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Partial identification of the distribution of treatment effects
with an application to the Knowledge is Power Program (KIPP)
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We bound the distribution of treatment effects under plausible and testable as-
sumptions on the joint distribution of potential outcomes, namely that potential
outcomes are mutually stochastically increasing. We show how to test the empiri-
cal restrictions implied by those assumptions. The resulting bounds substantially
sharpen bounds based on classical inequalities. We apply our method to estimate
bounds on the distribution of effects of attending a Knowledge is Power Program
(KIPP) charter school on student achievement, and find that a substantial ma-
jority of students’ math achievement benefited from attendance, especially those
who would have fared poorly in a traditional classroom.
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1. Introduction

What fraction of patients benefit from a certain medical procedure? What is the me-
dian response of subjects to a treatment? How does the effect of a novel education inter-
vention vary by the outcome that would have been realized in a traditional classroom?
Questions such as these are often of great interest to researchers, policymakers, and in-
dividuals.

For example, parents and policymakers may be rightly concerned about a program
that harms a substantial fraction of participants despite a positive average effect, partic-
ularly given that a positive average effect often depends on how outcomes are scaled.
Additionally, parents considering enrolling a child in an education intervention may
have private information regarding their child’s likely outcome in a traditional class-
room. Knowledge about how the effects of an intervention vary across students who
would do well or do poorly in a conventional setting can then improve the efficiency of
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enrollment decisions and minimize the probability that the student is harmed by place-
ment in an ill-suited program.

Yet even ideal experimental data, under standard assumptions, cannot identify the
answers to questions such as these concerning the distribution of treatment effects. The
reason for this is that experimental data identify the separate marginal distributions
of potential outcomes under treatment and control, not the joint distribution. Conse-
quently, researchers can identify parameters that are functions of the marginal distribu-
tions, such as quantile treatment effects, which compare the distributions of potential
outcomes at different quantiles, or average treatment effects. Researchers cannot, how-
ever, identify parameters that depend on the joint distribution of potential outcomes
such as the fraction of subjects harmed by the treatment, the median treatment effect,
or the expected treatment effect given a subject’s outcome in the control state.

While the distribution of treatment effects is not point identified, it may be bounded.
The marginal distributions of potential outcomes themselves imply bounds on the joint
distribution via the classical Fréchet–Hoeffding limits. Bounds based on these limits,
however, are typically very wide, precluding meaningful economic inferences. We de-
velop a method that provides much tighter bounds. Our method relies on an assumption
about the joint distribution of potential outcomes that is both plausible in many eco-
nomic contexts and testable. In particular, we assume that potential outcomes are mu-
tually stochastically increasing: the distribution of outcomes under treatment among
individuals who would have realized a higher outcome in the control state (weakly)
stochastically dominates that among individuals who would have realized a lower out-
come in the control state, and vice versa. In an education setting, this means that if stu-
dent A performs better than student B in the control state, student A would likely have
outperformed student B in the treated state, and vice versa. The assumption should be
plausible in many economic settings, and indeed is even implied by some models of
how individuals select into programs (Heckman, Smith, and Clements (1997)).

This assumption substantially sharpens the classical bounds on the overall distri-
bution of treatment effects, and also implies bounds on the conditional distribution of
treatment effects at each point of the control and treated distribution. Thus we can place
informative bounds on parameters such as the overall fraction of individuals harmed by
treatment and the median treatment effect. We also can bound the average treatment
effect, median treatment effect, and probability of being harmed for a student who per-
formed, say, one standard deviation below the control mean in the absence of treatment.
We can create similar bounds for a treated individual who performed one standard de-
viation below the treated mean.

What can be learned from our approach beyond what can be learned from tradi-
tional analyses of treatment effect heterogeneity? The traditional approach to analyzing
treatment effect heterogeneity focuses on how average effects vary by subgroup (see List,
Shaikh, and Xu (2019), Lee and Shaikh (2013), Crump, Hotz, Imbens, and Mitnik (2008),
Djebbari and Smith (2008), and Bitler, Gelbach, and Hoynes (2017) for discussion). Ex-
amining average treatment effects by subgroup can be useful for targeting policy inter-
ventions and exploring mechanisms, but it cannot answer questions regarding the frac-
tion of individuals helped or harmed by a treatment without strong assumptions like
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rank invariance or constant treatment effects within subgroups. Similarly, individuals
often have information regarding their potential outcome in the control or treated state
not available to researchers. In this case, bounds on the distribution of treatment effects
given one’s potential outcome in the treated or control state conditional on observed
variables provides relevant information beyond average treatment effects by observed
subgroup.

The bounds on the treatment effect distribution conditional on potential outcomes
can be calculated using standard nonparametric or semiparametric regression tech-
niques. The bounds on the overall treatment effect distribution can be calculated using
either of two methods. The first, and computationally faster, method simply integrates
over the conditional bounds. This yields somewhat conservative bounds, since it implic-
itly imposes worst-case assumptions pointwise across the distribution, while the uni-
formly worst-case assumption would not correspond to the worst case at every point.
The second method is computationally more intensive but yields tighter bounds, and
involves searching across the set of joint distributions of control and treated outcomes
that satisfy stochastic increasingness but yield the observed marginal distributions.

We show how incorporating covariates that are predictive of outcomes in the control
and treatment states can substantially tighten the bounds. Consequently, our bounds
will be most informative when highly predictive covariates exist. Our bounds will also
tend to be more informative regarding the fraction of students benefited by treatment
when the average treatment effect is large in absolute value.

We propose a test of stochastic increasingness that probes the implication that po-
tential outcomes are positively correlated. Although the correlation between potential
outcomes cannot be computed directly, we can compute the correlation of predicted
outcomes in the control and treatment states. If the covariates are sufficiently predictive
of outcomes in the treatment and control states and if the predicted outcomes are suf-
ficiently highly correlated themselves, we demonstrate that potential outcomes in the
treated and control states are positively correlated—a necessary condition for our as-
sumption of stochastic increasingess.

We apply our method to calculate bounds on the distribution of effects on student
achievement of the Knowledge Is Power Program (KIPP) charter school in Lynn, Mas-
sachusetts. Our bounds imply that the substantial majority of students who attended
the charter school benefited in terms of mathematics achievement. Furthermore, our
bounds allow us to say definitively that students who would have performed poorly in
the control state experienced a large positive average treatment effect and were very
likely to benefit from KIPP attendance. These results are novel relative to prior findings
on KIPP attendance, which focus on the average treatment effect. Our bounds are also
much tighter than bounds that do not impose stochastic increasingness.

The next section describes our paper’s contribution relative to prior work on the dis-
tribution of treatment effects. Section 3 develops our econometric framework, defines
the restrictions we propose, shows how to test these assumptions, derives the implied
bounds on the distribution of treatment effects, and shows how they are identified in
the data. Section 4 applies the bounds and the testing procedure in the KIPP setting.
Section 5 concludes.
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2. Relationship to previous literature on the distribution of treatment

effects

Prior researchers have developed methods to bound the distribution of treatment ef-
fects. Williamson and Downs (1990), Heckman, Smith, and Clements (1997), Fan and
Wu (2010), and Russell (2019) derived bounds on features of the joint distribution of po-
tential outcomes using only information contained in the marginal distributions. Fan
and Soo Park (2010) showed how to perform inference on these bounds. Firpo and
Ridder (2010) developed uniform versions of the bounds, resulting in tighter bounds
on functionals of the treatment effect distribution. These papers rely on the fact that
the marginal distributions of control and treatment outcomes themselves restrict the
joint distribution via the well-known Fréchet–Hoeffding bounds. Unfortunately, these
bounds, which place no additional restrictions on the joint distribution of outcomes,
tend to be quite wide. Often, one cannot rule out harm to a substantial majority of sub-
jects, even in the presence of a positive average effect. Furthermore, bounds on the con-
ditional distribution of treatment effects given the outcome in the nontreated state tend
to be extremely wide since any outcome in the support of the control distribution can
correspond to any outcome in the support of the treated distribution. For these reasons,
such bounds tend to preclude meaningful economic inferences.

Additional restrictions are therefore required to meaningfully bound the distribution
of treatment effects. Manski (1997) proposed the restriction that treatment responses
are monotone, and derives the resulting bounds. Kim (2014) generalized this approach
to other deterministic restrictions on the support of treatment effects. These restrictions
allow the bounds to be substantially tightened, but may be too strong to be plausible in
many empirical settings.

Economic models sometimes imply restrictions that can meaningfully bound the
distribution of treatment effects. Heckman, Smith, and Clements (1997) employed Roy-
type assumptions on treatment selection and Kline and Tartari (2016) used a more gen-
eral framework in which treatments alter utilities in known directions to tighten bounds
on the distribution of treatment effects. Our method complements these approaches in
that it applies in settings where the utility consequences of treatment alternatives may
not be known by the researcher.

Heckman, Smith, and Clements (1997) and Fan and Park (2009) showed the bounds
on the distribution of treatment effects can sometimes be tightened if one assumes that
a dependence measure (e.g., Kendall’s τ) between potential outcomes is known. Our re-
sults complement this approach by relaxing the need to specify a known measure, and
instead assumes only the direction of dependence is known. The restriction we propose,
stochastic increasingness of potential outcomes (defined in the following section), im-
plies substantially tighter bounds than those of Williamson and Downs (1990), should
be plausible in many applied settings, and is testable.

Stochastic increasingness or related assumptions have been used in other settings.
In a sample selection setting, Blundell, Gosling, Ichimura, and Meghir (2007), Lechner
and Blaise (2010), and Blanco, Flores, and Flores-Lagunes (2013) employed stochastic
dominance assumptions across working and nonworking individuals to estimate fea-
tures of the distribution of wages. Imai (2008) adopted a similar approach when the
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source of sample selection is attrition. To estimate measures of intergenerational mo-
bility, Chetty, Grusky, Hell, Hendren, Manduca, and Narang (2016) imposed stochas-
tic increasingness of fathers’ and sons’ earnings. Heckman and Smith (1998) examined
whether treated potential outcomes second-order stochastically dominate untreated
potential outcomes to test the ex ante rationality of program participation.

3. Econometric framework

Consider a binary indicator, D, for a treatment that possibly affects a continuously dis-
tributed outcome Y with support Y . Let Y(1) and Y(0) be potential outcomes with and
without treatment, with marginal cdfs F1 and F0. Observed variables are the outcome,
Y = Y(D), and the treatment indicator D. For clarity, we first consider the case with-
out covariates, and where treatment D is independent of potential outcomes. We show
in the Appendix, which may be found in the Online Supplementary Material (Frandsen
and Lefgren (2021)), how covariates may be incorporated to tighten the bounds, and
how instrumental variables methods can be incorporated, if necessary, to aid in identi-
fication.

The parameters of interest in this paper are features of the distribution of treat-
ment effects � := Y(1) − Y(0) (with support D), including the cdf, F�; the conditional
cdf given Y(d), F�|Y(d), d ∈ {0�1}; and the expectation conditional on Y(d), E[�|Y(d)],
d ∈ {0�1}. These parameters are typically of policy and economic importance, but unlike
the marginal distributions of potential outcomes, are not directly identified by experi-
mental data. The parameters are not identified because they depend on the joint distri-
bution of Y(0) and Y(1), which are never jointly observed. The marginal distributions
F1 and F0 themselves impose some restrictions on the joint distribution via the Fréchet–
Hoeffding bounds, but these are rarely tight enough to imply economically meaningful
restrictions. As discussed above, economically meaningful bounds in the current liter-
ature require strong, typically implausible assumptions. The bounds we construct here
substantially improve upon the Fréchet–Hoeffiding bounds and the related bounds on
the distribution of treatment effects derived by Williamson and Downs (1990) and dis-
cussed by Fan and Soo Park (2010) and Fan, Sherman, and Shum (2014) by imposing
natural—and testable—restrictions on the joint distribution of potential outcomes.

3.1 Bounding the distribution of treatment effects

The separate distributions of Y(0) and Y(1) themselves imply bounds on the joint
distribution of (Y(1)�Y(0)) and also the distribution of Y(1) − Y(0). The well-known
Fréchet–Hoeffding bounds provide upper and lower bounds on the joint distribution
of (Y(1)�Y(0)), while the following expressions due to Williamson and Downs (1990)
provide upper and lower bounds on the distribution of their difference, that is, the dis-
tribution of treatment effects:

FL
� (t) = sup

y
max

{
F1(y)− F0(y − t)�0

}
�

FU
� (t) = 1 + inf

y
min

{
F1(y)− F0(y − t)�0

}
�
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These bounds, while attractive in that they impose no restrictions on the joint distribu-
tion of (Y(1)�Y(0)), are often uninformative. Further restrictions are required to provide
more informative bounds.

The restriction we propose assumes that potential outcomes are mutually stochas-
tically increasing.

Definition 1. Potential outcomes Y(0) and Y(1) are mutually stochastically increas-
ing if Pr(Y(1) ≤ t|Y(0) = y) and Pr(Y(0) ≤ t|Y(1) = y) are each nonincreasing in y al-
most everywhere.

Lehmann (1966) described the property of stochastic increasingness, referring to it
as positive regression dependence. It means that individuals with higher potential out-
comes in one treatment state draw from a more favorable—in the first-order stochastic
dominant sense—conditional distribution of outcomes in the other state. It is a gen-
eralization of constant treatment effects restrictions and the rank invariance assump-
tion discussed in Heckman, Smith, and Clements (1997) and Chernozhukov and Hansen
(2005). Under rank invariance, an individual’s position in the control distribution is im-
plied by her position in the treated distribution. Hence, rank invariance implies that
treatment effects are constant conditional on Y(0). Stochastic increasingness, however,
makes no restrictions on treatment effect heterogeneity other than what is implied by
the support of potential outcomes, even conditional on Y(0). Stochastic increasingness
is satisfied whenever Y(1) and Y(0) are positively likelihood ratio dependent, and it im-
plies that Y(1) and Y(0) are positively correlated (in levels and rank). Stochastic increas-
ingness implies positive quadrant dependence, a condition assumed in Bhattacharya,
Shaikh, and Vytlacil (2012). They imposed positive quandrant dependence between un-
observed determinants of the outcome and treatment selection in order to construct
bounds on treatment effects. We impose stochastic increasingness not between the out-
come and treatment, but between potential outcomes. Stochastic increasingness rules
out negative dependence between potential outcomes and can be tested, as we discuss
below in Section 3.4.

Stochastically increasing potential outcomes should be a plausible assumption in
many economic settings. For example, students with strong family backgrounds and
high levels of prior knowledge are likely to outperform students without such advan-
tages in most settings, including treatment and control situations. In a clinical setting,
the pretreatment level of morbidity would tend to cause those who do well in the control
group to also do well in the treatment group. Unemployed workers with strong literacy
and numeracy skills are likely to do better than workers without such skills both in a
control setting as well as a treatment setting in which they have been randomized into a
job training program. All of these situations would satisfy stochastic increasingness and
seem very plausible. Note that stochastic increasingness does not restrict the possible
support of individual-level treatment effects, as other approaches do (Manski (1997),
Kim (2014)); the support of treatment effects is governed only by the supports of Y(0)
and Y(1).

Situations in which stochastic increasingness would be violated, in contrast, often
seem unusual. This would happen if, on average, unobserved characteristics that were
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beneficial in the control state were harmful in the treatment state. This would also occur
if two latent skills had different relative skill prices in the treatment and control state
and were strongly negatively correlated. Similarly, interventions designed with the goal
of reversing relative positions of subjects could be problematic. In such cases, one ought
to be cautious about using our methodology.

3.1.1 Bounds on the treatment effect distribution givenY(0) orY(1) Under the stochas-
tically increasing property, the conditional distribution of the treatment effect given
Y(0) (or Y(1)) can be sharply bounded by a function of the separate marginal distri-
butions of Y(0) and Y(1), as the following theorem establishes.

Theorem 2. Suppose Y(1) and Y(0) are continuously distributed and mutually stochas-
tically increasing. Then F�|Y(0)(t|Y(0)) := Pr(� ≤ t|Y(0)) is sharply bounded from below
pointwise in t and Y(0) by

FL
�|Y(0)

(
t|Y(0)

) :=

⎧⎪⎨
⎪⎩

0� Y(0) > F−1
0

(
F1
(
Y(0)+ t

))
�

F1
(
Y(0)+ t

)− F0
(
Y(0)

)
1 − F0

(
Y(0)

) � Y(0) ≤ F−1
0

(
F1
(
Y(0)+ t

))
�

(1)

and from above by

FU
�|Y(0)

(
t|Y(0)

) :=

⎧⎪⎨
⎪⎩
F1
(
Y(0)+ t

)
F0
(
Y(0)

) � Y(0) ≥ F−1
0

(
F1
(
Y(0)+ t

))
�

1� Y(0) < F−1
0

(
F1
(
Y(0)+ t

))
�

(2)

Proof. See the Appendix.

Theorem 2 gives bounds on the conditional distribution of treatment effects—which
in general depends on the unidentified joint distribution of (Y(0)�Y(1))—as a function
of the separate marginal distributions of potential outcomes, which are identified. The
bounds themselves are proper probability distributions. Mutual stochastic increasing-
ness also implies analogous bounds on the conditional distribution of treatment effects
given Y(1), denoted FL

�|Y(1) and FU
�|Y(1), expressions for which are provided in the proof.

The result assumes outcomes are continuously distributed. Outcomes with mass points
can be accommodated by replacing the cdf inverses with generalized left inverses such
that

F−1
0 (τ) = inf

{
x : F0(x) ≥ τ

}
�

Figure 1 provides graphical intuition for the bounds. The top panels show the den-
sity of potential outcomes in the control state. Consider an individual with Y(0) = y

in the control distribution. The conditional cdf given in the lower left panel of the fig-
ure corresponds to the worst-case conditional distribution for Y(1) given Y(0) = y that
is still consistent with stochastic increasingness. The worst case occurs when an indi-
vidual with a given Y(0) has zero probability of drawing a Y(1) that exceeds his or her
rank in the control state—that is, rank invariance holds above the individual’s rank—
and instead draws from the truncated distribution of Y(1) below his or her rank in the
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Figure 1. The figure illustrates intuitively the bounds implied by stochastic increasingness of
potential outcomes on the conditional distribution of treated potential outcomes given the un-
treated potential outcome. The graphs in the top row plot the density of untreated potential
outcomes, Y(0). The graphs in the bottom row plot the worst- and best-case conditional density
of the treated potential outcomes Y(1) given Y(0) = y as the dark shaded region, rescaled and
superimposed on the marginal density of Y(1) (light shaded). The worst-case plot on the left
corresponds to the upper-bound cdf of treatment effects in equation (2). The best-cast plot on
the right corresponds to the lower-bound cdf of treatment effects in equation (1).

control state—that is, rank independence holds below the individual’s rank. This sat-

isfies stochastic increasingness because the individual’s distribution of counterfactual

outcomes is strictly worse than everyone with an outcome in the control state better

than hers and weakly better (exactly the same in this case) than everyone with a control

outcome below hers. Even under this worst case, bounds on the distribution of treat-

ment effects are made tighter by the fact that expected outcomes in the treated state are

increasing in the control state outcome.

The corresponding best case, shown in the right panel of Figure 1, is just the oppo-

site: an individual with a given Y(0) has zero probability of drawing a Y(1) below his

or her rank in the control state, but instead draws from the truncated distribution of

Y(1) ranks above his or her rank in the control state. The best case corresponds to the

lower-bound cdf given in equation (1).

These bounds on the treatment effect cdf also imply bounds on the average treat-

ment effect conditional on Y(0) (or Y(1)), a quantity that is frequently of great interest

in applications, but not point identified. Let the average treatment effect conditional on

Y(d) be denoted �(Y(d)) := E[Y(1) − Y(0)|Y(d)]. By definition, bounds on the condi-

tional expectation are given by integrating the derivative of the cdf bounds:

�L
(
Y(d)

) =
∫

t dFU
�|Y(d)

(
t|Y(d)

)
� (3)

�U
(
Y(d)

) =
∫

t dFL
�|Y(d)

(
t|Y(d)

)
� (4)

3.1.2 Bounds on the overall treatment effect distribution Bounds on the overall distri-

bution of treatment effects can be constructed by taking the expectation of the condi-
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tional bounds:

F̃L
� (t) = max

d∈{0�1}
E
[
FL
�|Y(d)

(
t|Y(d)

)]
� (5)

F̃U
� (t) = min

d∈{0�1}
E
[
FU
�|Y(d)

(
t|Y(d)

)]
� (6)

Integrating over the conditional bounds in this way will yield conservative bounds on
the overall distribution, however, since the conditional bounds FL

�|Y(d) and FU
�|Y(d) are

by construction sharp pointwise in Y(d), but not uniformly.
Sharp bounds on the overall distribution of treatment effects based on conditional

stochastic increasingness can be obtained in principle by searching over the set of joint
distributions of (Y(0)�Y(1)) that satisfy mutual stochastic increasingness, and of course
yield the observed marginal distribution distributions of Y(0) and Y(1). Defining CSI

to be the set of bivariate copula functions H that satisfy mutual stochastic increas-
ingness, we can define sharp bounds on the overall distribution of treatment effects
as

FL
� (t) = inf

H(·�·)∈CSI

∫ ∫
1
(
F−1

1 (v)− F−1
0 (u) ≤ t

)
H(u�v)dudv� (7)

FU
� (t) = sup

H(·�·)∈CSI

∫ ∫
1
(
F−1

1 (v)− F−1
0 (u) ≤ t

)
H(u�v)dudv� (8)

As functions of the observed F1 and F0 only, these bounds are in principal identified,
although the infinite dimensional optimization problem that defines them may compli-
cate estimation, as described below.

These results can be applied directly to bound quantities such as the fraction of in-
dividuals who are harmed by treatment (i.e., the cdf of � evaluated at zero), but can also
be used to construct sharp bounds on any feature of the distribution of treatment effects
that is monotonic in the cdf in a stochastically dominant sense, such as the expectation
or any quantile of the treatment effect.

Our bounds are substantially tighter than the bounds based on classical limits. Ap-
pendix Figures A5 and A6 report numerical simulations of the bounds on the fraction
hurt by treatment, and in all cases our bounds are much narrower than the Williamson–
Downs bounds.

When are the bounds tightest? The numerical simulations reported in the Appendix
illustrate factors that determine the tightness of the bounds. First, the bounds on the
fraction hurt by treatment are more informative the larger in magnitude the average
treatment effect (or other central measure of the treatment effect size). The intuition
for this is that with such minimal restrictions on heterogeneity, even a treatment with a
small average effect is nevertheless consistent with a large fraction of individuals being
either slightly helped or harmed by treatment. Second, the bounds can be substantially
tightened by introducing covariates that predict outcomes, which we show how to in-
corporate in the Appendix. A practical implication is that researchers will benefit from
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collecting a rich set of covariates, especially lagged outcomes, as part of the study de-
sign.

3.2 Estimating the bounds

The conditional cdf bounds (1) and (2) can be consistently estimated by plugging in
consistent estimators for the conditional cdfs F1 and F0. Here, we give details for the
simplest case where Di is independent of potential outcomes. See the Appendix for es-
timation details when covariates are available or instrumental variables methods are
necessary.

Bounds on the distribution of treatment effects given some untreated potential out-
come value y can be constructed via the following steps:

1. Construct F̂0(y) as the sample mean of the indicator 1(Yi ≤ y) in the untreated
subsample.

2. Construct F̂1(y + t) as the sample mean of the indicator 1(Yi ≤ y + t) in the treated
subsample.

3. Plug in to form estimates of the bounds

F̂L
�|0
(
t|Y(0) = y

) := max
{

0�
F̂1(y + t)− F̂0(y)

1 − F̂0(y)

}
� (9)

F̂U
�|0
(
t|Y(0) = y

) := min
{

1�
F̂1(y + t)

F̂0(y)

}
� (10)

Bounds (3) and (4) on the conditional expectation of treatment effects given Y(0)
can be computed by integrating over the numerical derivative of the cdf estimates (9)
and (10) on a discrete grid. Analogous steps can be followed for the distribution of treat-
ment effects given Y(1).

Bounds on the overall cdf of treatment effects can be constructed in either of two
ways, following the discussion in Section 3.1.2. The computationally simpler method
takes the sample averages of (9) and (10) evaluated at the observed outcomes in the
untreated sample:

F̂L
� (t) := 1

n0

∑
i:Di=0

F̂L
�|0(t|Yi)� (11)

F̂U
� (t) := 1

n1

∑
i:Di=0

F̂U
�|0(t|Yi)� (12)

where n0 and n1 are the number of untreated and treated observations, respectively.
Appendix E provides additional estimation details and describes a Stata software
implementation, which also allows for additional covariates and instrumental vari-
ables.

While computationally simple, these bounds may be conservative. The second
method computes a numerical approximation to the sharp uniform bounds defined in
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(7) and (8) by adapting Chetty et al.’s (2016) computational algorithm for optimizing over
the space of discrete copulae defined on a k × k grid, subject to the mutual stochastic
increasingness constraints. This approximation is the solution to a linear programming
problem, and can be computed relatively quickly for grid sizes on the order of one hun-
dred. The grid approximation error can be made arbitrarily small for large k. The Ap-
pendix provides details on the algorithm.

3.3 Inference

The procedures described above for bounds conditional on Y(0) or Y(1) and for the
overall bounds when obtained by integrating the conditional bounds lead to consistent
and asymptotically normal estimates. This subsection gives the limiting distribution of
the conditional bound estimators (9) and (10) and unconditional bound estimators (11)
and (12). The limiting distributions provide the basis for asymptotically valid inference
on the parameters of interest, by applying Imbens and Manski’s (2004) method for infer-
ence on partially identified parameters.

The conditional bound estimates (9) and (10) are themselves functions of estimators
for potential outcome cdfs, F̂0 and F̂1:

(
F̂0(y)

F̂1(y + t)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1
n∑

i=1

1(Yi ≤ y)− n−1
n∑

i=1

1(Yi ≤ y)Di

1 − n−1
n∑

i=1

Di

n−1
n∑

i=1

1(Yi ≤ y + t)Di

n−1
n∑

i=1

Di

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

which in turn are (differentiable) functions of the following vector of sample means:

Ŵ (v)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1
n∑

i=1

1(Yi ≤ y)

n−1
n∑

i=1

1(Yi ≤ y)Di

n−1
n∑

i=1

1(Yi ≤ y + t)Di

n−1
n∑

i=1

Di

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

with corresponding vector of population expectations W (v), where v = (y� t)′. Col-
lect the arguments of the max and min in expressions (9) and (10) in the vector Ĥ :=
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(ĤL� ĤU)′, where

ĤL := F̂1(y + t)− F̂0(y)

1 − F̂0(y)
�

ĤU := F̂1(y + t)

F̂0(y)
�

with corresponding probability limits H := (HL�HU)′. The following theorem estab-
lishes the limiting distribution of Ĥ.

Theorem 3. Let {Yi�Di}ni=1 be an i.i.d. sample, let p := Pr(Di = 1), and let Ȳ =[F−1
0 (δ)�

F−1
0 (1 − δ)] ⊂ Y for some δ > 0. Assume there exists κ > 0 such that κ ≤ p ≤ 1 − κ. Then√
n(Ĥ(v)−H(v)) converges uniformly in v ∈ Ȳ ×D to a Gaussian process with zero mean

function and covariance function Ω(v� ṽ) := J(v)γ(v)Σ(v� ṽ)γ(ṽ)′J(ṽ)′ where the Jaco-
bians J(v) and γ(v) are given by

J(v) :=

⎡
⎢⎢⎢⎣

−1 − F1(y + t)(
1 − F0(y)

)2 (
1 − F0(y)

)−1

−F1(y + t)

F0(y)
2 F0(y)

−1

⎤
⎥⎥⎥⎦ �

γ(v) :=

⎡
⎢⎢⎣

1
1 −p

− 1
1 −p

0
F0(y)

(1 −p)

0 0
1
p

−F1(y + t)

p

⎤
⎥⎥⎦ �

and the covariance function Σ(v� ṽ) is given by

Σ(v� ṽ) := E
[
Wi(v)Wi(ṽ)

′ −W (v)W (ṽ)′
]
�

Proof. See the Appendix.

The theorem shows that the arguments of the max and min functions in the condi-
tional bound estimators (9) and (10) have limiting normal distribution. The conditional
bound estimators themselves will not necessarily have a normal limit because of the
max and min. Nevertheless, valid confidence intervals based on Ĥ can be the basis for
valid confidence intervals for the treatment effect distribution itself by taking the inter-
section of intervals based on Ĥ with the unit interval. Specifically, inference on F�|0(t|y)
can be performed following Imbens and Manski (2004) and Stoye (2009), whose method
applied to our setting yields the following confidence interval:

CI(1 − α) := [
ĤL − C̄α

√
n−1Ω̂(v� v)[1�1]� ĤU + C̄α

√
n−1Ω̂(v� v)[2�2]

]∩ [0�1]�

where the critical value C̄α satisfies

�

(
C̄α + √

n
ĤU − ĤL√

max
(
Ω̂(v� v)[1�1]� Ω̂(v� v)[2�2]

)
)

−�(−C̄α) = α�
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Note that ĤL ≤ ĤU with probability one, which satisfies the superconsistency condition
given in Stoye (2009) for the bounds to apply. Constructing the confidence intervals re-
quires estimates of the covariance matrix, Ω̂(v� v). This can be estimated by plugging in
empirical counterparts to the analytical formula in the theorem, or fixing a value for y

and t; the variance can be estimated by the bootstrap.1

The unconditional bound estimators (11) and (12) likewise converge in distribution
to a normal limit, as they are (Hadamard) differentiable functions of Ĥ, which itself has
a Gaussian limit as shown above. These results are formalized in the following theorem.

Theorem 4. Let {Yi�Di}ni=1 be an i.i.d. sample with Yi = Yi(0)(1 − Di) + Yi(1)Di and
Yi(0) and Yi(1) continuously distributed and let p := Pr(Di = 1) with κ ≤ p ≤ 1 − κ

for some κ > 0. Define F(t) := (FL
� (t)�F

U
� (t))′ and F̂(t) := (F̂L

� (t)� F̂
U
� (t))′ and assume

Pr(F1(Yi+ t)= F0(Yi)) = 0. Then
√
n(F̂(t)−F(t)) converges uniformly in t ∈ D to φ′

θ0
(G0)

where φ′
θ0

is a linear and continuous map defined in the proof and G0 is a tight Gaussian

element in �∞(Ȳ ×D)2 × �∞(M)×R.

Proof. See the Appendix.

The theorem means that given the stated conditions the unconditional bound es-
timators are asymptotically normally distributed. Further, the results in Fang and San-
tos (2018) imply that their asymptotic variance can be consistently estimated via the
bootstrap, and thus the Stoye (2009) approach for inference on the unconditional treat-
ment effect cdf can be applied as above for the conditional cdf. The condition that
Pr(F1(Yi + t) = F0(Yi)) = 0 is reasonable in settings with a continuously distributed out-
come and nonvanishing treatment effect heterogeneity.

3.4 Testing for stochastic increasingness

Stochastic increasingness has testable implications. This section illustrates these impli-
cations and shows how they can be tested. Stochastic increasingness implies that Y(1)
and Y(0) are positively correlated (Lehmann (1966)). This implication cannot be tested
directly, since we do not observe the joint distribution of potential outcomes, but we
can test it indirectly by examining how Y(1) and Y(0) move with observed variables S.
Specifically, the Cauchy–Schwarz inequality implies (see supplementary Appendix A)
that an implication of Cov(Y(1)�Y(0)) ≥ 0, and thus an implication of stochastic in-
creasingness is that

Corr
(
Ŷ (0)� Ŷ (1)

)≥ −
√√√√(

1 −R2
0
)(

1 −R2
1
)

R2
0R

2
1

� (13)

where Ŷ (0) and Ŷ (1) are linear projections of potential outcomes on S with correspond-
ing coefficients of determination R2

0 and R2
1. Condition (13) is only nontrivial when the

1The conditions given in Theorem 3, for a fixed y and t, satisfy the conditions for the bootstrap delta
method in van der Vaart (1998, Theorem 23.9).
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covariates S strongly predict potential outcomes: the respective R2s between S and each
potential outcome must geometrically average at least 0�5 in order for the right-hand
side of (3.4) to be greater than negative one. A practical procedure for verifying this
condition when treatment is exogenous is to estimate the conditional expectation by
regressing Yi on Si in the treated and untreated subsamples, calculate the correlation
coefficient between the predicted values, and compare it to the right-hand side of (13).

The test described heuristically above may provide little information for either of two
reasons. The first is that unless covariates S sufficiently strongly predict outcomes, the
inequality will trivially be satisfied, since the right-hand side will be less than negative
one. The second is that predicted potential outcomes must be very negatively correlated
in order for the null to be rejected, meaning that moderate violations of stochastic in-
creasingness will not be detected, no matter how large the sample size.

Even in cases in which the formal test is underpowered, the test statistic can still
provide useful evidence regarding the plausibility of the stochastic increasingness as-
sumption. In particular, if the correlation between Ŷ (0) and Ŷ (1) is positive, it indicates
that observed factors move both treated and untreated outcomes in the same direction
lending plausibility to the belief that unobserved factors act in the same manner. This
is similar in spirit to how selection on observed variables can be used to inform a prior
about selection on unobserved variables in Altonji, Conley, Elder, and Taber (2013). If
the correlation between predicted outcomes is not only positive but also satisfies the
more stringent condition

Corr
(
Ŷ (0)� Ŷ (1)

)≥
√√√√(

1 −R2
0
)(

1 −R2
1
)

R2
0R

2
1

�

then it must be the case that Cov(Y(1)�Y(0)) ≥ 0, a necessary condition for stochastic
increasingness.

3.5 Bounding the distribution of complier effects of an endogenous treatment

To this point, we have assumed for simplicity that treatment, D, is exogenous. In many
applications, including our empirical example below, treatment is endogenous. In this
subsection, we show how the framework extends to endogenous treatments when an
instrumental variable that satisfies the conditions of the local average treatment effects
framework of Imbens and Angrist (1994).

Suppose treatment status is correlated with potential outcomes so that treatment-
control comparisons do not reflect causal effects. Identification relies on a binary in-
strumental variable, Z; for example, Z may be an indicator for being selected in a lottery
to be eligible to enroll in a charter school. Let D(z) be the (potential) treatment status
that would be realized if Z were set to z ∈ {0�1}. Likewise, let Y(d�z) be the potential
outcome that would be realized if D were d ∈ {0�1} and Z were z. We adopt the familiar
exclusion and monotonicity conditions from the local average treatment effects frame-
work of Imbens and Angrist (1994). The exclusion restriction means the instrument has
no direct causal effect on outcomes, that is, Y(d�z) = Y(d�z′), so that we can continue
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to index potential outcomes by treatment status alone: Y(0)�Y(1). The monotonicity
condition means the instrument never induces individuals not to receive treatment:
D(1) ≥D(0) almost surely. Finally, we assume that the instrument, Z, is independent of
(Y(1)�Y(0)�D(1)�D(0)). These conditions allow one to identify the distributions of po-
tential outcomes conditional on D(1) > D(0) (Abadie (2002)). We denote the so-called
“complier” distributions of potential outcomes F0|C(y) := Pr(Y(0) ≤ y|D(1) >D(0)) and
F1|C(y) := Pr(Y(1) ≤ y|D(1) >D(0)).

The key condition for bounding the treatment effect distribution when treatment is
endogenous is local mutual stochastic increasingness.

Definition 5. Potential outcomes Y(0) and Y(1) are locally mutually stochastically
increasing if

Pr
(
Y(1) ≤ t|Y(0) = y�D(1) >D(0)

)
and

Pr
(
Y(0) ≤ t|Y(1) = y�D(1) >D(0)

)
are each nonincreasing in y almost everywhere.

Local mutual stochastic increasingness means that among the subpopulation of
compliers potential outcomes are positively related. This condition implies that the dis-
tribution of treatment effects conditional on compliers can be bounded by the distribu-
tions of potential outcomes conditional on compliers, as the following theorem formal-
izes.

Theorem 6. Suppose Y(1) and Y(0) are locally mutually stochastically increasing. Then
F�|Y(0)�C(t|Y(0)) := Pr(� ≤ t|Y(0)�D(1) > D(0)) is bounded from below pointwise in t

and Y(0) by

FL
�|Y(0)�C

(
t|Y(0)

) :=

⎧⎪⎨
⎪⎩

0� Y(0) > F−1
0|C
(
F1|C

(
Y(0)+ t

))
�

F1|C
(
Y(0)+ t

)− F0|C
(
Y(0)

)
1 − F0|C

(
Y(0)

) � Y(0) ≤ F−1
0|C
(
F1|C

(
Y(0)+ t

))
�

and from above by

FU
�|Y(0)�C

(
t|Y(0)

) :=

⎧⎪⎨
⎪⎩
F1|C

(
Y(0)+ t

)
F0|C

(
Y(0)

) � Y(0) ≥ F−1
0|C
(
F1|C

(
Y(0)+ t

))
�

1� Y(0) < F−1
0|C
(
F1|C

(
Y(0)+ t

))
�

Proof. See the Appendix.

The theorem shows that when treatment is endogenous, the conditional distribution
of treatment effects among compliers can be bounded by functions of the distributions
of potential outcome among compliers, which Abadie (2002) shows are identified given
the exclusion and monotonicity conditions described above.
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As in the exogenous case, bounds on the distribution of compliers’ treatment effects
can be constructed by integrating the conditional bounds defined in Theorem 6 over the
compliers’ distribution of potential outcomes:

F̃L
�|C(t) = max

d∈{0�1}
E
[
FL
�|Y(d)�C

(
t|Y(d)

)|D(1) >D(0)
]
�

F̃U
�|C(t) = min

d∈{0�1}
E
[
FU
�|Y(d)�C

(
t|Y(d)

)|D(1) >D(0)
]
�

These integrated bounds are expectations of a function of potential outcomes condi-
tional on compliers, of the sort that can be computed using Abadie’s (2003) κ weights.

Similar to the exogenous case, bounds on the marginal distribution of compliers’
treatment effects can be further tightened, albeit at significant computational cost, by
directly searching over the set of bivariate copulae that satisfy stochastic increasingness:

FL
�|C(t) = inf

H(·�·)∈CSI

∫ ∫
1
(
F−1

1|C(v)− F−1
0|C(u) ≤ t

)
H(u�v)dudv�

FU
�|C(t) = sup

H(·�·)∈CSI

∫ ∫
1
(
F−1

1|C(v)− F−1
0|C(u) ≤ t

)
H(u�v)dudv�

Estimation of the bounds takes the form of (9) and (10) as in the exogenous case,
except empirical cdfs F̂0 and F̂1 are replaced by Abadie’s (2002) estimates of complier
potential outcome cdfs, F̂0|C and F̂1|C . Inference likewise proceeds as in the exogenous
case. The asymptotic normality result in Theorem 3 holds when the underlying potential
outcome cdf estimators are instrumental variables estimates of the complier cdfs pro-
posed in Abadie (2002), but with γ(v)Σ(v� ṽ)γ(ṽ)′ in Theorem 3 replaced by v0�1(y� y + t)

defined in Frandsen (2015, Theorem 4).
Finally, testing stochastic increasingness when treatment is endogenous closely fol-

lows the procedure described in Section 3.4, with one modification: the linear projec-
tions Ŷ (0) and Ŷ (1) of outcomes on covariates S, the associated R2s, and the correla-
tion between the projections that appear in condition (13) should be computed using
Abadie’s (2003) κ weights.

4. Empirical example: Distributional effects of KIPP lynn

A substantial literature has found that charter schools have widely varying effects on
student achievement (see Hanushek, Kain, Rivkin, and Branch (2007), Bettinger (2005),
Dobbie and Fryer (2013)). In many cases, students who attend charter school appear to
perform no better than students attending traditional public schools. However, Dobbie
and Fryer (2013) showed that charter schools that focus on increased instructional time,
tutoring, high expectations, effective use of data, and frequent teacher feedback are ef-
fective at increasing student achievement. Specific examples such as Harlem Children’s
Zone and the Knowledge is Power Program (KIPP) have been shown to close or dramat-
ically narrow the achievement gaps between white and minority students (see Dobbie
and Fryer (2011), Angrist, Dynarski, Kane, Pathak, and Walters (2010, 2012)). While these
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studies suggest that effective charter schools may boost disadvantaged students’ aca-
demic achievement on average, understanding the distribution of effects is also impor-
tant. In particular, parents may be more comfortable enrolling their students in charter
schools if a large majority of students benefit from attendance than if only a minority of
students do. Additionally, by understanding how the effects of achievement vary across
the distribution of control outcomes, parents and policymakers may have a better sense
of the types of children who would most benefit from charter school attendance.

For these reasons, we estimate our bounds in the context of KIPP, which is an orga-
nization that manages a set of “No Excuses” charter schools. Relative to many other tra-
ditional and charter schools, KIPP schools employ a longer school day and school year.
They seek to maintain high behavioral standards and focus instruction on math and
reading skills. This setting is also well suited for evaluation since the KIPP Lynn charter
school is oversubscribed and admission is rationed through a lottery. As a consequence,
admission can be used as a valid instrument for KIPP attendance. We focus on the ef-
fects of attendance rather than the effects of admission, since by assumption the latter
only affects outcomes through attendance.

In the KIPP context, mutual stochastic increasingness implies that if student A per-
formed better than student B in a traditional school, then student A’s counterfactual out-
come in the KIPP Lynn charter school would be drawn from a distribution that weakly
stochastically dominates student B’s counterfactual distribution. Unlike rank invari-
ance, this does not rule out student B leapfrogging student A in KIPP Lynn, but it does
mean student B has a lower probability of outperforming student A in KIPP Lynn than
would a student who performed better than student A in a traditional school. Similarly,
performing better in the charter school implies a stochastically dominant counterfac-
tual outcome distribution in traditional schools.

This assumption seems plausible in the KIPP context. In particular, unobserved
drivers of performance including latent ability, effort, and parental support are likely
to be helpful for academic achievement both in charter as well as traditional schools.
Consistent with our assumption, we show that observed characteristics predict perfor-
mance in similar ways in both types of schools. Indeed, it is difficult to think of factors
that would be helpful for academic achievement in one of these settings but not the
other.

Angrist et al. (2010, 2012) provided an evaluation of this program utilizing data from
students who applied to the KIPP Academy in Lynn, Massachusetts from 2005 to 2008.
Student outcomes are observed prior to application in 4th grade and then in subsequent
grades up to 8th grade. Taking advantage of the fact that admission to this location was
rationed through a lottery, the authors find that each year of attendance leads to an av-
erage increase in math achievement of 0�35 standard deviations.

We utilize the data from these earlier studies. In contrast to prior work, our treatment
is a binary variable for whether the student attended KIPP academy. Our outcome vari-
able is math performance in the 6th grade. Hence our estimate captures the cumulative
effect of KIPP attendance for up to 2 years of attendance. For this reason, our estimated
effect sizes will tend to be somewhat larger than those estimated by prior researchers.
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Table 1. KIPP lynn summary statistics.

Full Sample Non-Admitted Admitted P-Value Equal Means

Offered 0�66 0�00 1�00
(0�47) (0�00) (0�00)

Enrolled 0�56 0�00 0�85
(0�50) (0�00) (0�36)

Years Attended 1�10 0�03 1�63
(0�98) (0�26) (0�75)

6th Grade Math 0�04 −0�33 0�23
(1�01) (1�07) (0�93)

4th Grade Math −0�35 −0�35 −0�36 0.960
(1�02) (1�10) (0�99)

Female 0�45 0�46 0�45 0.954
(0�50) (0�50) (0�50)

Black 0�19 0�19 0�20 0.873
(0�40) (0�39) (0�40)

Hispanic 0�59 0�63 0�56 0.426
(0�49) (0�49) (0�50)

Asian 0�03 0�02 0�03 0.519
(0�17) (0�13) (0�18)

Other 0�01 0�00 0�02 0.315
(0�11) (0�00) (0�13)

Special Education 0�20 0�19 0�21 0.771
(0�40) (0�39) (0�41)

Limited English Proficiency 0�19 0�24 0�16 0.232
(0�39) (0�43) (0�37)

Free or Reduced Price Lunch 0�83 0�83 0�83 0.981
(0�38) (0�38) (0�38)

Observations 176 59 117

Note: The table shows summary statistics for the entire sample as well as for admitted and non-admitted students. Stan-
dard deviations are in parentheses. The right column contains p-values of an F-test of equal means between the admitted and
non-admitted students.

We view this effect of treatment on the treated as the policy relevant parameter for par-
ents considering enrolling their children in KIPP and for policymakers ascertaining the
efficacy of the program.

In Table 1, we present summary statistics for our sample, which consists of 176 stu-
dents who entered the lottery for 5th grade KIPP admission in 2006–2007.2 Similar to
prior studies, we find that approximately 65% of students are admitted into KIPP and
55% of all applicants eventually enrolled. This implies that 85% of admitted students at-
tended for at least 1 year. Admitted students attended 1�63 years out of a maximum of 2
years. One student who was not admitted and did not initially enroll eventually attended
KIPP. Given the near zero probability of attending among those in our sample not admit-
ted via lottery, the local average treatment effect of attending coincides with the average
effect of treatment on the treated. Examining student performance prior to application,

2We chose this sample because Figure 1 in Angrist et al. (2012) suggests average effects are largest, and
thus bounds are most likely to be informative in the 2006–2007 cohorts. The trade off of course is the smaller
sample size, which decreases precision.
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we see that in 4th grade the students performed 0�39 standard deviations below the
state-level mean in mathematics. Sixth grade performance suggests the program was
efficacious given that applicants performed just above the state mean in mathematics.
This is confirmed when observing the substantial difference in performance between
admitted and nonadmitted students. Examining demographics, we see that the sam-
ple is disproportionately male and Hispanic. Roughly 20% of students are categorized
as special education and the same fraction are limited English proficient. Over 80% of
applicants qualify for free or reduced price lunch. In the same table, we show charac-
teristics of students who won the lottery for admission and those who did not. All of
the observed characteristics prior to application appear balanced across admitted and
nonadmitted students suggesting randomization was successful.

Prior to estimating our bounds, it is helpful to estimate the average effect of atten-
dance on math achievement. To do so, we simply employ two-stage least squares in
which the dependent variable is math performance and our binary attendance mea-
sure is instrumented by an indicator variable that takes of a value of 1 if the student was
admitted to KIPP. We control for covariates including indicator variables for gender, eth-
nicity, special education status, limited English proficiency, and free or reduced price
lunch receipt. Table 2 shows the results. We see that the first stage has very high power
with an F-statistic of the instrument in excess of 500. The estimated effect of enrollment
on math achievement for applicants who choose to enroll is 0�67 standard deviations, an
effect that is both large and highly statistically significant. While our specification differs
from those in Angrist et al. (2010, 2012), the results are broadly consistent with those that
they found.3

We employ the test of stochastic increasingness we develop to see if observed char-
acteristics are associated with outcomes in the treated and control state in a manner
consistent with this assumption. To perform this test, we perform Abadie-κ-weighted
regressions of outcomes on a spline in prior math score and the demographic charac-
teristics described above. In Appendix E, we provide additional estimation details and
describes the Stata software implementation of our procedure. Table 3 shows the results.

Table 2. Estimated effects of KIPP lynn attendance on math score.

Effect of Attendance 0�67
(0�17)

First Stage Partial F-Statistic 572�2
Observations 176

Note: The first row shows the estimated impact of attendance at KIPP on mathematics in the 6th grade. This estimate
comes from a two-stage least squares regression in which the excluded instrument is an offer of admission into KIPP through
the lottery. Robust standard errors are in parentheses. Controls include indicator variables for female, ethnicity categories,
special education status, limited English proficiency, and free or reduced price lunch receipt. The second row shows the first
stage partial F-statistic of the instrument.

3The quantile treatment effects (not reported) range between 0�1 standard deviations and 1�15 standard
deviations, implying that charter school attendance first-order stochastically shifted the distribution of
math scores. The rank invariance assumption in this setting would therefore imply that no students suffered
a reduction in math achievement due to attending a charter school. Rank invariance is a much stronger as-
sumption than the stochastic increasingess assumption we consider.
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Table 3. Test of positive correlation of potential outcomes.

R2 Treated Outcomes 0�539
R2 Control Outcomes 0�628
Correlation between Predicted Treated and Control Outcomes 0�947
Threshold Correlation 0�71

Note: The R2 values for the treated and control outcomes come from kappa-weighted regressions of math outcomes on
a cubic spline in 4th grade math achievement with three knots and variables for gender, ethnicity, special education status,
limited English proficiency, and free or reduced price lunch receipt.

The correlation between predicted outcomes in the treated and control states is 0�947.
This satisfies the necessary condition for positive correlation of potential outcomes (and
thus for stochastic increasingness) and also satisfies the sufficient condition for posi-
tive correlation, shown in the bottom row of Table 3 labeled “threshold correlation.” The
positive correlation between predicted potential outcomes lends plausibility to the as-
sumption of stochastic increasingness. Naturally, when using covariates to tighten the
bounds, we must make the assumption of conditional stochastic increasingness, which
is untestable without other predictive variables in addition to those in the conditioning
set.

We now examine bounds on the cdf of treatment effects. Figure 2 shows the
Williamson–Downs bounds, our integrated pointwise bounds, and the uniform bounds,
all calculated without incorporating covariates. Note that the integrated pointwise
bounds are much tighter than the Williamson–Downs bounds. The uniform bounds
tend to be even somewhat narrower. This figure suggests that the assumption of stochas-
tic increasingness is very valuable for narrowing the bounds on the distribution of treat-

Figure 2. Estimated bounds on the cdf of effects on 7th grade math score. The solid curves
show the Williamson–Downs bounds. The short-dash curves impose stochastic increasingness
by integrating over the conditional (pointwise) bounds. The long-dash curves impose stochastic
increasingness uniformly by searching over the space of copulae that satisfy stochastic increas-
ingness. No set of bounds uses covariates.
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Table 4. Bounds on the fraction with a negative effect of charter school enrollment on math
score.

No Covariates Covariates

Bounding Method: Lower Upper Lower Upper

Williamson-Downs 0�00 0�68 0�05 0�49
(0�00� 0�81) (0�01� 0�57)

Stochastic Increasingness (integrated pointwise) 0�00 0�47 0�07 0�33
(0�00� 0�63) (0�02� 0�41)

Stochastic Increasingness (uniform) 0�00 0�40 – –
– – – –

Note: Estimated lower and upper bounds for the fraction of students whose 7th grade math score was hurt by enrollment
in KIPP Lynn, among students whose enrollment was determined by the lottery outcome. 95-percent confidence intervals for
the fraction hurt are reported in parentheses below the estimated bounds, calculated via Imbens and Manski’s (2004) method.
The covariates used in computing the bounds in the two right-hand columns include fourth-grade math score and indicators
for female, black, hispanic, other race or ethnicity, special education, limited English proficiency, free or reduced-price lunch
status, and the interaction of female and minority status. Confidence intervals and covariate-adjusted bounds corresponding
to Stochastic Increasingness (uniform) were not estimated due to computational infeasibility. N = 176.

ment effects. Table 4 provides a numerical comparison between these three methods
showing the lower and upper bound on the fraction of students experiencing negative
treatment effects. Examining the second column, we see that the upper bound on the
fraction hurt using the Williamson–Downs bounds is 0�68, while our integrated point-
wise and uniform bounds are 0�47 and 0�40, respectively.

The Williamson–Downs bounds allow for top students in the control state system-
atically to be the bottom students in the treated state. Our bounds are tighter than the
Williamson–Downs bounds because we rule out this systematic switching of positions.
Our integrated pointwise bounds assume the worst (or best) counterfactual distribution
consistent with stochastic increasingness for each student in the control group. How-
ever, the worst case bounds for all students in general cannot all obtain simultaneously,
and so these bounds are conservative. Our uniform bounds find a worst (or best) case
that is internally consistent across all individuals in both the control and treated distri-
bution, leading to further tightening of the bounds. This comes at the cost of a much
higher computational burden, however.

Our bounds, while substantially tighter than the Williamson–Downs bounds, can
be tightened further by incorporating covariates. Figure 3 shows the integrated point-
wise bounds on the overall distribution of treatment effects with and without covariates.
Our covariates include 4th grade math score and indicators for female, black, Hispanic,
other race or ethnicity, special education, limited English proficiency, free or reduced-
price lunch status, and the interaction between female and minority status. We show
the integrated pointwise bounds since they are nearly as tight as the uniform bounds
and calculating uniform bounds when using continuous covariates takes orders of mag-
nitude more computational time. The figure shows that covariates dramatically tighten
the bounds. Referring back to Table 4, we see that using covariates tighten our bounds
on the fraction hurt from 0�47 to 0�33.

In Figure 4, we show the (pointwise) 95% confidence intervals corresponding to our
integrated pointwise bounds incorporating covariates. Even looking at the top of the
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Figure 3. Estimated bounds (11) and (12) on the cdf of effects on 7th grade math score. The
solid bounds include no covariates. The dashed bounds use the 4th grade math score and demo-
graphic characteristics described in the text.

confidence interval on the upper bound of fraction of students hurt by treatment, we
can still infer that even in the worst case only a minority of students could have been
harmed by treatment. Indeed, Table 4 shows that the top of the confidence interval on
the upper bound of students who could have been harmed by treatment is 0�41.

We now employ the methodology we developed to bound the fraction hurt by out-
come in the control state. Figure 5 shows this relationship incorporating covariates. We
see that the upper bound on the fraction of students hurt is increasing in the outcome

Figure 4. Estimated bounds on the cdf of effects on 7th grade math score. The solid curves
show the bounds imposing stochastic increasingness by integrating over the conditional (point-
wise) bounds incorporating covariates. The dashed curves show 95% confidence bands for the
treatment effect cdf calculated via Imbens and Manski’s (2004) method.
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Figure 5. Estimated bounds on the probability of a negative effect of KIPP attendance on 7th
grade math scores conditional on 7th grade math score in the untreated state. The solid curves
show the estimated bounds using 4th grade math score and demographic characteristics de-
scribed in the text. The dashed curves show 95% confidence bands.

in the control distribution. The lower bound is uniformly zero. The figure makes clear
that the probability of being hurt by KIPP attendance was lower than 0�5 for students
performing below the state average level in the control distribution, even taking into
account the 95% confidence interval. Table 5 shows these results in table form. Once
covariates are used, our bounds suggest that even students expected to perform in the
75th percentile of the control distribution likely benefited from attending KIPP. Collec-
tively, these results suggest that students who would have performed poorly in regular
public schools overwhelmingly benefited from treatment.

In Figure 6, we trace out bounds on the average treatment effect as a function of
the outcome in the control state. The lower bound suggests that all except students who
would have performed extremely well in the control state enjoyed a positive expected
treatment effect from KIPP attendance. This provides additional evidence that students
who would have performed poorly in their regular schools likely benefited from KIPP
attendance. This is true even looking at the bottom of the confidence interval of the
lower bound of average treatment effects. We show these results numerically in Table 5.

Summarizing the findings from the KIPP charter school experiment, we confirm that
attendance increased math achievement substantially. Even in the worst case, we find
that treatment increased math achievement for the substantial majority of students.
Furthermore, worst case bounds suggest that nearly all students who would have per-
formed poorly in the control state benefited from treatment. We also show that the av-
erage treatment effect was very large and positive for such students and still unambigu-
ously positive for all except the students with the very best control outcomes. These
results suggest that our bounds can be informative regarding the distribution of treat-
ment effects, particularly when we have covariates that are strongly predictive of student
outcomes and large treatment effects.
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Table 5. Effects of charter school enrollment conditional on math score in untreated state.

Untreated Math Score No Covariates Covariates

Percentile in Control Group St. Dev. Relative to MA Average Lower Upper Lower Upper

A. Bounds on fraction with negative treatment effect
10 −1.92 0�00 0�16 0�00 0�13

(0�00� 0�39) (0�00� 0�22)
25 −1.18 0�00 0�25 0�00 0�16

(0�00� 0�43) (0�00� 0�25)
50 −0.33 0�00 0�40 0�00 0�25

(0�00� 0�58) (0�00� 0�36)
75 0.46 0�00 0�62 0�00 0�46

(0�00� 0�74) (0�00� 0�55)
90 0.89 0�00 0�76 0�00 0�59

(0�00� 0�86) (0�00� 0�73)

B. Bounds on conditional average treatment effect
10 −1.92 0�65 2�65 1�03 2�54

(0�15� 2�82) (0�73� 2�82)
25 −1.18 0�46 2�01 0�77 1�98

(0�05� 2�14) (0�55� 2�12)
50 −0.33 0�16 1�43 0�48 1�43

−(0�18� 1�60) (0�28� 1�55)
75 0.46 −0�24 0�89 0�18 0�86

−(0�46� 0�97) (0�07� 0�93)
90 0.89 −0�49 0�58 0�03 0�52

−(0�66� 0�69) −(0�10� 0�60)

Note: Estimated lower and upper bounds for the conditional fraction of students whose 7th grade math score was hurt by
enrollment in KIPP Lynn (Panel A) and the conditional average effect of KIPP Lynn attendance (Panel B), among students whose
enrollment was determined by the lottery outcome, by level of the untreated potential math score. 95-percent confidence in-
tervals for the fraction hurt are reported in parentheses below the estimated bounds, calculated via Imbens and Manski’s (2004)
method. The covariates used in computing the bounds in the two right-hand columns include fourth-grade math score and in-
dicators for female, black, hispanic, other race or ethnicity, special education, limited English proficiency, free or reduced-price
lunch status, and the interaction of female and minority status. N = 176.

5. Conclusion

In this paper, we propose partially identifying conditions that imply bounds on the dis-
tribution of treatment effects, an object of considerable policy and economic interest,
but which is not identified under standard assumptions. The proposed condition—
that an individual’s potential outcomes are each weakly stochastically increasing in the
other—should be plausible in many empirical settings, and has testable implications.
The bounds can be constructed from standard estimates of the conditional distributions
of potential outcomes.

Specifically, our results give bounds on quantities such as the fraction of individu-
als harmed by treatment, the median treatment effect, and the average treatment effect
conditional on the untreated potential outcome. The bounds implied by our stochastic
increasingness condition are substantially tighter than the Williamson–Downs bounds
based only on the restrictions implied by the marginal distributions of potential out-
comes. Our bounds are further tightened with the use of covariates.
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Figure 6. Estimated bounds on the average effect of KIPP attendance on 7th grade math scores
conditional on the 7th grade math score in the untreated state. The solid curves show the esti-
mated bounds using the 4th grade math score and demographic characteristics described in the
text. The dashed curves show 95% confidence bands.

We calculate our bounds in the context of a KIPP charter school. We show that not
only was the impact of attendance on mathematics positive overall, but also that we
can rule out that more than a small fraction of attending students were harmed. The
beneficial effects were particularly strong for students with poor outcomes in the control
state.

The bounding methodology we develop in this paper represents an important tool
for applied researchers. To maximize the usefulness of these bounds, we offer a sugges-
tion. Our bounds are much tighter in the presence of covariates that strongly predict
outcomes in the treatment and control state. Such covariates are also useful for assess-
ing the plausibility of the stochastic increasingness assumption. Hence, we encourage
researchers to take full advantage of existing pretreatment covariates (or other variables
not affected by treatment) and when possible collect additional covariates, even if such
variables are not required to consistently estimate an average treatment effect.
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