SUPPLEMENTARY APPENDIX FOR “INFERENCE ON TREATMENT
EFFECTS AFTER SELECTION AMONGST HIGH-DIMENSIONAL
CONTROLS”

A. BELLONI, V. CHERNOZHUKOV, AND C. HANSEN

ABSTRACT. In this supplementary appendix we provide additional results, omitted proofs and

extensive simulations that complement the analysis of the main text (arXiv:1201.0224).

1. SPLIT-SAMPLE ESTIMATION AND INFERENCE

In this section we discuss a variant of the double selection estimator based on sample splitting.
The motivation for the split-sample estimator is that its use allows us to relax the requirement

s2log®(p V n) = o(n) that is assumed in the full-sample counterpart to the milder condition

slog(p vV n) = o(n).

To define the estimator, divide the sample randomly into (approximately) equal parts a and b
with sizes n, = [n/2] and ny = n — n,. We use superscripts a and b for variables in the first and
second subsample respectively. We let the index & = a, b refer to one of the subsamples and let
k¢ ={a,b} \ {k} refer to the other.

For each subsample k = a,b, the model I* is selected based on the subsample k£ independently

from the subsample k€. In what follows the model 7% is used to fit the subsample k¢. A constructive
way to obtain 7% and 1Y is to apply the double selection method for each subsample to select the

sets of controls 1% := ff U fg UIA{; and I? := jqz’ U fg Ufg.
Then we form estimates in the two subsamples

(@, 5% = anganiﬂg}p{Ena[(yi — dioe — 2}B)?] : B;=0,Vj ¢ I}, and
aclR,pe

(6", 3") = argmin {By, (4 —diov = (B)’] = B; = 0.9 ¢ I'}
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For an index 7 in the subsample k, we define the residuals

(1.1) = [yi — dicy, — i By) {ng/ (ng — 5% — 1)}/2
(1.2) v =d; — :U'ﬂk and
(1.3) G = Y|V 5] < On'?/[(3* v nl/?) log n]'/?}

c

where Bk: € argming{E,, [(d; — 2}8)?] : B; =0,Vj & I C} and 3% = |I*|.

Finally, we combine the estimates into the split-sample estimator based on 7% and I? is defined

as

(1.4) Aap = {(na/m) Y + (np/n) X"} {(1a/n) Y0 + (n/n)T0d0},
where T = D¥ M+, D¥ /ny,.

We state below sufficient conditions for the analysis of the split-sample method.

Condition ASTESS (P). (i) {(vi,di,zi),i = 1,...,n} are i.n.i.d. vectors on (Q,F,P) that
obey the model (2.2)-(2.3), and the vector x; = P(z) is a dictionary of transformations of z;,
which may depend on n but not on P. (ii) The true parameter value o, which may depend on P,
is bounded, ||ao|| < C. (iii) Functions m and g admit an approximately sparse form. Namely there

exists s > 1 and Bno and By, which depend on n and P, such that

(15) m(zl) = x;ﬂmo + Tmi, ||Bm0”0 <85 {E Tmi }1/2 <C V 3 n,
(1.6) 9(z) = TiBgo + i |IBgollo <5, {E[ZI}2 < CVs/

(iv) The sparsity index obeys slog(pV n)/n < C8,. (v) For each subsample k = a,b, the model I*
satisfies condition HLMS. (vi) We have E[|v{| +|¢{[] < C for some ¢ > 4 and n*4slog(pV n)/n <
Céy.

The Conditions ASTESS(i)-(iii) agree with the corresponding conditions in ASTE. The remaining
conditions ASTESS(iv)-(v) are implied by Condition ASTE. We note that Condition ASTESS(vi)
is needed only for obtaining consistent estimates of the asymptotic variance. Such conditions are

mild since they do not require uniform estimation of the functions g and m.

The next result establishes that the split-sample estimator ¢ has similar large sample properties

to the full-sample double-selection estimator under weaker growth condition.

Theorem SA.1 (Inference on Treatment Effects, Split Sample). Let {P,} be a sequence of data-
generating processes. Assume conditions ASTESS(P)(i-v), SM(P), and SE(P) hold for P, = P,

for each n and each subsample. The split sample estimator ¢y based on 1% and I obeys,

([Bof) "Bl ¢FI[E]] ) ™2 /n(Gas — ao) ~ N(0,1).
Moreover, if Condition ASTESS(P)(vi) also holds, the result continues to apply if E[v?] and E[v}(?]
are replaced by E,[0?] and E,[0 2@] for G and T; defined in and .
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Proof. We use the same notation as in the proof of Theorem 1 with the addition of sub/superscripts

indicating the appropriate subsample k = a, b, where k¢ = {a,b} \ {k}.

Step 0.(Combining) In this step we combine both subsample estimators. Letting Y% = D* M The DF /ny,

for kK = a,b, so that we have

Vi(aa —ao) = ((na/n) T+ (np/n)Y") 7" x
X ((na/n)T*/n(dq — ao) + (ns/n) T*v/n(d — ag))
= (V'V/n+op(1))™! x
X ((na/n)Y*/n(da — ao) + (ny/n) X*v/n(dy — an)) + op(1)

= {V'V/n} ' x {(1/V2) X Gua[viCi] + (1/V2)Grp[vi¢i]} + op(1)
= {V'V/n} ' x Gplvi¢;] + op(1)

where we are also using the fact that
E,, [07] — By, [v2] = op(1), k=a,b
which follows similarly to the proofs given in Step 5.
For o2 := [EvZ]| 'E[v?¢?]|[Ev?]~1, define
Zn = 0, /n(dqy — ag) = Gplzin] + op(1),

where z; , = ngvig/\/ﬁ are i.n.i.d. with mean zero. We have that for some small enough § > 0

Blainl?* SB[l 1G] < Bluft+20 BlG+2 S 1,

by Condition SM(ii).

This condition verifies the Lyapunov condition and thus implies that Z,, —4 N(0, 1).

Step 1.(Main) For the subsample k = a,b write & = [Dk'Mﬂch/nk]fl [DY M YR [ny] so
that .

\/nk(dk — Oé(]) = [Dk/Mﬁchk/nk} [Dk/./\/lﬂc (gk + Ck)/\/nk = iilzl : ik.

By Steps 2 and 3, iy, = V¥ V¥ /ng+op(1) and iy = V¥'¢¥/,/ng+op(1). Next note that V¥V /n;, =
E[V¥V¥ /ni]+0p(1) by Chebyshev, and we have that Ej[v2¢?] and E[V*'V* /n,] are bounded from

above and away from zero by assumption.

Step 2. (Behavior of i;.) Decompose
'Lk - Vklck/\/ ng + mk/Mfkcgk/\/ ng + mk/Mfchk/\/nk + Vk/Mfkcgk/\/nk - Vklpfkcck/\/ ng.

=lg,q =igp =g =k,q

First, note that by Condition ASTESS we have
lik,al = [m" M g* v/ < | Mem®|| | Mapee g*ll/v/k = 0p (1)
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Second, by the split sample construction, we have that T is independent from ¢*, and by assump-

tion of the model m* is also independent of ¢¥. Thus by Chebyshev inequality

ik Sp [Mpem®/ /g = op(1),
where the last relation follows by ASTESS.

Third, using similar independence arguments, by Chebyshev and Condition ASTESS, conclude

lik.el Sp IIMpeeg®/v/mill = op(1).
Fourth, using that 5*° <p s by ASTESS so that qb;in(?kc) <p 1 by condition SE, we have that
ikl < By (IFYXMCE ) /il Sp /s/n = op(1)
by Chebyshev since HXkBVk(ﬁCC)/\/@H <p \/s/nk because of the independence of the two sub-
samples k and k°.
Step 3.(Behavior of ii;.) Since iiy = (m* 4+ V*) Mz (mF + V*) /ny,, decompose
i = VEVF Ing + mk'/\/lfkcm /ng + ka'Mﬂch/nk - Vk"PI VEng.

=ig.q =i} =ik e
Then |iiy,| = op(1) by Condition ASTESS, |iigp| = op(1) by reasoning similar to deriving the
bound for |ig |, and |iig .| = op(1) by reasoning similar to deriving the bound for |i q].
Step 4.(Auxiliary Bounds.) Note that
lg* = X*Bell - = llg* — Ppee (Y* — D¥ e )|
< [Mpeg®ll + ar — aol|Pae D*|| + [P ¥l
By condition ASTESS ||[M7.cg"|| = op(n'/*) and by condition SM(ii) we have |PpeDF/ /gl <
|D*/\/nx|l <p 1, and by Step 1 we have |dy, — ag| <p n~'/2. Moreover,
|PpeCEIl - = | XRIYXRIY XRI)) X I) ¢F|
< [V Bk (5 / Drnin o BENNXF [TV R/ /g
We have \/Gmaxk(3%)/bmink(3*) <p 1 by condition SE, and | X*[I*)¢*//nk| Sp Vs* by

condition SM(ii), the independence between the selected components 7% and ¢* since they are

based on different subsamples, and applying Chebyshev inequality.

Finally, collecting terms we have

lg" = X*Bill/Vnk Spo(n™ ) + /54 /my

Similarly, we have ||m¥ — X*B,||/vVnk <p o(n=1/4) + \/?’“C/nk.

Step 5.(Variance Estimation.) Since 3% <p s = o(n), (nx — 5* — 1)/ny = op(1), so we can
use n as the denominator. Recall the definitions Eo = y; — d;qp — T, ﬂk, v; = d; — ! Bk and

= (01{|CO| V [5;| < Hy} if i belongs to subsample k where Hy = C'/n/[(3%° V n1/2)logn]. For
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notational convenience let A; = {]Col\/|vl| H}. Since ¢ > 4,5 <p s, and n*%slog(nVp) = o(n),

we have n'/? = op(H},). Hence consider
En[0?] = (na/n)DYMpD/ng + (ny/n) DY Mz, D° /ny,
= (ng/n)iiq + (np/n)iiy = V'V/n + op(1) = E[vZ] + op(1)
by Step 3 and E[|v;|9] < 1 for some ¢ > 4 by condition SM(ii).
By Condition ASTESS(vi), for each subsample k = a, b, we have

En, [v7C7] = Ex[vf¢?] —p 0

by Vonbahr-Esseen’s inequality in von Bahr and Esseen (1965) since
ExlloiGi?*°] < (Bxlloa "2 IE]) GIT)Y?

is uniformly bounded for 4 + 2§ < g. Thus it suffices to show that

By, [67C7] — Eny [v7¢] —p 0.

7 >
By the triangle inequality
By [52C2 — v2¢7]]

B, [(02C2 — v2¢)1{Ai}]] + [En, [(32CF — v3¢)1{ASY]]
B, [(82 — v2)C{ AN + [En, [03(G — AU AN+
(

B, [(52 — 0@ — 1A+ 0p(1)
since [E, [(2C2 — v2¢?)1{AS}]| = op(1) by Step 6. Then,
B [02(E — OU{AD]| < 2B, [{di(ao — 64)}202] + 2B, [{)s — gi}202]

ERTI1 =:11ig
+2 max;<n, ’”1‘{Enk[ }}I/Q{Enk[ (a0 @k)Q]}1/2

=:ili3

+2 maxi<n [Vi| {En, [(P02} Y 2 {En, [(95 — «Br) ] }/?

=114

<
<
+

As a consequence of Condition SM(ii) we have E[max;c, d?] < n?/9, E[max;<,(?] < n?/9,
E[max;<, v ] < n2/4, thus by Markov inequality we have max;<p |di| + |G| + [vil Sp nt/a.
We have the following relations:
iy < |ag — dg|*Ep, [d2) maxi<, v? <p n~'n?1=op(1),
iy < maxicn 07 En, ({276 — g:}*] Sp 09 {o(n™V*) + /5 /n}? = op(1
iiiz  <pn%/1/n = op(1),
ity <p n'o(n=1*) + /35 /n} = op(1)
since B, [GPo7] Sp 1, Bn,[{#}8 — 9:}] Sp {o(n™ /%) + /35 /n}* by Step 4, 3*° <p s, and
la, — ap|? <p 1/n by Step 1.

Similarly, E,, [(0? — v?)(?] = op(1).
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Finally, since max;<, ||[1{A; }(vZ,Q,Q,vl) 12, Sp (HEVn2/7) <p H?, we have
B, [(02 — v2)( = YHAMN| < B, [(87 — o)) H{ANER, [( — ) 1{A}/?
SAB 2007 + 07) (0 — vi) 1{ A}, [2 (G + ) (G — G2 {A}2
Sp (Hi Vv 02 Y {En, [(0; — vi)|En, [(G — )]}/
<p HE{o(n /") + /)2

S TRt ega 10 ™1?) +35 /n} = o(1).

Step 6.(Controlling large terms) By definition of the event A; we have

HPEn, [1{AS)] < By, [(P21{AS)]
< 4]Enk [Cfl{Af}] + 4]Enk [d?(dk - 040)21{/1;‘:}] + 4Enk[{x;ﬁvk - 9@'}21{"45}]
Sp /9By, [L{ASY] + 0?97 By, [L{AFY] + En, [{iB) — 9:}?]-

Since n'/9 = op(Hy), and Ey,, [{}8 — :}2] <p o(n~1/2) 4+ 5% /n, we have

En [1{AS}] Sp {o(n™'/?) + " /n}/ H].
Therefore,

En, [GO7L{AFY] Sp 0 9B, [{AF}] Sp 0/ {o(n™/?) + 5% /n}/HS.

Finally note that

n/4{o(n=1/2)45% /n} < n?/a n2/4(5%°vnl/2) logn + n2/a5% log n n2/9(3% vn1/2)

Hy ~ nl/2 n n n = OP(l)

since ¢ > 4, % <p s, and n?/%s log(n V p) = o(n) by ASTESS. Also, by construction, we have
E, [%21{140}] =0.

2. PROOF OoF LEMMA 1

We establish the result for Lasso (the proof for other feasible Lasso estimators is similar).

By Lemma 7 in Belloni, Chen, Chernozhukov, and Hansen (2012), under our choice of penalty
level and loadings, we have that the condition A/n > 2¢/|U~'E,[#6][o0 holds with probability
1 —o(1). Thus, the conclusion of Lemma 11 of Belloni, Chen, Chernozhukov, and Hansen (2012)
holds with probability 1 — o(1), namely for ¢; = (E,[r?])!/?

~ 20 4éne, )\ 2
N A< i max 7100 - :
27) 5 ”(E,?é%‘é (m)) el < Af)

where ¢ = (¢ +1)/(c — 1),

~ 2c denes \?
H:{meN M > 25Gmax(m) [ ¥ ( )\\/j> }
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meN ¥

Ke = maxw (1 imax( 5\/8/ )

By Condition SE, with probability 1 — o(1) for n sufficiently large we have rz > £'/2||¥]|os sO
that with the same probability
2¢
2.8 — <1
(28) =

Moreover, by condition RF we have with probability 1 — o(1) that

(2.9) max{[[ oo, [T oo} S 1.
Finally, since A\ 2 /nlog(p V n) we have
A
(2.10) enes < VMO < ith probability 1 — o(1)

A5 ™ /slog(pVn)
since ¢s Sp \/3/771 by condition ASM and Chebyshev inequality.
Therefore, for some constant C, we have C's € H, so that min,,cy dmax(m) < " for n sufficiently

large with probability 1 —o(1) by Condition SE. In turn combining this bound with (2.8)), (2.9) and
(2.10) into (2.7) we have that s < s holds with probability 1 — o(1) which is the first statement of

(i).

To show the second statement in (i), note that

min /Elf(z) - 80P < \ELf() — 287

BERP: B;=0 VjgT

where B\ is the Lasso estimator. Again by Lemma 7 in Belloni, Chen, Chernozhukov, and Hansen
(2012) we have that the assumptions of Lemma 6 in Belloni, Chen, Chernozhukov, and Hansen
(2012) hold with probability 1 — o(1). Using Condition SE to bound k: from below and Condition
RF to bound ||\/I\l||C>O from above with probability 1 — o(1) as before, and A < a+/nlog(p V n), it
follows from Lemma 6 in Belloni, Chen, Chernozhukov, and Hansen (2012) that with probability
1 —o(1) that

VElfGo) — #4312 S oy 22082 Y1)

n

The results regarding Post-Lasso in (ii) follow similarly by invoking Lemma 8 in Belloni, Chen,
Chernozhukov, and Hansen (2012).

3. VERIFICATION OF CONDITIONS FOR THE EXAMPLES FROM SECTION 4.1

3.1. Verification for Example 1. Let P be the collection of all regression models P that obey

the conditions set forth above for all n for the given constants (p,b, B, q.,q). Below we provide
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explicit bounds for ', k”, ¢, C, 6, and A,, that appear in Conditions ASTE, SE and SM that
depend only on (p, b, B, ¢z, q) and n which in turn establish these conditions for any P € P.

Condition ASTE(i) is assumed. Condition ASTE(ii) holds with |ag| < C{**TF = B. Condition
ASTE(iii) holds with s = p and rg; = 7 = 0.

Condition ASTE(iv) holds with §{5T% .= p?log?(p V n)/n — 0 since s = p is fixed. Finally, we
verify ASTE(v). Because ©; = v;, (; = ¢; and the moment condition E[|v!|]+E[|¢?]] < C3*TF = 2B
with ¢ > 4, the first two requirements follow. To show the last requirement, note that because
E[||zi]|%] < B we have
(3.11)

n 1/qx
p <max |Zilloo > t1n> <P [Z szqu] >ty | <nE[||z]|%]/tE < nB/tl = ALSTE.

1<i<

Let t1, = (nlogn)'/% BY/% so that ALSTE — 1 /1logn. Thus we have with probability 1 — A{STF

1I£1&L<X H‘T H2 sn —1/2+42/q < (nlogn)Z/qu2/qxpn 1/242/q _ 5ASTE
i

It follows that 52AnSTE — 0 by the assumption that 4/q, +4/q < 1.

To verify Condition SE note that

/ P E| xmsczk P 4]
P([Enfrsel] — Blasal)] > ) <303 —5 <y 2m2
k=1 j=1 2n o, L=t n
< PEll"] _ pB /% B
\ nt%n X nt%n In -

Setting to, := b/2 we have AJE = (2/b)2BY%p/n — 0 since p is fixed. Then, with probability

1 — A7F we have

Amin (En [.17@.%‘/] )

(2

Amax (En [xzx;])

min(E[zi77]) — [|En[z:2]] — Elz2]|
max (E[ziz}]) + [|Ep[z;2]] — Elzzf]|

b/2 =: K/,

A
" E[[|z:|] + /2 < 2B =: &".

NV
VY%

In the verification of Condition SM note that the second and third requirements in Condition
SM(i) hold with ¢§™ = b and C$™ = B%/9. Condition SM(iii) holds with &Y™ := log3p/n — 0

since p is fixed.
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The first requirement in Condition SM(i) and Condition SM(ii) hold by the stated moment

assumptions, for ¢; = v; and ¢; = (;, §; = d; and §; = y;,

Elf] <B=4;
E[ldf|] <207 E[|aifmol?] + 297 E[Jvf|] < 297 El [l ||| Bmol| 7 + 297 E[|v{ ]
< 207 1(BY%= Bl 4 B) =: A
E[d}] <23(BY%B*+ B) =: A
Blyi] < 3%[laoll*Eld]] + 3% B0l "Ell|l=:]I] + 3°E[}]
< 33B423 A4, + 33B*BY% 1 33BY1 = A3
max E[23,57] < max (E[z}])*(E[5])/? < BY4 (E[g])"/* < BY% (Ay v A3)'/? = A,
1<y<p 1<y<p
_ 3. 3 A 3/q 3. 3/q+3/qz _.
lrgfgipEwaezl I = max Bllzy|Elle| | o] < B max Ellay[] < B : Ay
max 1/E[z2] < 1/Amin(Ezi2l]) < 1/b=: A
1<5<p

since 4 < ¢ < ;. Thus these conditions hold with C§M = Ay (A; + (AL V A3)/2 4+ Ay + As + Ag).

Next we show Condition SM(iv). By (3.11) we have maxjcicy, ||2i]|% < (nlogn)?/% B?/% with
probability 1 — A‘f‘fTE , thus with the same probability

n2/tp log(p VvV n)

5 slog(nVp) 2/
. 28 7L qx
I%an(HxIHOO - < (Blogn) -

s
since g, > 4 and s = p is fixed.

Next for ¢, = v; and €; = (; we have

P €l pBA/at+4/4: Sur
P (s (8, ~ B ) > 55 ) < ZMSMQ\ e = A

7j=1
by the union bound, Chebyshev inequality and by E[z} i e}] = E[.T%E[E? | ] < BY9t4/% | Letting
525;{\/[ = B2/4%2/%:=1/4 5 () we have Aiy = p/nl/2 — 0 since p, B, q and ¢, are fixed.

Next for y; = d; and g; = y; we have

p 4/qz A4/
Z [3;5;] o PBYRAST su
P (121;2;“ - E)[ zgyz | > 5 > n 55]\/[ 2 < n(éégé\/[)g — A2n

7=1
by the union bound, Chebyshev inequality and by

. i 14/ G Ry o a4
Blodi] < Blad) VB[] < Blak )Y B[glY < BYe A
holding by Hélder inequality where 4 < ¢ < ¢, such that 4/¢+4/G =1, and

E[gf] < (1437 aol)E[d]] + 3771 |Bgo | TE[[l2:]|7] + 39 E[¢]]
< 39(Ay + BiAy + BIBY% + B) =: Ag.

Letting 5;39,{\/[ = B4/q’“A§/qn_1/4 — 0 we have A%VI = jo/nl/2 — 0 since p, B, ¢ and ¢, are fixed.
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Finally, we set ¢ = ™, C = max{C{TE C{TE oM C9MY | 5, = max{§{5TE §5TE
SEM 4 05M + 65MY — 0, and A, = max{A{STE 4 AFM + ASM AFFY 0. O

3.2. Verification for Examples 2 and 3. We will make use of the following technical lemmas

in the verification of examples 2 and 3.

Lemma SA.1. Let f;; ~ N(O,UJQ»), oj < o, independent across 1 = 1,...,n, where j = 1,...,p.
Then, for some universal constant C > 1, we have that for any k > 2 and v € (0,1)

P<11£1?§<p{IEn[| FEMYE > 0CVE +on™ 2log(2p/v)) 5.

Proof. Note that P(E,|| Z’;H > M) = P(||f41Ik > Mn) = P(|| f|x > (Mn)'/F).

Since ||| flle = llglle| < I|f —glle < ||f — gl|, we have that || - || is 1-Lipschitz for k£ > 2. Moreover,

Elll£5l%] < (Bl 1EDY" = ZE [EMYE = nM R E] ()
= nF (k22D ((k +1)/2)/T(1/2)}/* < n'FoVEC.
By Ledoux and Talagrand (1991), page 21 equation (1.6), we have

Pl f4lle > (Mn)'/*) < 2exp(—{(Mn)'/* — E[| £511x]}?/207).
Setting M := {oVkC + on~*,/21og(2p/7)}*, so that (Mn)Y/* = n'/*o\/kC + o1/210g(2p/7) we

have by the union bound and o > o;

P(max E,[|ff[] > M) < p max P(En[|f; > M) <.
1<5<p

0

Lemma SA.2 (Uniform Approximation). Let h; = x.0, + p; be a function whose coefficients
0n € S4(p), and k < Amin(Elziz})]) < Amax(E[ziz]]) < k. For s = AYapl/2a o > 1, define Bho as
in (4.31), mhi = hi — x,Bro, fori=1,...,n. Then we have

rhal < il R/ ) 3/2{ ENCITREN A, pz/m}ﬂpz\

Proof. Let Ty, denote the support of Bpg and S denote the support of the s largest components
of 0. Note that |T}| = |S| = s. First we establish some auxiliary bounds on the ||6,[T}]|| and
10n[T5]]]1. By the optimality of T}, and B9 we have that

VEI(h: — 21810)2) < VE[@lST0[ST + pi)?] < V(0[S + /E[p?] and
VElh: — 2410)2) = \[EUi(60n — Bro) + pi}?) > VEITE — /Elo?.
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Thus we have |0, [T5]|| < /F/E||0,15°| + 21/E[p?]/&. Moreover, since ), € S4(p), we have
‘eh Sc H2 Z 92 Z j—2a < A28_2a+1/[2a _ 1] < A28—2a+1
Jj=s+1 Jj=s+1

since @ > 1. Combining these relations we have

10L[TF]| < VE/EAs™ at1/2 4 9\ [E[p?] /8
= E/EVs/n+21/E[p?]/k.
The second bound follows by observing that
16, T3]l < V/slOn[T5 0 ST+ H9h[ N < VsllOn[TE)| + As™H /[a — 1]
/8?2 /n\/k/k+ 24/ sE //{+(s/\f)/[a—1]
Vs2/ny/k/k a/la — 1] +2,/sE
By the first-order optimality condition of the problem (4.31) that defines (o, we have
Bli[Th]2i[Th) | (Bro[Th] — On[Th]) = Elai[Th]a[T3) 104 (T5] + Elzi[Th] i)

Thus, since ||E[z;[T3]pi]l| = supj,=1 E['i[Th]pi] < supjpy =1 VE[(0'z:[T3])%]/ E[p;] we have

&]|Bro — On[Tlll - < ElOR[TE + 1/ RE[p]
Vs/n (B32) /&) + \/Elp?] VE(L + 2\/F/k)
where the last inequality follows from the definition of s = A/ anl/ 2a_ Therefore
il = hi = iBrol = |5 (6 — Bro)| + |pil
< [|zilloc 10h — Brollr + [pil
< Vsllzilloo |On, — Broll + 1zillool|One I + |pil
<

lzilloo{v/52/n (R/£)*? + \/sElpf] /5 \/B/6(1 + 2/R/K) }+
Hlzilloo (/5% /ny/E/ afla — 1] + 24/ sE[pF] /) + |pi]
< lilloo (R/ )P {ES /52 fn+ 5y SElp7) [} + |pil.

AN/

<K
<

0

Example 2. Let P be the collection of all regression models P that obey the conditions set forth
above for all n for the given constants (k, &, a, A, B, x) and sequences p,, and §,,. Below we provide
explicit bounds for «’, k", ¢, C, §,, and A,, that appear in Conditions ASTE, SE and SM that depend
only on (k,R,a, A, B,X), p, 6, and n which in turn establish these conditions for any P € P. In
what follows we exploit Gaussianity of w; and use that (E[|n/w;|*])'/* < Gy (E[|n/w;|*])"/? for any
vector 7, ||n]] < oo, where the constant G} depends on k only.
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Conditions ASTE(i) is assumed. Condition ASTE(ii) holds with |ap| < B =: C{A9TE. Because
Om, 0y € S%(p), Condition ASTE(iii) holds with

p p
s = Al/anl/%t7 Tomi = m(zz) — Z Zijﬂm0j7 and Tgi = g(zl) _ Z Zijﬁng
J=1 j=1
where ||Bmollo < s and ||Bgollo < s. Indeed, we have
2
E[r2,] <E Z Orm(5)%i(5) <R Z H?nm < RA%s729 J[20 — 1] < Rs/n
jzst+l j2s+1

where the first inequality follows by the definition of S0 in (4.31), the second inequality follows
from 60,, € S%(p), and the last inequality because s = Al/apl/2a  Qimilarly we have E[rgi] <
E[(X 5541 0g(i)2i)?] < RAZs™204/[2a — 1] < Rs/n. Thus let G557 .= /T,

Condition ASTE(iv) holds with §5TF .= A%/enl/e=1]og2(p Vv n) — 0 since s = AY*n1/2¢, A is
fixed, and the assumed condition n!=®/%10g?(p v n)log?n < §,, — 0.

The moment restrictions in Condition ASTE(v) are satisfied by the Gaussianity. Indeed, we
have for ¢ = 4/x (where x < 1 by assumption)
E[IGl7 <207 'EI¢! ] + 297 Ellrg;[] < 297 GYEIGHY? + E[rg;)”?)
< 2q—1G3{RQ/2 + RY/2%(s/n)1/?}
< 21GERY? =: C4!5TE

for s < n, i.e., n = ngTF = A% P Similarly, E[|#;]9] < C4*TF. Moreover,

[E(G?57] — E¢707)l < ElGFra] +Elrgf] + Elrpiry]

gi7e

VEIGIERL] + [Elrg Elf] + /Bl Elrg
GiRE[T?m] + G%E[T;’] + GEE[TEM]E[T;]

G2R*{2 + Rs/n}s/n =: 655TE — 0.

INCINCIN N

Next note that by Gaussian tail bounds and Amax(E[w;w}]) < & we have

maxicn [|Tiflo < [Elilloo + maxicn [l2; — Elzi]|loo
< VE + /2R log(pn) with probability at least 1 — A{STE
where ALSTE = 1/, /2K log(pn). The last requirement in Condition ASTE(v) holds with ¢ = 4/x

(3.12)

max ||:):Z'Hgosn_1/2+2/q < 6k log(pn)Al/ani_%’LX/2 = 05TE
1N
with probability 1 — ASTE. By the assumption on a, p, x, and n, 634HSTE — 0.

To verify Condition SE with ¢,, = log n note that the minimal and maximal eigenvalues of E[z;x]]
are bounded away from zero by £ > 0 and from above by & < co uniformly in n. Also, let u = E[z;]

so that x; = #; + u where &; is zero mean. By constriction E[z;zf] = E[#;#}] + pu/ and [|p|| < VE.
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For any n € RP, ||n|lo < k := slogn and ||n|| = 1, we have that
En[(7'2:)%] = Bl(n'2:)%] = En[(n/:)] — E[(0/:)] + 20'En[2:] - ' .
Moreover, by Gaussianity of x;, with probability 1 — AYE. where AYE = 1/,/2r log(pn),
Enlzi]] < |nlhlEnlZlo < VE/2R1og(pn)/ v/

&
'l < lnll el < VE.

By the sub-Gaussianity of #; = (E[z;2}] — pu')~'/?V;, where ¥; ~ N(0,1,), by Theorem 3.2
in Rudelson and Zhou (2011) (restated in Lemma with 7 = 1/6, k = slogn, a = 1/8/3,
provided that

n > N, = 80(a*/7%)(slogn) log(12ep/[rslogn]),
we have

(1= 7)’E[(n'%:)*] < Enl(n'7:)*] < (1+7)°E[(n7:)?]
with probability 1 — AYF where AJF = 2exp(—72n/80a*). Note that under ASTE(iv) we have
ATE — 0 and

nsP = max{n : n < N,} < max{(12e/7)2* A2, 80%(a®/7%) A% n*}
where n* is the smallest n such that 6, < 1.

Therefore, with probability 1—A7F and n > n§f, we have for any n € RP, |||l < k and ||n|| = 1,

En[(n'z:)?] 2 E[(':)?] — [Ea[(n'2:)°] — E[(n'2:)?]]
> B[(0'2:)%] — [Enl(n':)?] — E[(n'%:)?]| — 2|0 En (23] - [0 p]
> E[(n/z;)?]{1 — 27 — 7%} — 2R+/2k log(pn)//n
> E[(n'2:)?]/2 — 2R+/2klog(pn)//n
since 7 = 1/6 and E[(1'7;)?] < E[('%:)?]. So for n > n5F = 288k(%k/k)?log(pn) we have

Gmin(slogn)[Ey,[z;z)]] > /3 =: K.

Similarly, we have
En[(n'z:)?] < E[('@:)?] + [En[(0/2:)?] — E[(1/2:)?]]

E[(n'2:)?] + [En[(n'%:)%] — E[(0'2:)?]] + 2/0'En[]| - [1'p]

E[(n'x:)2]{1 + 27 + 72} + 2k+/2k log(pn)//n

2E[(n'x;)?] + 2R+/2klog(pn)//n

since 7 = 1/6 and E[(1'%;)?] < E[(x;)?]. So for n > n3F := 2klog(pn) we have

INCINCININ

Gmax (s1logn)[Ey[z2h]] < 4k =: K",
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The second and third requirements in Conditions SM(i) holds by the Gaussianity of w;, E[(; |
x;,v;] = 0, Elv; | ;] = 0, and the assumption that the minimal and maximum eigenvalues of the

covariance matrix (operator) E[w;w]] are bounded below and above by positive absolute constants.

The first requirement in Condition SM(i) and Condition SM(ii) also hold by Gaussianity. Indeed,

we have for ¢; = v; and ¢; = (;, y; = d; and y; = y;

E[lofl] + B[¢/ll <207 GH{(B)V2 + (B[CH)/?} < 21G5R1/2 =: Ay
Elldf]] <207'E[|6),2 + 27 'E[v][] < 297 G(E[|0),2[])V* + 297 ' G{(E[v7])4/?

< 2971 GY0,,|9RY% 4 2971 GIRY? < 29GIRY(1 + (24)9) =: Ay

E[d?] < 2E[|0),2i%] + 2E[v}] < 2R||0m || + 2R < 2R(442 +1) =: A},

Ely?] < 3|ao?E[d?] + 3E[|0),2]?] + 3E[¢?] < 3B2A} + 3A% + 3k =: A3

maxi<jcp Bl2,57] < maxicjcp(Blafy]) 2 (E[5])"/? < Gimaxicj<p B[z B[]
< GIR(ALV Ag) =: Ay
maxi<j<p Bl|zijeil®] < maxicj<p(B[2f))/2(E[ef])/? < Gf maxi<jcp(El2]])*/2 (E[e]])*/

< G¢

Rg = A5

maxi<;j<p 1/E[$2] < 1/)\mm( [ ;]) < 1/@ =: Ag
because ||6,,] < 24 and ||, < 2A since 60,,,60, € S%(p). Thus the first requirement in Condition
SM(i) holds with C5™ = A,. Condition SM(ii) holds with C§M = Ay + (AL V A3) + Ay + A5 + Ag.

Condition SM(iii) is assumed.

To verify Condition SM(iv) note that for ¢, = v; and ¢; = (;, by (3.12]), with probability 1 —
AgSTe,

(3.13) maxj<p 4/ En [@lfﬂ < max;<p ﬂl/En [$§j] f/En[ef]
< VA + v/2Rlog(pn)} maxjey {fEalel]{/Eale)]
By Lemma with k = 4 we have with probability 1 — AYM | where ATM =1/n

1n >

max;<p { En[x] < ||E[24] || oo + maxjcp \/E (wij — Elz45])4]
< VE 4+ VR2C + VERTY4/21log(2pn) < 4CVE

for n > ngM = 4log?(2pn). Also, Lemma with £ = 8 and p = 1 we have with probability
1 — AYM that

(3.14)

(3.15) {/En[e8] < 2R8C? + 2rn~/*210g(2n) < 20C%

for n > ngM = 161og*(2n). Moreover, we have

4 4 4 814 8 4 -2
jax (Bl < poax {/ElrglyEle] < 6
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Applying Lemma for 7 = 2A85TE 1 AYM

2 2 2log(2p/T) 2V/2GAR2
a1l <y 2 Qe ety 2

where by (3.13)), (3.14) and (3.15)) we have
Q(maxicjcp /Enlz ;13 ef],1—71) < k?\/2log(pn)80C3.
So we let 67M = 640C3R2/ %\/log(pn) v 2\/§G§§ — 0 under the condition that log®(p V
n)/n < 6,
Similarly for ¢; = d; and §; = y;, by Lemma we have with probability 1 — AYM for

In »

with probability 1 — 87 we have

N

n > n§2M we have

(3.16) En[7f] < [E[G]l + VEul(5: — EF]))
< [AL v A3]/2 + (20C2E[52])1/2 < 6C[AL v As)'/2.
Moreover, m G2E[ ] GQ[A’ V As]. Therefore by Lemma [SA.4] for 7 = QAfxT?TE + A2n ’

with probability 1 — 87 we have by the arguments in (3.13), (3.14)), and (3.16])

_ 2log(2 - ot 2V2GER[AL v A
max (5, - B)ef 7] < 4/ 22 GRTogGmiacvR(s0cAp v ey v TR g

where 65 — 0 under the condition log?(p V n)/n < &, — 0.

We have that the last term in Condition SM(iv) satisfies with probability 1 — A{STE

2 slog(pVn)

max ||2;]| 5 < 6Rlog(pn) AV n 112 0g(p v n) =: 65M

Under ASTE(iv) and s = AY*n!/2% we have 65M — 0.

Finally, we set ng = max{ngi>"% nSF nsF, ngf, nsM nsMy, C = max{C{5TF C4\9TE 204STE CpM,
CFMY, 6, = max{d,, 0{STE §STE §FM 4 sSM 1 55MYy 0, and A,, = max{33ANSTEL16ATM AFEY

0.

O

Example 3. Let P be the collection of all regression models P that obey the conditions set forth
above for all n for the given constants (f, f,a,A,b,B,q) and the sequence 6,. Below we provide
explicit bounds for ', k”, ¢, C, 6, and A, that appear in Conditions ASTE, SE and SM that
depend only on (f, f,a,A,b,B,q) and 6, which in turn establish these conditions for all P € P.

Conditions ASTE(i) is assumed. Condition ASTE(ii) holds with |ap| < B =: C{A9TE. Because
Om, 0y € S%(p), Condition ASTE(iii) holds with

1 1
s=A /an2’17 Tmi = § BmO] Zz and Tgi = g Zz § BgO]
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where ||Bmollo < s and ||Bgoll0 < s. Indeed, we have
2

Elrpd SE || Y Oy Poy(z) | | T D 0hyy < FA%72 /20 —1] = fs/n
jes+1 j=s+1
where the first inequality follows by the definition of S0 in (4.31), the second inequality follows
from the upper bound on the density and orthogonality of the basis, the third inequality follows
from 6, € S%(p), and the last inequality because s = AY9n!/2¢. Similarly we have E[rgi] <
E[(Zj>s+1 eg(j)zi(j)>2] < fA%s72H 1 [2a — 1] = fs/n. Let C35TF = \/f

Condition ASTE(iv) holds with §45TF .= A%/enl/e=11og?(p v n) — 0 since s = A/onl/20 A is
fixed, and the assumed condition n(*=*/%log?(p vV n) < 6, — 0.

Next we establish the moment restrictions in Condition ASTE(v). Because f < Apin(E[z;2]]) <
Amax (E[z;2%]) < f, by the assumption on the density and orthonormal basis, and max;<y, ||7;/|eo <
B, by Lemma [SA.2] with p; = 0 we have

. 20 -1 . 20 -1
s [l V Il < s oo P/ 20 < BT/ Y22 = 5457

where 05157F — 0 under s = A/*n1/2% and a > 1.

Thus we have
E[|Gl7 <297 'E[|¢][] + 27 'E[IrL]] < 2971 B + 2971 (5557 F)q
<201 B 4 20\ (§ASTE) = CASTE

Similarly, E[|9;]9] < C4*TF. Moreover, since d51°7F — 0 we have

<
[E¢797] - E[GPvf)l < El¢Pry,] + Elrgvf] +E[7“mz7“gz]

< \/E GHE[r,] \/ Tgi vl + \/E[Tﬁn]E[Tgi]

< 2B2/q(6é4nSTE)2 + (5é4nSTE)4 — 631flnSTE 0.

Finally, the last requirement holds because (1 — a)/a + 4/q < 0 implies

max ||z;]|2, sn~V/2+2/1 < B2 AV ap1/20-1/242/q —, SASTE _,

S

since s = AYanl/2e and maxi<n [|%i|lco < B.

To show Condition SE with ¢,, = logn note that regressors are uniformly bounded, and minimal
and maximal eigenvalues of E[z;x]] are bounded below by f and above by f uniformly in n. Thus
Condition SE follows by Corollary 4 in the supplementary material in Belloni and Chernozhukov
(2013) (restated in Lemma[SA.7) which is based on Rudelson and Vershynin (2008). Let

07F .= 20 B+/slognlog(1 + slogn)+/log(p V n)\/logn/v/n
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and AYF = (2/f)(65F)% + 65F(2f/ f), where C is an universal constant. By this result and the
Markov inequality, we have with probability 1 — Aff

= /2 < bmin(s1og n)[Ep[2:7]]] < dmax(slogn)[Eylz;zi]] < 2f =: k"
We need to show that A — 0 which follows from 6SE — 0. We have that

Vnl/2a nl/2a
§5F < QCB(1+A) nl/2alog?(n)+/log(p V n) _2CB(1+ A)? log*n [log( p\/n
n Jn \/ n2/3 nl/3

By assumption we have log®p/n < 8, — 0 and a > 1 we have 5

The second and third requirements in Condition SM(i) hold with CY™ = B%/% and ™ = b by

assumption. Condition SM(iii) is assumed.

The first requirement in Condition SM(i) and Condition SM(ii) follow by, for ¢; = v; and €¢; = ¢,
Yi =d; and g; = y;

E[lof[] + E[I¢]] <2B=:4,
E[’dﬂ] < 29~ 1EH9’ x| + 29~ 1E[]vq|] quluemHt{E[Hxngo] +9¢-1B
< 297 (QA)QB(I_|_2q lB—.AQ
E[d?] < 2f||9mH2 + 2E[v ] fAQ +92B2/1 —. L Al
Bly?] < 3laol?Eld?] + 3]0, 3E[|w;|2] + 3EIC?
< 3B%A, +12A%B? 4+ 3B%/1 =: A3
maxi<jep E[2357] < BPE[?] < BX(Ay V As) =: Ay

maxi i<y E[|xl]€2|3] B3E[|63|] < B3B3/t =; As
maxi<j<p 1/E[23;] <1/ Amin(Blziz}]) <1/f = Ag
where we used that max;<, ||Zi|]|cc < B, the moment assumptions of the disturbances, ||6,,| <

10mll1 < 24, ||64][1 < 2A since 0,,,0, € SG(p) for a > 1. Thus the first requirement in Condition
SM(i) holds with C5™ = Ay. Condition SM(ii) holds with C§™M := A; 4 (A, V A3) + Ay + A5 + Ag.

N

To verify Condition SM(iv) note that for ¢; = v; and ¢; = (; we have by Lemma with
probability 1 — 87, where 7 = 1/logn,

2 max ,/2E[z} e}

i

CRV 22l < 4y 2losCp/T) 4 - Isisp
1121;2;“]}2 E)[ Lij z]| <4 n Q(lrél?é(p En [ ] 7'] 1 T) v Vvn
2 lo(2 2B%,/2E[e}
< 4y/ 2@ B2q( [, (6], 1 - 1) v 22V
< 44/ Hosrlogn) B2 B2/q 4g py = §5M
X n - Yin

where we used E[e}] < B*4 and the Markov inequality. By the definition of 7 and the assumed
rate log®(p V n)/n < 6, — 0, we have 67 — 0.
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Similarly, we have for ¢; = d; and y; = y;, with probability 1 — 87

2 max 2E[z};57}]
4 MQ( max En [l‘;ljg;l], 1 — ’T) \/ 1\]\p

N

max |(E, — E)[2377]]

1<j<p - Y )
2 —
< 4y 2R B2Q( [, [, 1 - 7) v L\/f?m
<4 wBﬁhlogn =: 05"

where we used the Markov inequality and
Elg] < E[dj] + 3%|aol*B[d]] + 371 0,][{E[l|2:i]|5] + 3°E[¢]
< AY7+ 3381457 + 33(24)1B* 4 33BY1 —: Ay,
By the definition of 7 and the assumed rate log®(p V n)/n < &, — 0, we have 5 — 0.

The last term in the requirement of Condition SM(iv), because max;<,, |||« < B and Condition
ASTE(iv) holds, is bounded by d5M := B2AY/*p1/2¢10g(p Vv n)/n — 0.
Finally, we set ¢ = cfM, C' = max{C{5TE CSTE 20ASTE CfM ogM oMY
0n = max{dy, 01,717, 05,71 F 657 E 637 TE 67 4 50 + 85,1} — 0,

A, =max{16/logn, A{F} 0. O
4. ADDITIONAL TOOLS

4.1. Inequalities based on Symmetrization. Next we proceed to use symmetrization argu-
ments to bound the empirical process. In what follows for a random variable Z let Q(Z,1 — 7)

denote its (1 — 7)-quantile.

Lemma SA.3 (Maximal inequality via symmetrization). Let Zi,...,Z, be arbitrary independent
stochastic processes and F a finite set of measurable functions. For any T € (0,1/2), and ¢ € (0,1)
we have that with probability at least 1 — 41 — 46

o (6, (7(20) < {208 @FT78) @ (o VETTETT 1 - 7) v 2max@ (16,720 3 )
Proof. Let

c1n = VEIOREIFI/0) Q (max VEIFZTL 1~ 7) exn =i (167200 5 )

2

and the event & = {maxscr/E,[f2(Z)] < Q (maXfe].‘ VE.[f2(Z)],1 —7')} which satisfies
P(€) > 1 — 7. By the symmetrization Lemma 2.3.7 of van der Vaart and Wellner (1996) (by

definition of ey, we have ,(z) > 1/2 in Lemma 2.3.7) we obtain

P{maxser |Gn(f(Z:))| > dein V 2e2n} < AP {maxser |Gn(eif
4P {maxscr |Gp(e; f

Z;)
Z;)

)| > e}

(
(Zi))| > en|E} + 41

<
<

where ¢; are independent Rademacher random variables, P(e; = 1) = P(g; = —1) = 1/2.
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Thus a union bound yields

(4.17) P {r}g«;}‘Gn(f(Zi))’ > 4dey, V 262n} A1 + 4| F| maxIP’{\G (eif(Z)] > ewnlE}.
We then condition on the values of Z1,...,7Z, and &, denoting the conditional probability mea-
sure as P.. Conditional on Zi,...,%Z,, by the Hoeffding inequality the symmetrized process

Gn(eif(Z;)) is sub-Gaussian for the Lo(IP,,) norm, namely, for f € F, PA{|G,(g;f(Z;))| > x} <
2exp(—22/{2E,[f?(Z;)]}). Hence, under the event £, we can bound

P {|Gn(eif(Z)] > el 21, ..., Zn, €} < 2exp(—e3,/[2En[f*(Z:)])
< 2exp(— log(2|F|/8)).

Taking the expectation over Z1, ..., Z, does not affect the right hand side bound. Plugging in this
bound yields the result. O

The following specialization will be convenient.

Lemma SA.4. Let 7 € (0,1) and {(z},¢;) € RP x R,i = 1,...,n} be random vectors that are

independent across i. Then with probability at least 1 — 87

4 4
max [En[z%e?] — BlaZe?) \4\/21°g(§p/7) Q<maXIE wtel], 17) V2 max | ]

1<y<p 1<y<p 1<y<p n
P’FOOf Let Z; = €, f]( ) = CUZZJQQ, = {!}017 .. .,fp}, so that n_l/QGn(f](Zl)) =E, [1)12]622] _
E[z? ij €2]. Also, for 7 € (0,1/2) and 7 € (0, 1), let

= /2log(2p/m1) \/ max IE i, 1—7‘2) and €an = max QUG (z3;€),1/2)

by Chebyshev.

where we have e, < maxicj<,/2E[x} i €]

By Lemma we have
_ de1n V 2€9,
— | <
P (s Ealete] - Blshet] > 12 ) < 4
The result follows by setting 71 = 72 = 7 < 1/2. Note that for 7 > 1/2 the result is trivial. O

4.2. Moment Inequality. We shall be using the following result, which is based on Markov
inequality and (von Bahr and Esseen 1965).

Lemma SA.5 (Vonbahr-Esseen’s LLN). Let r € [1,2], and independent zero-mean random vari-
ables X; with E[|X;|"] < C. Then for any £, > 0
(|Zz— il - _(1_1/7«)) < 20

o
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4.3. Matrices Deviation Bounds. In this section we collect matrices deviation bounds. We
begin with a bound due to Rudelson (1999) for the case that p < n.

Lemma SA.6 (Essentially in Rudelson (1999)). Let x;, i = 1,...,n, be independent random
vectors in RP and set

log(n A p
VI AD) e Tl
\/ﬁ 1<i<n

for some universal constant C'. Then, we have

5, :=C

E ISWPI}En [(alzvi)ZE[(O/CEi)z]”] < 6p 4 6, sup /E[(a/z)?].

Based on results in Rudelson and Vershynin (2008), the following lemma for bounded regressors

was derived in the supplementary material of Belloni and Chernozhukov (2013)

Lemma SA.7 (Essentially in Theorem 3.6 of Rudelson and Vershynin (2008)). Let z;, i = 1,...,n,

be independent random vectors in RP be such that \/E[maxi<icp ||7]|2] < K. Let

Oy =2 <C’K\/Elog(1 + k)+/log(p V n)\/logn> /V/n,

where C' is the universal constant. Then,

E [ sup }En [(o/:v,-)Q - E[(o/;ri)Q]] ’] <6240, sup E[(o/2;)?].

|lallo<k,||all=1 lallo<k,[lall=1

Proof. Let
Vi = sup  |Ey [(o/z:)® — E[(o/z;)?]]].

o<k, lafl=1
Then, by a standard symmetrization argument (Guédon and Rudelson (2007), page 804)

nE[Vk] < 2ExE5 [SupHaHoSk,HaH:l |Z?:1 Ei(all‘i)Q‘] .

Letting
o(k) = sup E.[(o/2;)%] and (k) = sup E[(c/z;)?],

llello<klarll<1 llollo<k[lal|=1
we have ¢(k) < ¢(k) + Vi and by Lemma 3.8 in Rudelson and Vershynin (2008) to bound the

expectation in ¢,

nE[Vi] <2 (CVElog(1 + k)/log(p V m)vIogn ) VB, [masic [[7i] o /6()|

2 (CVklog(1 + k) /log(p vV n)vlogn ) vny/Ey [maxicn [[2:]%] Ex [¢(k)]

2 (CKVE1og(1 + k)/log(p V m)vIogn) v/n/(k) + BIVA].

The result follows by noting that for positive numbers v, A, B, v < A(v + B)l/ 2 implies v <
A% + AVB. O

INCININ
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The following result establishes an approximation bound for sub-Gaussian regressors and was
developed in Rudelson and Zhou (2011). Recall that a random vector Z € RP is isotropic if
E[ZZ'] =1, and it is called v with a constant « if for every w € RP we have

1Z"wllys, -= mf{t : Blexp( (Z'w)?/t*)] < 2} < aflw]l2.
Lemma SA.8 (Essentially in Theorem 3.2 of Rudelson and Zhou (2011)). Let ¥;, i = 1,...,n,

be i.i.d. isotropic random vectors in RP that are 1o with a constant o. Let x; = 21/2% so that
Y = E[z;z]. Form <p and 7 € (0,1) assume that

4
0> 80ma log (126p) '

T2 mr

Then with probability at least 1 — 2 exp(—72n/80a*), for all u € RP, |lullo < m, we have

(1 =) 2ull2 < \/Eal(@fu)?] < (1 + )52,

For example, Lemma covers the case of x; ~ N(0,X) by setting ¥; ~ N(0,I) which is

isotropic and 1ty with a constant o = /8/3.

5. EMPIRICAL EXAMPLE: ESTIMATING THE EFFECT OF ABORTION ON CRIME: RESULTS IN
LEVELS

In this section, we expand on the discussion of the empirical section in the main paper by
considering estimation of the effect of abortion on crime in levels. We consider both the original
model of Donohue IIT and Levitt (2001) as well as the model from Donohue IIT and Levitt (2008)
which responds to a criticism raised in Foote and Goetz (2008) which is similar to the conclusion we
draw in the original data. The results using variable selection show that the results in Donohue III
and Levitt (2008) also become imprecise once one considers a broad set of controls and selects

among them using our variable selection technique.

For our analysis in this appendix, we follow Donohue III and Levitt (2001) and rely on the
argument that abortion rates may be taken as exogenous relative to crime rates conditional upon
a set of factors. Unlike Donohue III and Levitt (2001), we do not assume that the identity of these
factors is known and allow for smooth, flexible trends to account for unobservable factors that may
influence both abortion and crime but smoothly trend over time. Given the seemingly obvious
importance of controlling for state and time effects, we account for these in all models we estimate

by including a full set of state and time dummies. Thus, we estimate models of the form
(5.18) yit = aair +wy By + Oy + Yyt + gz, 1) + Gt
(519) it = w;tﬁa + 5(1,1' + Ya,t + m(Zita t) + Vit

where g(z,t) and m(z,t) are smooth functions of observed variables z; which includes wy, time-

invariant characteristics of {yit,ait,wit}le such as initial conditions or state-level averages, and
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time. We use the same state-level data as Donohue III and Levitt (2001) but delete Alaska, Hawaii,
and Washington, D.C. which gives a sample with 48 cross-sectional observations and 13 time series
observations for a total of 624 observations. With these deletions, our baseline estimates using the
same controls as in baseline results from Donohue IIT and Levitt (2001) are quite similar to those
reported in Donohue IIT and Levitt (2001). Baseline estimates from Table IV of Donohue III and

Levitt (2001) and our baseline estimates are given in the first and second row of Panel A of Table

L

Note that interpreting estimates of the effect of abortion using the same controls as in Donohue II1
and Levitt (2001) as causal relies on the belief that there are no higher-order terms of the control
variables, no interaction terms, and no additional excluded variables that are associated both to
crime rates and the associated abortion rate. Allowing for such variables is important in that
one might believe that there may be some feature of a state that is associated both with its
growth rate in abortion and its growth rate in crime. For example, having an initially high-level
of abortion could be associated with having high-growth rates in abortion and low growth rates in
crime. Failure to control for this factor could then lead to misattributing the effect of this initial
factor, perhaps driven by policy or state-level demographics, to the effect of abortion. In practice,
it is common to account for this possibility by allowing state-specific trends (e.g. by specifying
9(zit, t) = Kg,it) in addition to state-specific intercepts. Results from estimating the baseline model
augmented with state-specific trends are given in the third row in Table L Panel A. In this example,
the inclusion of state-specific linear trends renders the results very imprecise. Of course, one might
argue that including state-specific linear trends is too aggressive in a sample with only 13 time series
observations. The linear trend specification is also very restrictive in imposing that any unobserved
factors that relate to both abortion and crime exhibit constant growth over the 13 year time period.
The assumption of constant growth becomes even more problematic when one expands the time
period as in Foote and Goetz (2008) and Donohue III and Levitt (2008) discussed below.

We follow the Chamberlain (1985) approach and approximate g(zi,t) and m(z;,t) by a large

number of controls. We approximate these functions by forming 27 factors to include in z;,
1 1
Zit = (aiOa T Z Qit, Yi0, w;Ov f ngb w;t)/7
t t

forming nine smooth function of time,
t t t t t t
2 43 : : : /
fi=(t, t°, t°, sm(ﬂf), sm(27rf), sm(37rf), COS(WT), cos(27rf), cos(37rf)) ,
LOur estimates differ for three reasons. First, we delete Alaska, Hawaii, and Washington, D.C. Second, Donohue III
and Levitt (2001) use population weighted estimates. Third, Donohue III and Levitt (2001) use an FGLS estimator

based on an AR(1) model in the errors where the errors across states share the same AR coefficient.
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and then supposing that
27

9
g(zita t) ~ Z Bg,r,szit,rft,s = h;tﬁg and
r=1s=1

27 9
m(zita t) ~ Z Z /Bm,r,szit,rft,s = h;t/Bm

r=1 s=1
where h;; is the vector containing all the interactions, and 3, and 3, are the vectors of coefficients
for each equation. That is, we add an additional 243 control variables to the model and use the
methods developed in this paper to search among these 243 additional control Variablesﬂ With this
set of controls, the models we estimate are all more general than the baseline model using the same
controls as in Donohue IIT and Levitt (2001) and are neither more nor less general than a model
with state-specific trends in that we allow for nonlinearity in trends but do not allow for arbitrarily
different state-specific coefficients. Rather, we restrict these coefficients to differ depending on

values of observable covariates.

Controlling for a large set of variables as described above is desirable from the standpoint of
making the belief underlying the causal interpretation of the abortion coefficient, that the abortion
rate defined above may be taken as being as good as randomly assigned once the set of variables
considered is controlled for, more plausible. As with the inclusion of state-specific trends, the
downside is that controlling for many variables lessens our ability to identify the effect of interest
and thus tends to make estimates far less precise. For example, the estimated abortion effects
conditioning on the full set of 68 variables used in Donohue III and Levitt (2001) plus the 243
approximating functions (for a total of 311 control variables) are given in the fourth row of Table L
Panel A. As expected, all coefficients are estimated very imprecisely. Of course, very few researchers

would consider using 311 controls with only 624 observations due to exactly this issue.

We are faced with a trade-off between the precision of the estimate and the plausibility of the
conditional exogeneity assumption. By including additional controls in the specification, we make
the conditional exogeneity assumption more plausible. At the same time, we potentially reduce the
precision of our estimate. The double selection method proposed in this paper offers one rigorous
approach to achieving a balance. Thus, the approach complements the usual careful specification
analysis by providing a researcher a simple-to-implement, data-driven way to search for a set of

influential confounds from among a sensibly chosen broader set of potential confounding variables.

2To allow time effects, state effects, and w;: to enter each equation without shrinkage, we use our methods based
on Yit, air and fm where §;; is the residual from the regression of y;: on w;: and a full set of state and time dummies

and a;; and fzit are defined similarly.
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Table L. Estimated Effects of Abortion on Crime Rates (Levels)

Violent Crime Property Crime Murder
Effect Std. Err. Effect Std. Err. Effect Std. Err.
A. Donohue and Levitt (2001) Table IV
DL (2001) Table IV -0.129 0.024 -0.091 0.018 -0.121 0.047
Fixed Effects -0.131 0.045 -0.091 0.016 -0.131 0.058
Fixed Effects + State Trends -0.149 0.185 0.060 0.093 -0.383 0.207
All Controls 0.183 0.447 0.013 0.067 0.855 0.974
Post-Double-Selection 0.133 0.303 -0.053 0.044 -0.692 0.438
Polynomial Trend 0.321 0.349 -0.032 0.060 0.851 0.616
Post-Double-Selection, Polynomial Trend 0.013 0.251 -0.041 0.047 -0.178 0.276
B. Donohue and Levitt (2008) Table Il
DL (2008) Table Il -0.160 0.088 -0.062 0.030 -0.248 0.100
DL (2008) Specification -0.158 0.087 -0.057 0.026 -0.249 0.099
Fixed Effects -0.186 0.063 -0.110 0.046 -0.061 0.078
All Controls 0.516 0.400 0.146 0.127 0.611 0.523
Post-Double-Selection 0.060 0.214 -0.025 0.086 0.460 0.322
Poynomial Trend 0.203 0.296 0.141 0.089 0.199 0.309
Post-Double-Selection, Polynomial Trend -0.264 0.179 0.090 0.046 -0.088 0.192

Note: The table displays the estimated coefficient on the abortion rate, "Effect," and its estimated standard error. Numbers in the first
row of Panel A are taken from Donohue Ill and Levitt (2001) Table IV, columns (2), (4), and (6). Numbers from the first row of Panel B are
taken from Donohue Ill and Levitt (2008) Table Ill, column (8). The remaining rows are estimated by OLS of the crime rate on the abortion
rate and different sets of controls described in the text and use standard errors clustered at the state-level. In Panel A, the row labeled
"All Controls" uses 311 control variables as discussed in the text that include the 68 controls from the original specification of Donohue Il
and Levitt (2001) Table IV along with 243 variables meant to allow for flexible, smooth trends. The row labeled "Polynomial Trend" in
Panel A restricts the set of controls added to allow for flexible trends to include only polynomial terms and uses only 149 total regressors,
the 68 from the original specification and 81 added variables. In Panel B, the row labeled "All Controls" uses 713 control variables as
discussed in the text that include the 473 controls from the original specification of Donohue Ill and Levitt (2008) Table Ill along with 240
variables meant to allow for flexible, smooth trends. The row labeled "Polynomial Trend" in Panel B restricts the set of controls added to
allow for flexible trends to include only polynomial terms and uses only 553 total regressors, the 473 from the original specification and 80
added variables. The rows "Post-Double-Selection" report results from regressing the crime rates on the variables from the original
Donohue Il and Levitt (2001) and Donohue Ill and Levitt (2008) along with additional variables selected using the technique developed in
this paper from among the set of variables considered in the corresponding "All Controls" row. The rows "Post-Double-Selection,
Polynomial Trend" report results from regressing the crime rates on the variables from the original Donohue Ill and Levitt (2001) and
Donohue Il and Levitt (2008) along with additional variables selected using the technique developed in this paper from among the set of
variables considered in the corresponding "Polynomial Trend" row. Further details are provided in the text.

In the abortion example, we use the post-double-Lasso estimator for each of our dependent
variables. For violent crime, a total of 15 variables are selected: eight in the abortion equatiorf]
and seven in the crime equation[] For property crime, 16 variables are selected: ten in the abortion

equatior[] and seven in the crime equation’| with one occurring in both. For murder, ten variables

3The selected variables are average abortion times ¢, average abortion times cos(w%), initial crime times ¢2, initial
crime times cos(2m ), average income times t°, average income times sin(r+), average income times cos(2m ), and
initial poverty times cos(2m%).

“The selected variables are average abortion times t>, initial abortion times ¢, initial abortion times si]f1(7r%)7
initial poverty times sin(27 %), initial poverty times cos(m %), police;; times ¢*, and beer;; times sin(37%).

®The selected variables are average abortion times cos(w %), initial abortion times sin(37 %), initial crime times
cos(m %), average income times ¢, average income times cos(w %), initial poverty times cos(2m %), initial beer times
cos(2m L), prison;; times cos(m£), income;; times cos(r%), and AFDC;¢ times cos(2m%).

5The selected variables are average abortion times ¢, initial crime times sin(2m L), initial crime times cos(r %),

average police times COS(QTI’%), average AFDC times ¢, initial AFDC times ¢, and initial AFDC times ¢2.
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are selected: eight in the abortion equation]] and two in the crime equationf] It is interesting in
looking at the selected variables that in all cases initial or average levels of abortion interacted with
nonlinear trend terms and initial levels of crime interacted with nonlinear trend terms are selected.
This selection illustrates the potential importance of allowing for nonlinear trends and also the

potential that there may be omitted factors that are related to both abortion and crime.

Estimates of the causal effect of abortion on crime obtained by searching for confounding factors
among our set of 243 potential controls are given in the fifth row of Panel A of Table L. Each of
these estimates is obtained from the least squares regression of the crime rate on the abortion rate,
a full set of state dummies, a full set of time dummies, the initial eight controls that vary across
states and time from Donohue IIT and Levitt (2001) and the 15, 16, and ten controls selected by
the post-double-Lasso procedure for violent crime, property crime, and murder respectively. The
estimates for the effect of abortion on violent crime and the effect of abortion on murder are quite
imprecise, producing 95% confidence intervals that encompass large positive and negative values.
The estimated effect for property crime is roughly in line with the previous estimates though it is no
longer significant and has a 95% confidence interval that includes negative as well as modest positive
effects. For a quick benchmark relative to the simulation examples, we note that the R? obtained
by regressing the crime rate on the selected variables are .2522, .3533, and .0554 for violent crime,
property crime, and the murder rate respectively and that the R?’s from regressing the abortion
rate on the selected variables are .9906, .9039, and .9863 for violent crime, property crime, and
the murder rate respectively. These values correspond to regions of the R? space considered in
the simulation where the post-double-selection procedure performed quite well, while the standard

post-single-selection procedures performed quite poorly.

While the inclusion of trigonometric terms in our approximations allows for capturing some
types of cyclicality, some researchers may feel more comfortable restricting attention to simpler
trend specifications. To allow for this, we also present results in which the trigonometric functions
are dropped from f;, so that

fe=(t, 2, t3).
That is, we approximate the functions as g(z;,t) ~ 2211 3:1 Bg,r.szitrfr,s = NiyBg and m(zi, t) =
2311 :;’:1 Bmr,sZitrft,s = hiyBm which allows only cubic polynomial trends interacted with state-
level characteristics. In this case, only 81 terms are considered in addition to the 68 controls from
the original specification. Results using all 149 controls are given in the row “Polynomial Trends”
in Table L. Panel A, and results based on Lasso selection among the 81 added controls are given

in the row “Post-Double-Selection, Polynomial Trends.” Looking at these results we see that we

"The selected variables are average abortion times 2, average abortion times cos(w%), initial crime times ¢2, initial
crime times cos(2m %), average income times ¢, average income times sin(w ), average income times cos(27 L), and
average income times cos(3m%).

8The variables selected are average abortion times sin(7%) and initial abortion times sin(m%).
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would draw the same qualitative conclusion using this restricted specification as we would when
allowing for trigonometric terms as well. Specifically, the estimated abortion effects become quite

imprecise after allowing only for the polynomial terms in timeﬂ

A similar conclusion was reached by Foote and Goetz (2008) who, without doing formal variable
selection, found that inclusion of a linear trend interacted with the average crime rate from a period
before the abortion rate should have been able to have an effect on the crime rate substantially
attenuated the estimated effects from Donohue III and Levitt (2001) and also rendered them impre-
cise. It is interesting that we reach a similar conclusion through the use of formal variable selection
procedures motivated by the desire to allow flexible, yet parsimonious trends in an effort to make

the exogeneity assumption conditional on controls more plausible.

In a response to Foote and Goetz (2008), Donohue III and Levitt (2008) note that one problem
with allowing flexible trends is that the short time series renders estimates of the treatment effect
imprecise once flexible trends are allowed. Specifically, estimated treatment effects are imprecise in

their preferred specification
(5.20) Yit = it + 0; + Yar + Kit + €t

where 9; is a state-specific effect, x; is a state-specific coefficient on a linear trend, and 4 is Census
division x time effect. To address this issue, Donohue III and Levitt (2008) extend the sample
period to 1960-2003 to allow more precise estimates of the trends and thus more reliable estimates
of the treatment effect. They find that the results in this longer sample with the full set of division
times time interactions and state-specific trends are similar to the initial results in the shorter
panel. Results from this analysis in Donohue III and Levitt (2008) are provided in the first row of
Panel B of Table L. In the second row of Table L, Panel B, we report results from our estimates of
the abortion effect using data from 1960-2003 using exactly the same methodology as Donohue III
and Levitt (2008), and we report results from simple OLS regression of in the third rowH

While (5.20)) is certainly more general than the baseline model in Donohue I1T and Levitt (2001),
state-specific linear trends are still quite restrictive, especially over a time period of 40 years.
Specifically, it is a strong assumption that unobserved factors that are correlated to both state

level abortion and crime rates exhibited constant growth over such a long time period. To allow

9n addition to the 68 original variables, the double-selection procedure selects ten total additional variables for
the violent crime regression, eight additional variables for the property crime regression, and five additional variables
for the murder regression. In each case, the mean of the abortion rate times ¢ is selected and this variable accounts
for most of the explanatory power among the selected additional regressors.

100ur results differ due to the exclusion of Alaska, Hawaii, and Washington, D.C. We also completed the data on
abortion before 1985 by filling in 0 for all abortion rates before 1985.
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for smooth, but flexible trends, we once again consider variable selection in a more general model
(5.21) Yit = it + Oy + Yydt + Kyt + 9(2ie, t) + Cit
(5.22) ait = Oai + Ya,dt + Kait +m(zi, t) + vig

where g(z,t) and m(z,t) are smooth functions of observed variables z;; which includes time-invariant
characteristics of {yi, ait,wit}thl such as initial conditions or state-level averages and time. For

this longer time period, we approximate g and m by setting

| 2003 / | 1997 .
zit = (ai1985, 1 Z @its Y1960, Yi1961, Witoss: 13 Z wit)'
t=1960 t=1985
2 43 44 5 oo by 2N t. . t
fi=(t5, 2, 1%, t°, Sln(ﬂ'f), Sln(27‘('f), 8111(371'?), sm(47rf),
COS(T(T), COS(QT&'%), COS(37T%), cos(47r%))’,
and then supposing
20 12
g(zitat) ~ ZZBQ,T,szit,Tft,s = h;tﬁg and
r=1 s=1
20 12
m(zit7 t) ~ Z Z ﬁm,r,szit,rft,s = hgtﬁmy
r=1 s=1

where h;; is the vector containing all the interactions, and 3, and 3, are the vectors of coefficients
for each equation. Thus, we add an additional 240 control variables to l}

Estimates of the abortion effect using the full set of 713 controls consisting of the 473 controls
in (5.20) augmented with the 240 additional controls for smooth nonlinear trends are given in the
fourth row of Table L Panel B. As expected, the estimated abortion effects are extremely imprecise

given this large set of controls.

To pare down the number of controls, we employ the Double-Selection procedure developed in
this paper to search for a smaller set of relevant controls among the 240 potential additions. Based
on this exercise, we select a total of 31 additional variables for the violence equation, 30 for the
abortion equation, and 27 for the murder equation. R?’s from the regression of crime rates on
the controls are .2806, .3451, and .0422 for violent crime, property crime, and the murder rate
respectively; and the R?’s from regressing the abortion rate on the selected variables are .9618,
9461, and .9775 for violent crime, property crime, and the murder rate respectively. Estimates
of the treatment effect controlling for the variables in Donohue IIT and Levitt (2008) and those
selected by Double-Selection are given in the “Post-Double-Selection” row of Table L, Panel B.

1Ty allow for all the effects in 1D to enter each equation without shrinkage, we use our methods based on i,
i and hi; where 9;¢ 18 the residual from the regression of y;; on a full set of state dummies, a full set of Census

division cross time dummies, and a full set of state-specific trends and a;; and hir are defined similarly.
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As in the original data, we find that estimates of the abortion effect are relatively imprecise once

parsimonious nonlinear trends are allowed for.

As in the previous specification, we report results using only interactions with the polynomial

trend terms, i.e.
fo= (12, 5, 14 £,

in the final two rows of Panel B of Table LH Using only the interactions with the polynomial terms
adds 80 potential regressors to the 473 included in the original Donohue IIT and Levitt (2008)
specification. Results using the full set of 553 regressors are reported in the row “Polynomial
Trends” in Table L. Panel B and show that once again using this broad set of regressors results in
imprecise estimates of the regression coefficients. The lack of precision in the estimated abortion
effect is qualitatively unchanged after using the double-selection procedure to select controls from
among this restricted set, again illustrating that the baseline result is not driven by the inclusion

of trigonometric terms in the set of approximating functions]™|

We believe that the example in this section illustrates how one may use modern variable selection
techniques to complement causal analysis in economics. In the abortion example, we are able to
search among a large set of controls and transformations of variables when trying to estimate the
effect of abortion on crime. Considering a large set of controls makes the underlying assumption
of exogeneity of the abortion rate conditional on observables more plausible, while the methods we
develop allow us to produce an end-model which is of manageable dimension. In this example, we see
that inference about the treatment effects using the variable selection method differs substantively
from inference drawn using the original set of controls. This statement is true whether one considers
the data and model from Donohue IIT and Levitt (2001) or Donohue III and Levitt (2008). This
difference is driven by the variable selection method’s selecting different variables than are usually
considered. Thus, it appears that the usual interpretation of there being a substantive causal effect
of abortion on crime hinges on strong prior beliefs about the types of trends that may appear in
the structural equation. In particular, inclusion of a modest number of smooth nonlinear trends
interacted with time-invariant state-level characteristics substantively increases the variance of the

estimated treatment effects.

12The results are qualitatively similar if one only allows up to a cubic term in the trends, i.e. if one considers
f@) =@, ).

13In addition to the 473 original variables, the double-selection procedure selects 12 total additional variables for
the violent crime regression, 11 additional variables for the property crime regression, and 11 additional variables for

the murder regression.
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6. ADDITIONAL SIMULATION RESULTS

In this section, we present additional simulation results. All of the simulation results are based

on the structural model
(6.23) yi = diao + i(cyBo) + oy (di, )G, G ~ N(0,1)
where p = dim(z;) = 200, the covariates = ~ N(0,%) with Xz; = (0.5)V 7 ag = .5, and the

sample size n is set to 100. In each design, we generate
(6.24) d;k = x;(cdﬁl) + Ud(xi)vi, Vi ~ N(O, 1)

with E[(;v;] = 0. Inference results for all designs are based on conventional t-tests with standard
errors calculated using the heteroscedasticity consistent jackknife variance estimator discussed in
MacKinnon and White (1985). We set A according to the algorithm outlined in Appendix A with
1—~ =.95. We draw new z’s, (’s and v’s at every replication and draw new (3y’s and ;1’s at every

replication in the random coefficient designs.

In the first thirteen designs, 81 = (. We set the constants ¢, and ¢4 to generate desired
population values for the reduced form R?’s, i.e. the R?’s for equations and . Let
Rz be the desired R? for the regression of ¥ on z and Rfl be the desired R? from the regression
of d on x. For each equation, we choose ¢, and ¢y to generate R?> =0,.2,.4,.6, and .8. In the
heteroscedastic and binary designs discussed below, we choose ¢, and ¢4 based on R? as if
held with d; = d} and v; and ¢; were homoscedastic with variance equal to the average variance
and label the results by R? as in the other cases. In the homoscedastic cases, we set oy =04 = 1;
and in the heteroscedastic cases, the average of o4(x;) and the average of oy(d;, ;) are both one.
We set

Cq = —Ri

TN A-R)EZA

—u—R@%%%m%+¢u—R@@%z%mg+n
(1 — R3)ByE0o

e Design 1. d; = dJ, fo = (1,1/2,1/3,1/4,1/5,0,0,0,0,0,1,1/2,1/3,1/4,1/5,0,...,0)’, o =
oq = 1.

e Design 2. d; = df, By = (1,1/4,1/9,1/16,1/25,0,0,0,0,0,1,1/4,1/9,1/16,1/25,0, ...,0)’,
oy=04=1.

e Design 22. d; = d}, Bo; = (1/§)?, oy =04 = 1.

e Design 3. d; = di, Bo = (1,1/2,1/3,1/4,1/5,0,0,0,0,0,1,1/2,1/3,1/4,1/5,0,...,0), 04 =

(1+2]60)? P (14+aod;+2}80)?
I (talBo)2” Y IS (faodi+a,Bo)?

n

Cy =
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e Design 4. d; = d¥, fo = (1,1/4,1/9,1/16,1/25,0,0,0,0,0,1,1/4,1/9,1/16,1/25,0, ...,0),
 (4alBo)? \/ (14+aod;+50)?

_ (1427 60)%’ LSt (I+aodi+a)Bo)?
: R _ : _ (1+}B0)> (14-aodi+}60)?
* Design 44. di = df, fo; = (1/3)*, 04 =\ | T57 (irargor O = \/}LZ?l(H‘aodﬁ'xéﬁo)z'

e Design 5. d; = 1{d* > 0}, B = (1,1/2,1/3,1/4,1/5,0,0,0,0,0,1,1/2,1/3,1/4,1/5,0, ..., 0},
oy =0q4=1.

e Design 6. d; =d}, fo; ~ N(0,1), oy =0q = 1.

e Design 7. d; = d*, Bo = (1,1/2,1/3,1/4,1/5,0,0,0,0,0,1,1/2,1/3,1/4,1/5,0,...,0), Boj ~
N(0,32,), oy = 04 = 1.

e Design 72. d; = d*, By = (1,1/4,1/9,1/16,1/25,0,0,0,0,0,1,1/4,1/9,1/16,1/25,0, ..., 0)’,
Boj ~ N(0,53,), oy = 0a = 1. N

e Design 722. d; = df 5[)] (1/5)2, Boj ~ N(O,Bg,j), oy =04=1.

e Design 8. d; = dJ, 607] = ujz1; + (1 — uj)22;, uj ~ Bernoulli(.05), 2z1; ~ N(0,25),
225 ~ N(0,.0025), 0, = 04 = 1

e Design 1001. d; = d*, By, = 1{j € {2,4,6,...,38,40}}, oy = 04 = 1.

In the last thirteen designs, we set the constants ¢, and cgq according to
2
) e -
(1 - Rd)ﬁl ZBI

R
Cy = 2\ R/
(1 = R3)ByX b0
for R3=0,.2,.4,.6, and .8 and R2 =0, .2, .4, .6, and .8.

o Design la. d; = d*, By = (1,1/2,1/3,1/4,1/5,0,0,0,0,0,1,1/2,1/3,1/4,1/5,0,...,0), B1 =
(1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10,0, ...,0Y, 0, = 04 = 1.

o Design 2a. d; = d¥, By = (1,1/4,1/9,1/16,1/25,0,0,0,0,0,1,1/4,1/9,1/16,1/25,0, ..., 0),
Bi = (1,1/4,1/9, 1/16 1/25,1/36,1/49,1/64,1/81,1/100,0,....,0), 0y = o4 = 1.

e Design 22a. d; = d}, Boj = (1/4)%, B1; = (1/§)? oy =04 = 1.

o Design 3a. d; = di, By = (1,1/2,1/3,1/4,1/5,0,0,0,0,0,1,1/2,1/3,1/4,1/5,0, ..., 0),

f1 = (1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10,0,...,0)', o4 = 1/1(1—5_93—61)2

" (tap2 7Y T
(14-aod;+/50)2
L3 (I+aodi+a}80)?
e Design 4a. d; = d}, B = (1,1/4,1/9,1/16,1/25,0,0,0,0,0,1,1/4,1/9,1/16,1/25,0, ...,0)',
B =(1,1/4,1/9,1/16,1/25,1/36,1/49,1/64,1/81,1/100,0, ...,0)’, o4 = \/1(1+x—61)

(14a.B1)%’
o — (14+aodi+2;B0)?
Y LS (4aodi+aB0)2 "
(1+$§ﬂ1)2 (1+aod;+x 50)

o Design 4da. d; = df, fo; = (1/5)%, Br; = (1/)%, 0a = TS (raip? O \/ T (taodi el G0



TREATMENT EFFECTS WITH HIGH-DIMENSIONAL CONTROLS 31

e Design 5a. d; = 1{d* > 0}, Bo = (1,1/2,1/3,1/4,1/5,0,0,0,0,0,1,1/2,1/3,1/4,1/5,0, ..., 0)’,
By =(1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10,0, ...,0)', o, = o4 = 1.

L] Design 6a. di—d* ,BOjNN(O 1) 51]' NN(O 1) [,Boﬁﬂl]] = 8 O'y—O'd—l

« Design 7a. d; = d;, fo = (1,1/2,1/3,1/4,1/5,0,0,0,0,0,1,1/2,1/3,1/4,1/5,0,...,0)', B =
(1,1/2,1/3,1/4, 1/5 1/6,1/7,1/8,1/9,1/10,0,...,0, Bo,; = Bojz0, Brj = 51,]2«1,], 05 ~
N(0,1), z1; ~ N(0,1), E[20,j21,;] = .8, 0y = 0q = 1.

e Design 72a. d; = d;, B = (1,1/4,1/9,1/16,1/25,0,0,0,0,0,1,1/4,1/9,1/16,1/25,0, ...,0),
Bi = (1,1/4,1/9,1/16,1/25,1/36,1/49,1/64,1/81,1/100,0,...,0), Bo; = Bo,z0» ﬁl’] _
,317]'217]‘, 20,5 ™~ N(O, 1), 21,5 ™~ N(O, 1), [Z()J‘Zl,j] = .8, Oy =04 = 1.

o Design 722a. d; = df, foj = (1/5)%, Bij = (1/5)% Boj = Bojzo, Bij = P12, 20 ~
N(0,1), z1,; ~ N(0, 1) Elz0,j215) = .8, 0y =04 = 1.

e Design 8a. d; = dJ, BO,] = bu;zi1j + .05(1 — uj)z12,5, 51] Sujza1; + .05(1 — uj)z22 5,
uj ~ Bernoulli(.05), z11; ~ N(0,1), z12; ~ N(0,1), z01; ~ N(0,1), 290; ~ N(0,1),
oy=o04=1

o Design 1001a. d; = d¥, fo; = 1{j € {2.4,6,...,38,40}}, Br; = 1{j € {1,3,5,...,37,39}},

oy =04=1.

Results are summarized in figures and tables below. In the tables, we report results for the four
estimators considered in the main text (Oracle, Double-Selection Oracle, Post-Lasso, and Double-
Selection). We also report results for regular Lasso (Lasso), the union of the Double-Selection
interval with the Post-Lasso interval (Double-Selection Union ADS), using the union of the set of
variables selected by Double-Selection and the set of variables selected by running Lasso of y on
d and x without penalizing d (Double-Selection + 13), and the split-sample procedure discussed
in the text (Split-Sample). For Double-Selection Union ADS, the point estimate is taken as the

midpoint of the union of the intervals.
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Oracle

Double-Selection Oracle
Lasso

Post-Lasso
Double-Selection
Double-Selection Union ADS
Double-Selection + I3
Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso
Double-Selection
Double-Selection Union ADS
Double-Selection + I3
Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso
Double-Selection
Double-Selection Union ADS
Double-Selection + I3

Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso

Double-Selection
Double-Selection Union ADS
Double-Selection + I3
Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso
Double-Selection
Double-Selection Union ADS
Double-Selection + 13

Split-Sample
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Appendix Table 1. Simulation Results for Selected R Values
First Stage R* = .2
Structure R> =0

RMSE

0.104
0.103
0.137
0.135
0.125
0.123
0.123
0.137

0.101
0.101
0.137
0.136
0.120
0.119
0.119
0.135

0.100
0.101
0.138
0.137
0.107
0.108
0.108
0.121

0.143
0.144
0.168
0.167
0.156
0.156
0.156
0.175

0.142
0.142
0.165
0.166
0.152
0.152
0.152
0.172

First Stage R% = .2

Structure R®=.8

First Stage R’ =.8

Structure R =0

First Stage R* = .8
Structure R? = .4

Coverage RMSE Coverage RMSE Coverage RMSE
Design 1 - Linear Decay with Cut-Off
0.068 0.106 0.049 0.106 0.052 0.106
0.051 0.106 0.049 0.106 0.049 0.106
0.198 0.430 0.886 0.405 1.000 0.496
0.191 0.164 0.166 0.403 1.000 0.493
0.122 0.114 0.061 0.127 0.118 0.114
0.119 0.117 0.057 0.126 0.115 0.117
0.121 0.117 0.069 0.126 0.116 0.117
0.194 0.309 0.386 0.229 0.632 0.235
Design 2 - Quadratic Decay with Cut-Off
0.059 0.105 0.045 0.105 0.064 0.107
0.059 0.105 0.045 0.104 0.051 0.104
0.193 0.348 0.780 0.405 1.000 0.496
0.197 0.121 0.096 0.404 1.000 0.493
0.112 0.108 0.051 0.113 0.078 0.107
0.106 0.110 0.045 0.113 0.078 0.110
0.109 0.110 0.058 0.113 0.080 0.110
0.191 0.206 0.195 0.154 0.270 0.153
Design 22 - Quadratic Decay
0.051 0.103 0.051 0.106 0.073 0.103
0.051 0.103 0.051 0.102 0.050 0.102
0.211 0.263 0.564 0.405 1.000 0.496
0.205 0.110 0.064 0.402 0.987 0.489
0.063 0.107 0.058 0.109 0.074 0.104
0.063 0.108 0.055 0.108 0.072 0.106
0.068 0.107 0.060 0.109 0.074 0.106
0.138 0.124 0.087 0.119 0.116 0.123
Design 3 - Linear Decay with Cut-Off and Heteroscedasticity
0.070 0.150 0.075 0.145 0.068 0.150
0.074 0.150 0.075 0.150 0.075 0.150
0.142 0.536 0.746 0.411 0.990 0.500
0.140 0.257 0.236 0.410 0.990 0.500
0.108 0.164 0.089 0.159 0.129 0.158
0.107 0.170 0.080 0.158 0.125 0.158
0.108 0.166 0.107 0.158 0.125 0.158
0.198 0.398 0.411 0.260 0.609 0.274
Design 4 - Quadratic Decay with Cut-Off and Heteroscedasticity
0.062 0.147 0.070 0.141 0.066 0.146
0.062 0.147 0.070 0.145 0.067 0.146
0.139 0.447 0.642 0.410 0.995 0.501
0.138 0.173 0.113 0.410 0.994 0.500
0.092 0.150 0.075 0.147 0.086 0.147
0.090 0.155 0.070 0.147 0.085 0.149
0.093 0.154 0.078 0.147 0.085 0.149
0.185 0.287 0.260 0.195 0.349 0.197

Coverage

0.049
0.049
1.000
1.000
0.078
0.077
0.087
0.554

0.053
0.042
1.000
1.000
0.062
0.062
0.069
0.230

0.050
0.052
1.000
0.974
0.062
0.061
0.068
0.118

0.075
0.075
0.999
0.999
0.102
0.101
0.109
0.567

0.080
0.070
1.000
1.000
0.082
0.080
0.088
0.295



Oracle

Double-Selection Oracle
Lasso

Post-Lasso
Double-Selection
Double-Selection Union ADS
Double-Selection + I3
Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso
Double-Selection
Double-Selection Union ADS
Double-Selection + I3
Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso
Double-Selection
Double-Selection Union ADS
Double-Selection + I3

Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso

Double-Selection
Double-Selection Union ADS
Double-Selection + I3
Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso
Double-Selection
Double-Selection Union ADS
Double-Selection + 13

Split-Sample
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Appendix Table 1. Simulation Results for Selected R Values
First Stage R* = .2
Structure R> =0

RMSE

0.163
0.164
0.173
0.175
0.165
0.167
0.166
0.177

0.228
0.225
0.278
0.278
0.259
0.260
0.260
0.271

0.134
0.134
0.133
0.134
0.139
0.137
0.137
0.137

0.101
0.101
0.134
0.135
0.119
0.117
0.118
0.131

0.101
0.101
0.134
0.134
0.117
0.116
0.116
0.129

Coverage RMSE Coverage RMSE Coverage RMSE
Design 44 - Quadratic Decay and Heteroscedasticity
0.080 0.166 0.084 0.158 0.080 0.164
0.078 0.166 0.084 0.162 0.082 0.164
0.131 0.382 0.460 0.410 0.996 0.503
0.139 0.178 0.097 0.409 0.994 0.501
0.098 0.167 0.081 0.162 0.082 0.165
0.098 0.170 0.078 0.162 0.082 0.166
0.103 0.169 0.086 0.162 0.083 0.166
0.170 0.205 0.160 0.177 0.168 0.183
Design 5 - Binary Treatment
0.063 0.230 0.053 0.309 0.062 0.306
0.055 0.230 0.053 0.306 0.054 0.306
0.144 0.717 0.724 1.435 0.999 1.712
0.142 0.296 0.117 1.300 0.966 1.447
0.101 0.239 0.055 0.364 0.109 0.339
0.100 0.246 0.053 0.364 0.109 0.349
0.105 0.246 0.061 0.374 0.123 0.349
0.124 0.562 0.247 0.795 0.672 0.823
Design 6 - Gaussian Random Coefficients
0.180 0.452 0.091 0.306 0.916 0.313
0.180 0.452 0.091 0.481 0.125 0.476
0.185 0.805 0.987 0.399 1.000 0.497
0.182 0.772 0.980 0.398 1.000 0.496
0.191 0.646 0.899 0.389 1.000 0.464
0.188 0.659 0.899 0.387 1.000 0.465
0.189 0.653 0.913 0.387 1.000 0.464
0.206 0.795 0.983 0.397 1.000 0.496
Design 7 - Gaussian Random Coefficients, Linear Decay in Std. Dev. with Cut-Off
0.056 0.104 0.047 0.105 0.069 0.105
0.056 0.104 0.047 0.103 0.050 0.103
0.192 0.337 0.749 0.403 1.000 0.500
0.188 0.119 0.078 0.401 1.000 0.496
0.106 0.109 0.053 0.112 0.083 0.108
0.102 0.112 0.050 0.112 0.082 0.112
0.103 0.112 0.061 0.112 0.082 0.111
0.170 0.197 0.184 0.149 0.262 0.152
Design 72 - Gaussian Random Coefficients, Quadratic Decay in Std. Dev. with Cut-Off
0.054 0.102 0.053 0.102 0.051 0.102
0.054 0.102 0.053 0.102 0.051 0.102
0.189 0.305 0.686 0.403 1.000 0.499
0.183 0.108 0.065 0.402 1.000 0.496
0.095 0.105 0.060 0.105 0.066 0.103
0.092 0.107 0.057 0.105 0.065 0.106
0.094 0.107 0.065 0.104 0.066 0.106
0.168 0.186 0.171 0.140 0.201 0.133

First Stage R% = .2

Structure R”=.8

First Stage R’ = .8

Structure R =0

33

First Stage R* = .8
Structure R? = .4

Coverage

0.088
0.091
0.999
0.993
0.083
0.083
0.087
0.172

0.054
0.054
1.000
0.924
0.080
0.079
0.094
0.596

0.723
0.136
1.000
1.000
1.000
1.000
1.000
1.000

0.055
0.050
1.000
1.000
0.063
0.062
0.074
0.235

0.056
0.056
1.000
1.000
0.057
0.056
0.062
0.152
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Appendix Table 1. Simulation Results for Selected R Values

First Stage R?=.2 First Stage R’=.2 First Stage R?=.8 First Stage R’=.8
Structure R =0 Structure R® = .8 Structure R =0 Structure R® = .4
RMSE Coverage RMSE Coverage RMSE Coverage RMSE Coverage
Design 722 - Gaussian Random Coefficients, Quadratic Decay in Std. Dev.
Oracle 0.101 0.051 0.101 0.050 0.101 0.053 0.101 0.050
Double-Selection Oracle 0.101 0.051 0.101 0.050 0.101 0.052 0.101 0.050
Lasso 0.134 0.176 0.224 0.446 0.404 1.000 0.498 1.000
Post-Lasso 0.135 0.182 0.102 0.055 0.403 0.998 0.492 0.976
Double-Selection 0.106 0.070 0.103 0.053 0.103 0.062 0.102 0.057
Double-Selection Union ADS 0.106 0.070 0.105 0.053 0.103 0.062 0.104 0.053
Double-Selection + I3 0.106 0.073 0.104 0.059 0.103 0.063 0.104 0.060
Split-Sample 0.120 0.135 0.111 0.071 0.106 0.072 0.106 0.067
Design 8 - Mixture of Normals
Oracle 0.106 0.074 0.105 0.056 0.109 0.061 0.105 0.055
Double-Selection Oracle 0.103 0.053 0.105 0.056 0.106 0.055 0.105 0.051
Lasso 0.134 0.186 0.585 0.945 0.402 1.000 0.495 1.000
Post-Lasso 0.134 0.185 0.355 0.510 0.400 1.000 0.493 1.000
Double-Selection 0.129 0.138 0.216 0.214 0.231 0.576 0.228 0.500
Double-Selection Union ADS 0.128 0.135 0.226 0.213 0.230 0.574 0.230 0.499
Double-Selection + I3 0.128 0.139 0.223 0.252 0.230 0.577 0.230 0.507
Split-Sample 0.136 0.185 0.498 0.703 0.329 0.933 0.377 0.913
Design 1001 - 20 Non-Overlapping Constant Coefficients

Oracle 0.135 0.193 0.115 0.056 0.115 0.056 0.115 0.056
Double-Selection Oracle 0.135 0.193 0.115 0.056 0.115 0.056 0.115 0.056
Lasso 0.135 0.196 0.755 0.992 0.403 1.000 0.496 1.000
Post-Lasso 0.134 0.194 0.608 0.905 0.401 1.000 0.494 1.000
Double-Selection 0.139 0.185 0.329 0.399 0.327 0.910 0.330 0.861
Double-Selection Union ADS 0.136 0.177 0.354 0.399 0.325 0.910 0.333 0.861
Double-Selection + 13 0.137 0.179 0.349 0.492 0.325 0.911 0.332 0.864

Split-Sample 0.137 0.200 0.731 0.952 0.392 1.000 0.475 1.000
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Double-Selection Oracle
Lasso

Post-Lasso

Double-Selection
Double-Selection Union ADS
Double-Selection + 13

Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso
Double-Selection
Double-Selection Union ADS
Double-Selection + 13

Split-Sample

Oracle

Double-Selection Oracle
Lasso

Post-Lasso

Double-Selection
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Double-Selection + 13
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Double-Selection Oracle
Lasso

Post-Lasso
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Double-Selection + 13
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Appendix Table 2. Simulation Results for Selected R Values
First Stage R’= .4

Structure R* = .4

RMSE

0.105
0.104
0.294
0.261
0.110
0.112
0.112
0.168

0.103
0.103
0.289
0.258
0.107
0.108
0.107
0.130

0.103
0.103
0.344
0.201
0.104
0.106
0.106
0.117

0.144
0.144
0.314
0.297
0.153
0.157
0.155
0.226

0.144
0.144
0.309
0.298
0.148
0.150
0.148
0.193

Coverage RMSE Coverage RMSE Coverage
Design 1a - Linear Decay with Cut-Off
0.047 0.105 0.049 0.097 0.079
0.047 0.105 0.049 0.110 0.051
0.852 0.493 0.943 0.239 0.992
0.684 0.280 0.377 0.231 0.989
0.058 0.112 0.060 0.112 0.061
0.049 0.115 0.052 0.112 0.050
0.065 0.114 0.069 0.109 0.066
0.221 0.228 0.241 0.131 0.141
Design 2a - Quadratic Decay with Cut-Off
0.045 0.105 0.045 0.101 0.053
0.045 0.105 0.045 0.103 0.050
0.812 0.408 0.878 0.238 0.997
0.648 0.190 0.145 0.235 0.999
0.050 0.108 0.054 0.108 0.054
0.047 0.110 0.049 0.108 0.048
0.060 0.110 0.056 0.105 0.062
0.102 0.160 0.112 0.125 0.076
Design 22a - Quadratic Decay
0.053 0.103 0.051 0.104 0.063
0.053 0.103 0.051 0.102 0.049
0.845 0.404 0.901 0.330 1.000
0.255 0.124 0.092 0.330 0.999
0.055 0.107 0.057 0.103 0.056
0.053 0.109 0.055 0.104 0.054
0.060 0.109 0.060 0.104 0.061
0.096 0.132 0.103 0.112 0.089
Design 3a - Linear Decay with Cut-Off and Heteroscedasticity
0.081 0.146 0.073 0.120 0.103
0.074 0.146 0.073 0.153 0.080
0.676 0.580 0.828 0.245 0.944
0.637 0.419 0.462 0.240 0.942
0.081 0.157 0.084 0.149 0.085
0.076 0.162 0.071 0.151 0.073
0.089 0.159 0.093 0.146 0.086
0.313 0.291 0.301 0.168 0.210
Design 4a - Quadratic Decay with Cut-Off and Heteroscedasticity
0.065 0.147 0.063 0.138 0.067
0.065 0.147 0.063 0.143 0.066
0.671 0.527 0.736 0.242 0.946
0.634 0.380 0.295 0.241 0.945
0.071 0.149 0.069 0.148 0.067
0.062 0.151 0.066 0.149 0.054
0.075 0.151 0.082 0.145 0.070
0.216 0.215 0.186 0.167 0.144

First Stage R’= 4
Structure R” = .8

First Stage R’=.8

Structure R = .4
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First Stage R’=.8

Structure R* = .4

RMSE

0.099
0.110
0.564
0.549
0.111
0.111
0.111
0.194

0.105
0.105
0.570
0.567
0.106
0.107
0.107
0.155

0.104
0.104
0.770
0.668
0.107
0.112
0.112
0.137

0.130
0.153
0.574
0.558
0.150
0.153
0.150
0.233

0.145
0.146
0.576
0.572
0.148
0.150
0.149
0.201

Coverage

0.054
0.049
1.000
0.999
0.062
0.055
0.069
0.206

0.043
0.050
1.000
0.999
0.056
0.053
0.059
0.122

0.047
0.047
1.000
0.835
0.059
0.056
0.070
0.144

0.074
0.079
0.999
0.999
0.087
0.073
0.096
0.277

0.062
0.066
1.000
1.000
0.074
0.070
0.077
0.163
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Double-Selection + 13

Split-Sample

Oracle

Double-Selection Oracle
Lasso
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Appendix Table 2. Simulation Results for Selected R Values
First Stage R’= .4

Structure R = .4

RMSE

0.166
0.166
0.408
0.358
0.166
0.167
0.166
0.215

0.243
0.241
0.597
0.478
0.244
0.251
0.251
0.385

0.231
0.205
0.347
0.343
0.301
0.304
0.302
0.346

0.102
0.102
0.318
0.214
0.107
0.109
0.109
0.117

0.102
0.102
0.325
0.205
0.106
0.108
0.108
0.114

First Stage R’= 4
Structure R® = .8

First Stage R’=.8

Structure R = .4

First Stage R’=.8

Structure R* = .4

Coverage RMSE Coverage RMSE Coverage RMSE
Design 44a - Quadratic Decay and Heteroscedasticity
0.097 0.166 0.091 0.161 0.099 0.166
0.097 0.166 0.091 0.163 0.088 0.166
0.707 0.563 0.691 0.336 0.982 0.803
0.541 0.220 0.140 0.336 0.982 0.785
0.087 0.167 0.084 0.164 0.084 0.167
0.086 0.172 0.080 0.164 0.084 0.169
0.089 0.172 0.091 0.164 0.085 0.168
0.234 0.206 0.163 0.176 0.157 0.193
Design 5a - Binary Treatment
0.058 0.242 0.047 0.288 0.055 0.288
0.058 0.242 0.047 0.306 0.050 0.305
0.637 0.848 0.789 0.857 0.933 1.709
0.415 0.390 0.170 0.797 0.840 1.308
0.047 0.251 0.049 0.297 0.056 0.305
0.047 0.259 0.046 0.304 0.053 0.308
0.062 0.259 0.059 0.303 0.057 0.308
0.187 0.490 0.185 0.407 0.162 0.539
Design 6a - Gaussian Random Coefficients
0.487 0.445 0.090 0.215 0.878 0.370
0.286 0.539 0.107 0.534 0.138 0.518
0.928 0.825 0.999 0.279 0.999 0.672
0.920 0.806 0.999 0.278 0.999 0.667
0.761 0.672 0.953 0.254 0.968 0.603
0.761 0.687 0.952 0.256 0.968 0.611
0.775 0.682 0.958 0.255 0.969 0.607
0.909 0.814 0.995 0.278 0.997 0.669
Design 7a - Gaussian Random Coefficients, Linear Decay in Std. Dev. with Cut-Off
0.054 0.104 0.053 0.099 0.056 0.103
0.054 0.104 0.053 0.103 0.059 0.105
0.768 0.356 0.790 0.303 0.999 0.708
0.282 0.113 0.065 0.303 0.998 0.672
0.065 0.110 0.054 0.105 0.061 0.108
0.058 0.113 0.043 0.106 0.053 0.111
0.069 0.112 0.063 0.106 0.069 0.110
0.076 0.136 0.079 0.110 0.073 0.132
Design 72a - Gaussian Random Coefficients, Quadratic Decay in Std. Dev. with Cut-Off
0.053 0.102 0.053 0.101 0.052 0.102
0.053 0.102 0.053 0.102 0.052 0.102
0.775 0.349 0.781 0.314 0.999 0.732
0.255 0.108 0.061 0.313 0.999 0.692
0.064 0.109 0.069 0.106 0.065 0.109
0.059 0.110 0.059 0.107 0.060 0.109
0.071 0.109 0.071 0.107 0.068 0.108
0.082 0.129 0.084 0.112 0.076 0.127

Coverage

0.093
0.093
0.997
0.955
0.077
0.077
0.081
0.185

0.045
0.043
0.995
0.695
0.054
0.045
0.053
0.184

0.110
0.000
1.000
1.000
1.000
1.000
1.000
1.000

0.052
0.049
1.000
0.830
0.060
0.042
0.074
0.085

0.055
0.053
1.000
0.833
0.064
0.046
0.063
0.081
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Appendix Table 2. Simulation Results for Selected R Values
First Stage R’= .4

Structure R* = .4

RMSE

0.101
0.101
0.323
0.176
0.103
0.105
0.105
0.110

0.102
0.105
0.321
0.283
0.150
0.155
0.153
0.255

0.100
0.131
0.324
0.305
0.188
0.191
0.190
0.306

Coverage

0.051
0.051
0.781
0.167
0.054
0.052
0.062
0.081

0.053
0.049
0.836
0.692
0.165
0.158
0.181
0.597

0.053
0.050
0.891
0.837
0.319
0.319
0.337

First Stage R’= 4
Structure R” = .8

First Stage R’=.8

Structure R = .4

37

First Stage R’=.8

Structure R* = .4

RMSE Coverage RMSE Coverage RMSE
Design 722a - Gaussian Random Coefficients, Quadratic Decay in Std. Dev.
0.101 0.050 0.100 0.051 0.101
0.101 0.050 0.101 0.050 0.101
0.335 0.787 0.332 1.000 0.735
0.102 0.053 0.332 1.000 0.605
0.103 0.053 0.102 0.055 0.102
0.104 0.052 0.103 0.055 0.105
0.104 0.056 0.103 0.060 0.105
0.109 0.064 0.104 0.062 0.105
Design 8a - Mixture of Normals
0.108 0.062 0.093 0.051 0.106
0.108 0.059 0.104 0.056 0.109
0.630 0.945 0.267 0.966 0.617
0.446 0.710 0.263 0.944 0.570
0.207 0.217 0.144 0.244 0.231
0.222 0.210 0.147 0.232 0.248
0.218 0.272 0.145 0.255 0.241
0.489 0.700 0.215 0.694 0.449
Design 1001a - 20 Non-Overlapping Constant Coefficients
0.100 0.053 0.072 0.050 0.072
0.131 0.050 0.131 0.050 0.131
0.741 0.997 0.261 0.997 0.626
0.617 0.962 0.257 0.994 0.592
0.281 0.328 0.150 0.343 0.262
0.298 0.324 0.152 0.341 0.269
0.294 0.379 0.151 0.348 0.265
0.683 0.968 0.243 0.971 0.567

0.822

Coverage

0.049
0.050
1.000
0.567
0.056
0.045
0.059
0.059

0.065
0.058
0.991
0.974
0.337
0.308
0.387
0.806

0.050
0.050
1.000
1.000
0.466
0.463
0.485
0.997
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