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Appendix C1: Markets

To design market boundaries I analyzed mobility of parents and teachers. The design
balances the trade-off in terms of sample-size and mobility across markets: a large
within-market sample size yields low mobility across markets but a small number of
(large) markets, whereas a large number of markets is obtained by having small within-
market sample sizes with large across-market mobility.

The unique geographical configuration of Chile aided in the identification of empir-
ically closed or nearly closed markets: the country occupies a narrow but long coastal
strip, where mobility between northern and southern regions is hindered.1 The result-
ing number of nearly perfectly closed markets is 18. Table C1 reports the region in which
each market lies, and the number of schools in each school sector and market, which
correlates to within-market sample sizes.

Michela M. Tincani: m.tincani@ucl.ac.uk
1With a total area of 291,933 square miles (756,102 km2), Chile is larger than all U.S. states except Alaska

and larger than all countries in the European Union. Yet, it extends 2653 miles (4270 km) from north to
south, and it averages only 110 miles (177 km) from east to west.
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Table C1. Markets and number of schools.

Market Region Municipal Voucher

1 Arica and Parinacota 51�5 57�5
2 Coquimbo 171 99�5
3 Libertador G. B. O’Higgins 101 61�5
4 Atacama 27 15�5
5 Maule 286 93
6 Biobío 193�5 67�5
7 Biobío 110 84
8 Los Ríos 128�5 111�5
9 Los Lagos 201�5 71�5
10 Los Lagos 73�5 54�5
11 Antofagasta 46 31�5
12 Libertador G. B. O’Higgins 85 23�5
13 La Araucanía 170 198�5
14 La Araucanía 20 32�5
15 Región Metropolitana (Santiago) 377 747�5
16 Valparaíso 228 261
17 Biobío 153�5 41
18 Magallanes and Antártica 13 10

Tot 2436 2061�5
Average 135�3 114�5

Note: Data source: SIMCE 2006. The number of schools in each market and sector is the average between the number of
primary and of secondary schools.

Appendix C2: Additional tables and figures

Table C2. Labor supply: descriptive analysis.

Teach Teach in Public Sector Work

Female 0�189 0�031 −0�175
(0�013) (0�021) (0�015)

Number of children −0�021 0�016 −0�015
(0�006) (0�009) (0�007)

Age 0�008 0�020 −0�003
(0�001) (0�001) (0�001)

Observations 5061 3195 5471
Pseudo R2 0�100 0�133 0�120

Note: Data source: ELD and CASEN for 2006. Standard errors in parentheses. Results from Probit Regression of the indi-
cated dummy dependent variable on: gender, number of children, number of children interacted with gender, age, age squared.
Marginal effects reported. Inverse Probability Weights. Samples restrictions by columns: (1): individuals who work, (2): individ-
uals who teach, (3): full sample.
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Table C3. Log-wage regressions by occupational sector: descriptive analysis.

Public Voucher Nonteaching

Age 0�030 0�052 0�027
(0�012) (0�018) (0�017)

Age squared −0�000 −0�000 −0�000
(0�000) (0�000) (0�000)

Female −0�102 −0�142 −0�384
(0�031) (0�032) (0�044)

Prof. certifications 0�029 0�087 0�073
(0�031) (0�034) (0�042)

Graduate degree 0�051 0�093 0�204
(0�029) (0�036) (0�062)

Constant 11�948 11�629 12�810
(0�254) (0�354) (0�359)

Observations 1186 1217 1806
R2 0�181 0�123 0�103

Note: Data sources: ELD and CASEN for 2006. Results from ordinary least square regressions. Standard errors in parenthe-
ses. Dependent variable: logwage. Inverse Probability Weights.

Table C4. Demand for public sector schooling: descriptive analysis.

Value Standard Error

Log income −0�112 0�002
Primary 0�029 0�003
Rural 0�117 0�006
Parents’ education −0�029 0�001
Family size 0�015 0�001

Observations 100,000
Pseudo R2 0�091

Note: Data source: SIMCE 2006. Results from Probit regression of the dummy for Public school on log household income,
elementary school dummy, rural home dummy, parental education, family size. Marginal effects reported.

Table C5. Achievement by school sector, descriptive analysis.

Public Voucher

Parents’ education 0�079 0�088
(0�002) (0�002)

Income pro-capite (100,000 CLP) 0�455 0�354
(0�020) (0�015)

Squared income pro-capite (100,000 CLP) −0�079 −0�059
(0�007) (0�004)

Constant −1�184 −1�105
(0�016) (0�018)

Observations 47,007 52,993
R2 0�104 0�118

Note: Data source: SIMCE 2006. Results from ordinary least square regressions. All regressors reported. Dependent vari-
able: average between Mathematics and Spanish SIMCE test scores (standardized). Standard errors in parentheses.
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Figure C1. Model fit: tuition payments net of financial aid.

C2.1 Additional estimates of structural parameters

Table C6. Socioeconomic status of students by school sector, at baseline, and under the merit-
based teaching reform (first counterfactual).

Municipal Voucher

Prereform (Baseline)
Parental education (yrs) 9�78 11�54
Household income (CLP) 207,249 337,811

Post-reform (Counterfactual)
Parental education (yrs) 10�08 11�64
Household income (CLP) 224�976 353,600

Note: Baseline values computed at the simulated baseline choice.

Table C7. Type proportions.

Type Proportion Standard Error

Households type 2 0�4790 0�1374
Households type 3 0�3240 0�1499
Potential teachers type 2 0�4240 0�0002
Potential teachers type 3 0�3790 0�0001
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Figure C2. Model fit: test scores by school sector.

Table C8. Parameters of nonpecuniary utility of potential teachers.

Home Public Voucher

Intercept type 1 −3300�0 −0�8000 −0�9590
(0�0002) (0�0002) (0�0002)

Intercept type 2 minus type 1 −2150 −0�1050 0�5120
(0�0002) (0�0002) (0�0002)

Intercept type 3 minus type 1 651�0 −0�1550 0�3400
(0�0002) (0�0002) (0�0002)

Female 1640�0
(0�0002)

Female × N children 36�00
(0�0002)

Age −17�2
(0�0002)

N children 14�3
(0�0002)

Has children aged 0–2 −11�9
(0�0002)

Has children aged 3–6 173
(0�0002)

Age squared 0�3310
(0�0002)

Non-pecuniary utility from teaching if female 1�00
(0�0002)

Note: Standard errors in parenthesis.
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Table C9. Log of prices of teaching skills.

Market Log of Skill Price Standard Error

2 −0�109 0�0002
3 0�0395 0�0002
4 −0�440 0�0002
5 −0�0558 0�0002
6 −0�532 0�0002
7 −0�229 0�0002
8 −0�374 0�0002
9 −0�288 0�0003
10 −0�227 0�0002
11 −0�702 0�0002
12 −0�0627 0�0002
13 −0�0113 0�0002
14 0�216 0�0002
15 0�0371 0�0002
16 −0�596 0�0002
17 −0�456 0�0002
18 −0�147 0�0002

Note: Standard errors in parenthesis. Log of skill price normalized to 0�00 in market 1.

Table C10. Parental preference parameters.

Value Standard Error

Intercept of preference for Municipal, type 1 −1�1200 0�1018
Types 2 minus type 1 0�7530 0�1432
Types 3 minus type 1 −0�0758 0�1432
primaria in preference for Municipal 0�5020 0�1159
rural in preference for Municipal 0�3730 0�1128
Weight on consumption, type 1 0�1180 0�1439
Type 2 minus type 0�1870 0�1679
Types 3 minus type 1 5�570 0�1354
Log of preference shock standard deviation −4�5200 0�1812
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Figure C3. Model fit: test scores by school sector, market number 5.

Table C11. Fellowship assignment.

Value Standard Error

Intercept 0�4480 0�1431
p, price charged by school net of voucher 0�1860 0�1278
primaria 0�6670 0�1294
Family size 0�1050 0�1141
rural −0�3250 0�1156
Monthly income −0�0542 0�1414
Log of standard deviation of measurement error −5�91 0�1241

Table C12. Profit function of voucher schools.

Value Standard Error

Variable cost c1: enrollment 0�01097 0�6610
Variable cost c2: enrollment squared 2�928e−06 0�0009
N classes per teacher, c3 4�099e+03 2�87e+07
Log of standard deviation of shock σcost −3�212 453e+02

Note: For an average-sized school, the estimated variable cost per student is 4�8% of the voucher amount.
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Appendix C3: Governmental formulae for private school revenues

This Appendix reports the formulae in article 25 of the law Decreto con Fuerza de Ley
No 2, De Educacion, de 20.08.98, fully incorporated into the model. Let p denote the
tuition charged by the school, and let v be the voucher. Each household choosing the
voucher sector is responsible for the payment ofp−v−f (Zh)where 0 ≤ f (Zh)≤ (p−v)
is the amount of fellowship received by a family with characteristics Zh if the voucher
sector is chosen. Zh includes an indicator for schooling level, family size, whether the
household is in a rural location, and household income. However, the amount of the
per-pupil subsidy that is effectively received by the private school is not necessarily v.
It decreases as the average tuition payments in the school increase. The latter depend
on the tuition fee charged by the school, and on the composition of the households at
the school, which determines the amount of financial aid received by the student body
at the school. Formally, let EPV (p� r) denote the mean tuition payments in the voucher
school sector:

EPV (p� r)=
∫ (
p− v− f (z))gz(z|V chosen;p�v)dz� (8)

where the conditional density gz(z|V chosen;p� r) is indexed by (p� r) because it de-
pends on parental school choice, which is a function of the prices (p� r). Below, I drop
the dependence of EPV on (p� r) for simplicity. The first Government formula adjusts
the amount of per-pupil voucher subsidy effectively received by the school. Accord-
ingly, the adjusted per-pupil gross revenues (Rg(EPV )) in the private school sector
are:

Rg(EPV )=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p if EPV ≤ 0�5�

p− 10%(EPV − 0�5USE) if 0�5< EPV ≤ 1USE�

p− 10%(EPV − 0�5USE)− 20%(EPV − 1USE) if 1USE < EPV ≤ 2USE�

p− 10%(EPV − 0�5USE)− 20%(EPV − 1USE)

− 35%(EPV − 2USE) if 2USE < EPV �

where USE stands for Unidad de Subvención Educacional.
Adjusted per-pupil net revenues are different from adjusted per-pupil gross rev-

enues because the school is also required to contribute to the financial aid budget. That
is, private schools partially cover the fellowship expenses. The law provides that the per-
pupil contribution to financial aid due by the private schools be

Rf (EPV )=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5%EPV if EPV ≤ 1USE�

5%EPV + 7%(EPV − 1USE) if 1USE < EPV ≤ 2USE�

5%EPV + 7%(EPV − 1USE)

+ 10%(EPV − 2USE) if 2USE < EPV �

Therefore, the adjusted net per-pupil revenues are R̃(p� r�E(p� r)) = Rg(EPV ) −
Rf (EPV ).
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Appendix C4: Constrained maximization of approximated profits

Because cumulative normal distribution functions enter the expression for profits, the
function Π and its first and second derivative functions do not admit a closed form;
hence,Π’s critical points and curvature properties cannot be derived analytically. In es-
timation, I approximate profits with a function with a known closed form and I solve the
constrained maximization of approximated profits at each candidate parameter value.
To perform the approximation, I first evaluate numerically the true profit function at a
large number of points (p(s)� r(s)). To evaluate the true profit function, I derive numer-
ically the student enrollment and teacher supply functions: E(p� r;v), T(p� r;v), and
NT(p� r;v) at each evaluation point (p(s)� r(s)) by solving the second stage of the model,
and I plug them into the profit function. I then approximate the profit function using an
interpolating regression. Notice that the approximation is conditional on a realization
of the variable cost shock εcost. For simplicity, in the following formulae I drop the de-
pendence of the estimated regression coefficients on the cost shock. Approximation is
by ordinary least squares using a cubic interpolating polynomial:

Π̂ = â1 + â2p+ â3p
2 + â4r + â5r

2 + â6pr + â7p
3 + â8r

3 + â9p
2r + â10pr

2� (9)

I solve the constrained maximization of approximated profits subject to the legal cap
on tuition. I derive the points that satisfy the Kuhn–Tucker conditions, and then verify
that at those critical points the second-order conditions are satisfied. To find the critical
points, I use a combination of analytical and numerical methods. I solve for the school’s
choice variables (p� r) and for the Kuhn–Tucker–Lagrange multiplier λ.

The approximated problem of the firm is the following:

max
(p�r)

Π̂

p≤ p̄ w/multiplier λ

or equivalently

max
(p�r)

â1 + â2p+ â3p
2 + â4r + â5r

2 + â6pr + â7p
3 + â8r

3 + â9p
2r + â10pr

2

p≤ p̄ w/multiplier λ�

I solve for the optimal (p∗� r∗) and for the Kuhn–Tucker–Lagrange multiplier λ∗ follow-
ing the procedure described in Judd (1998), Chapter 4, page 122. At the optimum, the
inequality constraint is either binding or not binding. I find the set of solutions to the
Kuhn–Tucker conditions under both configurations. Among the feasible solutions thus
found, I select the one with the highest value of approximated profits. The first-order
conditions are

∂L

∂p
= â2 + 2â3p+ â6r + 3â7p

2 + 2â9pr + â10r
2 − λ= 0�

∂L

∂r
= â4 + 2â5r + â6p+ 3â8r

2 + â9p
2 + 2â10pr = 0�
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Case (i): When the constraint is not binding at the optimum, the Kuhn–Tucker–
Lagrange multiplier is equal to zero. I set λ = 0 and I use Newton method to solve nu-
merically the following system of two equations in the two unknowns (p� r):

{
â2 + 2â3p+ â6r + 3â7p

2 + 2â9pr + â10r
2 = 0�

â4 + 2â5r + â6p+ 3â8r
2 + â9p

2 + 2â10pr = 0�

Case (ii): When the constraint on p is binding at the optimum, p= p̄. I use the New-
ton method to solve numerically the following system of two equations in the two un-
knowns (r�λ): {

â2 + 2â3p̄+ â6r + 3â7p̄
2 + 2â9p̄r + â10r

2 − λ= 0�

â4 + 2â5r + â6p̄+ 3â8r
2 + â9p̄

2 + 2â10p̄r = 0�

It is important that the approximation be good in order for the solution of the ap-
proximated problem to be close to the solution of the real problem. The R2 of the ap-
proximation depends on the vector of model parameters. At the parameter estimates,
the average of the R2 across markets is 96�14%, and the prices that maximize the ap-
proximated function are a very good approximation to the prices that maximize the true
function. Specifically, tuition fees are identical because the caps are binding in both sce-
narios. With regards to skill rental rates, the average difference between the maximum
of the approximated function and the maximum of the true function is 2�04% of the true
maximum.

Appendix C5: Further model details

C5.1 Equilibrium existence and uniqueness

Proposition 1. An equilibrium exists.

Proof. An equilibrium exists because, given prices rm and pm, each potential teacher
and each household in market m solve a discrete-choice problem that admits at least
one most-preferred choice by construction: utilities are well-defined. Second, the
voucher school’s profit is a continuous real-valued function defined on the compact set
[0� p̄] × [0� r̄] ∈R2, where it is assumed that there exists an arbitrarily large upper bound
r̄ to the rental rate that the school can offer. The profit function attains a maximum value
by the extreme value theorem.

Proposition 2. The equilibrium of the second-stage subgame is unique.

Proof. The potential teacher labor supply depends only on the rental rate r, and not
also on the tuition fee p: T(r),NT(r). Therefore, the second stage of the model is equiv-
alent to a sequential game where teachers move first, and parents, observing the teacher
distribution across sectors, choose school sectors. In the last stage, each household h
has a unique most preferred alternative e(X̃h�kh� νh) ∈ {M�V } by virtue of the fact that
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the preference and technology shocks νh are continuously distributed. Therefore, no
household is indifferent between two options. Similarly, in the second-last stage, each
potential teacher i has a unique most preferred alternative d(X̃i�ψi� εi) ∈ {M�V �NT�H}
because the preference, wage and technology shocks εi are continuously distributed.
Therefore, by backward induction the equilibrium of the subgame is unique.

C5.2 Equilibrium teacher skills by school sector

To compute the mean teaching skills supplied to the voucher sector in each m, I derive
the density of teaching skills conditional on the voucher school being chosen, which in
general is different from the population density of teaching skills. Recall that the teach-
ing skills of individual i are

si = exp
(
a0(li)+ a′

1Xi + εtech
i

)
(10)

with εtech
i ∼ N(0�σ2

V ). That is, conditional on type, skills are log-normally distributed.
Conditional on Xi = x, the density of teaching skills depends both on the density of the
shock εtech

i and on the type probability ψli :
2

f s(si|x)= ψli

siσV
√

2π
exp

{
−

(
ln si − a0(l)− a′x

)2

2σ2
V

}
�

The population density is obtained by integrating over the distribution of x in marketm,
f xm(x):

f sm(si)=
∫

ψli

siσV
√

2π
exp

{
−

(
ln si − a0(l)− a′x

)2

2σ2
V

}
f xm(x)dx�

To derive the density of teaching skills in the voucher school, define A(q�εtech
i � li) to be

the subset of R3 that is such that if ε−tech
i = [εMi εNTi εHi ]′ ∈A(q�εtech

i � li), an individual
with characteristics q, shock realization εtech

i , and type realization li chooses the voucher
school. Letting Prm(V ) denote the proportion of individuals choosing sector V in market
m, the density of teaching skills in sector V may be written as

gVm(si|sector V chosen)= 1
Pr
m
(V )

ψli

∫
ε−tech
i ∈A

f sm(si)f
−tech(

ε−tech
i

)
dε−tech
i �

where I let
∫
ε−tech
i ∈A denote multiple integration with respect to εMi , εNTi , εHi over the area

ε−tech
i ∈A(q�εtech

i � li) and where the joint density of the shocks in sectorsM ,NT , andH
is

f−tech(
ε−tech
i

) = 1
σMσNTσH

φ

(
εMi
σM

)
φ

(
εNTi
σNT

)
φ

(
εHi
σH

)
�

2If ln(x)∼N(0�σ2), x has density 1
xσ

√
2π
e
− (lnx−μ)2

2σ2 with x≥ 0.
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The density of teaching skills in the municipal school, gMm (si|sectorM chosen), can be
derived in a similar way.3

The mean skills supplied to each sector in market m are obtained using the condi-
tional densities gMm , gVm:

s̄Mm =
∑
li

ψli

∫
sig

M
m (si|sectorM chosen)dεtech

i �

s̄V m =
∑
li

ψli

∫
sig

V
m(si|sector V chosen)dεtech

i �

(11)

Appendix C6: List of moment conditions

I compute 607 moments, 321 pertaining to parents and 286 to potential teachers.

C6.1 Parents’ moments: Matching choices, test scores, and fellowship amounts

I use the following categories:

• family size nfamh: [2�3], [4�6], ≥7

• monthly income in terms of CLP100,000 Yh: [0�0�5], (0�5�1�5], (1�5�2�5], (2�5�3�5],
(3�5�4�5], (4�5�5�5], (5�5�7], (7�9], (9�11],>11

• average parental education in years peduch: [0–6�5], (6�5�8], (8�9�5], (9�5�10�5],
(10�5�11�5], (11�5�12], (12�12�5], (12�5�13], (13�14], >14

• monthly income in terms of CLP100,000 divided by family size, Yh
nfamh

: [0�0�15],
(0�15�0�25], (0�25�0�36], (0�36�0�45], (0�45�0�50], (0�50�0�70], (0�70�0�84], (0�84�1�13],
(1�13�1�75],>1�75

I partition the state of observable exogenous variables and build an indicator for
whether an observation belongs to a certain element of the partition. The moment con-
ditions are obtained by multiplying the difference between actual and predicted out-
comes by this indicator. The moment conditions are built on the following outcomes
(number of moment conditions in parentheses):

• Test scores by sector and by
– market (18 × 2 = 36)

– monthly income per capita and parental education (10 × 10 × 2 = 200)

• Fraction choosing voucher school by
– market (18)

– parental education (10)

3First, define the proportion of potential teachers choosing the municipal school in market m, Prm(M).
Then define the area B(q�εtech

i � li), that is, such that if [εMi εNTi εHi ]′ ∈ B(q�εtech
i � li), an individual with char-

acteristics q, shock realization εtech
i , and type realization li chooses the municipal school.
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– monthly income (10)

– number of individuals in the family (3)

– elementary school (2)

– rurality of the household’s residence (2)

• Private school tuition payments made by parents by
– elementary school, number of individuals in the household, rurality of the resi-

dence (2 × 3 × 2 = 12)

– monthly income (10)

– market (18)

Total number of parents’ moments: 321.

C6.2 Potential teachers’ moments: Matching choices and accepted wages

I use the following categories:

• coarse age, agei: [20 − 30], [31 − 40], [41�50], ≥51

• fine age, agei: [20�31], (31�36], (36�39], (39�45], (45�48], (48�52], (52�56],>56

• number of children in the household, nkidsi: 0, 1, 2, ≥3

• number of children aged 0–2, nkids2i: 0, ≥1

• number of children aged 3–6, nkids3 − 6i: 0, ≥1

I partition the state of observable exogenous variables and build an indicator for
whether an observation belongs to a certain element of the partition. The moment con-
ditions build on the following outcomes (number of moment conditions in parenthe-
ses):

• Accepted wages by sector (3 working options) and by
– age, gender, professional certifications (3 × 4 × 2 × 2 = 48)

– graduate degree (3 × 2 = 6)

– market (3 × 18 = 54)

• Fractions in sectorM , V , and NT (exclude one sector to avoid multicollinearity and
hence singularity of the variance-covariance matrix of the moment conditions) by
– professional certifications (3 × 2 = 6)

– age, gender, graduate degree (3 × 4 × 2 × 2 = 48)

– market (3 × 18 = 54)

– gender, number of kids (3 × 2 × 4 = 24)



14 Michela M. Tincani Supplementary Material

– number of kids up to 2 years of age, age (3 × 2 × 4 = 24)

– number of kids of aged 3–6 (3 × 2 = 6)

• Accepted wages in the teaching occupations (2) by finer age category (2 × 8 = 16)

Total number of potential teachers’ moments: 286.

Appendix C7: Details of the first step of the estimation

For simplicity, I drop the subscript from θII, and refer to the parameters of the second
stage of the model, estimated in the first step of the estimation, as θ. Let yi denote an
observed outcome for individual i. Let Ωi × {1� � � � �L} denote the state space of individ-
ual i with elements (ωi� li) (where li ∈ {i� � � � �L} is the person’s type). Vector ωi contains,
for example, degrees, age, gender, etc. Let ŷi(ωi� θ) denote the outcome predicted by the
model. This outcome is replaced by the simulator:

˜̂yi(ωi�θ)= 1
S

S∑
s=1

L∑
l=1

Pr(li|θ) ˜̂yi(ωi� li� s� θ)

obtained by drawing S simulated shocks from the model’s shock distribution under pa-
rameter θ and using the model to simulate behavior, and hence an outcome for each
individual, simulation, and type: ˜̂yi(ωi� li� s� θ).4 The simulated outcomes are then aver-
aged across simulations and types. Moment conditions are constructed by taking the
average of the individual difference between the actual and the simulated outcome:
mi(θ)= yi − ˜̂yi(ωi�θ).

The MSM finds the vector θ that minimizes the weighted distance of the empirical
moment conditions from zero:

θ̂MSM = arg min
θ
m(θ)′nWnmn(θ)� (12)

where Wn is a symmetric positive definite weighting matrix such that as n→ ∞, Wn →
W in probability with W symmetric and positive definite. Vector mn(θ) is the sample
average of the individual deviationsmi(θ).

Estimation accounts for the fact that multiple datasets of different sizes are used.
Consider the population moment condition based on outcome yi:

E
[(
yi − ŷi(ωi� θ)

)
Ii(ωi� yi nonmissing)

]
and suppose that there are M moment conditions based on the M deviations {m1

i � � � � �

mMi }, with

mmi = (
ymi − ŷmi

(
ωmi �θ

))
Ii

(
ωmi � y

m
i nonmissing

)
�

4S is set equal to 100. The shocks drawn at each simulations are all the preference, wage, and technology

shocks in the second stage of the model: νpref
hm , νhj , ε

pref
iH , εtech

i , εiM , εiNT .
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Letmi be a vector that stacks all deviations for individual i. Assume that the popula-
tion is divided in two strata: the stratum of students, with mass HA, and the stratum of
college graduates, with massHB. TheM population moment conditions are

HAEA[mi] +HBEB[mi]�
where EA[·] and EB[·] represent within-stratum expectations.

Let nA be the sample size of students and nB be the sample size of potential teach-
ers, and let mi(θ) be the M × 1 vector of empirical deviations computed at a parameter
value θ. The sample analog of the population moment conditions is

HA
1
nA

∑
i∈A

wimi(θ)+HB 1
nB

∑
i∈B

wimi(θ)�

where wi are weights provided with the datasets that are used to reweight the sample
back to random sampling proportions, and that are normalized to sum to nA and nB.5

Let n= nA+ nB and premultiply the sample moments by n
n . Denote the vector of empir-

ical moments based on a sample of size n bymn(θ):

mn(θ)= 1
n

n∑
i=1

(
HAaAwimi(θ)I(i ∈A)+HBaBwimi(θ)I(i ∈ B)

)
�

where aA = n
nA

, aB = n
nB

and I(·) is an indicator function equal to 1 if the expression in
parentheses is true.

The method of simulated moments finds the vector θ that minimizes the weighted
distance of the empirical moment conditions from zero:

θ̂MSM = arg min
θ
mn(θ)

′Wnmn(θ)� (13)

whereWN is anM×M symmetric positive definite weighting matrix such that as n→ ∞,
Wn →W in probability withW symmetric and positive definite.

To see the asymptotic properties of the estimator, let nA�nB → ∞ with nA
n → aA <

∞ and nB
n → aB <∞ as in Bhattacharya (2005), who derives the asymptotic properties

of the generalized method of moments with a stratified sample. The MSM estimator
defined in (13) is consistent and asymptotically normal:

√
n(θ̂− θ)⇒N(0�Q)

with Q= (�′Wn�)−1�′WnV Wn�(�′Wn�)−1 and �= E[ ∂m(θ)∂θ′ ]. V is the variance covariance
matrix of the moment vector.6

5For SIMCE observations, the weights are all equal to one because the SIMCE sample is a simple random
sample.

6The optimal weighting matrix is the inverse of the variance covariance matrix of the moment condi-
tions, W ∗

n = V −1. The asymptotic variance reduces to (�′V −1�)−1 when the optimal weighting matrix is
used. I cannot adopt the optimal weighting matrix because the variance covariance matrix is a high-order
sparse matrix that cannot be numerically inverted. The inverse of the variance covariance matrix must be
obtained to compute the standard errors of the efficient MSM estimator. This negative result is standard in
numerical methods. I adopt a weighting matrix that contains the variances of the moments on the main
diagonal and zeros elsewhere. This matrix is easily invertible.
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To estimate consistently the asymptotic variance of the estimator, I substitute V with
a consistent estimate V̂ computed at θ̂MSM. The estimator includes a stratum correction
that accounts for the sampling design.7 The estimator of the variance covariance matrix
is

V̂ =
∑
i∈A

(
HA
nA

wi

)2
mi(θ̂MSM)mi(θ̂MSM)

′

+
∑
i∈B

(
HB
nB
wi

)2
mi(θ̂MSM)mi(θ̂MSM)

′

− 1
nA

(∑
i∈A

HA
nA

wimi(θ̂MSM)

)(∑
i∈A

HA
nA

wimi(θ̂MSM)

)′

− 1
nB

(∑
i∈B

HB
nB
wimi(θ̂MSM)

)(∑
i∈B

HB
nB
wimi(θ̂MSM)

)′
� (14)

where mi(θ̂MSM) is the M × 1 vector of individual-level deviations between actual and
simulate outcomes computed at θ̂MSM. To estimate consistently the matrix of moments’
partial derivatives, I use

�̂=HA 1
nA

N∑
i∈A

wi
∂mi

∂θ′

∣∣∣∣
θ̂MSM

+HB 1
nB

N∑
i∈B

wi
∂mi

∂θ′

∣∣∣∣
θ̂MSM

�

where the differentiation is numerical. Letting �t denote a vector of the same size as the
parameter vector with zeros everywhere and δ > 0 as its tth element, the derivative of
themth element ofmi(θ) with respect to the tth element of θ is computed as

∂m̂mi (θ)

∂θt

∣∣∣∣
θ=θ̂MSM

= −m̂mi (θ+ 2�t)+ 8m̂mi (θ+�t)− 8m̂mi (θ−�t)+ m̂mi (θ− 2�t)
12δ

∣∣∣∣
θ=θ̂MSM

� (15)

Appendix C8: Second step of the estimation: Implementing NPSML

Let θI = [c1c2c3σcost]′ denote the vector of parameters to be estimated in the second step
(i.e., the parameters from the first stage of the model), θ̂II the vector of estimates of θII

and r̂m the vector of wage rates obtained in the first step of the estimation. Imagine ob-
taining a sample of markets, and suppose that for each sampled market, a sample of
college graduates making labor supply decisions and of students is available. Denote by
Xm = {x1� � � � � xi� � � � � xNS}i∈m andQm = {q1� � � � � qi� � � � � qNC}i∈m the within-market sam-
ples of students and of college graduates, respectively. Let (r̂m�Xm�Qm)m=1�����M be an

7The correction term is derived and discussed in Bhattacharya (2005). Intuitively, ignoring the fact that
observations come from two separate strata would overestimate the between-strata variances.
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independently and identically distributed sample of markets. The true log-likelihood
is

LM(θI)=
M∑
m=1

lnlm(θI)�

where lm(θI) is the market-contribution to the likelihood, that is, the density of r com-
puted at the observed value r̂m conditional on the exogenous characteristics in the mar-
ket, on θI and on θ̂II: lm(θI) = f (r|θI�Xd�Qd; θ̂II)|r̂m . The function lm(θI) cannot be
computed analytically, therefore, I approximate it using a kernel estimator based on
an i.i.d. simulated sample (εmscost)s=1�����S of draws from the log-normal distribution of
εcost.

Denote by r̂sm(θI) the simulated wage rate in marketm given a value for θI , and con-
ditional on θ̂II, Xm, Qm. The s superscript means that for every simulated draw s, the
wage rate is derived as a solution to private school profit maximization. I estimate the
likelihood lm(θI) by

l̃S(r̂m|Xm�Qm�θI; θ̂II)= l̃mS(θI)= 1
Sh

S∑
s=1

K
(
r̂m − r̂sm(θI)

h

)
�

where K(·) is the normal kernel and h is the optimal bandwidth that minimizes the ap-
proximate Integrated mean squared error, and it is such that h→ 0 as S→ ∞.

The simulated log-likelihood is obtained by summing over markets:

L̃MS(θI)=
M∑
m=1

ln l̃mS(θI)

and the NPSML estimator is defined as the global maximum of L̃MS(θI):

θ̂I(M�S)= arg max
θI∈ΘI

L̃MS(θI)�

whereΘI is assumed to be compact. Under regularity conditions, θ̂I(M�S) is asymptot-
ically normal and asymptotically efficient:

√
D

(
θ̂I(M�S)− θI�0

) ⇒
S�M→∞

N(0�Ω)�

whereΩ is the asymptotic variance-covariance matrix of the exact maximum likelihood
estimator:

Ω=
(

−E
[
∂2LM(θI�0)

∂θ2∂θ
′
I

])−1
E

[
∂LM(θI�0)

∂θI

∂LM(θI�0)

∂θ′
I

](
−E

[
∂ILM(θI�0)

∂θI∂θ
′
I

])−1
� (16)
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