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Appendix A: Proofs

Lemmata

Lemma 1. Let z ∼N(μ�Σ) be an nz-dimensional real Gaussian random vector. Then,

(i) Expectation of second powers:

E
(
zz′)=μμ′ +Σ�

(ii) Expectation of third powers:

E
[
z(z � z)′

]= μ(μ�μ)′ + 2
(
Σ� �nzμ

′)+μ vecd′(Σ)�

(iii) Expectation of fourth powers:

E
[
(z � z)(z � z)′

]= (μ�μ)(μ�μ)′ + 2(Σ�Σ)+ vecd(Σ) vecd′(Σ)

+ 4
(
Σ�μμ′)+ vecd

(
μμ′) vecd′(Σ)+ vecd(Σ) vecd′(μμ′)�

where � denotes the Hadamard (or elementwise) product, vecd(·) is the operator which
stacks the diagonal elements of a square matrix in vector form and �nz is a vector of nz
ones.

Proof. The proof is tedious but straightforward.

Lemma 2. Define mh : Rn1 ×R
n2 → R

n1×n2 for n1� n2 ∈ Z++ and h ∈ {2�3�4} as

m2(w1�w2)= vec
(
w1w′

2
)
�
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m3(w1�w2)= vec
[
w1(w2 � w2)

′]�
m4(w1�w2)= vec

[
(w1 � w1)(w2 � w2)

′]�
where w1 ∈ R

n1 , w2 ∈ R
n2 , and vec(·) is the vectorization (by columns) operator. Consider

the real Gaussian random vector⎛
⎜⎝x

y
z

⎞
⎟⎠∼N

⎡
⎢⎣
⎛
⎜⎝μx
μy
μz

⎞
⎟⎠ �

⎛
⎜⎝Σxx Σxy Σxz
Σ′
xy Σyy Σyz

Σ′
xz Σ′

yz Σzz

⎞
⎟⎠
⎤
⎥⎦ �

where x is nx-dimensional, y is ny-dimensional, and z is nz-dimensional. Then

(i) Covariance with the first power:

cov
[
x�m2(y�z)

]= 0�

cov
[
x�m3(y�z)

]= 2
[
�nx ⊗ vec′(Σyz)

]� (
Σxz ⊗ �′

ny

)
+ [

vecd′(Σzz)⊗ 1nx×ny
]� (

�′
nz

⊗Σxy
)
�

cov
[
x�m4(y�z)

]= 0�

(ii) Covariance with the second power:

cov
[
m2(x�x)�m2(y�z)

]
= (1nx×nz ⊗Σxy)� (Σxz ⊗ 1nx×ny )

+ (
�nx ⊗Σxz ⊗ �′

ny

)� (
�′
nx

⊗Σxy ⊗ �nz
)
�

cov
[
m2(x�x)�m3(y�z)

]= 0�

cov
[
m2(x�x)�m4(y�z)

]
= 4

[
�n2

x
⊗ vec′(Σyz)

]� cov
[
m2(x�x)�m2(y�z)

]
+ 2

[
�n2

x
⊗ �′

nz
⊗ vecd′(Σyy)

]� (
�nx ⊗Σxz ⊗ �′

ny

)� (Σxz ⊗ 1nx×ny )

+ 2
[
�n2

x
⊗ vecd′(Σzz)⊗ �′

ny

]� (1nx×nz ⊗Σxy)� (
�′
ny

⊗Σxy ⊗ �nx
)
�

(iii) Covariance with the third power:

cov
[
m3(x�x)�m3(y�z)

]
= [

vecd(Σxx)⊗ �nx ⊗ �′
nynz

]� {
�nx ⊗ cov

[
x�m3(y�z)

]}
+ 2(1nx×nz ⊗Σxy)� [

(Σxz �Σxz)⊗ 1nx×ny
]

+ 2
[
vec(Σxx)⊗ �′

nynz

]� [
�n2

x
⊗ vecd′(Σzz)⊗ �′

ny

]� (
�′
ny

⊗Σxy ⊗ �nx
)

+ 4
[
vec(Σxx)⊗ �′

nynz

]� [
�n2

x
⊗ vec′(Σyz)

]� (Σxz ⊗ 1nx×ny )

+ 4
(
�nx ⊗Σxz ⊗ �′

ny

)� (
�′
nz

⊗Σxy ⊗ �nx
)� (Σxz ⊗ 1nx×ny )�

cov
[
m3(x�x)�m4(y�z)

]= 0�
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(iv) Covariance with the fourth power:

cov
[
m4(x�x)�m4(y�z)

]
= 4 cov

[
m2(x�x)�m2(y�z)

]� cov
[
m2(x�x)�m2(y�z)

]
+ 4

[
vec(Σxx)⊗ �′

nynz

]� cov
[
m2(x�x)�m4(y�z)

]
+ 2

[
�nx ⊗ vecd(Σxx)⊗ �′

nynz

]� [
�n2

x
⊗ �nz ⊗ vecd′(Σyy)

]
� (Σxz ⊗ 1nx×ny )� (Σxz ⊗ 1nx×ny )

+ 2
[
�nx ⊗ vecd(Σxx)⊗ �′

nynz

]� [
�n2

x
⊗ vecd′(Σzz ⊗ �ny )

]
� (

�′
nz

⊗Σxy ⊗ �nx
)� (

�′
nz

⊗Σxy ⊗ �nx
)

+ 2
[
vecd(Σxx)⊗ �nx ⊗ �′

nynz

]� [
�n2

x
⊗ �nz ⊗ vecd′(Σyy)

]
� (

�nx ⊗Σxz ⊗ �′
ny

)� (
�nx ⊗Σxz ⊗ �′

ny

)
+ 2

[
vecd(Σxx)⊗ �nx ⊗ �′

nynz

]� [
�n2

x
⊗ vecd′(Σzz ⊗ �ny )

]
� (1nx×nz ⊗Σxy)� (1nx×nz ⊗Σxy)

+ 8
[
�nx ⊗ vecd(Σxx)⊗ �′

nynz

]� [
�n2

x
⊗ vec′(Σyz)

]
� (

�′
nz

⊗Σxy ⊗ �nx
)� (Σxz ⊗ 1nx×ny )

+ 8
[
vecd(Σxx)⊗ �nx ⊗ �′

nynz

]� [
�n2

x
⊗ vec′(Σyz)

]
� (1nx×nz ⊗Σxy)� (

�nx ⊗Σxz ⊗ �′
ny

)
+ 8(Σxy ⊗ 1nx×nz )� (1nx×ny ⊗Σxz)� (

�′
nz

⊗Σxy ⊗ �nx
)� (

�nx ⊗Σxz ⊗ �′
ny

)
�

where ⊗ denotes Kronecker product and 1n1×n2 denotes a matrix of ones of dimension
n1 × n2.

Proof. Again, the proof is tedious but straightforward.

Lemma 3. Consider the model (1)–(2) where εt = (εGH′
t �εN′

t )
′, with εGH

t ∼ GHR(η�ψ�β)

and εN
t ∼N(0; IK−R). Let ςGH

t = εGH
t

′εGH
t and

skt = c0 + c1ς
GH
t + c2

(
ςGH
t

)2
�

sst = εGH
t

(
c3 + ςGH

t

)
�

sGHt = skt +β′sst �

where c0 =R(R+ 2)/4, c1 = −(R+ 2)/2, c2 = 1/4, and c3 = −(R+ 2). Then

(i) For any β ∈R
R and ψ> 0,

lim
η→0+

1
T

∂ ln f (YT �ET |φ)
∂η

= − lim
η→0−

1
T

∂ ln f (YT �ET |φ)
∂η

= 1
T

T∑
t=1

sGHt � and
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lim
η→0±

1
T

∂ ln f (YT �ET |φ)
∂ψ

= 0�

(ii) For any β ∈ R
R and η ∈R,

lim
ψ→0+

1
T

∂ ln f (YT �ET |φ)
∂η

= 0� and lim
ψ→0+

2
T

∂ ln f (YT �ET |φ)
∂ψ

= 1
T

T∑
t=1

sGHt �

Proof. See Mencía and Sentana (2012).

Lemma 4. Consider the model (1)–(2) where {εt}∞t=−∞ is white noise with identity covari-
ance matrix. Further, assume that all the eigenvalues of F are inside the unit circle. If we
observe the double-infinite sequence Y∞ = {yt}∞t=−∞, then the linear projection

(
ξ̂t−1|∞
ε̂t|∞

)
= P

[(
ξt−1
εt

)∣∣∣Y∞

]
=
[
Ψ(L)

Υ (L)

]
yt �

where Ψ and Υ are absolutely summable two-sided filters in the lag operator L, will be
given by [

Ψ(z)

Υ (z)

]
=
[
zF−1(z)M

IK

]
D′(z−1)[D(z)D′(z−1)]−1

�

where

F−1(L)= (IM − FL)−1 =
∞∑
j=0

FjLj and D(L)= HF−1(L)M =
∞∑
j=0

DjL
j

with Dj = HFjM for all j.

Proof. Given that yt = D(L)εt , the joint autocovariance generating function for (y′
t �ε

′
t )

′
is easily seen to be

G(z)=
[

Gyy(z) Gyε(z)
Gεy(z) Gεε(z)

]
=
[

D(z)D′(z−1) D(z)
D′(z−1) IK

]

for any z ∈C. The Wiener–Kolmogorov filter for εt is given by

ε̂t|∞ = Gεy(L)G−1
yy (L)yt = D′(L−1)[D(L)D′(L−1)]−1yt �

It is then easily checked that for every t, ε̂t|∞ is well-defined as a mean-square limit
under the assumptions of the lemma. Moreover, because

ξt−1 =LF−1(L)Mεt �

the filter for ξt−1 follows from the filter for εt , so it is also well-defined.
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Lemma 5. Consider the model (1)–(2). The score of the asymmetric GH with respect to the
parameter τ when τ = 0 for fixed values of the skewness parameters β is given by

s̄GHT (θ�β) = 1
T

T∑
t=1

[
skt|T (θ)+β′sst|T (θ)

]
�

skt|T (θ) = b′
kt|T (θ)mkt|T (θ)�

sst|T (θ) = b′
st|T (θ)mst|T (θ)�

where

mkt|T (θ)=
⎛
⎜⎝ 1

m2t|T (θ)
m4t|T (θ)

⎞
⎟⎠ � bkt|T (θ)=

⎛
⎜⎝b0t|T (θ)

b2t|T (θ)
b4t|T (θ)

⎞
⎟⎠ �

mst|T (θ)=
(

m1t|T (θ)
m3t|T (θ)

)
� bst|T (θ)=

(
b1t|T (θ)
b3t|T (θ)

)
�

b0t|T (θ)= c0 + {
c1 + c2 tr

[
ΩGH
t|T (θ)

]}
tr
[
ΩGH
t|T (θ)

]+ 2c2 tr
{[
ΩGH
t|T (θ)

]2}
�

b1t|T (θ)= [
c3 + tr(ΩGH

t|T (θ)
]
S′

RK + 2S′
RKΩ

GH
t|T (θ)�

b2t|T (θ)= {
c1 + 2c2 tr

[
ΩGH
t|T (θ)

]}(
S′

RK ⊗ S′
RK

)
vec(IR)+ 4c2

(
S′

RK ⊗ S′
RK

)
vec

[
ΩGH
t|T (θ)

]
�

b3t|T (θ)= S′
RK�R ⊗ S′

RK�

b4t|T (θ)= c2
(
S′

RK ⊗ S′
RK

)
�R2�

with c0 =R(R+ 2)/4, c1 = −(R+ 2)/2, c2 = 1/4, c3 = −(R+ 2) and �H a vector ofH ones.

Proof. From Lemma 3, we can obtain the expression for the score with respect to τ for
a fixed value of the skewness parameter vector β, sGHt = skt + β′sst , which corresponds
to the M-step of the EM algorithm. Next, we can apply the E-step to each of the compo-
nents separately.

As for skt , we have that εt |YT �θ ∼N[εt|T (θ)�Ωt|T (θ)] under the null of normality, so
that

skt|T (θ)= c0 + c1E
[
ςGH
t |YT �θ

]+ c2E
[(
ςGH
t

)2|YT �θ
]

involves the computation of E[ςt |YT �θ] and E[ς2
t |YT �θ]. To compute the first expecta-

tion, we can write

E
[
ςGH
t |YT

]=E[εGH′
t εGH

t |YT �θ
]

= tr
{
E
[
εGH
t εGH′

t |YT �θ
]}

= tr
[
ΩGH
t|T (θ)

]+ vec(IR)′ vec
[
εGH
t|T (θ)ε

GH
t|T (θ)

′]�



6 Almuzara, Amengual, and Sentana Supplementary Material

where the first equality follows from the fact that tr(A′B)= tr(BA′), and the second one
from Lemma 1(i). As for the second expectation,

E
[(
ςGH
t

)2|YT �θ
]=E{[εGH

t � εGH
t

]′1R×R
[
εGH
t � εGH

t

]|YT �θ}
= tr

[
1R×RE

{[
εGH
t � εGH

t

][
εGH
t � εGH

t

]′|YT �θ}]
= 2�′

R2 vec
[
ΩGH
t|T (θ)�ΩGH

t|T (θ)
]

+ �′
R2 vec

{
vecd

[
ΩGH
t|T (θ)

]
vecd

[
ΩGH
t|T (θ)

]′}
+ 4�′

R2 vec
[
ΩGH
t|T (θ)� εGH

t|T (θ)ε
GH
t|T (θ)

′]
+ �′

R2 vec
{
vecd

[
(ΩGH

t|T (θ)
]

vecd′[εGH
t|T (θ)ε

GH
t|T (θ)

′]}
+ �′

R2 vec
{
vecd

[
εGH
t|T (θ)ε

GH
t|T (θ)

′] vecd′[ΩGH
t|T (θ)

]}
+ �′

R2 vec
{[
εGH
t|T (θ)� εGH

t|T (θ)
][
εGH
t|T (θ)� εGH

t|T (θ)
]′}
�

where the first equality is a rewriting of (ςGH
t )2, the second one follows from the afore-

mentioned property of the trace, and the third one from Lemma 1(iii). Finally, to obtain
the expression for sk�t|T (θ), we have made use of the following identities:

�′
R2 vec

[
ΩGH
t|T (θ)�ΩGH

t|T (θ)
]= vec′[ΩGH

t|T (θ)
]

vec
[
ΩGH
t|T (θ)

]
= tr

[
ΩGH
t|T (θ)Ω

GH
t|T (θ)

]= tr
{[
ΩGH
t|T (θ)

]2}
�

�′
R2 vec

{
vecd

[
ΩGH
t|T (θ)

]
vecd′[ΩGH

t|T (θ)
]}= tr2[ΩGH

t|T (θ)
]
�

�′
R2 vec

{
ΩGH
t|T (θ)� [

εGH
t|T (θ)ε

GH
t|T (θ)

′]}= vec′[ΩGH
t|T (θ)

]
vec

[
εGH
t|T (θ)ε

GH
t|T (θ)

′]�
�′
R2 vec

{
vecd

[
ΩGH
t|T (θ)

]
vecd′[εGH

t|T (θ)ε
GH
t|T (θ)

′]}= tr
[
ΩGH
t|T (θ)

]
vec′(IR) vec

[
εGH
t|T (θ)ε

GH
t|T (θ)

′]�
together with

vec
[
εGH
t|T (θ)ε

GH
t|T (θ)

′]= (SRK ⊗ SRK)m2�t|T (θ)�

vec
{[
εGH
t|T (θ)� εGH

t|T (θ)
][
εGH
t|T (θ)� εGH

t|T (θ)
]′}= (SRK ⊗ SRK)m4�t|T (θ)�

Similarly, in order to compute

sst|T (θ)= c3E
[
εGH
t |YT �θ

]+E[εGH
t ςGH

t |YT �θ
]
�

we need the expectation of the first component, which is trivially E[εGH
t |YT �θ] =

εGH
t|T (θ). We also need

E
[
εGH
t ςt |YT �θ

]=E[εGH
t

(
εGH
t � εGH

t

)′|YT �θ]�R
= 2ΩGH

t|T (θ)ε
GH
t|T (θ)+ tr

[
ΩGH
t|T (θ)

]
εGH
t|T (θ)

+ εGH
t|T (θ)

[
εGH
t|T (θ)� εGH

t|T (θ)
]′
�R�
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where we have used the fact that ςGH
t = [εGH

t � εGH
t ]′�R in the first equality, and applied

Lemma 1(ii). in the last one. Finally, we obtain the desired result by exploiting the fact
that

vec
{
εGH
t|T (θ)

[
εGH
t|T (θ)� εGH

t|T (θ)
]′}= (SRK ⊗ SRK)m3�t|T (θ)�

after rearranging terms.

Lemma 6. Let

κi(θ)=
∞∑

j=−∞
cov

[
mit(θ)�mit−j(θ)

]
�

denote the autocovariance generating function of mit(θ) evaluated at one. Then

(i) The asymptotic variance of s̄kT (θ) is given by

Ck(θ)= b′
4(θ)κ4(θ)b

′
4(θ)− b′

2(θ)κ2(θ)b
′
2(θ)�

(ii) The asymptotic variance of s̄sT (θ) is given by

Cs|∞(θ)= b′
3(θ)κ3(θ)b

′
3(θ)− b′

1(θ)κ1(θ)b
′
1(θ)�

(iii)
√
T s̄kT (θ) and

√
T s̄sT (θ) are asymptotically independent.

Proof. Following the same steps as in Lemma 5, but conditioning on Y∞ instead of YT ,
we can obtain skt|∞(θ)= E[skt (θ)|Y∞�θ] and sst|∞(θ)= E[sst(θ)|Y∞�θ]. Specifically, we
can write

[
skt|∞(θ)− b0(θ)

sst|∞(θ)

]
= B′(θ)mt (θ) where B(θ)=

⎡
⎢⎢⎢⎣

0 b1(θ)

b2(θ) 0
0 b3(θ)

b4(θ) 0

⎤
⎥⎥⎥⎦ �

and mt (θ)= [m1t (θ)�m2t|(θ)�m3t (θ)�m4t (θ)]′, where

b0(θ)= c0 + {
c1 + tr

[
ΩGH∞ (θ)

]
c2
}

tr
[
ΩGH∞ (θ)

]+ 2c2 tr
{[
ΩGH∞ (θ)

]2}
�

b1(θ)= {
c3 + tr

[
ΩGH∞ (θ)

]}
S′

RK + 2S′
RKΩ

GH∞ (θ)�

b2(θ)= {
c1 + 2 tr

[
ΩGH∞ (θ)

]
c2
}(

S′
RK ⊗ S′

RK

)
vec(IR)+ 4c2

(
S′

RK ⊗ S′
RK

)
vec

[
ΩGH∞ (θ)

]
�

b3(θ)= S′
RK�R ⊗ S′

RK�

b4(θ)= c2
[
S′

RK ⊗ S′
RK

]
�R2�

with ΩGH∞ (θ)= SRKΩ∞(θ)S′
RK and

m1t (θ)= εGH
t|∞(θ)�

m2t (θ)= vec
[
εGH
t|∞(θ)ε

GH
t|∞(θ)

′]�
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m3t (θ)= vec
{
εGH
t|∞(θ)

[
εGH
t|∞(θ)� εGH

t|∞(θ)
]′}
�

m4t (θ)= vec
{[
εGH
t|∞(θ)� εGH

t|∞(θ)
][
εGH
t|∞(θ)� εGH

t|∞(θ)
]′}
�

Next, we can use Lemma 4 to obtain  j = E[εGH
t|∞(θ)εGH

t−j|∞(θ)
′], which corresponds to

the jth order autocovariance matrix of the Wiener–Kolmogorov filter for εt based on Y∞
for any integer j. Further, we can apply Lemma 2 to obtain:

(i) Covariance matrices with the first power:

cov
[
m1t(θ)�m2t−j(θ)

]= 0� (A1)

cov
[
m1t(θ)�m3t−j(θ)

]= 2
[
�K ⊗ vec′( 0)

]� (
 j ⊗ �′

K

)
+ [

vecd′( 0)⊗ 1K×K
]� (

�′
K ⊗ 
j

)
� (A2)

cov
[
m1t(θ)�m4t−j(θ)

]= 0� (A3)

(ii) Covariance matrices with the second power:

cov
[
m2t (θ)�m2t−j(θ)

]= (1K×K ⊗  j)� ( j ⊗ 1K×K)

+ (
�K ⊗  j ⊗ �′

K

)� (
�′
K ⊗  j ⊗ �K

)
�

cov
[
m2t (θ)�m3t−j(θ)

]= 0� (A4)

cov
[
m2t (θ)�m4t−j(θ)

]
= 4

[
�K2 ⊗ vec′( 0)

]� cov
[
m2t (θ)�m2t−j(θ)

]
+ 2

[
�K2 ⊗ �′

K ⊗ vecd′( 0)
]� (

�K ⊗  j ⊗ �′
K

)� ( j ⊗ 1K×K)

+ 2
[
�K2 ⊗ vecd′( 0)⊗ �′

K

]� (1K×K ⊗  j)� (
�′
K ⊗  j ⊗ �K

)
� (A5)

(iii) Covariance matrices with the third power:

cov
[
m3t (θ)�m3t−j(θ)

]
= [

vecd( 0)⊗ �K ⊗ �′
K2

]� {
�K ⊗ cov

[
m1t (θ)�m3t−j(θ)

]}
+ 2(1K×K ⊗  j)� [

( j �  j)⊗ 1K×K
]

+ 2
[
vec( 0)⊗ �′

K2

]� [
�K2 ⊗ vecd′( 0)⊗ �′

K

]� (
�′
K ⊗  j ⊗ �K

)
+ 4

[
vec( 0)⊗ �′

K2

]� [
�K2 ⊗ vec′( 0)

]� ( j ⊗ 1K×K)

+ 4
(
�K ⊗  j ⊗ �′

K

)� (
�′
K ⊗  j ⊗ �K

)� ( j ⊗ 1K×K)�

cov
[
m3t (θ)�m4t−j(θ)

]= 0� (A6)

(iv) Covariance matrix of the fourth power:

cov
[
m4t (θ)�m4t−j(θ)

]
= 4 cov

[
m2t (θ)�m2t−j(θ)

]� cov
[
m2t (θ)�m2t−j(θ)

]
+ 4

[
vec( 0)⊗ �′

K2

]� cov
[
m2t (θ)�m4t−j(θ)

]
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+ 2
[
�K ⊗ vecd( 0)⊗ �′

K2

]� [
�K2 ⊗ �K ⊗ vecd′( 0)

]� ( j ⊗ 1K×K)� ( j ⊗ 1K×K)

+ 2
[
�K ⊗ vecd( 0)⊗ �′

K2

]� [
�K2 ⊗ vecd′( 0 ⊗ �K)

]
� (

�′
K ⊗  j ⊗ �K

)� (
�′
K ⊗  j ⊗ �K

)
+ 2

[
vecd( 0)⊗ �K ⊗ �′

K2

]� [
�K2 ⊗ �K ⊗ vecd′( 0)

]
� (

�K ⊗  j ⊗ �′
K

)� (
�K ⊗  j ⊗ �′

K

)
+ 2

[
vecd( 0)⊗ �K ⊗ �′

K2

]� [
�K2 ⊗ vecd′( 0 ⊗ �K)

]� (1K×K ⊗  j)� (1K×K ⊗  j)

+ 8
[
�K ⊗ vecd( 0)⊗ �′

K2

]� [
�K2 ⊗ vec′( 0)

]� (
�′
K ⊗  j ⊗ �K

)� ( j ⊗ 1K×K)

+ 8
[
vecd( 0)⊗ �K ⊗ �′

K2

]� [
�K2 ⊗ vec′( 0)

]� (1K×K ⊗  j)� (
�K ⊗  j ⊗ �′

K

)
+ 8( j ⊗ 1K×K)� (1K×K ⊗  j)� (

�′
K ⊗  j ⊗ �K

)� (
�K ⊗  j ⊗ �′

K

)
�

Then we can show the asymptotic independence of the kurtosis and skewness compo-
nents by noticing that

cov
[
sst|∞(θ)� skt−j|∞(θ)

]= b′
1 cov

[
m1t(θ)�m2t−j(θ)

]
b2

+ b′
1 cov

[
m1t (θ)�m4t−j(θ)

]
b4

+ b′
3 cov

[
m3t (θ)�m2t−j(θ)

]
b2

+ b′
3 cov

[
m3t (θ)�m4t−j(θ)

]
b4

= 0�

where the last equality follows from (A1), (A3), (A4), and (A6). Moreover, we can sim-
plify even further the relevant expressions by exploiting the cancellation of cross-terms
within the variance formulas,

cov
[
m1t (θ)� sst−j(θ)

]= 0� and cov
[
m2t (θ)� skt−j|∞(θ)

]= 0� (A7)

For the sake of brevity, we prove the above equalities for the case when R=K; the proof
for the case R<K is similar, but more tedious.

To show the first equality in (A7), notice that for any j, we obtain

cov
[
m1t (θ)�m1t−j(θ)

]
b1 = −[

2 j 0 + tr( 0) j
]

because Ω∞ = IK −  0 and b1 = − tr( 0)IK −  0. The remaining part follows from ex-
ploiting the following equalities:

 j 0 = {[
�K ⊗ vec′( 0)

]� (
 j ⊗ �′

K

)}
(�K ⊗ IK) (A8)

and

tr( 0) j = {[
vecd′( 0)⊗ 1K×K

]� (
�′
K ⊗ 
j

)}
(�K ⊗ IK)� (A9)

For instance, to show (A8), define

TK =
[

e1e′
1 � � � eKe′

K

]
�
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with (e1| � � � |eK) = IK , as the unique K × K2 “diagonalization” matrix that transforms
vec(A) into vecd(A) as vecd(A)= T′

K vec(A) (see Magnus (1988)). Similarly, let

TK2 =
[(

e1e′
1 ⊗ e1e′

1
) (

e1e′
2 ⊗ e1e′

2
)
� � �

(
eKe′

K−1 ⊗ eKe′
K−1

) (
eKe′

K ⊗ eKe′
K

)]
�

which isK2 ×K4. Some straightforward algebra delivers the following key identities:

e′
iTK = (ei ⊗ ei)′�

(ei ⊗ ei)′TK2 = (ei ⊗ ei ⊗ ei ⊗ ei)′�

T′
K2(�K ⊗ IK)ei = (IK ⊗ ei ⊗ IK ⊗ ei) vec(IK)�

T′
K2�K2 = vec(IK2)�

for all i= 1� � � � �K. Moreover, TK and TK2 have the important property that

(A � B)= TK(A ⊗ B)T′
K2

for any pair of K ×K2 matrices A and B. As a consequence, we have that for any pair of
indices i1� i2 = 1� � � � �K,

e′
i1

{[
�K ⊗ vec′( 0)

]� (
 j ⊗ �′

K

)}
(�K ⊗ IK)ei2

= e′
i1

TK
{[
�K ⊗ vec′( 0)

]⊗ (
 j ⊗ �′

K

)}
× T′

K2(�K ⊗ IK)ei2

= (ei1 ⊗ ei1)
′{[�K ⊗ vec′( 0)

]⊗ (
 j ⊗ �′

K

)}× (IK ⊗ ei2 ⊗ IK ⊗ ei2) vec(IK)

= {
e′
i1

[
�K ⊗ vec′( 0)

]
(IK ⊗ ei2)⊗ e′

i1

(
 j ⊗ �′

K

)
(IK ⊗ ei2)

}× vec(IK)

= (
e′
i2
 0 ⊗ e′

i1
 j
)

vec(IK)= e′
i1
 j 0ei2 �

But since i1, i2 are arbitrary, we can conclude that (A8) holds. Analogous calculations
allow us to show (A9). Therefore, (A8) and (A9), together with the fact that b3 = �K ⊗ IK
and (A2), imply that

cov
[
m1t (θ)� sst−j|∞(θ)

]= cov
[
m1t (θ)�m′

1t (θ)
]
b′

1 + cov
[
m1t (θ)�m′

3t (θ)
]
b′

3 = 0�

As for the second equality in (A7), again given that Ω∞ = IK −  0 and

b2 = −1
2

tr( 0) vec(IK)− vec( 0)�

we can then use the same tedious but straightforward arguments as before to show that

cov
[
m2t (θ)�m2t−j(θ)

]
vec( 0)= {[

�K2 ⊗ vec′( 0)
]� cov

[
m2t (θ)�m2t−j(θ)

]}
�K2�

tr( 0) cov
[
m2t (θ)�m2t−j(θ)

]
vec(IK)= {[

�K2 ⊗ �′
K ⊗ vecd′( 0)

]� (
�K ⊗  j ⊗ �′

K

)
� ( j ⊗ 1K×K)

}
�K2 + {[

�K2 ⊗ vecd′( 0)⊗ �′
K

]
� (1K×K ⊗  j)� �′

K ⊗  j ⊗ �K)
}
�K2�
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which, together with the fact that b4 = �K2/4 and (A5), imply that

cov
[
m2t (θ)� skt−j|∞(θ)

]= cov
[
m2t (θ)�m′

2t (θ)
]
b′

2 + cov
[
m2t (θ)�m′

4t (θ)
]
b′

4 = 0�

as desired. This allows us to write

lim
T→∞

V

[√
T s̄kT (θ)√
T s̄sT (θ)

]
=
[
Ck(θ) 0

0 Cs(θ)

]
�

where the expressions for Ck(θ) and Cs(θ) can be found in the statement of the lemma.

Lemma 7. Let s̄MVT (θ) denote the Gaussian ML score with respect to the conditional
mean and variance parameters θ. Then

(i) lim
T→∞

cov
[√
T s̄MVT (θ)�

√
T s̄kT (θ)|θ

] = 0�

(ii) lim
T→∞

cov
[√
T s̄MVT (θ)�

√
T s̄sT (θ)|θ

] = 0�

Proof. As shown in Mencía and Sentana (2012), the score of the latent model with re-
spect to the mean-variance parameter vector θ converges to the Gaussian score as we
approach the null hypothesis along any of the possible directions through which the GH
distribution approaches Gaussianity. This observation combined with the EM principle
provides a very convenient way of studying explicitly the score with respect to θ. For ease
of exposition assume ξ0 = 0. Then

YT = [
�T ⊗π(θ)

]+ [
IT ⊗ H(θ)

]{
IMT − [

CT ⊗ F(θ)
]}−1[IT ⊗ M(θ)

]
ET

≡ΠT (θ)+ DT (θ)ET �

where we have defined

CT ≡
[

0 IT−1

0 0

]
�

ΠT (θ)≡ �T ⊗π(θ)�

and

DT (θ)≡ [
IT ⊗ H(θ)

]{
IMT − [

CT ⊗ F(θ)
]}−1[IT ⊗ M(θ)

]
� (A10)

Under our assumption that no linear combination of YT has zero variance, the matrix
DT (θ) has full row-rank. Let D∗

T (θ) be a (K−N)T ×KT matrix of differentiable functions
such that

D̃T (θ)= [
D′
T (θ)�

(
D∗
T (θ)

)′]′
(A11)

is nonsingular. Let Π̃T (θ)= [Π ′
T (θ)�0′]′ and define

ỸT ≡ Π̃T (θ)+ D̃T (θ)ET �
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This reasoning delivers the following alternative state space representation under the
null:

YT = SNT �KT ỸT � with ỸT ∼N[
Π̃T (θ)� D̃′

T (θ)D̃T (θ)
]
�

We now apply the EM principle to the previous representation noting that the measure-
ment equation contains no unknown parameters. The score of the latent model is

∂ ln fỸ(ỸT |θ)
∂θ

= ∂Π̃
′
T (θ)

∂θ
D̃T (θ)ET

+ 1
2
∂ vec′[D̃′

T (θ)D̃T (θ)
]

∂θ

[
D̃′
T (θ)⊗ D̃′

T (θ)
]

vec
(
ETE′

T − IKT
)
�

≡ bMV1�T (θ)ET + bMV2�T (θ) vec
(
ETE′

T − IKT
)
�

where we have used ET = D̃−1
T (θ)[ỸT − Π̃T (θ)], with bMV1�T (θ) and bMV2�T (θ) defined

in the obvious way. Smoothing the score above, we obtain

s̄MVT (θ) ≡ 1
T

∂ ln fY(YT |θ)
∂θ

= 1
T

bMV1�T (θ)E[ET |YT �θ] + 1
T

bMV2�T (θ) vec
{
E
[
ETE′

T |YT �θ
]− IKT

}
�

But since

E
[
ETE′

T |YT �θ
]= V [ET |YT �θ] +E[ET |YT �θ]E[E′

T |YT �θ
]

and V [ET |YT �θ] does not depend on YT , it is clear that s̄MVT (θ) is a linear combina-
tion of ET |T (θ) ≡ E[ET |YT �θ] and vec[ET |T (θ)E′

T |T (θ)] (with coefficients possibly vary-
ing with T ). If we then replace Kalman smoothed variables by their Wiener–Kolmogorov
counterparts and the coefficients of the linear combination by their limits as T → ∞, we
obtain

s̄MVT (θ) = bMV0(θ)+ bMV1(θ)
′ 1
T

T∑
t=1

εt|∞(θ)

+
T−1∑
�=0

{
bMV2(θ)

′ 1
T

T∑
t=�+1

vec
[
εt|∞(θ)ε′

t−�|∞(θ)
]}
�

The rest of the proof follows from (A7) and from the fact that

cov
{
vec

[
εt|∞(θ)ε′

t−�|∞(θ)
]
� sst−j(θ)

}= 0 and

cov
{
vec

[
εt|∞(θ)ε′

t−�|∞(θ)
]
� skt−j(θ)

}= 0�

which can be established by an argument analogous to that of (A7).
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Proofs of propositions

Proof of Proposition 1. To simplify the exposition, we focus on the case where θ is
fixed and known, so that the task is to derive the scores with respect to the shape pa-
rameters ϕ only. We further assume that ξ0 = 0 and π(θ) = 0. These assumptions are
not essential to the argument and may be removed at the cost of more notation. We can
then write

YT = DT (θ)ET �

where DT (θ) is given in (A10). Note the (NT × KT ) matrix DT (θ) does not depend on
ϕ, although it depends on θ. Notice also that fE(ET |ϕ) is continuous in ET and differen-
tiable in ϕ by construction because of the properties of the GH distributionD(0� IK�ϕ).
Given that we are assumingN ≤K, we require the additional assumption that DT (θ) has
full row rank. As in Lemma 7, we define D∗

T (θ) such that (A11) is invertible. Similarly, we
define the random vector Y∗

T = D∗
T (θ)ET . Hence,

ỸT ≡
[

YT
Y∗
T

]
= D̃T (θ)ET

will be a KT -dimensional random vector with density fỸ(ỸT |ϕ)with respect to Lebesgue
measure on R

KT given by the usual change-of-variable formula,

fỸ(ỸT |ϕ)= fE
(
D̃−1
T (θ)ỸT |ϕ)∣∣det
[
D̃T (θ)

]∣∣ �

Moreover, the density fỸ is continuous in ỸT and differentiable in ϕ, and the marginal
density

fY(YT |ϕ)=
∫
R(K−N)T

fỸ(ỸT |ϕ)dY∗
T

is continuous in YT and differentiable in ϕ as well. Taking logs, differentiating with re-
spect to ϕ on both sides of the foregoing equation, and exchanging the orders of the dif-
ferentiation and integration operators on the right-hand side by virtue of Theorem 16.8
in Billingsley (1995), we conclude that

∂ ln fY(YT |ϕ)
∂ϕ

=
∫
R(K−N)T

∂ ln fE
(
D̃−1
T (θ)ỸT |ϕ)
∂ϕ

fỸ(ỸT |ϕ)
fY(YT |ϕ) dY∗

T � (A12)

for all YT and ϕ for which fY(YT |ϕ) > 0 (and this holds for almost all ϕ). The function
fY∗|Y(Y∗

T |YT �ϕ)≡ fỸ(ỸT |ϕ)/fY(YT |ϕ) is the conditional density of Y∗
T given YT , which is a

continuous density with respect to Lebesgue measure on R
(K−N)T . In that precise sense,

we write

E

[
∂ ln fE(ET |ϕ)

∂ϕ

∣∣∣YT �ϕ
]

=
∫
R(K−N)T

∂ ln fE
(
D̃−1
T (θ)ỸT |ϕ)
∂ϕ

fỸ(ỸT |ϕ)
fY(YT |ϕ) dY∗

T �
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Importantly, the value of the integral in (A12) is independent of the choice of D∗
T . To see

this, multiply both sides by fY(YT |ϕ) and integrate with respect to YT ,

∫
RNT

∫
R(K−N)T

∂ ln fE
(
D̃−1
T (θ)ỸT |ϕ)
∂ϕ

fỸ(ỸT |ϕ)dY∗
T dYT

=
∫
RKT

∂ ln fE
(
D̃−1
T (θ)ỸT |ϕ)
∂ϕ

fỸ(ỸT |ϕ)dỸT =E
[
∂ ln fE(ET |ϕ)

∂ϕ

∣∣∣ϕ]

by Fubini’s theorem. For all possible choices of D∗
T (θ), we obtain a version of

E

[
∂ ln fE(ET |ϕ)

∂ϕ

∣∣∣YT �ϕ
]
�

whose uniqueness follows from the a.s. equality of conditional expectations. Therefore,
equation (5) holds.

Proof of Proposition 2. It follows from Lemma 5 when β= 0.

Proof of Proposition 3. It follows from Lemma 6(i) and 7(i).

Proof of Proposition 4. It follows from Propositions 2 and 3.

Proof of Proposition 5. It is a rewriting of Lemma 5.

Proof of Proposition 6. It follows from Lemma 6(i), 6(ii), 6(iii), and 7(ii).

Proof of Proposition 7. It follows by combining the arguments in the proof of
Proposition 5 in Mencía and Sentana (2012)) with the results in Propositions 5 and 6.

Appendix B: Asymptotic equivalence of smoothed scores sample moments

Consider the model (1)–(2) with εt ∼ N(0� IK) and, to save notation, assume (i) π = 0.
To facilitate exposition, we further assume that (ii) det(IM − Fz)= 0 implies |z|> 1. This
condition can be removed at the cost of considerably complicating the analysis.

Under these assumptions, the MA(∞) representation of {yt} is

yt =
∞∑

s=−∞
D(s)εt−s for all t�

where D(s)= HFsM for all s ≥ 0, and D(s)= 0 whenever s < 0.
Let FT = σ({yt}|t|≤T ) denote the σ-field generated by {yt}|t|≤T . Also, let F∞ =

σ(
⋃∞
T=0 FT ). It is well known that the assumption of Gaussianity implies existence of

sequences ofK ×N matrices {At|T (τ)} for all t and T , and {A(τ)} with At|T (τ)= 0 when-
ever |t|> τ, such that

εt|T =E(εt |FT )=
T∑

τ=−T
At|T (τ)yt−τ� for all t and T�
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εt|∞ =E(εt |F∞)=
∞∑

τ=−∞
A(τ)yt−τ� for all t�

For any real matrix A, let ‖A‖ = √
tr(A′A) be its Frobenius norm.

The purpose of this Appendix is to show the following.

Proposition 8. As T ∗ ≡ 2T + 1 → ∞,

1√
T ∗

∑
|t|≤T

(εt|∞ − εt|T )= oP(1)�

In the proof of Proposition 8, we will make use of the following.

Lemma 8. The following three properties hold:

(i) (L2-optimality) Any FT -measurable function ε̃T satisfies

E

(∥∥∥∥∑
|t|≤T

(εt|∞ − εt|T )
∥∥∥∥

2)
≤E

(∥∥∥∥∑
|t|≤T

εt|∞ − ε̃T

∥∥∥∥
2)

for all T�

(ii) (Geometric decay of A) For some ρα ∈ (0�1), Cα > 0 and all τ, ‖A(τ)‖ ≤ Cαρ
|τ|
α .

Hence,
∞∑

τ=−∞

∥∥A(τ)
∥∥<∞�

(iii) (Geometric decay of D) For some ρδ ∈ (0�1), Cδ > 0 and all s, ‖D(s)‖ ≤ Cδρ
|s|
δ .

Hence,
∞∑

s=−∞

∥∥D(s)
∥∥<∞�

Proof of Lemma 8. Property (i) is a consequence of the fact that

εt|T =E(εt|∞|FT ) for all t and T

by virtue of the law of iterated expectations, and the standard result that an expectation
conditional on FT minimizes the L2-distance to the set of FT -measurable functions.

In turn, Property (ii) follows from the fact that εt|∞ is a VARMA process. Hence,

∑
|τ|>T

∥∥A(τ)
∥∥≤ 2Cα

∞∑
τ=T+1

ρτα = 2Cα
1 − ρα ρ

T+1
α → 0 as T → ∞�

implying
∑∞
τ=−∞ ‖A(τ)‖<∞.

To establish property (iii), note that ‖Ds‖ ≤ ‖H‖‖F‖s‖M‖ ≤ √
M‖H‖‖M‖|λF|s, where

we have denoted by λF the largest eigenvalue of F. By assumption, |λF| < 1, so Cδ =
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√
M‖H‖‖M‖ and ρδ = |λF|. Finally,

∑
|s|>S

∥∥D(s)
∥∥≤ 2Cδ

∞∑
s=S+1

ρsδ = 2Cδ
1 − ρδ ρ

S+1
δ → 0 as S→ ∞�

implying
∑∞
s=−∞ ‖D(s)‖<∞.

Proof of Proposition 8. Fix some ε > 0 and k= 1� � � � �K and define the event

Ek�T ≡
{∣∣∣∣∑

|t|≤T
(εk�t|∞ − εk�t|T )

∣∣∣∣>√
T ∗ε

}

By Chebyshev–Bienaymé’s inequality,

Pr(Ek�T )≤ 1

T ∗ε2V

[∑
|t|≤T

(εk�t|∞ − εk�t|T )
]

≤ 1

T ∗ε2E

(∥∥∥∥∑
|t|≤T

(εt|∞ − εt|T )
∥∥∥∥

2)
�

Further, Lemma 8(i) implies that for any FT -measurable function ε̃T ,

Pr(Ek�T )≤ 1

T ∗ε2E

(∥∥∥∥∑
|t|≤T

εt|∞ − ε̃T

∥∥∥∥
2)
�

Therefore, the proof will be completed if we establish that, for some suitable choice of
ε̃T ,

E

(∥∥∥∥∑
|t|≤T

εt|∞ − ε̃T

∥∥∥∥
2)

= o(T)�

To do so, consider the linear FT -measurable variable

ε̃T =
∑
|t|≤T

∑
|τ|≤T

A(τ)yt−τ�

We have

�T =
∑
|t|≤T

εt|∞ − ε̃T =
∑
|t|≤T

∑
|τ|>T

A(τ)yt−τ =
∞∑

r=−∞
�T (r)yr �

where �T (0)= 0,

�T (r)=
r∑

j=max{1�r−2T }
A
[−(T + j)]� for r > 0�

�T (r)=
r∑

j=max{1�r−2T }
A(T + j)� for r < 0�
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implying that

∥∥�T (r)
∥∥≤ CαρT+1

α /(1 − ρα)� for |r| ≤ 2T + 1� and∥∥�T (r)
∥∥≤ Cαρr−Tα /(1 − ρα)� for |r|> 2T + 1�

whence it follows immediately that
∑∞
r=−∞ ‖�T (r)‖<CφTρTα for some constantCφ > 0.

Finally,

√
E
(‖�T ‖2

)=

√√√√√ ∞∑
r=−∞

∥∥∥∥∥
∞∑

s=−∞
�T (r)Ψ(s− r)

∥∥∥∥∥
2

≤
∞∑

r=−∞

∞∑
s=−∞

∥∥�T (r)
∥∥∥∥D(s− r)∥∥

≤
( ∞∑
r=−∞

∥∥�T (r)
∥∥)( ∞∑

s=−∞

∥∥D(s)
∥∥)<∞�

where the last inequality follows from Lemma 8(ii) and 8(iii). As a consequence of this,
E(‖�T ‖2)= o(T).

Appendix C: An algorithm for computing the asymptotic variance

Consider a Varma process with scalar Var part for theKx-dimensional process xt ,

φ(L)xt =Θ(L)ut �

whereφ(z)= 1−φ1z−· · ·−φpzp andΘ(z)=Θ0 +Θ1z+· · ·Θqz
q. The error process ut is

assumed to beK-dimensional white noise, that is,E(ut )= 0,E(utu′
t )=Σ,E(utu′

t−j)= 0
for j �= 0. Next, write the Varma process in companion Var(1) form as

Xt = AXt−1 + Qut �

where Xt = (xt � � � � �xt−p+1�ut � � � � �ut−p+1)
′,

A =
(
�̄⊗ IKx e1 ⊗ Θ̄

0 Jq ⊗ IK

)
� Q =

⎛
⎜⎜⎜⎝
Θ0

0
IK
0

⎞
⎟⎟⎟⎠ �

with e1 being the first vector of the canonical basis in R
p,

�̄=

⎛
⎜⎜⎜⎜⎝
φ1 · · · φp−1 φp
1 0 · · · 0

� � �
���

0 1 0

⎞
⎟⎟⎟⎟⎠ � Θ̄=

(
Θ1 · · · Θq

)
� and Jq =

(
0 0

Iq−1 0

)
�
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Suppose we can find an invertible matrix C and a block diagonal matrix Λ (with Jordan
blocks) such that A = CΛC−1. Then we can transform the original system by defining
Zt = C−1Xt , a possibly complex-valued stochastic process that satisfies

Zt = ΛZt−1 + ηt �

with ηt = C−1Qut being white-noise (and possibly complex-valued). Then it can be
shown that a computationally convenient decomposition of A is given by

A = CΛC−1� (C1)

where

C =
(

C̄ ⊗ IKx −(
�̄

−q ⊗ IKx
)
Θ∗

0 IKq

)
� Λ =

(
Λ̄⊗ IKx 0

0 Jq ⊗ IK

)

and

C−1 =
(

C̄−1 ⊗ IKx
(
C̄−1�̄

−q ⊗ IKx
)
Θ∗

0 IKq

)
�

with �̄= C̄Λ̄C̄−1 providing the Jordan decomposition of �̄, and

Θ∗ =
q∑
h=1

(
�̄
q−h

e1 ⊗ Θ̄
)(

Jh−1
q ⊗ IK

)
�

Notice that the decomposition outlined above is convenient to handle large systems be-
cause it reduces substantially the size of the matrices for which the Jordan decomposi-
tion needs to be performed.

We can also show that the autocovariance function of the Wiener–Kolmogorov filter
derived in Lemma 4 is the autocovariance function of the stable solution to the differ-
ence equation embodied in its Varma representation. For that reason, we decompose
A as in (C1), with the absolute values of the eigenvalues in decreasing order. But since
we have assumed no unit roots, we will have thatKS =Kxp+Kq−KU, whereKU is the
number of roots outside the unit circle andKS the number of roots inside the unit circle.

Let R = CQQ
′
C

′
denote the variance-covariance matrix of ηt . We can partition the

system into its unstable and stable parts as follows:

Zt =
(

ZUt

ZSt

)
� ηt =

(
ηUt

ηSt

)
� Λ =

(
ΛUU 0

0 ΛSS

)
� and R =

(
RUU RUS

RSU RSS

)
�

Next, if we write

ZUt =Λ−1
UU(ZUt+1 − ηUt+1) and ZSt =ΛSSZSt−1 +ηSt �

and partition

Z(j)=
[
UU(j) US(j)

 SU(j)  SS(j)

]
=
[
E
(
ZUt Z̄′

Ut−j
)
E
(
ZUt Z̄′

St−j
)

E
(
ZSt Z̄

′
Ut−j

)
E
(
ZSt Z̄

′
St−j

)
]
�
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we can show that the autocovariance function of Zt can be computed from

vec
[
UU(0)

]= [
IK2

U
− (

Λ−1
UU ⊗Λ−1

UU

)]−1 vec
[
Λ−1

UURUU
(
Λ

−1
UU

)′]
�

UU(j)= UU(0)
(
Λ

−j
UU

)′
� for j > 0�

UU(j)= 
′
UU(−j)� for j < 0�

vec
[
 SS(0)

]= [
IK2

S
− (ΛSS ⊗ΛSS)

]−1 vec(RSS)�

 SS(j)= Λ
j
SS SS(0)� for j > 0�

 SS(j)= 
′
SS(−j)� for j < 0�

 SU(j)= −
j∑

h=1

(
Λ
j−h
SS

)′RSU
(
Λ

−h
UU

)′
� for j > 0�

 SU(j)= 0� for j ≤ 0� and

US(j)= 
′
SU(−j)�

Finally, we can recover the autocovariance function of Xt from

X(j)=E[XtX′
t−j

]=E[(CZt )(CZt−j)′
]= C
Z(j)C

′
�

Obviously, the autocovariance function of xt is the first block of X.

Appendix D: A Gibbs sampler algorithm for the common trend model with

asymmetric Student t innovations

In this section, we develop a Gibbs sampler for the model we use in the empirical appli-
cation in Section 7.3, namely

yt = Hξt �

ξt = c(θ)+ F(θ)ξt−1 + M(θ)εt �

εt =α(ϕ)+ ζ−1
t Υ (ϕ)β+ ζ−1/2

t Υ 1/2(ϕ)zt �

ζt |θ�ϕ ∼ i�i�d� 
(ν/2�1/2)�

zt |θ�ϕ ∼ i�i�d� N(0� IK)�

where θ are mean-variance parameters and ϕ = (ν�β′)′ are shape parameters describing
the asymmetric Student t distribution (a member of the GH family of distributions).
More specifically, θ= (μ�δ�ρx�ρεE �ρεI �σ2

x�σ
2
vE
�σ2

vI
)′,

yt =
(
yEt
yIt

)
� ξt =

⎛
⎜⎜⎜⎝
xt
xt−1

εEt
εIt

⎞
⎟⎟⎟⎠ � εt =

⎛
⎜⎝ ft
vEt
vIt

⎞
⎟⎠ � H =

(
1 0 1 0
1 0 0 1

)
�
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c(θ)=

⎛
⎜⎜⎜⎝

(1 − ρx)μ
0

(1 − ρεE)δ/2
−(1 − ρεI )δ/2

⎞
⎟⎟⎟⎠ � F(θ)=

⎛
⎜⎜⎜⎝

1 + ρx −ρx 0 0
1 0 0 0
0 0 ρεE 0
0 0 0 ρεE

⎞
⎟⎟⎟⎠ �

M(θ)=

⎛
⎜⎜⎜⎝
σx 0 0
0 0 0
0 σvE 0
0 0 σvI

⎞
⎟⎟⎟⎠ �

α(ϕ)= −a(ϕ)β� and Υ (ϕ)= (ν− 2)
{

IK +
[
a(ϕ)− 1

]
β′β

ββ′
}
� with

a(ϕ)= −(ν− 4)+
√
(ν− 4)2 + 8(ν− 4)β′β

4β′β
�

We produce draws from the posterior distribution by means of a Gibbs sampler in which
we augment the original parameter space, consisting of θ and ϕ, with the state variables
ξ0:T = {ξt}Tt=0 and the mixing variables ζ1:T = {ζt}Tt=1. Throughout, we implicitly assume
prior independence between θ and ϕ.

Given y1:T and initial values (θ0�ϕ0�ξ0
0:T ), we draw, for s = 1� � � � � S, in the following

way:
Block I : ζs1:T ∼ p(ζ1:T |θs−1�ξs−1

0:T �ϕ
s−1�y1:T ), which is given by

ζt |θ�ϕ�ξ0:T �y1:T ∼ GIG
(
K + ν

2
�
√
(ν− 2)a(ϕ)β′β�

√
qt + 1

)
�

qt = p′
tΥ

−1(ϕ)pt �

pt =
[
M′(θ)M(θ)

]−1M′(θ)
[
ξt − c(θ)− F(θ)ξt−1

]+ a(ϕ)β�

Dapugnar (1989) developed a generator of GIG pseudo-random numbers based on the
ratio-of-uniforms method. In our practical implementation, we switch to a generator
of gamma pseudo-random numbers whenever the norm of β is below the square root
of βtolerance = 10−3 as the generator may become inefficient and unstable when the GIG
distribution approaches the gamma. We also set a(ϕ)= 1 and Υ (ϕ)= (ν−2)IK for small
values of the norm of β.

Block II : ξs0:T ∼ p(ξ0:T |θs−1�ϕs−1� ζs1:T �y1:T ), which is obtained from a modified ver-
sion of the simulation smoother in Durbin and Koopman (2002) (see also Koopman and
Durbin (1998)). Specifically, we proceed as follows. First of all, we note that, conditional
on θ, ϕ and ζ1:T , the system above admits the following representation as a Gaussian
linear state space model:

yt = Hξt �

ξt = ct(θ�ϕ)+ F(θ)ξt−1 + Mt (θ�ϕ)zt �
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where

ct (θ�ϕ)= c(θ)+ M(θ)
[
α(ϕ)+ ζ−1

t Υ (ϕ)β
]
�

Mt (θ�ϕ)= ζ−1/2
t M(θ)Υ 1/2(ϕ)�

The algorithm has three parts:

1. We draw {z+
t }Tt=1 from z+

t ∼ i�i�d� N(0� IK) and ξ+
0 ∼ N(ξ0|0�P0|0). We compute

{y+
t }Tt=1 and {ξ+

t }Tt=1 by means of the recursion

ξ+
t = ct(θ�ϕ)+ F(θ)ξ+

t−1 + Mt (θ�ϕ)z+
t �

y+
t = yt − Hξ+

t �

2. We run the Kalman filter followed by the Kalman smoother, storing the sequence of
smoothed states {ξ̂t}Tt=0, where we denote ξ̂t = ξt|T . Specifically, for t = 1� � � � �T we first
compute

Kt = Pt|t−1H′(HPt|t−1H′)−1
�

Pt|t = (IM − KtH)Pt|t−1�

Pt+1|t = F(θ)Pt|tF(θ)′ + Mt+1(θ�ϕ)M
′
t+1(θ�ϕ)�

ξt|t = ξt|t−1 + Kt
(
y+
t − Hξt|t−1

)
�

ξt+1|t = F(θ)ξt|t �

Then, for τ= 1� � � � �T − 1 we compute

JT−τ = PT−τ|T−τF(θ)′P−1
T−τ+1|T−τ�

ξ̂T−τ = ξT−τ|T−τ + JT−τ(ξ̂T−τ+1 − ξT−τ+1|T−τ+1)�

Notice that we have neglected the time-varying constants in the state-transition equa-
tion (see Jarocinski (2015) for details).

3. We compute {ξ∗
t }Tt=0 as ξ∗

t = ξ+
t + ξ̂t for t = 0� � � � �T .

It turns out ξ∗
0:T is a draw from p(ξ0:T |θ�ϕ� ζ1:T �y1:T ) as desired.

Block III : ϕs ∼ p(ϕ|θs−1�ξs0:T � ζs1:T �y1:T ), which we obtain by implementing an Adap-
tive Rejection Metropolis Sampler (ARMS, see Gilks and Wild (1992) and Gilks, Best, and
Tan (1995)). We note that εs−1

1:T = {εs−1
t }Tt=1, where

εs−1
t = [

M′(θs−1)M
(
θs−1)]−1M′(θs−1)[ξs−1

t − c
(
θs−1)− F

(
θs−1)ξs−1

t−1

]
�

has the sufficiency property ϕ|θs−1�ξs−1
0:T � ζ

s
1:T �y1:T ∼ϕ|εs−1

1:T � ζ
s
1:T . In addition,

p(ϕ|ε1:T � ζ1:T )∝
[
T∏
t=1

p(εt |ε1:t−1�ϕ� ζ1:t )p(ζt |ε1:t−1�ϕ� ζ1:t−1)

]
p(ϕ)�
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εt |ε1:t−1�ϕ� ζ1:t ∼N
[
α(ϕ)+ ζ−1

t Υ (ϕ)β� ζ−1
t Υ (ϕ)

]
�

ζt |ε1:t−1�ϕ� ζ1:t−1 ∼ 
(ν/2�1/2)�

Thus, the log-likelihood we employ (up to an additive term constant in ϕ) is

L(ϕ)= −T
2

log
{

det
[
Υ (ϕ)

]}− 1
2

T∑
t=1

ε̃′
t ε̃t − T

[
ν

2
log(2)+ log


(
ν

2

)]
+ ν

2

T∑
t=1

log(ζt)�

where

ε̃t ≡ ζ1/2
t Υ −1/2(ϕ)

[
εt −α(ϕ)− ζ−1

t Υ (ϕ)β
]
�

We apply ARMS to each parameter in turn. Letϑ be the result of applying a certain trans-
formation to the specific entry of ϕ being updated. In particular, for the parameter ν we
letϑ= νmin/ν (we take νmin = 4) while forβj we useϑ= [1+exp(−βj)]−1, j = x�1�2. The
transformation is chosen in all cases to ensure ϑ ∈ [0�1].

Let ϑ0 be the starting value and L0 its log-posterior. ARMS updates ϑ0 to ϑ1 as fol-
lows:

1. Construct a grid ϑ1� � � � �ϑnARMS and compute their log-posteriors L1� � � � �LnARMS .

2. Form the piecewise-linear function h given by

h(ϑ)= max
{

Lj(ϑ)�min
[
Lj−1(ϑ)�Lj+1(ϑ)

]}
� ϑj < ϑ≤ϑj+1�

Lj(ϑ)= Lj +Lj+1
(ϑ−ϑj)
(ϑj+1 −ϑj) �

Next, draw ϑ∗ from the piecewise exponential distribution with density proportional to
exp[h(ϑ)]. In other words, draw first a subinterval and, conditioning on it, from a scaled
truncated exponential distribution. Compute the associated log-posterior L∗.

3. Draw uARS ∼ U[0�1]. If log(uARS) > L∗ − h(ϑ∗), augment the grid of ϑ by ϑ∗ and
that of L by L∗ and go back to 2. Otherwise, move on to 4.

4. Draw uMH ∼ U[0�1]. If log(uMH) > L∗ −L0, set ϑ1 =ϑ0. Otherwise, set ϑ1 =ϑ∗.

In the implementation, each draw ϕs is obtained by repeating the algorithm above
nMH times before proceeding with the Gibbs sampler.

We have also considered Slice Sampling (SS, see Neal (2003)) as an alternative
method to update ϑ0 to ϑ1. The alternative sampling is done as follows:

1. Draw e∼ exp(1) (so that y = exp(L0 − e)∼ U[0�exp(L0)]).

2. Given a positive real number w, draw u∼ U[0�1] and let ϑL = max{ϑ0 − uw�0} and
ϑR = min{L +w�1}. Let LL and LR be their respective log-posteriors.

Given an integer mSS, draw v ∼ U[0�1] and form mL = vmSS and mR =mSS − 1 −mL.
While LL > L0 − e and mL > 0 update ϑL to max{ϑL −w�0} (recomputing LL) and mL to
mL − 1. Likewise, updateϑR to min{ϑR +w�1} (recomputing LR) andmR tomR − 1 while
LR > L0 − e andmR > 0.
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3. Draw ϑ∗ ∼ U[ϑL�ϑR] and let L∗ be its log-posterior. While L∗ < L0 − e, either ϑ∗ <
ϑ0, in which case update ϑL to ϑ∗, or ϑ∗ ≥ ϑ0, in which case update ϑR to ϑ∗. Redraw
ϑ∗ ∼ U[ϑL�ϑR] and recompute L∗. When this process terminates, set ϑ1 =ϑ∗.

We report the output of the algorithm based on ARMS but our results are robust to
the sampling method.

Block IV : θs ∼ p(θ|ξs0:T �ϕs� ζs1:T �y1:T ), which is obtained in blocks. First, we note
the sufficiency property θ|ξs0:T �ϕs� ζs1:T �y1:T ∼ θ|ξs0:T �ϕs� ζs1:T . Next, we partition θ =
(θ′
c�θ

′
ρ�θ

′
γ)

′, with θc = (μ�δ)′, θρ = (ρx�ρεE �ρεI )
′ and θσ = (σ2

x�σ
2
vE
�σ2

vI
)′. We proceed

as follows:

1. We set a Gaussian prior on θc given by θc ∼N(c�Sc) and we draw from the posterior
θc|θs−1

ρ , θs−1
σ , ξs0:T , ϕs, ζs1:T , which is

θc|θρ�θσ�ξ0:T �ϕ� ζ1:T ∼N(c̄� S̄c)� with c̄ = S̄c
(
S−1
c c+ Ŝ−1

c ĉ
)

and S̄c = (
S−1
c + Ŝ−1

c

)−1
�

where

Ŝc =
[
T∑
t=1

ζt

]−1[
DcM(θ)Υ (ϕ)M(θ)Dc

]
� and ĉ =

[
T∑
t=1

ζt

]−1[ T∑
t=1

√
ζtYct

]
�

with

Dc =
[

1 − ρx 0 0 0
0 0 1 − ρεE −(1 − ρεI )

]

and

Yct = Dc
{
ξt − F(θ)ξt−1 − M(θ)

[
α(ϕ)+ ζ−1

t Υ (ϕ)β
]}
�

2. We set a Gaussian prior on θρ given by θρ ∼N(ρ�Sρ) and we draw from the poste-

rior θρ|θsc , θs−1
σ , ξs0:T , ϕs , ζs1:T , which is

θρ|θc�θσ�ξ0:T �ϕ� ζ1:T ∼N(ρ̄� S̄ρ)�

with ρ̄ = S̄ρ
(
S−1
ρ ρ+ Ŝ−1

ρ ρ̂
)

and S̄ρ = (
S−1
ρ + Ŝ−1

ρ

)−1
�

where

Ŝρ =
[
T∑
t=1

X2
ρt

]−1

and ρ̂ =
[
T∑
t=1

X2
ρt

]−1[ T∑
t=1

XρtYρt

]
�

with

Xρt = ζ
1/2
t diag

[
WρDρ

{
ξt−1 − [

IK − DρF(θ)
]−1C(θ)

}]
�

Yρt = ζ
1/2
t WρDρ

{
ξt −

[
IK − DρF(θ)

]−1C(θ)− M(θ)
[
α(ϕ)+ ζ−1

t Υ (ϕ)β
]}
�

Wρ = [
DρM(θ)Υ 1/2(ϕ)

]−1
and Dρ ≡

⎡
⎢⎣1 −1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦ �
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3. We set an inverse gamma prior on θσ given by σ−2
j ∼ 
(νj/2� ςj/2), for j = x�vE�vI ,

with these parameters being prior-independent across j. However, for the purposes of
generating draws from the posterior distribution θσ |θsc , θsρ, ξs0:T , ϕs, ζs1:T , we need to
consider two separate cases.

If β = 0, the three parameters are posterior-independent and direct sampling can be
implemented because the prior conjugates with the likelihood. More formally,

σ−2
j |θc�θρ�ξ0:T �ϕ� ζ1:T ∼ 


[
T + νj

2
�

1
2

(
T∑
t=1

η2
jt + ςj

)]
� for j = x�vE�vI�

where

ηt =
⎡
⎢⎣ ηxtηvEt
ηvI t

⎤
⎥⎦= ζ1/2

t Υ −1/2(θ)Dρ
[
ξt − C(θ)− F(θ)ξt−1

]
�

On the other hand, if β �= 0, direct sampling is not available. In this case, we generate
draws from the posterior distribution by componentwise application of ARMS. The log-
likelihood that we employ (up to an additive term constant in θσ ) is

L(θσ)= −T
2
[
log

(
σ2
x

)+ log
(
σ2
vE

)+ log
(
σ2
vI

)]− 1
2

T∑
t=1

η̃′
t η̃t �

with

η̃t = ζ
1/2
t Υ −1/2(ϕ)diag

(
σ−1
x �σ−1

vE
�σ−1

vI

)
Dρ

× [
ξt − C(θ)− F(θ)ξt−1 −α(ϕ)− ζ−1

t Υ (ϕ)β
]
�

The procedure is exactly as explained above. Again, we also employed slice sampling,
with our results being robust to this variation.
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Appendix E: Additional Monte Carlo results (HAC)

Table E1. Monte Carlo rejection rates (in %) under null and alternative hypotheses for the bi-
variate cointegrated, dynamic single factor model (T = 100).

Panel B: Alternative Hypotheses (5%)

Panel A: Null Hypothesis Student t Asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

HJ

Kt 0�17 1�71 4�56 24�76 2�29 15�76 30�25 2�94 19�88
Sk 2�75 9�55 16�99 8�60 9�67 8�55 20�60 12�29 15�96

GH 2�20 7�98 14�20 15�89 8�31 12�47 34�06 10�92 23�73

HSf

Kt 0�17 1�67 4�62 5�14 3�75 2�13 9�13 4�50 2�94
Sk 1�35 6�37 12�77 6�16 6�34 6�13 11�00 12�46 6�39

GH 0�75 4�06 9�02 6�07 5�31 4�34 13�72 11�78 5�19

HSv

Kt 0�17 1�64 4�77 18�89 1�73 17�50 24�15 2�00 20�95
Sk 1�67 7�55 13�97 6�65 7�33 7�06 14�73 7�91 17�73

GH 1�17 5�80 11�44 12�19 5�74 11�72 25�37 5�83 27�46

Red
Kt 0�25 1�89 5�13 24�17 2�51 13�68 28�05 3�40 17�73
Sk 1�52 6�57 13�12 6�80 7�07 6�41 15�39 8�46 6�81

GH 1�00 5�21 10�87 14�35 5�94 9�68 28�67 7�84 12�08

Note: Results based on 10,000 samples of size T = 100 from model (16) with ρx = 0�5, ρεE = ρεI = 0, σ2
f

= 1, and σ2
vi

chosen
such that qE = qI = 1, where qi = σ2

f
/[(1−ρ2

x)σ
2
εi

] represents the signal-to-noise ratio for yit for i=E�I. The column labels J, Sf ,
Sv refer to the alternative εt ∼ GH(η�ψ�β) (i.e.,R= 3), ft ∼ GH(η�ψ�β), vt ∼N(0� IN) (R= 1), and vt ∼ GH(η�ψ�β), ft ∼N(0�1)
(R= 2), respectively. The row labels HJ , HSf , and HSv refer to the score tests in Propositions 4 and 7 corresponding to the J,
Sf , and Sv alternative hypotheses, while Red denotes the reduced form tests discussed in Section 5.4.2. In Panel B, Student t
refers to the DGP for the GH being symmetric Student t with 8 degrees of freedom and, analogously, asymmetric Student t to
the asymmetric Student t with 8 degrees of freedom and skewness vector β = −�R . For each of those labels, Kt and Sk refer to
the kurtosis and skewness components of the corresponding test statistics, while GH indicates the sum of the two.
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Table E2. Monte Carlo rejection rates (in %) under null and alternative hypotheses for the bi-
variate cointegrated, dynamic single factor model (T = 250).

Panel B: Alternative Hypotheses (5%)

Panel A: Null Hypothesis Student t Asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

HJ

Kt 0�12 1�79 5�15 61�57 3�57 42�37 65�21 5�22 49�08
Sk 1�61 7�05 12�87 6�15 7�45 6�23 43�14 14�99 29�48

GH 1�17 5�77 10�80 27�25 6�48 18�65 68�37 14�98 52�18

HSf

Kt 0�13 1�73 4�97 11�68 6�51 2�35 20�10 8�69 4�21
Sk 1�13 6�06 12�15 5�64 5�42 5�90 18�32 27�79 7�48

GH 0�56 3�94 8�70 8�23 5�77 4�21 27�72 28�67 6�26

HSv

Kt 0�12 1�48 4�86 50�02 1�99 46�26 58�78 2�45 52�70
Sk 1�31 5�94 11�84 4�88 6�36 4�98 32�34 6�23 39�44

GH 0�95 4�38 9�29 22�91 4�98 21�18 59�80 5�03 63�81

Red
Kt 0�15 1�85 5�65 59�11 3�96 34�63 61�54 5�98 43�07
Sk 1�29 6�14 11�61 5�63 6�12 5�25 35�12 12�29 6�82

GH 0�85 4�70 9�70 28�61 5�47 16�30 62�18 12�54 24�03

Note: Results based on 10,000 samples of size T = 250 from model (16) with ρx = 0�5, ρεE = ρεI = 0, σ2
f

= 1, and σ2
vi

chosen
such that qE = qI = 1, where qi = σ2

f
/[(1−ρ2

x)σ
2
εi

] represents the signal-to-noise ratio for yit for i=E�I. The column labels J, Sf ,
Sv refer to the alternative εt ∼ GH(η�ψ�β) (i.e.,R= 3), ft ∼ GH(η�ψ�β), vt ∼N(0� IN) (R= 1), and vt ∼ GH(η�ψ�β), ft ∼N(0�1)
(R= 2), respectively. The row labels HJ , HSf , and HSv refer to the score tests in Propositions 4 and 7 corresponding to the J,
Sf , and Sv alternative hypotheses, while Red denotes the reduced form tests discussed in Section 5.4.2. In Panel B, Student t
refers to the DGP for the GH being symmetric Student t with 8 degrees of freedom and, analogously, asymmetric Student t to
the asymmetric Student t with 8 degrees of freedom and skewness vector β = −�R . For each of those labels, Kt and Sk refer to
the kurtosis and skewness components of the corresponding test statistics, while GH indicates the sum of the two.
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Table E3. Monte Carlo rejection rates (in %) under the null and alternative hypotheses for the
local-level model.

Panel B: Alternative Hypotheses (5%)

Panel A: Null Hypothesis Student t Asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

HJ

Kt 0�08 1�52 4�77 23�84 7�06 3�41 35�64 11�68 6�77
Sk 1�33 6�15 12�01 4�90 5�70 5�38 41�94 24�15 11�18

GH 0�73 4�65 9�57 11�60 6�60 4�98 57�08 29�14 12�57

HSf

Kt 0�10 1�60 5�08 17�91 8�72 2�24 27�32 12�57 3�53
Sk 0�96 6�01 11�76 5�29 5�49 5�44 47�23 33�42 5�09

GH 0�52 3�64 8�25 10�89 6�60 3�79 57�18 36�83 4�49

HSv

Kt 0�17 1�67 4�78 14�25 2�95 4�71 31�21 5�41 8�68
Sk 1�03 5�41 10�78 3�94 5�18 4�61 24�47 4�22 15�97

GH 0�51 3�44 7�72 8�27 3�95 4�41 41�34 4�47 18�39

Red
Kt 0�05 1�46 5�20 22�68 6�98 2�85 33�28 11�69 5�45
Sk 1�07 5�75 11�45 4�65 5�50 5�01 55�45 28�16 6�84

GH 0�53 3�48 8�12 12�35 6�38 4�02 64�79 31�23 6�66

Note: Results based on 10,000 samples of size T = 250 from the local-level model discussed in Section 5.3 in which the
signal-to-noise ratio q = σ2

f
/σ2
v is set to 2. The column labels J, Sf , Sv refer to the alternative εt ∼ GH(η�ψ�β) (R = 2), ft ∼

GH(η�ψ�β), vt ∼N(0�1) (R= 1), and vt ∼ GH(η�ψ�β), ft ∼N(0�1) (R= 1), respectively. The row labels HJ , HSf , and HSv refer
to the score tests in Propositions 4 and 7 corresponding to the J, Sf , and Sv alternative hypotheses, Red denotes the reduced
form tests discussed in Section 5.4.2, while HK denotes the original Harvey and Koopman (1992) tests discussed in Section 5.4.1.
In Panel B, Student t refers to the DGP for the GH being symmetric Student t with 8 degrees of freedom and, analogously,
asymmetric Student t to the asymmetric Student t with 8 degrees of freedom and skewness vector β = −�R . For each of those
labels, Kt and Sk refer to the kurtosis and skewness components of the corresponding test statistics, while GH indicates the
sum of the two.
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Table E4. Monte Carlo rejection rates (in %) under null and alternative hypotheses for the mul-
tivariate local-level model.

Panel B: Alternative Hypotheses (5%)

Panel A: Null Hypothesis Student t Asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

HJ

Kt 0�23 3�15 7�37 96�21 6�69 95�78 93�94 10�63 95�13
Sk 8�95 21�52 31�50 18�46 20�76 18�73 69�96 33�29 40�30

GH 8�63 20�71 30�31 75�83 21�25 74�13 92�99 35�27 85�33

HSf

Kt 0�06 1�78 5�56 32�25 30�09 1�68 35�83 34�12 2�19
Sk 1�18 5�73 11�57 4�49 4�44 5�59 44�24 60�98 5�06

GH 0�62 3�68 8�33 17�26 16�19 3�77 58�05 68�64 3�65

HSv

Kt 0�29 2�82 7�06 95�86 3�07 95�80 95�52 2�90 95�60
Sk 7�73 18�94 28�70 16�00 18�45 16�05 63�85 19�16 40�45

GH 7�42 18�34 27�33 74�66 17�18 74�22 93�08 18�06 86�57

Red
Kt 0�25 3�13 7�36 96�71 6�96 95�77 93�87 11�11 95�14
Sk 7�74 18�94 28�44 16�14 18�56 16�26 62�83 31�52 26�57

GH 7�11 17�91 27�21 75�61 19�07 73�54 91�69 33�83 79�37

Note: Results based on 10,000 samples of size T = 250 from a 10-variate version of the local-level model with π = 0, c =
�10 , and γ = q−1�10 , where q reflects the signal-to-noise ratio, which we set to 2. The column labels J, Sf , Sv refer to the
alternative εt ∼ GH(η�ψ�β) (i.e., R = 11), ft ∼ GH(η�ψ�β), vt ∼ N(0� IN) (R = 1), and vt ∼ GH(η�ψ�β), ft ∼ N(0�1) (R = 10),
respectively. The row labelsHJ ,HSf , andHSv refer to the score tests in Propositions 4 and 7 corresponding to the J, Sf , and Sv

alternative hypotheses. In Panel B, Student t refers to the DGP for the GH being symmetric Student t with 8 degrees of freedom
and, analogously, asymmetric Student t to the asymmetric Student t with 8 degrees of freedom and skewness vector β = −�R .
For each of those labels, Kt and Sk refer to the kurtosis and skewness components of the corresponding test statistics, while GH
indicates the sum of the two.
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Appendix F: Inferring real output from GDP and GDI over a long sample

Table F1. Parameter estimates and normality tests over the
postwar period.

Panel A: ML Estimates

Param. Estimate Std. err.

μ 0�755 0�110
δ 0�304 0�031
αx 0�493 0�059
αεE 0�265 0�196
αεI 0�939 0�024
σ2
f 0�526 0�054
σ2
vE

0�076 0�021
σ2
vI

0�093 0�019

Panel B: Normality Tests

Statistic p-value

HSf

Kt 19�061 0�000
Sk 1�161 0�281

GH 20�221 0�000

HSv

Kt 6�537 0�005
Sk 3�859 0�145

GH 10�396 0�011

HR

Kt 13�266 0�000
Sk 1�232 0�540

GH 14�498 0�002

Note: Data: Quarterly real GDP and GDI from 1952Q1 to 2015Q2. Model: Bi-
variate cointegrated, dynamic single factor model (16); see Section 7 for param-
eter definitions. In Panel A, estimates are Gaussian ML of the bivariate Gaus-
sian likelihood of the stationary transformation �yEt + �yIt and yEt − yIt in
the time domain. Standard errors are obtained from the asymptotic information
matrix, which is computed using its frequency domain closed-form expression.
In Panel B, the row labels HSf and HSv refer to the score tests in Propositions 4
and 7 corresponding to the Sf and Sv alternative hypotheses, respectively, while
Red denotes the reduced form tests discussed in Section 5.4.2. For each of those
labels, Kt and Sk refer to the kurtosis and skewness components of the corre-
sponding test statistics, while GH indicates the sum of the two.
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(a) (b)

(c) (d)

(e) (f)

Figure F1. Smoothed innovations and influence functions for the kurtosis and skewness tests:
Sample 1952Q1 to 2015Q2. (a) Smoothed innovations for the underlying factor. (b) Smoothed
innovations for the measurement errors. (c) Influence functions for the underlying factor (kur-
tosis). (d) Influence functions for the measurement errors (kurtosis). (e) Influence functions for
the underlying factor (skewness). (f) Influence functions for the measurement errors (skewness).
Notes: Smoothed innovations and influence functions were obtained by fitting the bivariate
cointegrated, dynamic single factor model (16) to the quarterly real GDP and GDI from 1952Q1
to 2015Q2; see Table F1 for parameter estimates. Shaded areas represent NBER recessions.
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(a) (b)

(c) (d)

Figure F2. Posterior densities of shape parameters under the asymmetric Student t alternative:
Sample 1952Q1 to 2015Q2. (a) η. (b) βx. (c) βvE . (d) βvI . Notes: Model: Bivariate cointegrated,
dynamic single factor model (16) with multivariate asymmetric Student t innovations; see Sec-
tion 7 for parameter definitions. η refers to the reciprocal of degrees of freedom while βx (βvE )
[βvI ] refers to the skewness parameter of the “true GDP” (expenditure) [income] measure. Solid
vertical lines refer to the median values while dashed lines report the 2�5% and 97�5% quantiles.
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