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Appendix A: Extensions and robustness

A.1 Time-varying copula

While our baseline algorithm treats the copula as time fixed, the method we use to ap-
proximate time variations in the value/policy functions can also be applied to the copula
framework. For this purpose, we determine the steady-state copula C and its pdf dC. In
principle, we then obtain a DCT of this pdf, ΘdC , to determine the important coefficients
and proceed just as we did for the value/policy functions.

However, the fact that C is a copula such that its discretized version is defined on a
grid of marginal percentiles complicates the setup slightly because integrating out (in
practice: summing over) the other dimensions, the copula always needs to reproduce
the marginal distributions that are its arguments, that is,∫

μ−i

dC(μi�μ−i)= dμi (27)

must hold. Expressed differently, allowing the perturbation of the entire ΘdC produces
too many degrees of freedom. Therefore, replacing the functionals with their discrete
analogues, we do not calculate the DCT of the entire array dC but leave out the last entry
along each dimension. We can then freely perturb these coefficients and reconstruct the
perturbed copula such that summing along all other dimensions except dimension i still
yields the marginal distribution dμi.

A.2 Robustness to parameter variations

One possible further concern regarding our suggested method could be that it performs
well only for the given parameterization of the Krusell and Smith model. For example,
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Table 9. Variations in model parameters.

Relevant for steady state

Parameter Lower bound Upper bound

β Discount factor 0�95 0�99
ξ Risk aversion 1 4
γ Inv. Frisch elasticity 0�5 2
ρH Persistence (idiosyncratic) 0�7 0�95
σH Variance (idiosyncratic) 0�05 0�4
α Labor share 0�5 0�75

Only relevant for aggregate dynamics

ρS Persistence (aggregate) 0�5 0�95
σS Variance (aggregate) 0�001 0�02

Note: We use the lower and upper bound for each parameter to construct a linear spaced grid for this parameter. We then
solve the model for all parameter combinations using 3 points for each grid, that is, 6561 times.

Table 10. Mean Den Haan errors.

Mean absolute error (in %) for capital Kt

Reiter-Reduction Reiter-Full K-S

Mean 0�1005 0�1012 0�0587
Max 0�2099 0�2129 0�1998

Note: For all parameter combinations in Table 9, we solve the KS model by (1) the Reiter method with our proposed state-
space reduction, (2) the original Reiter method without state-space reduction, and (3) the original Krusell and Smith algorithm
and report here the average (over all parameter combinations) differences in percent between the simulation of the linearized
solutions of the model and simulations in which we solve for the intratemporal equilibrium prices in every period and track
the full histogram over time for t = {1� � � � �1000}; see Den Haan (2010).

one question is whether it fares worse for calibrations that lead to more agents be-
ing borrowing constrained. To systematically evaluate this, we consider variations in
model parameters as displayed in Table 9 and consider all possible parameter combi-
nations.

Table 10 reports the mean values over all combinations for the mean and maximum
absolute errors in aggregate capital for the Den Haan (2010) statistics. Irrespective of the
actual calibration, the method fares well with errors of the same order of magnitude as
the Krusell and Smith method and the maximum error not exceeding 0�21%. When in-
specting the error terms, we find that variations in the parameters that determine the
steady state have virtually no impact on the quality of the approximation. The persis-
tence and most importantly the standard deviation of shocks has a large impact on the
quality of the approximation; see Figure 8. The figure displays the average mean- and
max den Haan errors across for the nine (ρS�σS) combinations that we consider. Er-
ror bands for the largest and smallest den Haan errors across all parameters for a given
(ρS�σS)-combination are also displayed but are so tight they can hardly be seen. What
can be inferred from the graph is that all approximations become substantially worse
when there is more aggregate uncertainty. The parameters that describe the household
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Figure 8. Distribution of Den Haan errors. Notes: Bars show average errors (in %) for combi-
nations of steady state relevant parameters in Table 9, we solve the KS model by (1) the Reiter
method with our proposed state-space reduction, (2) the original Reiter method without state-s-
pace reduction, (3) the original Krusell and Smith algorithm and report here mean and maximum
absolute differences in percent between the simulation of the linearized solutions of the model
and simulations in which we solve for the intratemporal equilibrium prices in every period and
track the full histogram over time for t = {1� � � � �1000}; see Den Haan (2010). Error bands for max-
imal and minimal den Haan erorrs are displayed, too, but the min-max range is three orders of
magnitude smaller than the average.

problem and the steady state have hardly any influence on the approximation quality

and all methods fare substantially worse the larger is the variance of aggregate shocks,

but also errors across methods are always in the same order of magnitude for a given

size of shocks.
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A.3 Exploiting the structure of the problem to reduce the number of derivatives to be
calculated

Our example code calculates all derivatives numerically without exploiting any of the
models’ structure. However, this leaves room to optimize calculations. This is particu-
larly important for second-order derivatives.

First, we observe that the Fokker–Plank equation, the law of motion for distributions,
is linear in the dμ terms and unaffected by current value functions (which are decision
irrelevant). Second, we observe that the distribution terms dμ do not enter the Bellman
equation as long as the set of controls (prices) is sufficiently rich and includes all indi-
vidually decision relevant moments of distribution (typically only the means).

This allows us to write the Jacobian of F in a convenient fashion which also reduces
strongly the number of nonzero second-order derivatives. For this purpose, we reorder
arguments of F and partition equations such that the “idiosyncratic” arguments and
equations come first:

F(dμt� νt� St�Pt� dμt+1� νt+1� St+1�Pt+1� εt+1) =
[
Fi(·)
FA(·)

]
� (28)

Fi(·) =
[

dμt+1 − dμtΠht

νt − (uhdt
+βΠht νt+1)

]
� (29)

FA(·) =

⎡
⎢⎢⎢⎣
Xt+1 −HX(Xt�Dt)+ εt+1

Dt+1 −HD(Xt�Dt�dμt)

Φt
(
hd
t �dμt

)
εt+1

⎤
⎥⎥⎥⎦ � (30)

s.t.

hd
t (s) = arg max

d′∈Γ (x�d;Pt)
u
(
x�d�d′) +βEνt+1

(
x′� d′)� (31)

We can then write the Jacobian matrices A and B as

A=

⎡
⎢⎢⎢⎢⎣
I ∂νt+1(dμtΠht ) 0 0
0 ∂νt+1(uhdt

+βΠht νt+1) 0 0

0

[
0

∂νt+1Φ(·)

]
∂St+1F

A(·) ∂Pt+1F
A(·)

⎤
⎥⎥⎥⎥⎦ � (32)

B =
⎡
⎢⎣

Πht 0 ∂St (dμtΠht ) ∂Pt (dμtΠht )

0 I ∂St (uhdt
+βΠht νt+1) ∂Pt (uhdt

+βΠht νt+1)

∂dμtF
A(·) 0 ∂StF

A(·) ∂PtF
A(·)

⎤
⎥⎦ � (33)

Here, we make use of the fact that future prices and states affect the policies only
through future continuation values, that time-t value functions only affect the Bellman
equation itself but are irrelevant for choices, and that the only effect of the current and
future distributions is on the law of motion for distributions and on market clearing. All
this yields a large number of (cross-)derivatives that are known to be zero.
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What is more, we observe that the second-order derivatives of the idiosyncratic part
Fi with respect to the distribution is zero as the Fokker–Planck equation is a linear equa-
tion in the distribution. Similarly, the second-order derivative with respect to the current
value function is null, etc.

Once all derivatives are calculated, higher-order solutions require to solve a system
of linear equations. Levintal (2017) showed how to write down higher-order derivatives
in a compact way using matrix forms and provided code to efficiently solve large linear
systems, which we use for our second-order solution.

Appendix B: Calibrations

Table 11. Parameters of the Krusell and Smith model.

Parameter Value Description Source

Households
β 0�99 Discount factor Den Haan, Judd, and Juillard (2010)
ξ 1 Relative risk aversion Den Haan, Judd, and Juillard (2010)

Production
α 64% Share of labor Den Haan, Judd, and Juillard (2010)
δ 2�5% Depreciation rate Den Haan, Judd, and Juillard (2010)
ρZ 0�75 Persistence of productivity Den Haan, Judd, and Juillard (2010)
σZ 0�07 STD of innovations Den Haan, Judd, and Juillard (2010)

Note: All values are reported for the quarterly frequency of the model. Idiosyncratic productivity follows the same two state
Markov chain as in Den Haan, Judd, and Juillard (2010).
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Table 12. Parameters of the two-asset HANK model for Table 5.

Parameter Value Description Source

Households
β 0�99 Discount factor Den Haan, Judd, and Juillard (2010)
ν 6�5% Participation frequency Luetticke (2018)
ξ 1 Relative risk aversion Den Haan, Judd, and Juillard (2010)
γ 1 Inv. Frisch elasticity Standard value
R 12�5% Borrowing penalty Bayer, Luetticke, Pham-Dao, and Tjaden (2019)
ρh 0�9 Persistence of productivity Den Haan, Judd, and Juillard (2010)
σh 0�25 STD of innovations Den Haan, Judd, and Juillard (2010)
ζ 0�0005 Prob. to become entrepreneur Bayer et al. (2019)
ι 0�0625 Prob. to become worker Guvenen, Kaplan, and Song (2014)

Intermediate Goods
α 67% Share of labor Den Haan, Judd, and Juillard (2010)
δ 2�5% Depreciation rate Den Haan, Judd, and Juillard (2010)
ρZ 0�75 Persistence of productivity Den Haan, Judd, and Juillard (2010)
σZ 0�07 STD of innovations Den Haan, Judd, and Juillard (2010)

Final Goods
κ ∞ Price stickiness 0 quarters
η 20 Elasticity of substitution 5% markup

Capital Goods
φ 0 Capital adjustment costs Den Haan, Judd, and Juillard (2010)

Fiscal Policy
τ 0�3 Tax rate G/Y = 20%
ρB 0�5 Autocorrelation of debt
γπ 1�5 Reaction to inflation Bayer et al. (2019)
γT 0�5 Reaction to taxes Bayer et al. (2019)

Monetary Policy
Π 1�0 Inflation 0% p.a.
RB 1�0 Nominal interest rate 0% p.a.
θπ 2�0 Reaction to inflation Standard value
ρR 0�8 Interest rate smoothing Standard value

Note: All values are reported for the quarterly frequency of the model.
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Table 13. Parameters of the two-asset HANK model for Figure 7.

Parameter Value Description Source

Households
β 0�98 Discount factor Bayer et al. (2019)
ν 6�5% Participation frequency Luetticke (2018)
ξ 4 Relative risk aversion Bayer et al. (2019)
γ 1 Inv. Frisch elasticity Bayer et al. (2019)
R 11% Borrowing penalty Bayer et al. (2019)
ρh 0�98 Persistence of productivity Bayer et al. (2019)
σh 0�06 STD of innovations Bayer et al. (2019)
ζ 0�0005 Prob. to become entrepreneur Bayer et al. (2019)
ι 0�0625 Prob. to become worker Guvenen, Kaplan, and Song (2014)

Intermediate Goods
α 70% Share of labor Income share labor of 66%
δ 1�35% Depreciation rate NIPA: Fixed assets

Final Goods
κ 0�09 Price stickiness 4 quarters
η 20 Elasticity of substitution 5% markup

Capital Goods
φ 11�4 Capital adjustment costs Bayer et al. (2019)

Fiscal Policy
τ 0�3 Tax rate G/Y = 20%
ρB 0�5 Autocorrelation of debt
γπ 1�5 Reaction to inflation Bayer et al. (2019)
γT 0�50 Reaction to taxes Bayer et al. (2019)

Monetary Policy
Π 1 Inflation 0% p.a.
RB 1�0062 Nominal interest rate 2�5% p.a.
θπ 2�0 Reaction to inflation Standard value
ρR 0�8 Interest rate smoothing Standard value

Aggregate Shocks
σZ 0�007 Standard deviation TFP shock
ρZ 0�95 Persistence TFP shock
σRB 0�001 Standard deviation Monetary shock
ρRB 0�5 Persistence Monetary shock
σs 0�84 Standard deviation Uncertainty shock
ρs 0�54 Persistence Uncertainty shock

Note: All values are reported for the quarterly frequency of the model.
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