;; be the ijth component of the matrix
I' ;.. Then, with this notation, (6) is written as

o d )
0= Zzyk#hi (Z 7}@;(_1> foreachi=1,2,...,d.
I=1

k=0 j=0

Then differentiating this equation with respect to 7;, and 7;, and evaluating at 7| =7, =
..=0,weobtainforeachi=1,2,...,d,

o0
2
o d d hj (ZT;@]{#)
=1
0=>"> vy o7, 97,
b

k=0 j=0

()

—ZH ch §O%_1,Ok—1,-
=0 k=0
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By the linear independence of the matrices H; we obtain
o0
0=> 7O, O, 8
k=0

forany /1, =1,2,....
We now relate I'; to the Wold innovations. Note that the Wold innovations satisfy

~_1

uy=0 (L)yo

m .
= (Id — ijL]>YQ.
j=1
Therefore, with I'(L) = Z;’io Fij, and since I', = @), — Z;’il b;0;_;, we obtain
~_1
Ir)=0 (L)O(), 9)

which is the Blaschke matrix A(L) = (:Tl (L)O(L). Since there is at least one noninvert-
ible root we have that I';, # 0 for some k > 0.
Now, applying equation (8) with /y =r — g and I, = r, for some r > ¢, we get

0=0,0v,;.

Since @;@0 # 0, we have shown that I', = 0 for r > q.
On the other hand, from (9), we can show that for k£ > 0,

;
ry=Y abf, (10)
j=1
where b; are the noninvertible roots and the {« j};:1 are d x d matrices. To see this, first
consider the case r = 1 and use Theorem 1 in Lippi and Reichlin (1994) to conclude
I'(L) = R(by, L)K{,

where K is an orthogonal matrix, |b;| < 1 is the noninvertible root, and

L—«

R(a,L)Y=1{ 1—aL
0 I

Then simple calculations verify (10) with

1+b1 1+b
b b
o] = 11 11 Kl.
1-b1 1-b

For r > 1 the expansion (10) can be shown by induction on the number of noninvertible
roots r and using Theorem 1 in Lippi and Reichlin (1994).
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However, from I', = 0 for r > g, we conclude that all ;s in (10) must be zero. But this
implies that I';, = 0 for all £ > 0, which contradicts (9) (i.e., that I';, # 0 for some k > 0).
Therefore, we conclude that Efyy|F f 1] must be nonlinear. Finally, since the VAR filter is
causal and @(L)x; =y;, we argue as in (1) to show that E[xy|F*,] must be nonlinear. The
last nonlinearity implies that the Wold innovations are not a mds. O

Henceforth, we let Q'(h) be defined in the same way as Q' (k) in (3.9) with @, re-
placed by u;.

The proof of Theorem A.1 is very similar to, but simpler than, that of Theorem 2
below, and hence it is omitted.

The proof of Theorem A.2 is very similar to, but simpler than, that of Theorem 3
below, and hence it is omitted.

Proor ofF THEOREM 2. The proof of Theorem 2 consists of the proofs of Theorems A.3
and A.4 below.

THEOREM A.3. Under the conditions of Theorem 2, Ql (h) — QY (h) 2.

THEOREM A.4. Under the conditions of Theorem 2, Q*(h) LY N(,1).

PROOF OF THEOREM A.3. Put 7 :=T — |j|, and let y}(b) be defined in the same way as

f/} (b) in (3.5) from the main text, with 1, replaced by u,. To show Ql (h) — Ql(h) £ 0, it
suffices to show

| T-1
h~2 / D KA
j=1

) |* 71 | ]aw by 5 o, (11)

' (h) — C'(h) = Op(T~2), and D' (h) — D' (h) = 0,,(1), where C(h) and D' (h) are de-
fined in the same way as C! (h) and D! (h) in (3.10) in the main text, with 1, replaced by

u;. For space, we focus on the proof of (11); the proofs for Cl(h) —CYh)=0p(T" 3 ) and
DY(h) — D' (h) = 0,(1) are straightforward.
Noting that

EAOTE PADIE ZHV, n®[" = 13, )],

m=1

where f’}; (b)) and )7]1., »(b) are the mth element of i/jl. (b) and 5/]1. (b), respectively. Hence it
would be sufficient to show that

_%/ZHU/”)T (3L, =7, [ ]dw b) 5 0
We first decompose

/Zkz(]/h)T |91 = |7}, ()] dW (b) = A; +2Re(Ay), (12)
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where
. T-1 ,
Ar= / Y KU/ WT] ) =], (b)|”dW (b),
j=1

T-1
A= [ Y RG/ DT [7L,0b) ~ 7L, (b)]75,(b) i (b,
j=1

where Re( 212) is the real part of 212 and i/}%(b) is the complex conjugate of &},m(b). Then
(11) follows from Propositions A.1 and A.2 below, and & — oo as T — oo. O

PROPOSITION A.1. Under the conditions of Theorem 1, A, = Op(1).

ProprosITION A.2. Under the conditions of Theorem 1, h_%flz £o.

PROOF OF PROPOSITION A.l. Put §,(b) = ¢®® — ¢y (b) := P _ (b), and
@(b) := E(e™W). Then straightforward algebra yields that for j > 0,

i m(B) = 7}, (b)

T
=T Y (= tem)di-j(b)
t=j+1

T T
_ i|:Tj_1 3 Gt — Mt,m)j| [T,-‘l > 3tj(b)]

t:j-‘rl t:j-‘rl

T T T
-|-iTj.71 Z ut,mét—j(b)_l(le Z u[,m) |:le Z St—j(b):| (13)

r=j+1 =j+1 t=j+1

T
+ iTJ-_1 Z (We,m — utm)Pi—j(b)

t=j+1
T T
_ i[Tj_l Z ({tgm — u,,m)} [TJ-_l Z l//t—j(b):|
t=j+1 t=j+1

= B1jm(b) — Byj (D) + B3j (D) — Baj (D) + Bsj u(b) — Bgj m(b), say.

It follows that 4; <2°Y°°_, Z].T:_ll K2(j/ W)T; [ |Baj.m(b)|> dW (b). Proposition A.1 follows
from Lemmas A.1-A.6 below, and i/ T — 0. O

LEMMA A.1. We have Y1 ' k2(j/ m)T; [ 1Byjm(b)|> dW (b) = Op(h/T).

LEMMA A.2. We have Zj:_ll K2(j/ W) T; [ |Bajm(B)|> dW (b) = Op(h/T).

LeMMA A.3. We have ] ' k(j/ I)T; [ |Bsjm(b)* dW (b) = Op(h/T).
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LEMMA A.4. We have Zf—f K2(j/ W) T; [ |Bajm(D))>dW (b) = Op(h/T).

LEMMA A.5. We have zf:—ll K2(j/ W)T; [ |Bsjm())>dW (b) = Op(1).

LemMMA A.6. We have Y[ ' K*(j/ )T} [ 1Bojm(b)I>dW (b) = Op(h/T).
Proor oF LEMmaA A.1. By the Cauchy-Schwarz inequality, we have

T T
|é1j,m(b)|2 = |:Tj1 Z (ﬁt,m - ut,m)2i| |:T]'1 Z |8t](b)|2j|

T 2
< ||b||2[T,-‘1 > = u,,mf} :

t:j-‘rl

It follows that

T-1
S G/WT; [ By ®) awb)

j=1
T-1 T 2
< [Z am)} [ > Gl — ut,mﬂ] / Ibl2aW (b) = Op(h/T),
j=1 t=j+1
where a7 (j) = k%(j/ h)T]._1 and we have used the fact that
T-1
>_ar(j)=0h/T) (14)
j=1

given h = cn? for A € (0, 1), as shown in Hong (1999, (A.15), p. 1213), and

o
Juc(8) — ()] < €3 pFlIx,—k 1% + Cp' 7ol (15)
k=t

where u,(0) and u,(0) are residuals based on the infeasible information set {x7,X7_1, ...}
and the observed information set {x7,X7_1, ..., Xy, Xp}, respectively, 0 < p < 1, C and p
are constants independent of the parameter 6,

Esup|u/(8) — a,(0)|* = 0(p"), (16)
(=)

where O(-) holds uniformly in all ¢, following Boubacar Mainassara and Francq (2011),
and

2

WO _0,1). a7)

90

d T
> |ui(8) —u:(80) |> <710 - 6T > sup
=1 =1 0O
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The proof of Lemma A.2 is similar to the proof of Lemma A.1.

Proor oF LEMMA A.3. A second-order Taylor series expansion yields

Tj|é3j,m(b)|

T ) T
< 3 [urm[e® 8 — O 13T b Al

r=j+1 r=j+1
! s o ) (18)
+ ) luemlbIu;(8) —u, |
t=j+1
a ou;_j(00)7
A t— ib'u,_:
+ b6 6ol > ut,m[ﬁ} euu-i
t=j+1
where A; = (Ay, ..., Aw),
1. *u,(0) .
Aj==(0—00) ——-"(0—8y),
4 2( 0) 000 ( 0)
and 0 is between 0 and 6.
It follows that
T-1 R 5
S~ G/ WT; [ BB ai (b)
j=1

T 211
< S[Zwt,mu\ﬁ” —ut,»<é)||} Y KA/ T / Ib]|* dW (b)

t=1 j=1

T T T-1
+ S[Z IIArIIZ} {Z u%,m] Y KGT / b2 dW (b)
=1 t=1 j=1

Il

du;(6g)
00

T T
esl- a3t |3 s
t=1

=1 96@0

T-1
x Y KG/T] / IblI* dW (b)

j=1

T-1
+8]@— 60| YK u/mT;

j=1
d e ;(00) " a2

x / IZH ut,m[T}e =i | |b||* dW (b)
=j

=0p(h/T),
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where we made use of the fact that T 1E|| Zz—]+1 us, m[M]’ by, I = O(1) because
u, is a mds under Hj. We also made use of the fact that

T e
ZS“"”‘”“’) ~O)] < Z(C D P Il + Cp’nxon) = 0p(1) 19)
(=1 0€0 —1 et
and
T 2 2 T o
1 9°u(0) 1 i 5
l 1 i ot ,
T~ ol 9000 ‘ = TZ<C+szllxz kll Op(1), 20)
t=1 —1 —
where 0 < p,py <landj=1,...,d. -

ProoFr oF LEMMA A.4. By the Cauchy-Schwarz inequality, we have

T-1

S KT f |Bajom (D)2 dW ()

=1

] 1)

2
<Zk2<1/h)/( Z ug m) > Il —w|*[b]>dW (b) = O(h/T),

t=j+1 t=1

where we have used the fact that ET]._1 (Z,T:jH ut’m)2 =0(). O

Proor oF LEMMA A.5. By a second-order Taylor series expansion, we have

T-1
SR/ f |Bsjm(b) dW (b)

j=1

ikt m
Z 2 ,(b)[ i “}H dW (b)

1=j+1

Pt () (22)

9000

+8](6—6y)| |:Zs

Oe()

H Zam)de(m

274

+8[Z|u, m— Ui mw)q ZaT(J)/dW(b)

=0p(1)+Op(h/T) + Op(h/T),

where we have used (17), (19), and (20). O

The proof of Lemma A.6 is analogous to that of Lemma A.4.
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PrOOF OF PROPOSITION A.2. Given the decomposition in (13), we have

6
(9], = 3], (0]}, (3| <> | Bajum(D) || 7.m()|, (23)
a=1

where the E’aj,m(b) are defined in (13).
We first consider a = 5. By the triangular inequality, we have

Zk%/h)T, / [Bsj ()] 5,,(b)| WV (b)

j=1

T T-1
< C[Z}at,m - ut,m@)q Y KA/ R / 17} (D) dW (b)
t=1 j=1
~ T-1
+C[[@—00)] YK/ 1)
j=1
duy m (0
/ T— Z . ](b)[”’—(o)H
[Z ||At||} > KA/ ) / |9} ()| dW (b)

t=j+1
=O0p(h/TY?) + Op(L+ h/T'?) + Op(h/T"?) = 0p(h'/?).

|7} ()| dW (b)

Fora=1,2,3,4,6, we have, by the Cauchy-Schwarz inequality,

ZkZ(J/h)T [ 1B ®)13,, 02| b
j=1

l

T-1
[Z /T, [ Buyn(b)] dW(b)}

j=1

1
T-1 2
x [Z e, | W},mm)yde(b)}

j=1

given Lemmas A.1-A.4 and A.6. O

PROOF OF THEOREM A4. Letg = p”ﬁ (In? T)ﬁ . We shall show Propositions A.3 and
A.4 below.
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ProprosITION A.3. Under the conditions of Theorem 2,
Tl 5 § )
WY R GT; [[ 15 aw @) = pRE+ p T+ on),
j=1
where C = anzl Con» I7q = an:l I7(1,%

T-1 T
Cn= 3 RIS i [ im0 aw )
j=1 t=j+1
and

T q t—2q-1
Vom= Y tmy KG/WT / (m,-(b)[ > us,mwg‘j(b)] dW (b).

t=2q+2 j=1 s=1

ProposiTIiON A.4. Under the conditions of Theorem 2, [D! (h)]‘l/zl;'q LY N(0,1).

PrOOF OF PROPOSITION A.3. We note that

T-1
[ kG |7 m | aw)
j=1

BII—

>

m=1

T-1
=w Y [ S RG T 5f dw b,
j=1

Hence it suffices to show that

d T-1

Y [ RGIT 7 ) )
m=1"j=1 (24)

=p PG+ p™ WV qm +op(1).

The proof of (24) is similar to that of Proposition A.3 in Chen and Hong (2011) and is
omitted for space. U

ProOF OF PrROPOSITION A.4. We rewrite I7q = ZtT:2q+2 V,(t), where

d
Vo)=Y Vam(D),

m=1

q
Vi (® =t Y [ a1 OIH-24-1,0b) AW (b,
j=1
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and Hj; 24 1,m(b) = Z;;?jgl Lts7mlﬂ;k7j(b). Following Chen and Hong (2011), we apply
Brown’s (1971) martingale limit theorem, which states var(2Re V)~ 12Re V, L N©, 1 if
~ r ~ 1
var@Re V)" Y [2ReV,(0]'1[|2ReV,(1)] > m -var(2Re V)?] — 0 Vn >0,
t=2q+2

T
var@ReVp) ™' Y E{[2ReV, (0]’ 1Z1} 5 1.
t=2qg+2

First, we compute var(2 Re I7q). By the mds property of u; ,, under Hy, we have

i T d q 1—2q-1 2
B Y E[zu,,mz [arimy 3 us,m¢:_j<b>dw<b>]
j=1

t=2q+2 Lm=1 s=jt+1
q d d
=2 ar(j)ar (1)
j=1I=1 m=1n=1
T t=2q-1
X// Z Z Elu,mute,nipr— (b, 1(b2)]
1=2g+2 s=j+1

x E[us,mus,ns_j(b1)¥;_;(b)]dW (by) dW (by)

9 9 d d
DN Tar(pard)

1 I=1 m=1n=1

+

~

t—2q—-1

T
X// Z Z cov[ur,misnipi—j(b)P—1(b2),

1=2g+2 s=j+1

Us,mUs,n l,l’:_j(bl)‘!f;k_[(bZ)] dW (by) dW (by)

q d d
+2) 33 " ah ()
j=1m=1n=1

T t—2g-1 s-1

X Elumurnpi—j(b)—j(by)
)IEDINDS

1=2g+2 s1=j+1 sp=j+1

X Us; . mUsy,n lﬂjl_j(b] )l/f;;_j(bﬁ] dw (by) dW (by)

j—1

q d d
+4) 33> Car(pard)

j=2 I=1 m=1n=1

T t—2g-1 s;—1

x// Z Z Z E[Mt,mut,nlﬂt—j(b])(/’t—l(bz)

t=2g+2 s1=j+1 s,=I+1
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X Us; . mUs, ,n ‘Vskl_j(bl )lﬁ;_;(bz)] dWw (by) dW (by)

q 4 d
-3 Z > S S KGR )

1 m=1n=1
x f / |E[ujs1mtt 510010151 (b2)]|P I (by) dW (by) + 0p(h).

Similarly, we can obtain

><//|E[“j+l,muj+l,n¢l(b1)lﬁj(bz)]{de(bl)dW(bz)[l+0(1)]-
Hence,

varQReV,) = E(V2) + E(V)* +2E\V,?

q q9 d
=2 > Zk%/p)kz(l/m
j=11=1 m=1

2
x / f |E[ujst,mttr1,0¥1(b1)W(b2) ]| dW (by) dW (b)[1 + o(1)].
The remaining proof of Proposition A.4 is similar to that of Proposition A.4 in Chen and
Hong (2011). O
O

Proor oF THEOREM 3. The proof of Theorem 3 consists of the proofs of Theorems A.5
and A.6 below. O

THEOREM A.5. Under the conditions of Theorem 3, (h3 ) THO (h) — O ()] B

THEOREM A.6. Under the conditions of Theorem 3,
h> 1 m
A A ~ 2
—0'm L — f/ LA, b) = fi (A, B)| " drdW (b).
T \/E —7-r||f 0 ”
Proor oF THEOREM A.5. It suffices to show that

T-1
R GT5m ~ [5500 [ a2 0 .
=1

m=1,...,d,
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Cl(h)— Cl(h) = Op(1), and DY(h) — D' (h) = op(1). We focus on the proof of (25) as the
proofs for C'(h) — C'(h) = Op(1), and D' (h) — D'(h) = op(1) are straightforward. From
(13), the Cauchy-Schwarz inequality, and the fact that

T-1
71 / S K2/ T 7j,m®)|F dW (b) = Op(1)
j=1

as is implied by Theorem A.6 (the proof of Theorem A.6 does not depend on Theo-

rem A.5), it suffices to show that T’ ‘11211 £ 0, where 211 is defined as in (12). Given (13),
we shall show that

T-1
1 [ SR G B aW ) 50,
j=1

a=1,...,6,andm=1,...,d. We first consider a = 1. By the Cauchy-Schwarz inequality,
we have

T-1
17 [ YRGBy ) aW )
=1

T T-1 T
< [th,m - ut,m>2} Y ar() f [T;1 > yét_,«b)\z} dW (b) =Op(h/T),
t=1 j=1

t=j+1

where we have used the fact that |5, j(b)| < 2. The proof for a =2 is similar.
For a = 3, we have

T-1
171 [ 3G B W ()
j=1

T T-1 T
< (T—lzuim) PO / |:Tj_1 > |8,_,-(b)|2} dW (b)
t=1 j=1

t=j+1
T T T-1
< (T‘1 > u?,m) [Z i — utnz} > ar(j) / Ibl|>dW (b) = Op(h/T).
=1 =1 j=1

The proof for a = 4,5, 6 is similar to that for @ = 3. This completes the proof for Theo-
remA.5. g

The proof of Theorem A.6 is a straightforward extension for that of Hong (1999, Proof
of Theorem 5), for the case (m, ) = (1, 0).
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