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IN THIS SUPPLEMENTAL MATERIAL, we include all proofs of results stated in
the main text, a more detailed discussion of the examples introduced in Sec-
tion 2.1, and the results of our Monte Carlo study. The proof of each main
result is contained in its own appendix, which also includes a discussion of the
strategy of proof and the role of the auxiliary results. The contents of the Sup-
plemental Material are organized as follows:

Appendix A: Contains the proof of Theorem 3.2 and required auxiliary re-
sults.

Appendix B: Contains the proofs of Theorems 4.1, 4.2, Corollary 4.1, and
required auxiliary results.

Appendix C: Contains the proof of Theorem 4.3 and required auxiliary re-
sults.

Appendix D: Contains the proofs of Theorems 5.1, 5.2, 5.3, and 5.4.

Appendix E: Contains the proof of Theorem 3.3, and a discussion of regu-
larity in the incomplete linear model.

Appendix F: Discusses our Assumptions in the context of Examples 2.1, 2.2,
2.3, and 2.4.

Appendix G: Reports the results of the Monte Carlo study.

For ease of reference, the following list includes notation and definitions that
will be used in the Appendix:

a <b a<Mb for some constant M.
| - - the Frobenius norm || A% = trace{ A’ A}.
|- ll, the operator norm for linear mappings.
M the set of Borel probability measures on X’ C Réx.
M, forsome uweM,theset M, ={PeM:P < u}.
N(Q) asubset of M that contains Q in its interior.
N(e, F,| -|) covering numbers of size ¢ for F under norm || - ||.
Npj(e, F, | - ) bracketing numbers of size ¢ for F under norm || - ||.
S; the arguments of 0 — F{’( [ ms(x, 8) dP(x)).
E(p, Q) the maximizers of sup,_,(p, 6) s.t. F([ m(x, 6) dQ(x)) <0.

APPENDIX A: PROOF OF THEOREM 3.2

This appendix contains the proof of Theorem 3.2. Several of the auxiliary
results are stated in more generality than needed so that they may be employed
in the derivations in Theorems 4.1 and 4.3 as well.

The proof of Theorem 3.2 proceeds by verifying the conditions of Theo-
rem 5.2.1 in Bickel, Klassen, Ritov, and Wellner (1993), which requires two
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key ingredients: (i) characterizing the tangent space at P, which we accom-
plish in Theorem A.1, and (ii) showing that O + v (-, @y(Q)) is pathwise weak-
differentiable at P, which we verify in Theorem A.2. Before proceeding to the
formal derivation of these results, we provide an outline of the general struc-
ture of the proof.

TANGENT SPACE—Theorem A.1:

Step I: Lemma A.16 establishes that if P is open relative to M,, in the 7-
topology, then the tangent space must be unrestricted. Intuitively, if P is open
and P € P, then all distributions Q close to P must also be in P. Therefore,
knowing that P € P does not contain information that may be exploited in es-
timation.

Step 2: Theorem A.1 then follows from establishing that there is a neighbor-
hood N (P) of P such that all Q € N(P) satisfy: (i) Assumption 3.6(i) (shown in
Corollary A.3), (ii) Assumption 3.6(ii) (by hypothesis), (iii) Assumption 3.6(iii)
(established in Lemma A.2), and (iv) Assumption 3.6(iv) (demonstrated in
Lemma A.8).

DIFFERENTIABILITY—Theorem A.2:
Step 1: Exploiting Lemma A.3, Lemma A.4 first shows that @y(P) has
nonempty interior. Corollary A.2 then extends this result to hold for all O
in a neighborhood N (P) of P.
Step 2: Next, we note that since @, (Q) has nonempty interior for all Q € N(P),
the support function has a saddle point representation. This is shown in
Lemma A.9, which also establishes that the Lagrange multipliers are unique.
Step 3: Lemma A.14 then employs the saddle point representation, the enve-
lope theorem, and auxiliary Lemma A.10, to show that Q - v(p, ©y(Q)) is
pathwise weak-differentiable at P for any p € S%.
Step 4: Finally, Theorem A.2 is shown by extending the pointwise result of
Lemma A.14. The arguments exploit the continuity of Lagrange multipliers
(Lemma A.12), and an auxiliary measurability result (Lemma A.13).

LEMMA A.l: Let f:X x ® — R be a measurable function, bounded in
(x,0) € X x O and such that 0 — f(x, 6) is equicontinuous in x € X. If As-
sumption 3.2 holds and {Q,}ses is a net in M with Q, — Q, then

lim sup sup =0.

a 0O

/ F(x, 0)dQ,(x) — / f(x, 0)dO(x)

PROOF: Fix ¢ > 0 and let N5(0) = {0 € @:]|0 — 0| < 8}. By equicontinuity,
for every 0 € O there is a 6(6) with

(A1) sup  |f(x,0) — f(x,0)| <e.

xeX,0eN;5(g) ()
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By compactness of @, there then exists a finite collection {6, ..., 6k} such that
{Ns,(0:)}X, covers . Hence,

(A2) ' [ s 0.0~ [ 1 oo

<2e+ f?fl’é‘/ f(x,0)(dQu(x) — dQ(x))

for any 0 € O. Since ¢ is arbitrary and max;.; | ff(x, 0)(dQ.(x) —
dQ(x))| — 0 due to f being measurable and bounded for all 8, and Q, — Q
in the 7-topology, the claim of the lemma then follows from (A.2). Q.E.D.

LEMMA A.2: If Assumptions 3.2, 3.4(i)-(ii), and 3.5 hold, then it follows that,
for every P € P, there is a neighborhood N (P) C M such that, for all Q € N(P),
{[ m(x, 0)dQ(x)}peo is compact and { [ m(x, 6) dQ(x)}geo C Vp.

PROOF: First note that Assumption 3.4(i)—(ii) and the dominated conver-
gence theorem imply that, for any Q € M,

(A3) éiirézfm(x, Ol)dQ(x):/m(x, 0,)dQ(x).

Thus, since @ is closed by Assumption 3.2, result (A.3) implies that the
set R(Q) = {[ m(x, 6) dQ(x)}geo is closed in Ré. Moreover, R(Q) is also
bounded by Assumption 3.4(i), and hence we conclude that R(Q) is com-
pact, which establishes the first claim of the lemma. Defining R(P)° = {v €
R :inf;erp [[v — || < 8}, it then follows from V being open by Assump-
tion 3.5, R(P) being compact, and Assumption 3.6(iii) that R(P) C V5. Hence,
there exists a §, > 0 such that R(P)> cC V,, and the second claim of the
lemma then follows from Lemma A.1 implying there exists a N (P) such that
R(Q) CR(P)* forall Q € N(P). Q.E.D.

COROLLARY A.1: Let Assumptions 3.2, 3.4, 3.5 hold and P € P. Then there
exists a neighborhood N (P) € M such that F( [ m(x,-)dQ(x)):0 — R is con-
tinuously differentiable for all Q € N (P), and in addition,

oo (e )

= VF(/ m(x, 0) dQ(x)) / Vem(x, 0)dQ(x).
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PROOF: By Lemma A.2, there is a neighborhood N(P) € M such that
[ m(x,0)dQ(x) €V, for all (0, Q) € ® x N(P). For any Q € N(P) and any
1 <i <dp, Assumption 3.5 then allows us to conclude that

(A4) VG{F“) (/ m(x, 6) dQ(x))}

=VF® (/ m(x, 6) dQ(x)) / Vom(x, 0)dQ(x),

where the exchange of order of integration and differentiation is warranted by
the mean value theorem, the dominated convergence theorem, and Assump-
tion 3.4(ii). Moreover, by Assumptions 3.4(i)—(iii) and 3.5(ii), we have

(A5)  lim VF‘”(/ m(x, 6,) dQ(x))/ng(x, 6,) dQ(x)

- ( / mx, OO)dQ(x)> f Vom(x, 0,) dQ(x)

by the dominated convergence theorem for any 6, 6, € @. The corollary then
follows from (A.4) and (A.5). Q.E.D.

LEMMA A.3: Let Assumptions 3.2,3.4,3.5, 4.2(i) hold and P € P. It then fol-
lows that, forevery j € {1, ..., dy} and every 6y € Oy(P), there exists a 6 4 € Oy(P)
satisfying 05 # 6.

PROOF: The proof is by contradiction. Suppose 6, € @(P) and that, for

some j € {1, ..., d,}, we have 69 = Héf) for all 6 € ®y(P). Further define K; =
{0 €O :F([m(x,0)dP(x)) <0} and, for any A C 0, let

(A6) II;{A}={ceR:c= 0" forsome 6 € A}.
Since O is convex and F( [ m(x, -) dP(x)): 0@ — R is convex by Assumptions

4.2(i), 3.6(ii), and P € P, it follows that K; and ("), », K are convex. Thus,
FO(fm(x, 0,)dP(x)) <O0forallie(l,...,dr}\ A(6y, P) implies

A7) {60} = { N K,},

i€ A(69,P)

or otherwise there would be a 6,4 € @y(P) with Off;) #* Of,f). Moreover,
Corollary A.1 and P € P satisfying Assumption 3.6(iv) imply V{F? ([ m(x,
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00) dP(x))} # 0 for all i € A(6y, P). Hence, for each i € A(6,, P), there is a
0, O with

(A.8) F© (/ m(x, 0,-)dP(x)> <0

due to 6y € ®° by P € P satisfying Assumption 3.6(i). Let v:.A(6,, P) —
{1,..., #A(0,, P)} be a bijection and

* . (])
(A9) k _lgkgil#l}c\t;eo,P) { { QkK} 0 }

where we note 2 < k* < #A(6y, P) due to (A.7) and {IT{K;}}° # ¢ for all i
A(6y, P) by (A.8). Next, define

(A10) K= () K. Ki=K. i)

(i) <k*-1

Since II; {K} is not singleton valued, there exists a 6,4 € K with 0(/{) #* Hf)j It
follows that if 6 € KNK;,then 6 ¢ K., for otherwise c6 4+ (1 — c)0e KNK;
for ¢ € (0, 1) sufficiently small, contradicting (A.9). We therefore conclude that
K N K¢ =, and by Theorem 5.12.3 in Luenberger (1969) that there is a p* €
S such that

(A.11) sup<9 p )< 1nf<0 p)

GEK i*

Further note that both the infimum and supremum in (A.11) are attained at
6y, and that since P € P must satisfy Assumption 3.6(iv), that {V,{F® ([ m(x,
60) dP(x))}}icac, p) are linearly independent by Corollary A.1. Thus, it follows
from Theorem 9.4.1 in Luenberger (1969) and 6, € ©®° by P € P satisfying As-
sumption 3.6(i) that

(A12) 0=p + yovg{F“l(k*”(/ m(x, HU)dP(x)) }

k*—1

0=p +kav {F“ “”(/m(x 00>dP(x>>}

for some scalar vy, # 0 and vector (i, ..., vi1) # 0. However, result (A.12)
and Corollary A.1 contradict P € P satisfying Assumption 3.6(iv) and hence
the lemma follows. Q.E.D.
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LEMMA A.4: If Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P € P, then there
exists a 6, € O such that

F® (/ m(x, OO)dP(x)> <0 foralll<i<dp.

PROOF: Let 2!L-9r denote the power set of {1,...,dr} and note that
A(-, P):0@ — 2114} Since A(-, P) has finite range, there exists a collection
{0,}/_, with J < oo and 60, € @,(P) such that, for all 6 € Oy(P),

j=1
(A13) A0, P) e A6, P)}_,.

Next, select weights {wj}le such that w; > 0 and }_ jwi=1, and define 0, =
>, w;0;. By convexity, we obtain

J
(A14) F© </ m(x, 6y) dP(x)) < ijF“) (/ m(x, ;) dP(x))
j=1

for any 1 < i < dp, which implies 6, € @y(P). Moreover, since w; > 0 for
all 1 <j </, it also follows that F( [ m(x, 6y)dP(x)) =0 if and only if
FO(fm(x,0;,)dP(x)) =0forall 1 <j <J. Thus, by (A.13), we conclude that

J
(A15)  A(60, P)= A6, P)= (] A6,P).
j=1 90y (P)
Next, we aim to show A(6,, P) = ¥, which yields the claim of the lemma.
Toward this end, note that, for any 1 < i < d, if j € S;, then by Lemma A.3

there exists a 0,4 € @y(P) with 03” #* 0(/{). Thus, by convexity of ® and P € P
satisfying Assumption 3.6(ii), we obtain that c6y + (1 — ¢)6,4 € Oy(P) for all
ce(0,1), and

(A.16) F© (/ m(x,cl+ (1—c)8.4) dP(x)) <0.

Therefore, (A.15) and (A.16) imply that S; = ¢ for all i € A(6,, P), or equiv-
alently that only linear constraints can be active at 6,. Thus, Theorem 22.2 in
Rockafellar (1970) then yields that either (A.17) or (A.18) must hold:

(A17) F© (/ m(x, 0;) dP(x)) <0 forallie A(8,,P) for some 6, € R,

(A18) ')/,-V(,{FU)(/m(x,OO)dP(x)>}=0

i€ A(8),P)

for scalars {y;} with sup vy;>0.
ic A6, P)
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However, (A.18) is not possible due to P € P satisfying Assumption 3.6(iv),
and hence we conclude that (A.17) must hold. Finally, since F ([ m(x,
00)dP(x)) <0forallie{l,...,dr}\ A(6, P) and 6, € @° due to P € P sat-
isfying Assumption 3.6(i), we obtain that, for ¢ € (0, 1) sufficiently close to 1,
FO(fm(x,cp+ (1 —c)0,)dP(x)) <0 for all 1 <i < dp. Hence, (A.15) im-
plies A(6y, P) = @ as desired, and the claim of the lemma follows. Q.E.D.

LEMMA A.5: Let Assumptions 3.2, 3.4(i)-(ii), 3.5, 4.2(i) hold and P € P.
Then, there exists a neighborhood N(P) C M such that the mapping (6, Q) —
F([ m(x, 0)dQ(x)) is continuous at all (6, Q) € © x N(P).

PROOF: Recall that, by Lemma A.2, there is N(P) € M such that [ m(x,
0)dQ(x) € Vyforall (6, Q) € @ x N(P).Next, let {0,, O,}.ca be anet such that
(04, Q) — (6p, Qp) € ® x N(P). Since m: X x ® — R is bounded by As-
sumption 3.4(i), and 0 — m(x, 0) is equicontinuous in x by Assumption 3.4(ii),
it follows from Lemma A.1 that

F( / m(x, 0) an<x)> —F( / m(x, O)dQO(x)) H _o,

due to F being uniformly continuous on V4 by Assumption 3.5(ii). Moreover,
since [ m(x, 6y) dQo(x) € V;, we have

(A.19) limsupsup

a 0O

(A.20) F</ m(x, Ga)on(x)) —>F</ m(x, eo)on(x)>

by Assumption 3.4(i)—(ii) and the dominated convergence theorem. Therefore,
results (A.19) and (A.20) imply that

(A.21) F(/ m(x, Oa)an(x)) —>F(/ m(x, Oo)on(x)),

which establishes the continuity of (0, Q) — F(f m(x, 0)dQ(x))on O x N(P)
as claimed. O.E.D.

COROLLARY A.2: Let Assumptions 3.2,3.4,3.5, 4.2(i) hold and P € P. Then,
there exists a 6y € O and a neighborhood N(P) € M such that FO( [ m(x,
00)dQ(x)) <0 forall1 <i<drand Q € N(P).

PROOF: The claim follows immediately from Lemma A.4 implying there
exists 6y € @ such that FO([ m(x, 6y)dP(x)) <0 for all 1 <i < dp, and
Lemma A.5 implying Q F(f m(x, 0y) dQ(x)) is continuous at Q = P.

Q.E.D.
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LEMMA A.6: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P € P. Then there
is N(P) € M such that ©y(Q) # @ is convex for all Q € N (P), and the correspon-
dence Q — Oy(Q) is continuous at all Q € N(P).

PROOF: By 6 being convex, Corollary A.2, Assumption 4.2(i), and P € P
satisfying Assumption 3.6(ii), there exists a N (P) € M and 6, € @ such that, for
all 0 € N(P) and 1 <i < dp, the functions F( [ m(x,-)dQ(x)):0 — R are
convex, and F( [ m(x, 6y) dQ(x)) < 0. Thus, in what follows, we let ©y(Q) be
a convex set with nonempty interior. Moreover, by Lemma A.5, N(P) may be
chosen so that (6, Q) — F(f m(x, 0) dQ(x)) is continuous on @ x N(P).

We first establish that Q — @y(Q) is lower hemicontinuous at any Q, €
N(P). By Theorem 17.19 in Aliprantis and Border (2006), it suffices to show
that, for any 6* € ©y(Q,) and net {Q,}aea With O, — Oy, there exists a subnet
{Qaﬁ}ﬁe% and net {6} g such that 6, € @o(QaB) forall Be B and 0; — 0*. If
6* € O3(Qy), then FO ([ m(x, 6*)dQy(x)) <0 for all 1 <i < dp, and hence by
Lemma A.5 and Q, — Q,, there exists «; such that 6* € ®y(Q,,) for all @ > «y.
Therefore, defining B = {a« € A: a > oy}, Q.; = Op, and setting 6z = 6", we ob-
tain that {Q.,}pen s a subnet with 65 € @y(Q.,) and trivially satisfies 65 — 6*.
Suppose, on the other hand, that 6* € o’l@o(Qg) Since @o(QO) is convex with
nonempty interior, there is a sequence 6, with 6, — 6* and 6, € 05(Qy) for
all k. By Lemma A.5, there then exists a «g; such that 6y € 0y(Q,) for all
a > ap,. Let B8 =2 x N and, for any 8 = (a, k), let ag = a for some a € 2
with @ > o and & > ay, and 0 = Oy {Qaﬁ}B% is then a subnet of {Q,}4co With
O € Oy(Q.,) and O — 07

Next, we show that O — 0,(Q) is upper hemicontinuous at any Q, € N(P).
By Theorem 17.16 in Aliprantis and Border (2006), it suffices to show that any
net {Q,, 0,}qc such that Q, — Q, and 60, € Oy(Q,) for all a € 2 is such that
{04} acar has a limit point 6* € ©y(Q,). Compactness of &, however, implies that
there exists a subnet {0} e such that Ooy — 07 for some 6* € @. Therefore,
since b, € Oy(Q,,) for all B € B, we obtain

(A22) 0> F(/ m(x, 0.,) dQu, (x)) — F</ m(x, 67) on(x)>

by Lemma A.S5. Thus, 6* € 0,(Q,) and upper hemicontinuity is established.
Since, as argued, Q — 0y(Q) is also lower hemicontinuous, the claim of the
lemma immediately follows. QE.D.

COROLLARY A.3: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P € P. Then,
there exists a neighborhood N (P) C M such that § # 0y(Q) C O° for all Q €
N(P).
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PROOE: Since 6 — F([ m(x,6)dP(x)) is continuous in 6 € @ by Lemma
A.5, it follows that @(P) is closed. Hence, since JO is closed as well and
0y(P) NJO = @ due to P € P satisfying Assumption 3.6(i), we must have that

(A23) inf inf [|6; — 6,] > 0.

01€0((P) 6,60

Therefore, there exists an open set U such that ®y(P) C U C ©°. Since by
Lemma A.6 the correspondence Q — @y (Q) is upper hemicontinuous at P,
there then exists a N(P) € M such that, for all Q € N(P), we have ¢ #
0,(Q) C U C ©; see Definition 17.2 in Aliprantis and Border (2006). Q.E.D.

LEMMA A.7: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P € P, and define the
correspondence

(A24) E(p,O)= argrgl%xi(p, 0) s.t. F([ m(x, 0) dQ(x)) < 0}.

Then there is N (P) C M with (p, Q) — = (p, Q) nonempty, compact, and upper
hemicontinuous on S% x N(P).

PROOF: By Lemma A.6, there exists a N(P) € M such that @y(Q) # ¢ and
O+ 0y(Q) is continuous on N (P). Since by Lemma A.5 the set Oy(Q) C O
is closed, Assumption 3.2 implies @y(Q) is compact. Hence, Z(p, Q) is well
defined as the maximum is indeed attained for all (p, Q) € S% x N(P). Con-
tinuity of O — 0y(Q) and Theorem 17.31 in Aliprantis and Border (2006)
then imply (p, Q) — Z(p, Q) is compact valued and upper hemicontinuous.

Q.E.D.

LEMMA A.8: Let Assumptions 3.2,3.4,3.5,4.2(i) hold and P € P. Then, there
exists a neighborhood N(P) € M so that {VF?([ m(x, 0)dQ(x)) [ Vym(x,
0) dQ(x)}icac,0) are linearly independent for all 6 € Oy(Q) and Q € N(P).

PROOF: The proof is by contradiction. Let 91, be the neighborhood system
of P with direction IV = W whenever IV C W, which forms a directed set. If the
lemma fails to hold, then, for 2l = 91p, there exists a net {Q,, 0,}qc2 Such that
Q. — P, 6, € 0,(Q,) and the vectors {VF([ m(x, 6,)dQ,.(x)) [ Vom(x,
0.) dQu(X)}icacb,.0, are not linearly independent for all a € 2. Since by
Lemma A.6 the correspondence Q +— 0y(Q) is upper hemicontinuous in
a neighborhood of P, we may pass to a subnet {Q.,, 0a;}pen such that
(Qugs Oay) = (P, 0%) with 6% € Og(P). Further note that for any index i €
A°(0%, P), Lemma A.5 implies that

(A25) F© ( / M(X, o) dQuy (x)) — F® ( / m(x, 6) dP(x)) <0.
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Therefore, there is a B, such that, if 8 > By, then the constraints that are
inactive under (6*, P) are also inactive under (P Qaﬁ). Equivalently, for
B > B, A( Oag Qaﬁ) C A(6*, P), and hence, in establishing a contradiction,
it suffices to show {VFO ([ m(x, a,) dQu, (X)) [ Vem(x, 8a,) dQuy (X)}icacor.p)
are linearly independent for some 8 > B,.

Toward this end, notice that Assumption 3.4(ii)—(iii) and Lemma A.1 imply
that, uniformly in 6 € 6,

(A.26) /ng(x, 0) anB (x) — /Vem(x, 0)dP(x).

Since V,ym is uniformly bounded and continuous in 6, the dominated conver-
gence theorem and (A.26) yield

(A27) / Vom(x, 0,) dQu, (X) — / Vem(x, 6%) dP(x).

Similarly, since v — VF(v) is uniformly continuous on V4 by Assump-
tion 3.5(ii) and [ m(x, Bay) dQa; (x) €V, for B sufficiently large by Lemma A.2,
Lemma A.1 applied to 6 — m(x, 6) and result (A.27) yield

(A.28) VF< / m(x, eaﬁ)anB(x)> / Vom(x, 0,,) dQay(X)

— VF(/m(x, 6*) dP(x))/ng(x, 6*) dP(x).

However, since P € P satisfies Assumption 3.6(iv), the vectors {VF( [ m(x,
6*)dP(x)) [ Vom(x, 60*) dP(x)}icaco+ p) are linearly independent, and hence by
(A.28), so must {VFO(fm(x, bay;) dQuy (X)) [ Vem(x, Oay) dQuy(X)}icaco.p)
for B > B; and some B; € B. Thus, the contradiction is established and the
claim of the lemma follows. O.E.D.

LEMMA A.9: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P € P. Then there
is a neighborhood N (P) € M such that, for all Q € N(P) and p € S, there is a
unique A(p, Q) € R satisfying

(A.29) sup (p, 0) = sup{ (p, )+ A(p, Q)/F(f m(x, 6) dQ(x)) }

€0y (Q) 0O

PROOF: By Assumption 4.2(i), Corollary A.2, and P € P satisfying Assump-
tion 3.6(ii), there is a Ny (P) < M such that, for all Q € N,(P), thereisa 6, € @
with FO([m(x, 6y)d0(x)) <0 forall 1 <i <dp and FO([m(x,-)dQ(x)):
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O — Ris convex for all 1 <i < dr. Since @ is compact and convex by Assump-
tion 3.2, the optimization problem

(A30) sup(p, ) s.t. F<f m(x, 0) dQ(x)) <0

0O

satisfies the conditions of Corollary 28.2.1 in Rockafellar (1970) for all O €
N,(P) and all p € S%. We can therefore conclude that the equality in (A.29)
holds for some A(p, Q) € R,

Next, we show that there exists a N(P) C N;(P) such that A(p, Q) is unique
for all p € S and Q € N(P). To this end, note that, by Lemma A.7 and
Corollary A.3, there exists a N>(P) € N,(P) such that Z(p, Q) as defined in
(A.24) satisfies ¥ # 5 (p, Q) € Oy(Q) C O° for all (p, Q) € S* x N,(Q). The-
orem 8.3.1 in Luenberger (1969) then implies that any 6* € Z(p, Q) is also a
maximizer of the dual problem, and hence, for any 6* € Z(p, Q),

(A.31) p/—i—)\(p,Q)’VF(/m(x, 0*)dQ(x))/V9m(x, 6*)dQ(x) =0,

by Corollary A.1 for all Q in some neighborhood N;(P) € N,(P). Result
(A.31) represents a linear equation in A(p, Q) € R . However, by the com-
plementary slackness conditions, A (p, Q) = 0, for any i € A°(6*, Q). There-
fore, the linear system in equation (A.31) can be reduced to d, equations and
#A(0*, Q) unknowns. Furthermore, by Lemma A.8, there is a neighborhood
N(P) € N3(P) with {(VF([ m(x, 6*)dQ(x)) [ Vem(x, 6*) dO(x)}icace-.0) lin-
early independent for all Q € N(P) and any 6* € ©y(Q). Hence, we conclude
that, for any Q € N(P), the solution to equation (A.31) in A(p, Q) € RYF satis-
tying (A.30) is unique and the claim of the lemma follows. Q.E.D.

LEMMA A.10: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P € P, and 5 (p, Q)
be as in (A.24). Then, there exists a neighborhood N(P) € M such that, for
each (Q, p) € N(P) x S% and all 1 < i < dp, one of the following must hold:
(1) A?(p, Q) =0, or (i) 0" = 6 forall j € S; and all 6,, 0, € Z(p, Q).

PROOF: Recall that we refer to the arguments of F;”( f mg(x,-)dQ(x)) as
the coordinates of 6 corresponding to indices in S; (as in (4)). By P € P satis-
tying Assumption 3.6(ii) and Lemma A.7, there is a N(P) € M such that, for
all Q e N(P) and 1 <i < dy, the functions F;i)(f ms(x,-)dQ(x)) are strictly
convex in their arguments, and 5 (p, Q) # @ for all p € S%. To establish the
lemma, we aim to show that condition (i) must hold whenever (ii) fails. To this
end, suppose there exists a 1 <i < dr such that OY ) * 0;” for some j € S; and
01,0, € Z(p, Q). Next, define 6, = ¢, + (1 — ¢)6, with ¢ € (0,1) and note
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0? ) £ Hg "and j € S;, and P € P satisfying Assumption 3.6(ii) imply
(A32) F© (/ m(x, OL)dQ(x))

< cFO (/ m(x, el)dQ(x)> +(1—c)F? (/ m(x, Hz)dQ(x))
=0,

where the second inequality follows from 6, 6, € ®,(Q). However, since
O is convex by Assumption 3.2, ©y(Q) is convex as well and hence 6, €
0,(Q). Since (p, 0.) = c(p, 0,) + (1 — ¢)(p, 6,), we must have 6, € Z(p, Q),
and therefore (A.32) and the complementary slackness condition imply
A9 (p, Q) =0, establishing the lemma. Q.E.D.

LEMMA A.11: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P € P, and \(p, Q)
be as in (A.29). Then, there exists a N (P) C M such that ||A(p, Q)| is uniformly
bounded in (p, Q) € S% x N(P).

PROOF: We establish the claim by contradiction. Let 91, denote the neigh-
borhood system of P with direction V' = W whenever IV € W, let N be the nat-
ural numbers, and note 91, x N then forms a directed set. If the claim is false,
then, setting A =MNp x Nand o = (V, k) € A, we may find a net {Q,, pa, Oo}acn
such that, for all a € 2,

(A33) ||A(pa’ Qa)” >k’ QOZEV’ paESdsv aaEE(paa Qa),

where Z(p, Q) is as in (A.24). However, by: (i) (p, Q) — Z(p, Q) being upper
hemicontinuous and compact valued in a neighborhood of P, and (ii) S% being
compact, we may pass to a subnet {Qu,, Pags 0ay}ges such that

(A'34) (Qalp palga 001,3: A(palg’ Qalg)“) g (P’ p*? 0*? +OO)
for some (p*, 6°) € S* x Z(p*, P).

Since the number of constraints is finite, there is a set of indices C C {1, ..., dr}
such that, for every B, € B, there exists a B > By with A(Oaﬁ,Qaﬁ) =

C. Letting & = B, we may then set ag, = a; for some B > B satisfying
A(Gaﬁ, Q“E) = C. In this way, we obtain a subnet which, for simplicity, we de-

note {Qayy payy an}yetﬁy Wlth

(A35) (Qaya paya Bay7 )\(pozya Qay)H) g (Pa p*, 9*, +OO)7
A8, Q.,) =C Vye®.
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Next, let A°(p.,, Q.,) and VEF([ m(x, 0,,) dQ., (x)) respectively be the #C x
1 vector and #C x d, matrix that stack components of A(p,,,Q.,) and
VF( f m(x, 0,,) dQ.,(x)) whose indexes belong to C. Similarly, define

(A36) M(0,,,Q.,) = VCF( f m(x, eay>any(x>) / Vom(x, 6,)dQ,, (x).

By Lemma A.8, there is a vy, such that M(0,,, Q.,)M(0.,, Q.,)" is invertible
for all y > y,. Therefore, since by the complementary slackness conditions
A (Pays Qa,) =0 for all i ¢ C, we obtain from result (A.31) that

(A37)  A(Pay> Quy) = —(M (B, Q)M (0 Ou,))” M (Buy, Qty) Py

Additionally, since (6.,, Q.,) — (6%, P) as in (A.34), we obtain from result
(A.28) and definition (A.36) that

(A38) M(b.,,Q.)M(b.,,Q.) — M(6*, P)M(6, P) .

For a symmetric matrix 3, let £(3) denote its smallest eigenvalue and note
EM (0, PYM(6*,P)') > 2¢ for some ¢ > 0 by P € P satisfying Assump-
tion 3.6(iv). Since eigenvalues are continuous under || - ||z by Corollary I11.2.6
in Bhatia (1997), we obtain from (A.38) that there is a v, > 7y, € & such that,
for all v > y,, we have

(A39)  E(M(ba,, Qu)M(b,,,Qd,)) > &

Furthermore, since A”(p.,,Q.,) =0 for all i ¢ C, it follows that ||A(p.,,
Q) = IA°(pa,, Qu,) |l and hence

(A40)  [A(Puyr Q)| = [A°(Pays Q)|
< (M (84, Qo) )M (80, Qu)) |,
X |M (8, Qe x 1P
< (M (8ay> Qay )M (Bays O))') X igg” VF()|,

x sup |Vem(x, 0)]

(x,0)exX xO

F’

where the final inequality holds for all y > vy, for some 7y, € & with y, >y,
by Lemma A.2. However, (A.39), (A.40), and Assumptions 3.4(ii), 3.5(ii) im-
ply IA(pay,> Qu,) | is uniformly bounded for all y > ,, contradicting (A.35).

Q.E.D.
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LEMMA A.12: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P € P, and \A(p, Q)
be as in (A.29). Then, there exists a N(P) € M such that the function (p, Q) —
A(p, Q) is continuous on (p, Q) € S x N(P).

PROOF: By Lemmas A.9 and A.11, there exists a N;(P) € M such that
A(p, Q) is well defined, unique, and uniformly bounded for all (p, Q) € S% x
Ni(P). Therefore, letting A = cl{A(p, Q) : (p, Q) € S¥ x N,(P)}, it follows that
A is compact in R%. By Lemma A.9 and Theorem 8.6.1 in Luenberger (1969),
we then have

(A4l) Mp, Q)= argqligl VA, p, Q)= argrgigl VA, p,Q),

VA, p, Q)= I&%X{(p, 0) + /\/F</ m(x, 0) dQ(X)) }

Since (0, Q) F(f m(x, 0) dQ(x)) is continuous on a neighborhood N (P) C
N;(P) by Lemma A.5, compactness of @, and Theorem 17.31 in Aliprantis and
Border (2006) imply (A, p, Q) = V (A, p, Q) is continuous on A x S x N(P).
Therefore, by (A.41), compactness of A and a second application of Theo-
rem 17.31 in Aliprantis and Border (2006), it follows that (p, Q) +— A(p, Q) is
upper hemicontinuous on S% x N (P). However, since (p, Q) — A(p, Q) is a
singleton valued correspondence on S% x N(P) by Lemma A.9, we conclude
that it is, in fact, a continuous function. O.E.D.

LEMMA A.13: Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P € P, and Z(p, P)
be as in (A.24). Then, there exists a Borel measurable selector 6*:S% — @ with
0*(p) e Z(p, P) forall peS.

PROOF: By Lemma A.7, p — = (p, P) is upper hemicontinuous in p € S%
and hence weakly measurable; see Definition 18.1 in Aliprantis and Border
(2006). Since p — = (p, P) is nonempty and compact valued by Lemma A.7,
Theorem 18.13 in Aliprantis and Border (2006) implies there is a measurable
selector 6*:S% — @ and the lemma follows. Q.E.D.

LEMMA A.14: Let Assumptions 3.2, 3.3, 3.4, 3.5 hold, and 1~ h,, be a curve
in S. Then, there is a neighborhood N C R of 0 such that, for all ny € N, p € S%,
E(p, P,) asin (A.24),and A(p, P,) € R as in (A.29),

0
(A.42) %V(p, Oo(Py))

N=m0

=2\(p, P,,O)’VF(/ m(x, 0%) k% (x) dM(x)>

X /m(x, 0*)l.z,m(x)h,,0(x)d/u(x) forany 6* € Z(p, P,,).
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PROOF: For any 1 <i <d,, and 6 € 0, first observe that by rearranging
terms it follows that, for any 7,

(A.43) '/ m?(x, 0){hfm(x) — R (x) —2(no — 1rI)h,m(x)ftm(x)} du(x)

- V m(x, )] (1 (x) = iy (1))

o+ 20 () (i (X) = Py () + (190 — Mgy (1))} dpu ()

= 0(|7I - ”flo|),

where the final result holds by m being bounded by Assumption 3.4(i), Cauchy-
Schwarz, || 4, — h,, ”iﬁ =O(Im—mnol*), and ||, = by, — () —=n0) iy ll 3 = 0(Im —
Mol) due to n — h, being Fréchet differentiable. Moreover, |4, — h,, || 12 =
o(1) implies P, — P, with respect to the total variation metric, and hence

also with respect to the 7-topology. Thus, for n, in a neighborhood of zero,
result (A.43), Lemma A.2, and Assumption 3.5(i)—(ii) yield

(A.44) %F(/ m(x, O)hf,(x)dﬂ(x))

N=m0

= 2VF</ m(x, 0)hi0(x)d,u(x))
x /m(x, 0) 1y, (X) P, (x) d ().

Since 1 — h,, is continuously Fréchet differentiable, result (A.28) implies that
the derivative in (A.44) is continuous in 7, in a neighborhood of zero. There-
fore, Assumption 3.3 implying Assumption 4.2(i), Lemma A.9, and Corollary 5
in Milgrom and Segal (2002) imply n — v(p, @y (P,)) is directionally differen-
tiable in a neighborhood of zero, with

J

N=m0

= max 2/\(p,P,,0)’VF</m(x, 0*)hf,0(x)d/u(x)>

0*€Z(p,Pyy)

x /m(x, ) Py (X) Py (%) d (),



16 H. KAIDO AND A. SANTOS

J
(A46) S —v(p,Ou(P,)

n=n0

= min 2)\(p,Pn0)/VF</m(x,0*)hfm(x)d,u(x)>

0*€Z(p,Pyy)

X /m(x, 0%) Ity () Py () dpa (),

where ﬁ and an% denote right and left derivatives, respectively. Note, how-
ever, that by Lemma A.10, for all 1 <i < dy such that A (p, P, ) # 0, we
must have Oij) = 0;" ' for all j€ S andall 0, 6, € Z(p, P,,). Therefore, since
A6 trivially does not depend on 7, it follows from (3), (4), and results (A.44),
(A.45), and (A.46) that

d
(A'47) é,—V(p, @O(Pn))

M+

n=n0

= max > A%p, Py

0°€Z(p,Png)
07D (p, Py )20

J .
X %Fé’) (/m(x, 9*)h§(x)du(x)>

N=m0

= min > Ap.Py)
0*€E(p,Pyy) .
A0 (p, Py )70

1%

x —F (/ m(x, 6%) k3 (x) d,LL(x)>

an

N=m0

J
= WV(P,@O(Pn))

n=m0

Thus, the claim of the lemma follows from (A.45), (A.46), and (A.47).
Q.E.D.

LEMMA A.15: Let Assumptions 3.2, 3.3, 3.4, 3.5 hold, and 1+ h,, be a curve
in S. Then:

(i) there is a neighborhood N < R of 0 such that %v( D> Oo(Py))|yen, Is
bounded in (p, ny) € S* x N, and

(ii) the function (p, ny) — %V(p, Oo(P,))|y=y, is continuous at all (p, ny) €
S% x N.
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PROOF: To establish the first claim, notice that, by Lemmas A.2, A.14, and
the Cauchy-Schwarz inequality,

1%
(A.48) %V(p, Oy(P,))

N=m0

<2|Ap, P | > sup|[VF )]
Ve

x Vdy sup [m(e, O] x gy llz X g lz,

(x,0)exX x0O

for m, in a neighborhood of zero. Since ||fzn0|| 2 is continuous in 7, due to
1 — h,, being continuously Fréchet differentiable, it attains a finite maximum
in a neighborhood of zero. Thus, ||fzn0|| 2 is uniformly bounded, and since
79 ll22 =1 for all mo, Lemma A.11, Assumptions 3.4(i), 3.5(ii), and (A.48)
establish the first claim of the lemma.

To establish the second claim, let (p,,m,) — (po, mo) and select 07 €
E(pn, Py,) for Z(p, Q) as in (A.24). Since ||m(x, 0)| is uniformly bounded
by Assumption 3.4(i), we obtain, for any 1 <i <d,,, that

(A.49) lim sup

n—oo G

/m(i)(X, )] P, (X) Py, (%) — Py (X) Py () } d ()

< sup ||m(x,9)||

(x,0)exX xO
x im {172y, — P g 1P, Mg+ W, — Pyl 1 123}
=0,

due to the Cauchy-Schwarz inequality, n — h, being continuously Fréchet
differentiable, and ||/, || 12 = 1. Next, let {n,} be an arbitrary subsequence, and

note that since Lemma A.7 implies (p, n) — Z(p, P,) is upper hemicontin-

uous provided 7 is in a neighborhood of zero, there is a further subsequence

{0, } such that 6, — 0 for some 6* € Z(p,, P,,). Along such a subsequence,
J

J
we obtain, from (A.28), (A.49), and the dominated convergence theorem,

(A.50) lim VF(/ m(x, 0, Y, (x) dM(x)>
j—oo i kj

x / m(x, 0, Vg, ($)hy, () dp(x)

:VF(/ m(x, 0*)hfm(x)d,u(x)>/m(x, )y (%) P () du(X).
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Hence, by Lemmas A.12 and A.14 and result (A.50), the subsequence {rn,} has
a further subsequence {n,}, with

.0 1%
(A1) im v (pa,, OoP)| = ov(po, Ou(Py)

W:"hzk/, n =m0

Therefore, since the subsequence {n;} was arbitrary, result (A.51) must also
hold with {r} in place of {n,,}. We conclude that (p, n9) — ZLy(p, Oo(Py))ly=n,

an
is continuous, and the second claim of the lemma then follows. O.E.D.

LEMMA A.16: Let M, ={Q e M:Q < u}, QSM,,and D={sec L} :s=

v dQ/du for some Q € Q}. If Q is open relative to M,, with respect to the 7-

topology, then, for every Q € Q, the tangent space of D at s = \/dQ/d . is given by
D={heL:[h(x)s(x)du(x)=0}.

PROOF: The proof exploits a construction in Example 3.2.1 of Bickel et al.
(1993). Define

(A52) T= {heLi:/h(x)s(x)d,u(x):O},

and note that, by Proposition 3.2.3 in Bickel et al. (1993), we have D C T.
For the reverse inclusion, pick 4 € T and let ¥:R — (0, co) be continuously
differentiable, with ¥(0) = ¥/(0) =1 and ¥, ¥, and ¥'/¥ bounded. For
s=,/dQ/du, define a parametric family of distributions to be pointwise given
by

s(x)

2nh !
b(n)s[/llf( U (x))dQ(x)} .
s(x)

Employing Proposition 2.1.1 in Bickel et al. (1993), it is straightforward to
verify that n +— A, is a curve in L? such that &, = s. Further note that since
Q is open relative to M, there exists a neighborhood N(Q) € M in the 7-
topology such that N(Q) "M, € Q. Let Q,, satisfy h,, = ,/dQ,,/du and notice
that 2712||h, — s|| 13 €quals the Hellinger distance between Q, and Q. Since
convergence with respect to the Hellinger distance implies convergence with
respect to the 7-topology, it follows that there is a neighborhood N € R of 0
such that O, e N(Q)NM,, € Q for all n € N. We conclude n +— h,, is a regular
parametric submodel. Moreover, by direct calculation, we also have

15(0)s*>(x)W'(0)2h(x) 1b'(0)s*(x)¥(0)
2 s(x)s(x) 2 s(x)

(A54)  hy(x) =

= h(x),
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where we have exploited that, by the dominated convergence theorem, b'(0) =
ZfW/(O)h(x)s(x)dpL(x) =0 due to & € T. Hence, from (A.54) we conclude
that # € D and therefore that T = D, which establishes the lemma. Q.E.D.

THEOREM A.1: Let Assumptions 3.2, 3.3, 3.4, 3.5 hold and P € P. Then, the

tangent space of S at s = \/dP/dw is given by S = {h € Li D h(x)s(x)dp(x) =
03.

PROOF: The claim follows from Assumption 3.3 implying 4.2(i), Lemma
A.16, and Lemmas A.2, A.8, Corollary A.3, and P € P satisfying Assump-
tion 3.6(ii) implying that P is openin M, = {Q e M: Q <« u}. Q.E.D.

THEOREM A.2: If Assumptions 3.2, 3.3, 3.4, and 3.5 hold, then the map-
ping p:P — C(S%) pointwise defined by p(P) = v(-, Oy(P)) is pathwise weak-
differentiable at any P € P. Moreover, for s = \/dP/du and A(p, Q) as defined
in (A.29), the derivative p:S — C(S%) satisfies

p(ho)(p) =2\ (p, P)/VF</ m(x, 0°(p)) dP(x))

x / m(x, 0" (p)) ho(x)s(x) dps(x),

where 0*:S% — O is Borel measurable and satisfies 0*(p) € 5(p, P) (as in
(A.24)) forall p e S%.

PROOF: The existence of a Borel measurable 6*:S% — @ satisfying 6*( p) €
E(p, P) for all p € S follows from Lemma A.13. Moreover, notice that in-
deed p(ho) e C(S%) for all ho €S as implied by Lemmas A.14 and A.15. We
next establish that p: S — C(S%) is a continuous linear operator and then ver-
ify that it is indeed the derivative of p:P — C(S%). Linearity is immediate,
while continuity follows by noting that, by the Cauchy-Schwarz inequality,

(AS5)  sup [p(ho),

ligll, > =1
Ly

< sup sup {2||/\(p,P)|| X supHVF(v)”F

HhuHLz =1 pesdo

xVdy sup |mix, 0)] x lllz % sl

(x,0)exX x0O
<00,

where we exploited P € P satisfies Assumption 3.6(iii), Lemma A.11, Assump-
tions 3.4(i), 3.5(ii), and Islzs = 1.



20 H. KAIDO AND A. SANTOS

To show that p: S — C(S%) is the weak derivative of p:P— C(S%) at P, we
need to establish that

/ {V(p, O(P,,)) —v(p, Oy(P))
sdo Mo

(A56) lim

n9—0

- p(f’zoxp)} dB(p)=0

for all curves n — P, in P with i, = s and all finite Borel measures B on S%.
However, by the mean value theorem,

(A57) limO/ v(p, @o(Pno))n: v(p, Oy(P)) dB(p)
n0—>0 Jsdg

dB(p)

n=n(p,mo)

. d
= lim %v(p,@o(P,,))

100 Jgdg

(9 .
= [ sovlpOutp)| B = [ pnp dBp),
sdo 0T =0 s

where the first equality holds at each p for some 7(p, 1) a convex combina-
tion of ny and 0. The second equality in turn follows by Lemma A.15 justifying
the use of the dominated convergence theorem, while the final equality follows
by Lemma A.14 and the definition of p: S — C(S%). Therefore, from (A57),
(A.56) is established. Q.E.D.

PROOF OF THEOREM 3.2: We employ the framework in Chapter 5.2 in
Bickel et al. (1993). Let B = C(S%) and B* denote the set of finite Borel
measures on S%, which by Corollary 14.15 in Aliprantis and Border (2006)
is the dual space of B. Let s = ,/dP/du and p:P — B be pointwise given
by p(P) = v(-, ©y(P)), which has pathwise weak-derivative p at P by Theo-
rem A.2. For p+> 6*(p) asin Lemma A.13 and any B € B*, then let

(AS8) 4T (B)(x) = / 2A(p, PYH(6°(p))

sdo

x {m(x, 6"(p)) — E[m(X;, 6*(p))]}s(x) dB(p).

We first show that p” :B* — S is the adjoint of p:S — B. Toward this end,
we establish that: (i) p”(B) is well defined for any B € B*, (ii) p”(B) € S, and
finally (iii) p” is the adjoint of p.

By Assumption 3.4(ii), Lemma A.13, and Lemmas 4.51 and 4.52 in Aliprantis
and Border (2006), the function (x, p) — m(x, 6*(p)) is jointly measurable
and hence so is p — E[m(X;, 8*(p))]. Similarly, p — H(6*(p)) is measurable
by continuity of 8 — H(0) (see (A.28)) and Lemma A.13, while p — A(p, P)
and x + s(x) are trivially measurable by Lemma A.12 and s € Li. The joint
measurability of (p, x) —~ (A(p, P), H(6"(p)), m(x, 6(p)), Elm(X;, 6"(p))],
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s(x)) in R x R xdm x R4 x R% x R then follows from Lemma 4.49 in
Aliprantis and Border (2006), and hence

(A59) (p,x) > 2M(p, PYH(6"(p)){m(x, 6*(p)) — E[m(X;, 6"(p))]}s(x)

is jointly measurable by continuity of the composition. We conclude that p7 (B)
is a well defined measurable function for all B € B*. Moreover, for |B| the total
variation of B, P € P, Lemma A.11, and [ s?(x) du(x) = 1 imply

(A.60) /(p (B)(x))’ dp(x) < sup 16|A(p, P)|’ xsupHVF(v)”F

peS 0

x sup |m(x,0)| x |BI(S%)
(x,0)exX xO
< 00,

which verifies p” (B) € Li for all B € B*. Similarly, since s> = dP/du, exchang-
ing the order of integration yields

(A.61) f p"(B)(x)s(x) du(x)

=2/f X(p, PYH(6"(p))
x Jsde

x {m(x, 0"(p)) — E[m(X;, 6*(p))]} dB(p) dP(x)
=0.

Therefore, by Theorem A.1 and (A.61), we conclude that p”(B) € S for all
B < B*. In addition, we note that since

(A.62) / p(h)(p) dB(p) = / B (B)(x) du(x)
sdo x

by Theorem A.1 implying fh(x)s(x) du(x) =0 for any h € S we conclude
that p” :B* — S is the adjoint of p:$ — B.

Finally, note that Theorem A.1, Theorem A.2, and Theorem 5.2.1 in Bickel
et al. (1993) yield

(A.63) Cov(/ G(p)dBl(p),/ G(q)de(q)>
sdo sdo

1
:Z/ P (B)(x)p" (By)(x) dpu(x)
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z/ / A(p, PYH(6"(p))Q2(6"(p), 6°(q))
sdo Jsde
x H(6"(q))'A(q, P)dBi(p) dBy(q)

for any B;, B, € B*, with the second equality following from s> = dP/du and re-
versing the order of integration. Letting B, and B, equal the degenerate prob-
ability measures at p; and p, in (A.63) then concludes the proof. Q.E.D.

APPENDIX B: PROOFS OF THEOREMS 4.1, 4.2 AND COROLLARY 4.1

In this appendix, we establish Theorems 4.1 and 4.2. The proofs of Theo-
rem 4.2 and Corollary 4.1 are self contained. The proof of Theorem 4.1, how-
ever, requires multiple steps, which we outline below.

Step 1: We first establish that P, is consistent for P under the T-topology
(Lemma B.5), and that each neighborhood in the 7-topology contains a convex
open set (Lemma B.2), which will enable us to employ the mean value theo-
rem.

Step 2: Lemma B.3 shows that the support function is appropriately differen-
tiable at P, which will enable us to establish that

V{v(p, Oy(P.)) —v(p, Oy(P))}

=/nA(p, ﬁn,70<p))/VF</ m(x, 6(p)) dﬁn,m(p)(x)>
X /m(x, é(p))(df’n(x) —dP(x))

by the mean value theorem, where P, , = 7P, + (1 — )P, 7o:S% — [0, 1], and
6(p) € Z(p, 13,[,70@)) for all p € S%.

Step 3: In Lemma B.8, we exploit equicontinuity (Lemma B.1) to further show
that, uniformly in p € S%,

\/ﬁA(pa P),VF</ m(x: é(P)) dﬁn,ﬂ'o(ﬂ)(x)>
X /m(x, é(p))(dﬁn(x) —dP(x))
=/n\(p, P)/VF(/ m(x, 6*(p)) dP(x))

x [ ml, 67 () (@P,) - dP () + 0,1,
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where 6*(p) € Z(p, P). A key complication is that 5'(p, P) and 5 (p, 13,[,70(,,))
may not be singleton valued. This problem is addressed employing Lemmas
B.4 and B.7.

Step 4: Lemma B.9 then verifies Theorem 4.1(ii) using Steps 1, 2, and 3, and
continuity of Q — A(p, Q). Theorem 4.1(iii) is immediate from Lemma B.9
and Lemma B.10, which shows stochastic equicontinuity.

LEMMA B.1: Let {W;, X}, be an i.i.d. sample with W; € R independent of X;
and E[W?] < oo, and define F = {f : X x R— R: f(x, w) = wm(x, 0), 6 € O}.
If Assumptions 3.2 and 3.4(ii) hold, then F is Donsker.

PROOF: For any 6y, 6, € O, the Cauchy-Schwarz inequality and the mean
value theorem imply that

(B.1)  suplw(m®(x, 6;) —m”(x, 6,))|

< sup |Vem(x, 0)|, x [6; — 6] x lw| = G(w)|6; — 6],

(x,0)exX xO

where the equality holds for G(w) = M|w| for some constant M due to As-
sumption 3.4(ii). It follows that the class F is Lipschitz in 6 € ® and therefore,
by Theorem 2.7.11 in van der Vaart and Wellner (1996), we conclude that

(B2)  N;y(2ellGli2, Foll - l2) <N (&, 0, | - 1I).

Letting D = diam(®) and u = &/2||G||;2, a change of variables and result (B.2)
then allow us to conclude that

(B.3) / \/lOgNlJ(S’ Foll-ll2)de
0

=261z [ logNy(2ulGlie, 7. 1 112)
0

<2/Gl, f SN, 0,1 1) du
0
D
<2IGll,: / Jdylog(D/u) du < o,
0

where the final inequality holds due to N(u, 0, || - ||) < (diam(®)/u)%. Since
IGII?, = M?E[W?] < oo, the claim of the lemma then follows from result (B.3)

and Theorem 2.5.6 in van der Vaart and Wellner (1996). Q.E.D.

LEMMA B.2: For any neighborhood N (P) € M, there is a convex neighborhood
N'(P) S Mwith N'(P) C N(P).
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PROOF: Let M, denote the set of signed, finite, countably additive Borel
measures on X endowed with the 7-topology. Note that M C M; and that
M; is a topological vector space. For F the set of bounded scalar valued
measurable functions on X" and every (f,v) € F x M, define p;:M; — R
by p;(v) =| f f dv|. The set of functionals {p;}s.» is then a family of semi-
norms on M; that, by Lemma 5.76(2) in Aliprantis and Border (2006), gener-
ates the 7-topology. Therefore, Theorem 5.73 in Aliprantis and Border (2006)
establishes that (M, 7) is a locally convex topological vector space. More-
over, by Lemma 2.53 in Aliprantis and Border (2006), the 7-topology in M
is the relative topology on M induced by (My, 7). Hence, letting N°(P) de-
note the interior of N(P) (relative to M), we obtain that N°(P) = N,(P) "M
for some open set N,(P) € M,. However, since (M, 7) is locally convex,
there exists an open (in M;) convex neighborhood of P with N/(P) € N,(P).
Defining N'(P) = N/(P) N M, we obtain the desired result by convexity of M.

Q.E.D.

LEMMA B.3: Let Assumptions 3.2, 3.3, 3.4, 3.5 hold and P € P. For any Q €

M, define Q, =7Q+ (1 —7)P and E(p, Q) as in (A.24). Then, there is N(P) C
M such that, for all (Q, p, 1) € N(P) x S% x [0, 1],

J
Ev(p, 0,(0.))

T=T)

—A(p, QTO)'VF( / m(x, 0°) de(x))
X /m(x, 0*)(dQ(x) —dP(x)) forany 6" € Z(p, Q..

PROOF: First observe that, by Lemma B.2, we may without loss of generality
assume neighborhoods are convex. Hence, if Q € N(P), then O, € N(P) for all
7 € [0, 1]. Since 7+ F([ m(x, 0) dQ,(x)) is continuously differentiable in 7 in
a neighborhood of P by Lemma A.2 and Assumption 3.5, Lemma A.9 and
Corollary 5 in Milgrom and Segal (2002) imply that, for Q in a neighborhood
of P, the function 7 — v(p, ©y(Q,)) is directionally differentiable, with

(B.4) (P, 6,(0,))

—V
T+ =10

= max A(p, Q,O)/VF</ m(x, 6%) dQ,O(x)>

0*€Z(p, Q)

< / m(x, 0°)(dQ(x) — dP(x)),
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B35) S v(p.6,(Q.)

T=1(

= min A(p, QTO)/VF</ m(x, 0") dQTO(X))

0*€Z(p,0xy)

X /m(x, 6*)(dQ(x) — dP(x)),
where ﬁ and - denote the right and left derivatives, respectively. By
Lemma A.10, however, for every 1 < i < d such that A9 (p, Q,,) #0, we must
have 6 = 6} for all j € S; and 6y, 6, € Z(p, 0.,). Therefore, since 460 does

not depend on 7, we immediately can conclude from (3), (4), and results (B.4)
and (B.5) that

(B.6) (P, 00(0Q,))

-—V
T+ T=1)

= max Y A%p,0.)

0*€5(p,0ry) .
iAD (p, Q07 )#0

d .
x ;Fy(/ ms(x, 6 )dQT(x))

= min > A%p,0n)

0*€5(p.0ry) .
i:AD (p, 0z )70

T=17(

Jd i .
X ;FS”(/ ms(x, 6 )dQT(x))

T=17(

J
= Ev(p7 @O(Q'r))

T=T)

Therefore, we conclude from (B.6) that (B.4) and (B.5) agree, and the lemma
follows. O.E.D.

LEMMA B.4: Let N(P) € M be a neighborhood of P and I : S x N(P) — R*
be an upper hemicontinuous correspondence. Then, for every ¢ > 0, there exists a
8 > 0 and neighborhood N'(P) C N(P) such that

sup sup sup _inf [[y—7Y|<e.
lIlp—pll<8 QeN'(P) yeI'(p.Q) YEI'(P.P)

PROOF: Fix & > 0, and, for any ¢ > 0 and (p,Q) € S% x N(P), let
I''(p, Q) ={yeR":infier0 ly =7l < {},and Ny(p) = {peS¥:|p—pl <
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{}. Since the correspondence I':S% x N(P) — R* is upper hemicontinuous,
for each p € S% there is a {(p) > 0 and a neighborhood N(P|p) of P in M
such that

(B7)  I'(p,Q) I (p,P)

for all (p, Q) € Ny (p) x N(P|p). Since {N;p)2(P)} ests 1s an open cover of
S%, by compactness, there exists a finite set {p;}X, such that {Ny,.,,»(p)}L,
is a subcover for S%. Further let N'(P) = N(P) N {ﬂfilN(P|p,-)}, and set
0 =min;.;.x {(p;)/2. Then note that if p € N, »(p:) and ||p — p|l < &, then
P, D € Ny,po(pi). Therefore, since all p € S% satisfy p € Ny,.2(p:) for some
1<i<Kand N'(P) S N(P|p;) forall 1 <i <K, we obtain

(B.8) sup sup sup _inf [y —7|l

Il p—pli<8 QeN'(P) yeI (p,Q) YET'(P:P)

<max sup sup sup _inf |ly—#|
==K, peNy(p,) (pi) QeN(PIp:) yel'(p,@) YL (P-P)

< max Ssu inf 2lly—9| <e

= max p ” ly—vll <e,

YE[‘s/Z(p’_,P) yel'(pi,

where in the second inequality we employed (B.7) and the third inequality
follows by definition of I"*/?( p, P). Q.E.D.

LEMMA B.5: Let Assumption 3.1 hold and P, denote inner probability. Then
for every neighborhood N (P) C M,

liminf P, (P, e N(P)) = 1.

PROOF: The empirical measure P, is not measurable in M with respect to
the Borel o-field generated by the 7-topology, which is why we employ inner
probabilities; see Chapter 6.2 in Dembo and Zeitouni (1998). Let F denote
the set of scalar bounded measurable functions on X and, for every (f,v) €
F x M, define p;:M — R by ps(v) = [ f(x)dv(x). Since the 7-topology is
the coarsest topology making v — p(v) continuous for all f € F, it follows
that, for arbitrary but finite K, {U;}X | open sets in R, and {f;}X, € F, the sets
of the form

K
B9) [QeM:p,(Q) eU}
i=1
constitute a base for the 7-topology. Thus, since P is in the interior of N(P),

there exist an integer K, a finite collection { fi}fi"], and an ¢ > 0 such that
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N0 eM:| [ fi(x)(dP(x) — dQ(x))| < &} € N(P). Hence,

)

where the final equality follows from the law of large numbers since each f; is
bounded. QO.E.D.

(B.10) liminfP,(P, € N(P))

/ fi(x)(dP,(x) — dP(x))

n—oo 1<i<Kj

> lim inf P( max

=1,

LEMMA B.6: If Assumptions 3.2, 3.4(i)-(ii), 3.5 hold and P € P, then there
exists a neighborhood N (P) € M of P such that, for any 1 < i < dp and any
0, 0 € O satisfying 69 = 0 for all j € S,, it follows that

VF{ ( / mg(x, 0>dQ<x))ms(xo, 0)

=VF{ ( / m(x, é)dQ(x))ms(xo, 0)

forall (Q,x,) e N(P) x X.

PROOF: By Lemma A.2, there is a neighborhood N(P) € M such that the
set R(Q) = {[ m(x, 0) dQ(x)}4co is compact and satisfies R(Q) C V; for all
Q € N(P). Letting R(Q)° = {v € R :inf;cr (o) [|lv — || < 8}, it follows from V;,
being open by Assumption 3.5 that, for each Q € N(P), there exists a 6,(Q) > 0
such that R(Q)%@ c V. Moreover, by Assumption 3.4(i), there exists an M <
oo such that ||m(x, 6)|| < M for all (x, 8) € X x @. Hence, we obtain that if ¢ €
R satisfies |1 — ¢| < 8,(Q)/M, then {c [ m(x, 6) dQ(x)}sc0 € R(Q)Q C V.
Therefore, Assumption 3.5(i) implies that, for any Q € N(P), 1 <i <dy, and
0, 0 € O with 69 = 99 for all j € S;,

(B.11) VFS“')( / ms(x, O)dQ(x)) / ms(x, 0)dQ(x)

J .
= %{Fél) (/ st ”de)}
= i{p“’)(c[ms(x é)dQ(x)>}
gc|? ’ e=1

— VF ( / my(x, é)dQ(x)) / ms(x, §) dQ(x).

c=1
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Next, for any x, € X, let D,, € M denote the probability measure satis-
fying D, (X; = xo) = 1 and define M,(Q,D,,) = (1 — 7)Q + 7D,,. Since
M.(Q,D,,) — Q in the total variation metric as 7 — 0, it follows from Q e
N (P) and N (P) being open, that thereisa 7y > Osuch that Q' =M, (Q,D,,) €
N(P). Thus, Lemma B.2 implies M,(Q, Q') € N(P) for all 7 € [0, 1], and
hence, for any 1 <i < dy and 6, € ® with 69 = §9 for all j € S;,

(B.12) 7VFy’ ( / ms(x, 0)dQ(x)> / ms(x, 0)(dD,,(x) —dQ(x))
= %{F;” ( f ms(x, 0) dM,(Q, Q/)(x))}
= %{Fs(” (/ ms(x, 0) dM,(Q, Q/)(X)>}

=1 VF{ ( / ms(x, 6) dQ(x)) f ms(x, 0)(dD.,(x) — dQ(x)).

7=0

=0

Therefore, the claim of the lemma follows from 7, > 0 and results (B.11) and
(B.12). Q.E.D.

LEMMA B.7: Let Assumptions 3.2, 3.4, 3.5, and 4.2(i) hold, P € P, Z(p, P)
be as in (A.24), and 0*:S% — O satisfy 6*(p) € Z(p, P) for all p € S%. Then,
foreach p € S%, there exists a map II,,: ©® — R% such that

(B.13) |

0"(p) —I1,6| < inf /d,[|f— 0]
0= (p,P)

for all 6 € O. In addition, there is a neighborhood N (P) C M such that, for all
(p,0,x0,0)€S% x N(P) x X x O,

(B.14)  \(p, P)VFy ( / my(x, 0>dQ<x>>ms(xo, 6)

= A(p, P)/VFs(/ ms(X, H,;H)dQ(x))ms(xO, 11,6).

PROOF: We first construct the map I7,:® — R%. To this end, for each p €
S%, we define the set

®B15) IZ(p= |J s,

XD (p,P)£0
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and for any 0 € O, let IT,: @ — R% satisfy (I1,0)Y = 6*(p)" if j ¢ Z(p), and
(H,,Q)(j) =0V if j € Z(p). Then,

(B.16) [ 6"(p) —11,6] < max V/d,
JET(p)

0*(p)(j) _ (Hpe)(j)’
< inf /d,l0— 0,
beZ(p,P)

where the first inequality follows from 6*(p)" = (11,0)" for all j ¢ Z(p),

while the second inequality is the result of §*(p)?’ = 6 for all 8 € Z(p, P)
and j € Z(p) by Lemma A.10, and 0 = (IT,6)" for all j € Z( p). Moreover,
since for all 1 <i < dp such that A”’(p, P) # 0 we have (I1,6)Y = 69 for all
j € S;, it follows from Lemma B.6 that there exists a neighborhood N(P) €M
such that, for all (p, Q, x¢, ) € S x N(P) x X x 6,

(B.17)  A(p, P)'VF; ( / ms(x, 0) dQ(x))msm, 0)

= > /\<">(p,P)VF;”(/ms(x,Hpe)dQ(x)>ms(xo,Hpo)

A (p,P)#0

=A(p, P)VFs </ ms(x, 11,0) dQ(x)>ms(xo, 11,06).

Therefore, the claims of the lemma follow from results (B.16) and (B.17).
.E.D.

LEMMA B.8: Let {W,, X;}!, be iid. with W; € R independent of X; and
E[W?] < oo. Define 13,1,, = 713,, + (1 —7)P forany 7 €[0,1] and Z(p, Q) as
in (A.24). If Assumptions 3.1, 3.2, 3.4, 3.5, 4.2(i) hold, P € P, and P" and
ﬁrf" are the population and empirical measures of (X;, W;), then, uniformly in
(p,7)€S% x [0,1]and 6 € 5 (p, P,..),

(B.18)  /nA(p, P)VFs </ ms(x, e)dﬁ,,,f(x)>
X fwms(x, 0)(dﬁ,fV(x, w) —dP" (x, w))
=./nA(p, P)/VFS(/ ms(x, 6*(p)) dP(X))

X /wms(x, 0" () (dPY (x, w) — dP" (x,w)) + 0,(1),

where 0* :S% — @ is a Borel measurable mapping that satisfies 0*(p) € Z(p, P)
forall p e S%.
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PROOF: If N(P) C M is convex and 13,, € N(P), then 13,1,7 € N(P) for all
7 € [0, 1]. Therefore, by Lemmas A.2, A.7, B.2, and B.5, we obtain that, with
inner probability tending to 1, { [ m(x, 6) dﬁn,f}ee@ c Vyand Z(p, 13,1,,) is well
defined for all (p, 7) € S x [0, 1]. Next, let IT,: ©@ — R% be as in Lemma B.7,
and note that, by (B.13),

(B.19) sup sup sup |[I1,60—6"(p)||

pesde €011 g (p, By ;)

< sup sup  sup ~inf)Jc79||0—6||=op<1>,

pegdg 7€[0,1] HEE(P,ﬁn,T) 0e=(p,P

where the final result follows from Lemmas A.7, B.2, and B.5, and Lemma B.4
applied with I'(p, Q) = Z(p, Q). Moreover, since 6*(p) € Oy(P) for all p €
S%, results (A.23) and (B.19) further imply that

(B.20) liminfP(I1,0 € @ for all § € Z(p, P,,) and (p, 7) € S% x [0, 1]) = 1.

Furthermore, by Lemmas B.2, B.5, and B.7, the map I, : ® — R% satisfies,
uniformly in (p, 7, 8) € S% x [0,1] x O,

(B21)  /AA(p, P)'VFs ( / ms(x, 6) dﬁn,7<x>)

X /wms(x, 0)(d13:V(x, w) —dP" (x,w))
= /nA(p, P)'VFg ( / mg(x, I1,0) dﬁn,f(x))

X /wms(x,ﬂpﬂ)(dﬁf/(x, w) —dP" (x,w)) + 0,(1).

Next, observe that by Lemmas A.2, B.2, and B.5, it follows that, for 1} as in
Assumption 3.5, we have

(B.22) lim ian( / m(x, 0)dP, .(x) € V, for all (6, 7) € O x [0, 1]) =1.

Assumption 3.2 and (A.3) imply E[ms(X;,-)] is uniformly continuous, and
hence, by (B.19), (B.20), and Lemma B.1,

(B.23) sup sup sup

pesdo €101 geZ(p, By 1)

/ ms(x, I1,0) dP, . (x)

~ [ mse () api)
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< sup sup sup
pesdo (0,11 ge=(p, Py 1)
+0,(1)
=o0,(1).

f (ms(x, T1,0) — ms(x, 0%(p))) dP(x)

Thus, VF being uniformly continuous on V4 by Assumption 3.5(ii), (B.20),
(B.22), (B.23), and Lemma A.11 imply

(B.24) sup sup sup

pGS‘i"? 7€[0,1] BEE(pva,T)

- VFS</ ms(x, 6*(p)) dP(x)))’ =0,(1).

In addition, also observe that Lemma B.1 allows us to conclude that

A(p, P) <VFS ( / mg(x, IT,0) dﬁm(x))

(B.25) supv/n

0O

/ wm(x, 0)(dPY (x, w) — dP" (x, w)) H =0,(1).

Therefore, from results (B.20), (B.24), and (B.25), we obtain that, uniformly in
(p,7)€S% x [0,1] and 6 € Z(p, 13,“),

(B.26) /nA(p, P)VFs < / ms(x, IT,0) dﬁn,f(x))
X /wms(x, HPO)(dIS,fV(x, w) —dP" (x,w))
= VnA(p, P)/VFS( / ms(x, 6"(p)) dP(x))

X /wms(x,n,,a)(dﬁnW(x, w) —dP" (x,w)) + 0,(1).

To conclude, we note that (B.19), (B.20), and Lemma B.1 imply that, for
some deterministic sequence 6, | 0,

(B27) sup sup sup +/n

pesdo T€l0.1] ge=(p, Py r)

/w(ms(x,Hpﬁ)
— mg(x, 6°(p))) (dPY (x, w) — dP (x,w)) ”

< sup +/n

161—0211<dn

/w(ms(x, 6:)



32 H. KAIDO AND A. SANTOS

— mg(x, 92))(d13,f”(x, w) — dP" (x, w)) H +0,(1)

=0,(1).

Moreover, note that since P € P satisfies Assumption 3.6(iii), it follows
from Lemma A.11 and Assumption 3.5(ii) that [A(p, P)VFs([ mg(x,
6*(p))dP(x))| is uniformly bounded in p € S%. Hence, by (B.27) and Cauchy—
Schwarz,

(B:28)  /nA(p, P)VF; (/ ms(x, 6*(p)) dP(X))

X /‘wms(x, HPH)(dP:V(x, w) — dP" (x, w))
=/n\(p, P)VF; </ ms(x, 6*(p)) dP(x))

X /wms(x, 0*(p))(df’,fV(x, w) —dP" (x, w)),

uniformly in (p, 7) € S% x [0,1] and 0 € Z(p, 13,1,,). The lemma then follows
from (B.21), (B.26), and (B.28). Q.E.D.

LEMMA B.9: Let Assumptions 3.1,3.2,3.3,3.4,3.5 hold, P € P,and 5 (p, P)
be as in (A.24). Then,

sup
pesde

x /m(x, 0" (p))(dP.(x) —dP(x))H =0,(1),

where 0% :S% — O is a Borel measurable mapping satisfying 6*(p) € Z(p, P) for
all p e S%.

PROOF: For every 7 € [0, 1], define lf’m = Tﬁn + (1 — 7)P and notice that

13,,,0 =P and 13,,,1 = 13,,. Employing the mean value theorem, which is valid by
Lemmas B.2, B.3, and B.5, we can then conclude that, uniformly in p € S%,

(B29)  vn{v(p, Ou(P,) —v(p, Ou(P)))

= /nA(p, ﬁn,fn@))/VF(/ m(x, 6(p)) dﬁn,m<p)(x)>

x /m(x, 0(p))(dP,(x) — dP(x)) +0,(1)
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for some 7,:S% — (0, 1) and 6:S% — @ such that 0(p) € 5 (p, 13,1,70(1,)) for all
p € S%. Next, fix & > 0 and note that by Lemmas A.9 and A.12, there exists a
neighborhood N (P) € M such that the correspondence (p, Q) — A(p, Q) is
upper hemicontinuous and singleton valued for all (p, Q) € S% x N(P). Ap-
plying Lemmas B.2 and B.4 with I'(p, Q) = A(p, Q) then implies that there
exists a convex neighborhood N'(P) € N(P) € M such that

(B.30) sup sup H)\(p, 0)—A(p, P) || <e.

peSdG QeN'(P)

Since N'(P) is convex, f’n € N'(P) implies f’m e N'(P) forall 7 € [0, 1]. There-
fore, we are able to conclude that

(B.31) limian<sup sup | A(p, Po.) — AM(p, P)| < 8)

pGSdﬁ 7€[0,1]
> liminf P(P, e N'(P)) =1,

where the final equality follows from Lemma B.5. Thus, result (B.22) and As-
sumption 3.5(ii), result (B.25) applied with the random variable W; = 1 almost
surely, and results (B.29) and (B.31) in turn imply, uniformly in p € S%,

(B32)  vn{v(p, Oy(P,) —v(p, Ou(P))}

= \/ﬁ)\(pa P)/VF</ m(xa é(P)) dﬁn,m(ﬂ)(x)>
x /m(x, 0(p))(dP,(x) —dP(x)) +0,(1)
=/n\(p, P)/VF(/ m(x, 6*(p)) dP(x))

x [ mlx, () (@By(x) = dP) + 0,1,

where the second equality follows from (3) and [ Ae(dﬁn(x) —dP(x))=0
for all 6 € ©, and Lemma B.8 applied with the random variable W; = 1 almost
surely. Q.E.D.

LEMMA B.10: Let Assumptions 3.1, 3.2, 3.3, 3.4, 3.5 hold, P € P, 5 (p, P) be
as in (A.24), and 0*:S% — O satisfy 6*(p) € Z(p, P) for all p € S%. Then the
following class is Donsker in C(S%):

F={f:X—>R:
f(x)=A(p, PYH(6"(p))m(x, 6"(p)) for some p € S*}.
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PROOF: For notational simplicity, let Hg(0) = VFs([ ms(x, 0) dP(x)),
HY(0) = VF{ ([ mg(x, ) dP(x)), and

(B.33) Gn(P)E«/r_l)\(p,P)’H(G*(p))/m(x, 0*(p))(dP,(x) — dP(x)).

We first note that since A(-, P), m, and H(-) are bounded by Lemma A.11, As-
sumption 3.4(i), Assumption 3.5(ii), and P € P satisfying Assumption 3.6(iii),
it follows from the central limit theorem that, for any p € S%,

(B34)  G,(p) > N(0,0(p)),

where o?(p) = Var(A(p, PYH(0*(p))m(X;, 6*(p))). Moreover, also observe
that since [ A0(dP,(x) —dP(x)) =0,

(B.35)  G,(p)=~/n\(p,P)Hs(6"(p)) / ms(x, 6*(p)) (d]sn (x) —dP(x))

Vi Y A9(p, PYH(6°(p)

A (p,P)#£0
x /ms(x, 0°(p))(dP.(x) — dP(x)).

Thus, result (B.35) and Lemmas A.10 and B.6 imply G,(p) is independent
of how 6*(p) € Z(p, P) is selected, and hence so is the asymptotic variance
a*(p).

Note that, in (B.34), it was argued that G, (p) is bounded in p € S%, while
identical arguments to those in (A.50)-(A.51) show p — G,(p) is continu-
ous with probability 1. Hence, G, € C(S%) almost surely, and to establish the
lemma we only need to show the asymptotic uniform equicontinuity of G,.
Equivalently, we aim to show

(B.36) sup |G,,(p)—Gn(ﬁ)| =0,(1),

llp—pll<dn

for any sequence 8, | 0. First observe that compactness of S and Lemma A.12
imply A(-, P):S% — R% is uniformly continuous. Therefore, by Assump-
tion 3.5(ii), P € P satisfying Assumption 3.6(iii), and result (B.25),

(B.37) sup /n

lp—plli<dn

(A(p, P) — A(P, P)) Hs (6" ()

x / mg(x, 6*(P))(dP.(x) — dP(x))
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< sup [|A(p,P)—A(p,P)| x suIP”VF(v)”F

Il p—pli<dn

X sup
0O
=0,(1).

Hence, by results (B.35) and (B.37), we obtain by Lemma B.7 that, for some
mapping I1,: @ — R% satisfying (B.14),

(B38)  sup |G.(p)—G.(p)|

I p—pli<dn

< sup n

I p—pli<dn

Jn / m(x, 0)(dP,(x) —dP(x))H

A(p,P)/[(Hs(B*(p))ms(x, 0"(p)) — Hs(6" (D))
x mg(x, 0°(p))) (dP.(x) — dP(x))‘ +0,(1)

= sup n

| p—pli<6n

A(p, P) /(Hs(O*(p))ms(x, 0"(p)) — Hs(IT1,0"(p))

x mg(x, I1,6°())) (dP,(x) — dP(x))‘ +o0,(1).

Moreover, it also follows from IT,:® — R% satisfying condition (B.13), and
Lemmas A.7 and B.4, that

(B.39) sup

| p—pll<dn

< sup sup inf \/dyl|6—fll=o(D).

I p—pli<6n ez (p,P) 9= (P

0*(p) —11,6"(p)|

Therefore, results (A.23) and (B.39) imply that, for §, sufficiently small,
I1,6°(p) € O for all p, p e S* with |p — p|l < 8,. Hence, from (B.38) and
(B.39) we conclude that, for some sequence vy, — 0 depending on §,,,

I p=pli<dn

<sup sup /nA(p,P)

pesdo 0—6ll<yn

x / (Hs(0)ms(x, 0) — Hy(Bymy(x, 0))(dB,(x) — dP(x))

+o0,(1),
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where 6, 6 are restricted to lie in @. However, note [m(x,-)dP(x):0 — R
is uniformly continuous by (A.3) and Assumption 3.2, and therefore Assump-
tion 3.5(ii) and P € P satisfying Assumption 3.6(iii) imply 6 +— Hg(6) is uni-
formly continuous. Therefore, A(-, P) being bounded by Lemma A.11 and re-
sult (B.25) imply

(B41) sup sup /n

pes?e 0—6ll<yn

A(p, P) (Hs(6) — Hs(0))

X /ms(x, 0)(dP,(x) —dP(x))‘

< sup [A(p. )| x sup [Hs(0) — Hy(@)],

pesdo 16—01l<yn

X sup
0O

=o0,(1).

Vn / m(x, 0)(dP,(x) — dP(x)) H

In turn, it also follows from H(6) being uniformly bounded in 6 € @ due to
it being continuous and Assumption 3.2, Lemma A.11 implying ||A(p, P)|| is
uniformly bounded in p € S%, and Lemma B.1, that

(B42) sup sup +/n

pesdo [0—6ll<yn

A(p, P)H;(0)

x / (ms(x, 0) — mg(x, 0))(dP,(x) — dP(x))‘

< sup [A(p, P) | x sup | His (@),

pesie 0

X sup
[16—61<yn

=0,(1).

Vn / (ms(x, 0) — ms(x, 6)) (dP,(x) — dP(x)) H

Hence, we conclude from (B.40), (B.41), and (B.42) that (B.36) holds, which
establishes the asymptotic uniform equicontinuity of G,. In turn, because S% is
totally bounded under || - ||, the process G, is asymptotically tight in C(S%) by
Theorem 1.5.7 in van der Vaart and Wellner (1996). The lemma then follows
from the convergence of the marginals and Theorem 1.5.4, Addendum 1.5.8,
and Theorem 1.3.10 in van der Vaart and Wellner (1996). Q.E.D.
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PROOF OF THEOREM 4.1: By Lemma B.9, {v(-, ©y(P,))} has an influence
function ¢ : X — C(S%) given by

(B43)  ¢(x)=AC, PYH(0°()){m(x, 6°(1) — E[m(X;, 0"()]},

where *:S% — @ with 6*(p) € 5 (p, P), which establishes (ii). By Theo-
rem 3.2, x — (x) is the efficient influence function, and hence regularity of
{v(., @0(13,,))} follows from Lemma B.10 and Theorem 18.1 in Kosorok (2008),
which establishes (i). The stated convergence in distribution is then immediate
from Lemmas B.9 and B.10, while the limiting process having the efficient co-
variance kernel is a direct result of the characterization of I-!( p,, p,) obtained
in Theorem 3.2, which establishes (iii). Q.E.D.

PROOF OF THEOREM 4.2: Since L :C(S%) — R, is a subconvex function and

{T,} is a regular estimator, we obtain from Theorems A.1, A.2 and Proposi-
tion 5.2.1 in Bickel et al. (1993) that

(B44)  liminf E[L(vn{T, — (-, 0o(P))})] = E[L(Gy)].

Next, we aim to show that {E[L(/n{v(-, @y(P,)) — v(-, Oy(P)})]} attains
the lower bound. Toward this end, define

(BAS)  G.(p)=+/n{v(p,0u(P,)) —v(p, Oy(P))},

and note G, € C(S%) almost surely. Since L is continuous on Dy € C(S%) and
P(GyeDy) =1, Theorem 4.1 and Theorem 1.3.6 in van der Vaart and Wellner
(1996) imply L(G,) 5 L(Gy) (in R). Hence, since a — a A C is continuous
and bounded on R for any constant C > 0, the Portmanteau theorem yields

n—0o0o

(B.46) limsuplimsup|E[L(G,) A C] — E[L(G,) A C]| =0.
Ctoo

Moreover, L(Gy) < My + M,||Gy|l%, by hypothesis, and therefore Proposi-
tion A.2.3 in van der Vaart and Wellner (1996) yields E[L(Gg)] < M, +
M, E[||Gyll%,] < oc. Therefore, by the monotone convergence theorem,

(B.47)  limsup|E[L(Gy)] — E[L(Gy) A C]| =0.
Ctoo

By Assumption 3.5(ii) and Lemmas A.2, A.11, and B.2, there exists a con-
vex neighborhood N(P) € M such that: (i) VF([m(x, 6)dQ(x)) is uni-
formly bounded in (6, Q) € ® x N(P); (i) A(p, Q) is uniformly bounded on
(p, Q) € S x N(P); and (iii) the conditions of Lemma B.3 are satisfied for all

Q € N(P). For every 7 € [0, 1], define 13,,,, = Tﬁn + (1 — 7)P, and note that if
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P, € N(P), then (B.29) holds, so that uniformly in p € S%,
(B48) G,=A4,,

jn(p) = /\(p, ﬁn,m(p))/VF</ m(xa é(P)) dﬁn,m(p)(x)>
x /ﬁM(x, 6(p))(dP.(x) — dP(x)),

for some 79:S% — (0,1) and 6:S% — @ with 6(p) € E(p,ﬁn,fo(p)) for
E(p,Q) as in (A.24) (and set A, =0 if ﬁ,, ¢ N(P)). By compactness of 6,
definition of N (P), and m being bounded by Assumption 3.4(i), we must have

(B49)  max{[|G,lls, 1 4ullc} < v/1Co,

for some C, > 0. Therefore, L(f) < My, + M,||f||, for all f € C(S%), (B.48)
holding if P, € N(P), and (B.49) yield

(B.50) limsup|E[L(G,)] — E[L(4,)]]

n—0o0

<limsup2(M, + M,Cin**)P(P, ¢ N(P)).

n—oo

However, as shown in (B.10), there exist a finite collection { f,}j’i’1 of bounded

functions and an & > 0 such that {Q € M:max,.;,| [ fi(x)(dQ(x) —
dP(x))| < &} € N(P). Therefore, (B.50) and Bernstein’s inequality imply

(B51)  limsup|E[L(G,)] — E[L(4,)]]

n— 00

<2(My+ M;Cy)

Ko
x lim supZn"“P(’/ f,(x)(dls,,(x) —dP(x))

n—oo

-e)

From result (B.51) and applying Cauchy—Schwarz and Markov’s inequalities,
we can then conclude that

j=1

=0.

(B.52)  limsup|E[L(G,)] — E[L(G,) A C]|

n— 00

= limsup|E[L(A~,,)] — E[L(A~n) AC]|

n—oo
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< limsupE[L(jn)l{L(j,,) > C}] <limsup %E[Lz(ﬁ,,)].

n—oo n—oo

By construction of N(P), there exists a compact set C C R% such that
A(p, Q)YVF([ m(x,0)dQ(x)) € C for all (p,0,0Q) € S% x @ x N(P). Let
Gg={g:X - R:g(x) =m(x, 0) for some (c, ) € C x @}, and note that
by Assumption 3.4(i) and compactness of C, there exists a C; > 0 such that
sup,., 1g(x)| < C, for all g € G. Moreover, for any (¢;,60;) € C x @ and
(2, 6,) € C x O, we also obtain, by Assumption 3.4(i)—(ii), that

(B.53) sup|c1m(x, 6,) — c,m(x, 02)‘

xeX

< { sup ||m(x, 0)” + sup H Vem(x, H)HF X sup ||c||}
(x,0)eX xO ceC

(x,00€X %0
x {ller — el + 1161 — 61},

and hence the class G is Lipschitz in (0, ¢) € ® x C. Letting || - || + || - || denote
the sum of the Euclidean norms on R% and R%, we then obtain, by Theo-
rem 2.7.11 in van der Vaart and Wellner (1996), that

(B54)  N;(2¢Ci, G, 1l ll) < N(, @ X C |- [+ - 1) S &m0,

Consequently, since A~n = (0 whenever 13” ¢ N(P), the inequality L(f) < M, +
M ||f| forall f e C(S%) implies

(B.55) limsup E[L*(4,)]

n—0oo

< limsup{2M2 + 2M?E[|| 4,11}

h—0o0

n

% S {g(X) - E[g(xX))]}

n— 00 )
i=1

g€g

< limsup { 2M; +2ME |:sup

)

where the third inequality follows from Theorem 2.14.1 in van der Vaart and
Wellner (1996). Combining results (B.52), (B.54), and (B.55), we can finally
obtain

1 2k
§2M§+(/ \/1+10gN[](8C17 g7 ” : ||oo)d€) )
0

(B.56) limsuplimsup|E[L(G,)] — E[L(G,) A C]

Ctoo n—o00

< lim sup lim sup éE[LZ(A,,)] =0.

Croo n—oo
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The claim of the theorem then follows from results (B.46), (B.47), and
(B.56). Q.E.D.

PROOF OF COROLLARY 4.1: For any convex, compact valued set K,,, Corol-
lary 1.10 in Li, Ogura, and Kreinovich (2002) implies that

(B'57) \/ﬁdH (Kn, @U(P)) = \/ﬁ”]}(, Kn) - V(" QO(P)) “oo’

and in particular /ndy(0,,0\(P)) = /n|v(, Oy(P) — (-, 0y(P))] .
Therefore, the claim of the corollary follows if we can verify the conditions
of Theorem 4.2 under the loss function L:C(S%) — R, given by L(f) =
LI fll)- To this end, note L(f) = L(Ifll) = Ll = fll) = L(~f). More-
over, since L:R, — R, is subconvex, it follows that 0 = L(0) < L(a), and
hence if L(a) = c, then, by convexity of {a: L(a) < c}, we must have L(Aa) <c
for all A € [0, 1]. In particular, it follows that L:R; — R, is nondecreasing.
Therefore, if L(f)) < c and L(f,) <c, then

(B58) L(Mi+(1—Mf)=L(|Ai+A-Nf])
<L(Alfile + 1=V fall) <c,

where the first inequality follows from L being nondecreasing, and the second
by subconvexity of L. It follows from (B.58) that L :C(S%) — R, is subconvex.
The other conditions on L have been directly assumed, and the claim of the
corollary follows from Theorem 4.2. Q.E.D.

APPENDIX C: PROOF OF THEOREM 4.3

The proof of Theorem 4.3 proceeds by: (i) deriving the semiparametric effi-
ciency bound, and (ii) establishing that {vc(-, O,(P,))} attains the bound. The
efficiency bound is derived in Theorem C.1, after verifying that vc(-, @y(P))
is pathwise weak-differentiable (Lemma C.4) and characterizing the tangent
space (Lemma C.3). A key challenge in the latter is showing that P satisfying
Assumption 4.1 does not affect the tangent space (Lemma C.2). The fact that
{vic(, @0(13,,))} attains the efficiency bound follows readily after characterizing
its influence function (Lemma C.6).

Some of the derivations in this appendix are similar to those in Appendices
A and B. For conciseness, we provide more succinct derivations but include
references to previous instances where analogous arguments were employed.

LEMMA C.1: Let Sy, = {s € Li:s = /dP/du for some P € P}, and As-
sumptions 3.2, 3.4, 3.5, and 4.2(i) hold. If n +— h,, is a curve in Sy, then there
is a neighborhood N C R of 0 such that, for all (p,ny) € C x N, (p, n) —
%v( P, Oy(P,))|y=n, exists, satisfies (A.42), and is both bounded and continuous
on CxN.
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PROOF: First note that P, € P implies Sy C S. Therefore, there is a neigh-
borhood N; C R of 0 such that (A.45) and (A.46) hold for all (p, ny) € S x N;.
Since for any (p, n9) € C x Ny, Z(p, P,,) is a singleton due to P, € Py, it fol-
lows that (A.45) and (A.46) equal each other and hence %v( D5 Oo(Py))n=n,

exists and is given by (A.42) for all (p, no) € C x N;. The existence of a
neighborhood N, € N; such that (p, ng) — %V(p, Oy(P,))|y=y, is uniformly
bounded in (p, 19) € C x N, then follows from (A.48), Lemmas A.2 and A.11,
and Assumptions 3.4(i) and 3.5(ii).

To establish continuity, note that Lemmas A.7 and A.12 imply there is
a neighborhood N € N, C R such that (p, n¢) = A(p, P,,) and (p, no)
Z(p, P,,) are continuous and upper hemicontinuous, respectively, on (p,
M) € S% x N. Next, let (pg, m9) € C x N and {(p,, n,)}>, be a sequence
such that (p,, n,) = (po, no) and (p,, ,) € C x N for all n. Since (p,, P,,) €
C x Py for all 0 < n < o0, Z(p,, P,,) = {0} for some 6% € ® and, by upper
hemicontinuity, 6% — 6 with Z'(py, P,,) = {6;}. Result (A.50) and continuity
of (p, P) — A(p, P) then imply

.0 J
(C.l) I}Ln;lo %V(pn, @O(P"I)) = %V(p[)’ @O(Pn)) )

N=Nn N=n0

due to %V(p, Oy(P,))|y=n, satisfying (A.42) for all integer 0 <n < co. Q.E.D.

LEMMA C.2: If Assumptions 3.2, 3.4, 3.5, 4.2 hold and C is compact, then the
following set is open in M:

(C2) My ={PeM: Assumptions 3.6(i)-(iv) and 4.1 hold}.

PROOF: The proof is by contradiction. Suppose there exists a P € My, such
that N(P) & M,, for all neighborhoods N(P) € M of P. Let 91» be the neigh-
borhood system of P with direction V' >= W whenever IV C W, and recall that
Lemmas A.2 and A.8, Corollary A.3, and P € My, satisfying Assumption 3.6(ii)
imply that the set of P € M satisfying Assumptions 3.6(i)—(iv) is open in M.
Therefore, if the lemma is false, then, for 2 = 91p, there is a net {Q,}qco With
Q, — P such that, for each a € 2: (i) Q, satisfies Assumption 3.6(i)—(iv), and
(ii) there is a p, € C with Z(p,, Q.) (as in (A.24)) not a singleton. Further-
more, by arguing as in (A.13)—(A.15), there is a 6, € Z(p., Q.) with

(C'3) A(aa’ Qa) = m A(e, Qa)-
05 (pa,Qa)

By compactness of C, finiteness of the number of constraints, and Lemma A.7,
we can then pass to a subnet {Q.,, Pag, ag}pen such that, for some (p*, 6*) €

Cx E(p*,P)and afixedset C C {1,..., dr},
(C4)  (Quys Pags 0ay) = (P, p*, 0°) and  A(B.,,Q.,)=C VBeB.
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Next, note that Assumption 4.2(ii) implies we can partition {1,..., dr}
into Z; ={i:S; =0} and Zs = {i:S; = {1, ..., dy}}. Since Assumption 3.2
and Q,, satisfying Assumption 3.6(ii) imply Z(pa,, Q) is convex and
FO(fm(x,-)dQa,(x)):0 — R is strictly convex for all i € Zs, Z(pay, Quy)
being nonsingleton and (C.3) yield

(C5) CCT,.

Hence, by the complementary slackness condition, A"’ (pa,, Qa,) = 0 for all
i € Z;. Since Theorem 8.3.1 in Luenberger (1969) implies 6., is a maximizer of
(A.29), we obtain from the first order conditions and S; =@, for all i € 7,

(C6) FA</ my(x) anB(x)> /\(Paﬁ, Qaﬁ) = —Dag>

where we exploited 6, € @ due to Q. satisfying Assumption 3.6(i). Since by
construction, A(f, Q) = C,wemaylet A°(pa,, Qaﬁ),Ffl(f m4(x) dQ., (X)),
and F§ ([ mg(x, 0) anﬁ (x)) respectively be the #C x 1 subvector of A(Pag>
Q.,), #C x dy submatrix of F(f m4(x)dQa,(x)), and #C x 1 subvector of
Fs([ ms(x,60)dQ, 5 (X)) that correspond to the constraints indexed by C. Since
A (Pag> Qay) =0 for all i ¢ C by (C.4), we then have

(C7) FS (/ m4(x) dP(x)) Ae(p*, P)=—p*,

by results (C.4), (C.6), and Lemmas A.5 and A.12. Moreover, note that by
definition of C, we also obtain that

C8)  FC ( / ma(x) anB(x))HaB __FE ( f ms(x, 0,,) dQ,, (x)>.

Moreover, since S; = @ for all i € C by (C.5), (C.8) is a linear equation in
0az, and by Q.. ¢ My, satisfying Assumption 3.6(iv) we must have #C < d,,
for otherwise (C.8) would have a unique solution in 6 and (C.3) would imply
E(Pag»> Qay) is a singleton. Thus, while (C.4), (C.8), and Lemma A.5 imply
C C A(6*, P), we may also conclude from #C < dy and 5 (p*, P) being a sin-
gleton by (p*, P) € C x My, that we also have

(C9)  A(6*,P)\C#0.

In what follows, we aim to establish a contradiction by showing that P will not
satisfy Assumption 3.6(iv) at the point 6* € @y(P). To this end, for notational
convenience we first define the sets

(C10) K;= {0 €O:FV </ m(x, 6) dP(x)> < 0},
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E = {HEQ:F(i)</m(x, G)dP(x)) :0}.

Next, note that Z(p*, P) = {6*} and convexity of F*( [ m(x,-)dP(x)):0 — R
forall 1 <i <dp imply

(C.11) {0*}:{ N Ki}ﬂ{f)e@:(p*,0)=v(p*,@0(P))}

l<i<dp

= { N Ki} n{oeO:(p*, 0)=v(p*, Ou(P))}.

i€ A(6*,P)

Moreover, also note C < A(6*,P) implies FS([mu(x)dP(x))6* =
—F§ ([ mg(x, 6*) dP(x)), and hence, by (C.7),

(C12)  A°(p", PYFE ( [ st ) dP(x)) — (5", 0) = v(p", Ou(P)).

Since S; = ¢ for all i € C, results (C.7) and (C.12) imply {)
O:(p*, 0) =v(p*, Oy(P))}, which yields

(C.13) {9*}:{ N K,»}m!ﬂE,-},

ie A(6*,P)\C ieC

E}c{6e

ieC

due to (C.9), (C.11), and E; C K;. Next, let v: A(6*, P)\C — {1,..., #A(6",
P)\ C} be a bijection, and define

(C14) j = o min { ﬂ | 'Ki} N {mE,} is a singleton,
i€ A(6*,P)\C:u(i)<j ieC
where we note j* is well defined by (C.13), and {(,.. E;} not being singleton

by #C < dy and F([ m(x,-)dP(x)):0 — R being linear for all i € C. Thus,
from (C.10), (C.14) and setting i* = ~'(j*) € A(6*, P), we conclude™

(C15) {67} = argrgleiél{F("*) </ m(x, 6) dP(x)) s.t.

o] N &)nfns))

(i)<j*—1 ieC

“Here {;cy Ki} N {Nicc E:} should be understood to equal {(,. Ei}-
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However, since the constraint set is not a singleton, it follows that, for each i
such that (i) < j* — 1, either F( [ m(x, 0) dP(x)) is linear in 6 (if i € Z;),
or FO(f m(x, 0;)dP(x)) < 0 for some 6; € {(,,,;jo_1 Ki} N {Nicc Ei} (if i €
Ts). It follows that (C.15) is an ordinary convex problem satisfying a primal
qualification constraint, and, by Theorem 28.2 in Rockafellar (1970), that there
exist Kuhn-Tucker vectors such that

o N
(C16) {6} = arglglelg)l{F </ m(x, 0)dP(x)>

+ Z v F® </ m(x, 0) dP(x))

(i) <j*—1
+ Z mF® </ m(x, 0) dP(x)) }
ieC

Finally, we observe that since 6* € @y(P) € ©° by Assumption 3.6(i), result
(C.16) and Corollary A.1 imply

(C.17) —V(,F“'*)( / m(x, 67) dP(x))
= Z 'y,VgF(i)(/ m(x,e*)dP(x)>

in(i)<j*—1

+ Z Vo F® (/ m(x, 6%) dP(x)).

ieC

Thus, we reach the desired contradiction that P € My violates Assump-
tion 3.6(iv). Q.E.D.

LEMMA C.3: If Assumptions 3.2,3.4,3.5,42hold, P e P, Sy ={h € Li th=
VdQ/du for some Q € Pp}, and C is compact, then the tangent space of Sy, at
s=/dP/dwis Sy ={h e L?: [ h(x)s(x)du(x) =0}

PROOF: The claim follows immediately from Lemmas A.16 and C.2.
Q.E.D.

LEMMA C.4: If Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and C is compact, then
the mapping p;, : Py — C(C) pointwise defined by p.(P) = vc(-, Oy(P)) is path-
wise weak-differentiable at any P € Pr. Moreover, for s = \/dP/du, A(p, Q) (as
in (A.29)), and {6*(p)} = E(p, P) (as in (A.24)), the derivative py St — C(C)
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satisfies
pr(ho)(p) =2\(p, P)’W( / m(x, 6*(p)) dP(x))
x f m(x, 0°(p))ho(x)s(x) du(x).

PROOF: First note pL(ho) € C(C) for any ho € SL by Lemma C.1. In addition,
pL: S.—C (C) is linear, and bounded, since by Lemma A.11, P € Py, satisfying
Assumption 3.6(iii), and Assumptions 3.4(i) and 3.5(ii), we have

(C.18)  sup sup|p.(f)(p)|

Il =1 PEC
Li

< sup sup{ZH)\(p,P)” X sup||VF(v)||F

ol 2 peC

xVdy sup [mx, 0)] x Iollz x lslzz |

(x,0)exX x0O

< OoQ.

Finally, note that for any curve n +— P, in Py with A, = s and all finite Borel
measures B on C, the mean value theorem, the dominated convergence theo-
rem, and Lemma C.1 allow us to conclude that

/ { v(p, Ou(Pyy)) — v(p, Ou(P))
c o

(C.19) lim

1n9—0

—pL<ho)<p>}dB(p>=

(see (A.57)). Since (C.19) verifies p,:S; — C(C) is the weak-derivative of
pr :PL — C(C), the lemma follows. O.E.D.

THEOREM C.1: Let Assumptions 3.1, 3.2, 3.4, 3.5, 4.2 hold, P € Py, and
C be compact. For each 6,,0, € O, let H(0;) and (2(0,, 6,) be as in The-
orem 3.2, {60*(p)} = E(p, P) (as in (A.24)) and define p,:Pp — C(C) by
pL(P) = vic(-, 00(P)). The inverse information covariance functional for esti-
mating pr (P) is then given by

(C20) I'(pi, p2)=A(p1i, PYH(6"(p1)2(6*(p1), 6°(p2))
x H(0"(p2)) M(p2, P).

PROOF: As in the proof of Theorem 3.2, we closely follow Chapter 5.2 in
Bickel et al. (1993). Let B = C(C) and B* denote the set of finite Borel mea-
sures on C, which, by Corollary 14.15 in Aliprantis and Border (2006), is the
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dual space of B. For s = ,/dP/du, then define p! : B* — St pointwise by

(C21) pI(B)(x) = / 2A(p, PYH(0"(p))
C
x {m(x, 0°(p)) — E[m(X., 0"())]}s(x) dB(p),

noting that the integrand is indeed measurable by arguing as in (A.59) and ex-
ploiting that p — 6*(p) is continuous on C due to Lemma A.7 and Z(p, P)
being a singleton for all p € C due to P € Pp. For any B € B*, let I'(B) denote
the finite Borel measure on S% given by I'(B)(A) = B(A N C) for any Borel
set A C S%. Noting that p! (B) = p(I"(B)), it then follows from Lemma C.3
and results (A.60)—(A.62) that p7 :B* — S is the adjoint of p, : S, — B. Lem-
mas C.3 and C.4 and Theorem 5.2.1 in Bickel et al. (1993) then establish the
theorem. O.E.D.

LEMMA C.5: Let Assumptions 3.2, 3.4, 3.5, 4.2 hold, C be compact, P € Py,
and Q, =10+ (1 — 7)P for any Q € M. Then, there is a N(P) € M such that,
forall (Q, p,9) e N(P) xCx (0,1),

J
Ev(p, 0,(0.))

T=T0

—A(p, QTO)'VF( / m(x, 0°) de(x))
x /m(x7 0*)(dQ(x) - dP(X)) where {0*} :E(p’ QTo)'

PROOF: By Lemmas B.2 and C.2, there is a N(P) € M that is convex and
contained in My, (as in (C.2)). Hence, if Q € N(P) € My, then Q, € M, for all
7 € (0, 1), which, together with Assumption 3.5, Lemma A.9, and Corollary 5 in
Milgrom and Segal (2002), imply that, for any (Q, p) € N(P) x C, the function
T v(p, Oy(Q,)) is directionally differentiable with right and left derivatives
given by

(C.22) (P, ©n(Q.))

—V
T+ =10

= max A(p, Q,O)/VF</ m(x, 6%) dQ,O(x)>

0*€Z(p, Q)

< / m(x, 0°)(dQ(x) — dP(x)),
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(€2)  v(p.0u(0))

T=1(

= min A(p, QTO)/VF</ m(x, 0") dQTO(X))

0*€Z(p,0ry)
X /m(x, 6*)(dQ(x) — dP(x))

(see also (B.4)-(B.5)). However, since Q,, € N(P) € M for all 7, € (0, 1), it
follows that, for any p € C, the correspondence = (p, Q.,) is singleton valued.
We conclude (C.22) and (C.23) agree, and the lemma follows. Q.E.D.

LEMMA C.6: Let Assumptions 3.1, 3.2, 3.4, 3.5, 4.2 hold, C be compact, P €
PL7 and {6*(p)} = E(p) P) Then7

sup
peC

ﬁ{(v(p, On(E)) — v(p. Ou(PY)) — A(p. PYH(0(p))
x /m(x, 0" (p))(dP.(x) — dP(x))H =0,(1).

PROOF: By Lemma B.2, we may restrict attention to convex neighborhoods,
so that if P, € N(P), then P, , = 7P, +(1—1)P € N(P) forall 7 € [0, 1]. Hence,
Lemmas A.7 and B.5 imply Z(p, 13,,,7) is well defined for all 7 € [0, 1] with
probability tending to 1. Moreover, since P € Py, implies 5 (p, P) is singleton
valued for all p € C, we obtain

(C.24) limian(sup sup  sup ||0 — 0*(p)|| > 8) =0

n—00 peC 7€l0,1] ge = (p, Py 1)

for any ¢ > 0, due to Lemmas A.7, B.4, and B.5. Thus, since p — A(p, P) and
p+— H(6*(p)) are uniformly bounded on C by Lemma A.11, Assumption 3.5,
and P e Py, satisfying Assumption 3.6(iii), we obtain

(C.25) supsup sup |/nA(p,P)H(6"(p))

peC 7€[0,1] 965(],’13”77)

x /(m(x, 0) — m(x, 0°(p)))(dP,(x) — dP(x)) H =0,(1)

due to result (C.24) and Lemma B.1 (see also (B.27)-(B.28)). Additionally,
since O is compact, result (A.3) implies 0 — [ m(x, 6) dP(x) is uniformly con-
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tinuous on @, and we therefore obtain from Lemma B.1 that (see also (B.23)):

(C.26) sup sup sup

peC 7€l0,1] 9e5(p, By, 1)

=0,(1).

/m(x, 0)dP, .(x) —/m(x, 6*(p)) dP(x)

Further note that VF( [ m(x, 8) dP(x)) is uniformly bounded in 6 € © by As-
sumption 3.5 and P € Py, satisfying Assumption 3.6(iii), while A(p, P) is uni-
formly bounded on C by Lemma A.11. Therefore, v — VF(v) being uniformly
continuous on V4 by Assumption 3.5(ii), together with Lemmas A.2 and B.5
and results (B.31) and (C.26), yield

(C.27) sup sup sup

peC 7€l0,1] g5 (p, By, 1)

A(p, Pn,»/VF( / m(x, 6) dﬁn,7<x>>

— Ap, P)/VF(/ m(x, 6*(p)) dP(x)) H =o0,(1).

Finally, employing the mean value theorem, which is valid by Lemmas B.2,
B.5, and C.5, we obtain uniformly in p € C that, for some 7,:C — (0, 1) and

6:C — @ with 6(p) € Z(p, P, .,(») forall peC,
(C28)  /n{v(p, Oy(P,)) —v(p, O0(P))}

= V/nA(p, Pn,fo(po'VF( / m(x, 6(p)) dﬁn,m,,)(x))
x /m(x, 0(p))(dP,(x) — dP(x)) + 0,(1)
= V/nA(p, PYH (6"(p)) / m(x, 0°(p))(dP,(x) — dP(x)) + 0,(1),

where the second equality follows from results (B.25), (C.25), and (C.27).
Q.E.D.

PROOF OF THEOREM 4.3: We first show the class F = {f: X — R:f(x) =
A(p, PYH(0*(p))m(x, 0*(p)) for some p € C} is Donsker in C(C). To this
end, note that p— A(p, P)YH(0*(p)) and p +— 0*(p) are continuous in p € C
due to Lemmas A.7 and A.12, result (A.3), Assumption 3.5, and P € Py, satisfy-
ing Assumption 3.6(iii). Thus, it follows from Assumption 3.4(i)—(ii) that f € F
are uniformly bounded, and that the empirical process belongs to C(C). Con-
vergence of the marginals is then immediate, while, for any sequence 6, | 0,
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we obtain

(C.29) sup

P1,P2€C: p1—p2l<dn

N / (m(x, 0"(pv)

—m(x, 6*(p2))) (dP.(x) — dP(x))‘ =o0,(1),

due to Lemma B.1 and continuity of p — 6*(p) on C. The class F being
Donsker then follows from (C.29), Lemma B.1, and p — A(p, P)YH(6*(p))
being uniformly continuous and bounded on C by compactness. Theorem 18.1

in Kosorok (2008) and Lemma C.6 then imply {vc(, Oy(P,))}is a regular esti-
mator of vc(-, @y(P)). The theorem then follows from the influence function

of {vc(-, @0(13,,))} being efficient by Lemma C.6 and Theorem C.1. QO.E.D.

APPENDIX D: PROOFS OF THEOREMS 5.1, 5.2, 5.3, AND 5.4

The proofs of all theorems in this section are self contained, and do not
require auxiliary lemmas or results.

PROOF OF THEOREM 5.1: For any metric space (D, || - ||p), let BLy, (D) de-
note the set of Lipschitz real functions on D whose absolute value and Lips-
chitz constant are bounded by M. To establish the theorem, it then suffices to
show

(D.1) sup  |E[f(G)UXY] — E[f(Go)]| = 0,(1),

feBLy(€(s%))
due to Theorem 1.12.4 in van der Vaart and Wellner (1996). Toward this end,

note that Lemma B.1 implies that

(D.2) sup

pesio

NG / { m(x, 0(p)) / m(x,é<p>)d13n(x)}d133(x,w)H

<sup
0O

ﬁ/ wm(x, 0) dP” (x, w)H

+ sup ||m(x, 0)||x

(x,0)e(Xx0O)

= Op(l)a

wdPY (x, w)‘

due to W; L X;, E[W;] =0 by Assumption 5.1(ii), and (x, 0) — m(x, 6)
being uniformly bounded by Assumption 3.4(i). Next, let IT,:® — R% be
as in Lemma B.7, and note that Lemmas B.5 and B.7 imply, uniformly in
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pes®,
(D.3) /\(p,P)’VFS</ mg(x, é(p))dﬁn(x)>/ms(x, b(p)) dP,(x)
= A(p, P)/VFS</ ms(x, IT,0(p)) dﬁn(x)>
x [ ms( 11,000) 4Byt + 0,(1)
= A(p, P)/VFS</ ms(x, 6*(p)) dP(x))
x/ms(x,npé(p))dﬁn(x)+op(1)
—A(p, PWFS( [ st o) dP(x))

X /ms(x, 6*(p))dP(x) +0,(1),

where the second equality follows from (B.20), Assumption 3.4(i), and (B.24),
while the third equality results from Lemma A.11, Assumption 3.5(ii), P € P
satistying Assumption 3.6(iii), and result (B.23). Therefore, results (B.31), As-

sumption 3.5(ii), Lemmas A.2 and B.5, and result (D.2) yield, uniformly in
peSh,

(D4)  nA(p,P,)'VF ( / m(x, 8(p)) dl%(x))
X /w{m(x, é(p)) - [m(x, @(p)) dﬁn(x)} dPY (x,w)
=/n\(p, P)’VF(/ m(x, 0(p)) dﬁn(x)>

X /w{m(x, 9(p)) - /m(x, é(p)) dlf’n(x)} dlA’,fV(x, w)
+o0,(1)
= /n\(p, P)’VF(/ m(x, 6*(p)) dP(x))

X /w{m(x, 6*(p)) — /m(x, 0*(p)) dP(x)} dP (x, w)
+0,(1),
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where the second equality follows from A6 — f Aedﬁn(x) =0, E[W;]=0and
W L X; by Assumption 5.1, Lemma B.8, and result (D.3). Next, define the
process G’ to be pointwise given by

(D.5)  Gi(p) =/nA(p, PYH(6"(p))
X /w{m(x, 9*(p)) —/m(x, 0*(p)) dP(x)} dﬁ,?/(x, w),

and note that arguments identical to those in (A.50)-(A.51) imply that
G € C(S%) almost surely. Since all f € BL;(C(S%)) are bounded and
have Lipschitz constant less than or equal to 1, for any n > 0, we must
have

(D.6) sup  |E[f(G}) — F(G) XL, ]|

feBLy(C(8%))

<nP(|G, -G,

o = liXYL) +2P(|G; - G;

=X,

However, from (D.4), it follows that P(||G* Gl > n{Xi},) = 0,(1), and
hence, since 1 in (D.6) is arbitrary,

(D.7) sup  |E[f(G)UX)L ] - E[f(G) XL ]| = 0,(1).

feBLy(C(8%))

To conclude, we note that by Lemma B.10 and Theorem 2.9.6 in van der Vaart
and Wellner (1996), we have

(D.8) sup  |E[f(Gy)UXN,] — E[f(Go)]]| = 0,(D),

feBLy(C(8%))

and therefore results (D.7) and (D.8) verify (D.1), which establishes the claim
of the theorem. Q.E.D.

PROOF OF THEOREM 5.2: Let G* be defined as in (D.5) and note that, by
(D.4), |G — G*|lo = 0,(1) unconditionally. Define a mapping I":C(S%) —
C(S%) pointwise by I'(f) = Y o f. The continuous mapping theorem then
yields

(D.9)  |sup Y(Gy(p)) = sup Y (Gi(p))|

petn pevn

< sup |Y(Gi(p)) = Y(Gi(p))|

pesie

=|1(G,) =T (G| = 0p(D.
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Next, let p* € argmax ., Y((_?j;( p)), which is well defined by Assump-
tion 5.2(ii) and continuity of p — G*(p). Letting I1y, p* denote the projec-
tion of p* onto ¥, and noting || p* — Iy, p*|| < du(¥,, %), we can then ob-
tain

(D.10)  sup Y/(G;(p)) — sup Y(G;(p))

pel, pe¥)
<Y(G;(p")) — Y(G;(Iy, "))
< sup  |Y(Gup)—Y(Gyp)|

Il p—Bll<dpr (¥, %)

Similarly, by analogous manipulations to the term sup, ., Y(G:(p)) —
sup .4, Y (G3(p)), we can conclude

(D.11) ‘sup Y(G;(p)) — sup Y(GZ(p))‘
pev, pey

< sup  |Y(Gup)—Y(Gyp)|

I p—pll<dp (¥, )

By Assumption 5.1, Lemma B.10, and Theorem 2.9.2 in van der Vaart and

Wellner (1996), G* 56 (unconditionally) for some tight Gaussian process
G in C(S%). Therefore, it follows that sup pests |G (P)] is asymptotically tight
in R. Next, fix n > 0, € > 0, and note there then is a constant K > 0 such
that

(D.12) limsupP<sup |G:(p)| > K) <.

n—oo peSdﬂ

By Assumption 5.2(i), Y:R — R is continuous and hence uniformly con-
tinuous on [—K,K]. Therefore, there is a 8, > 0 such that |Y(a;) —
Y (a,)| < € whenever |a; — a,| < 8, with a;,a, € [—K, K]. Hence, we then
obtain

(D.13) limsupP( sup_ Y (G:(p) = Y(GiP))| > 8)
n00 Np—pli<dy (B, V)

< limsupP( sup |G:(p) — G1(p)| > 60>

n—=>00 Il p—Bll<dpr (¥, %)

+1imsupP<sup |Gi:(p)| > K).

n—oo pngg
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Moreover, since the process p +— Gj;( p) is asymptotically tight in C(S%) by
Lemma 1.3.8 in van der Vaart and Wellner (1996), it then follows that there
exists a yy > 0 such that

(D.14) limsupP( sup |G:(p) — G:(p)| > 80>

n—>00 Il p—pll<dp (¥, )

51imsupP< sup |GZ(p)—GZ(15)|>50)

n—00 Ip—pPl=vo

+limsup P(du (¥, %) > )

n—oo

<"

due to dH(llAfn, ¥,) = 0,(1) by hypothesis. Since ¢, n were arbitrary, combining
(D.9)—(D.14), we then obtain

(D.15)  sup Y(G;(p)) =sup Y(G}(p) +0,(1).

peWy, re¥y

Therefore, for BL;(R) as in (D.1), arguing as in (D.7), and using Theorem 5.1
and Theorem 10.8 in Kosorok (2008):

(D.16) Sup E[f(juf Y(Gj;(p))) I{Xi};;]] - E[f(igg Y(Go(p)))]‘
< el Gy @)oo
- E[f(}s)gg Y(Go(p)) ]| + 0, (D
=o0,(1).

To conclude, observe that result (D.16) together with Lemma 10.11 in
Kosorok (2008) imply that

(D.17)  P(sup Y(Gy(p) < t[1Xi)i, ) = P(sup Y (Go(p) = 1) + 0,(1)

PE¥n pe¥y

for all ¢ € R that are continuity points of the cdf of sup petl Y (Gy(p)). More-
over, since c¢;_, is itself a continuity point, for any ¢ > 0 there is an & < & such
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that ¢;_, & & are also continuity points and, in addition,

(D.18) P(sup Y (Go(p)) <1 a—s) <l-a< P<sup Y(Go(p)) <1 a+s>

e pe¥)

due to the cdf of sup, ., Y (Go(p)) being strictly increasing at ¢;,. To con-
clude, define the event

(D19) 4, = {P(sup Y(G(p) = €10 — XL,

pE@n

<l-a< P(sup Y(Gip)) <ciot é|{X,«}:?:1)},

psliln

and observe that since c¢;_, = & are continuity points of the cdf of
Sup ey, Y (Go(p)), result (D.17) yields that

(D.20) liminfP(|é_o — ¢1_al < &) > hmlan(A y=1,

n—oo

which establishes the claim of the theorem. QE.D.

PROOF OF THEOREM 5.3: Since support functions are continuous, it fol-
lows that 95?,,(0) C S% is closed and bounded and therefore compact. More-
over, by Theorem 17.31 in Aliprantis and Border (2006), 29t(0) is nonempty
and compact valued, while Theorem 4.1 and Corollary 1.10 in Li, Ogura, and
Kreinovich (2002) imply that

(D21)  du(0y(P),H,)=0,(n""?).

In turn, result (D.21) and Lemma B.10 in Kaido (2012) yield dH(iﬁtn(G),
zm( ) =o p(l) Therefore, Assumption 5.2 is satisfied with 9t(0) = ¥, and
Dﬁ (0) = 1[’ Moreover, by Theorem 11.1 in Davydov, Lifshits, and Smorodina
(1998), the cdf of sup oy 4 |—Go( )+ is continuous and strictly increasing ex-
cept possibly at zero. However, since 21(0) is nonempty and Var{G(p,)} > 0
for some p, € M(H) by hypothesis, we obtain that

(D.22) P( sup |~Go(p)], <0)<P( Gol(po) <0) =0.5.

PEM()

Therefore, a < 0.5 implies that the cdf of SUP ,eon (o) [—Go(P) I+ IS continuous
and strictly increasing at ¢;_,(6). By Theorem 5.2, it then follows that ¢, ,(6) =
C],a(e) + Op(l)'
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Suppose 6 € Oy(P)°. Then result (D.21) implies that, with probability tend-
ing to 1, 6 € O/. Therefore, J,(0) = 0 with probability tending to 1, and since
¢a(0) 5 ¢ (0) > 0, we conclude that

(D.23) liminfP(J,(60) < ¢1_o(6)) = 1.

Suppose, on the other hand, that 6 € 90y(P). Theorem 4.1 and Lemma B.9 in
Kaido (2012) then imply that

(D.24) T.(0) 5 sup |—G0(p)|

PEM(6)

Therefore, since ¢,_,(0) RS C1_o(0) and the cdf of SUP () |—Go(0)],. is con-
tinuous at ¢;_,(0), (D.24) yields

(D225)  lim P(J,(6) = &o(8)) = P( sup |-Go(p)|, <ci-u(0)) =1-a,

peM(0)

which establishes the claim of the theorem. Q.E.D.

PROOF OF THEOREM 5.4: We first study the behavior of {#z}}. To this
end, define the functional ¢ :C(S%) — R to be p01ntw1se given by W f)=
Sup ,sis {V(P, {60}) — f(p)}, and the event A, = = {co(By(P,)) = B,(P,)}. By
Lemmas A.6 and B.5, P(A¢) = o(1), and hence by Theorem 11.14 in Kosorok
(2008), P, mx(AS) = o(1). Therefore, we obtain

(D26)  J,(6y) = max{¢(v(-, By(P,))), 0} +0p,, . (1),

since J,,(6y) = max{¢(v( @0(13 ))), 0} whenever A, occurs. Next, note that
by Lemma B.8 in Kaido (2012), the map ¢ is Hadamard differentiable at
v(-, @y(P)) with derivative ¢ : C(S%) — R pointwise given by

(D27)  §(f) = —f(po)-

Moreover, the Hadamard differentiability of ¢ together with Theorem 4.1 and
Theorem 18.6 in Kosorok (2008) imply that {¢(v(-, @, (f’n)))} is an efficient es-
timator for ¢ (v(-, @y(P))) and hence it isregular. Let L, 5 denote the implied
law when X; ~ P,, , and note that the functional delta method and regularity
then imply

(D28)  Va{w(v( Oy(B)) — (-, Oo(Pyy))} 5" —Golpo).

Since by Theorem 4.1 the estimator {v(-, @o(ﬁn))} is regular and asymptoti-
cally linear, Theorem 2.1 in van der Vaart (1991) implies n +— v (-, @y(P,)) is
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pathwise differentiable. Hence, by the chain rule, Theorem A.2, and (D.27),

(D.29) %l[l(v(, Oy(P,)))

n=0

=-2 f A(po, P)'H (80)m(x, 80) 1o (x) o (x) dpu(x)
=2 / 1(x)ho(x)ho(x) dpu(x),

where h, = ,/dP,/du and the final result holds by definition of /(x) and
fho(x)ho(x) du(x) = 0. Therefore,
(D30)  n{y(v(-, O(P)) — ¢ (v(-, Ou(P)))}

Lo va

2" —Go(po) +m f 20(x) by (x)ho(x) dpu(x),

due to (D.28) and (D.29). Moreover, as shown in the proof of Theorem 5.3,
Ci1—a(6p) = c1-4(6y) + 0,(1) when X; ~ P and therefore, by Theorem 11.14 in
Kosorok (2008), also when X; ~ P,, . Thus, exploiting result (D.26), we ob-
tain

(D31)  lim Py (Ja(60) > é1-a(60)
= ,}Lr?opn/\/ﬁ(max{ivb(v(a @O(Pn)))7 O} > Cl—a(e()))

= lim Py, (¢ (v(-, Ou(P)) > c1-a(60))

= P(—Go<po) > ¢1_a(f0) — 27 / i(x)f'zo(x)ho(x)dM(x)),

where the second equality follows from ¢;_,(6y) > 0 due to & < 0.5 and the last
equality is a result of (D.30). Thus (D.31) verifies that {#} attains the bound
in (35). Moreover, if P, € H(6,), then by (D.29), we must have

(D.32) / I(x)ho(x)ho(x) > 0.

Therefore, results (D.31) and (D.32) imply that J,,(6,) satisfies (34) as well.
We next establish that the upper bound in (35) holds using arguments in the

proof of Theorem 25.44 in van der Vaart (1999). Fix a P, € H(6,) and 7 > 0

for which we aim to show the bound, and pass to a subsequence {n,}?2, with

n— 00
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Further, let 5(x) = 2I(x)ho(x) and 7(x) = 5(x) — ho(x) (5, ho)r /1holl2 . Then,

notice that, by direct calculation, we can obtain that s € S,7€e8,and (r, ho) =
0. Moreover, also observe that, by result (D.29), we have

: J
(D.34) (3, ho)p = %lp(y(., 0y(P,)))

n=0

Proceeding as in the proof of Lemma A.16, we next build an augmented model
by letting s = /dP/du, ¥:R — (0, c0) be continuously differentiable, with
V(0)=v'(0)=1and ¥, ¥, and ¥'/¥ bounded, and defining

2 — 2
(D.35) g, ,(x)=b(n,y)s (x)‘I’< x ){

nho(x) + W(X)}>

P 1
b(n,v)z[f (( ){nho(X)+7r(X)})dP(X)] .

For Q, , satistying ¢, , = /dQ,, ,/dw, using Proposition 2.1.1 in Bickel et al.
(1993), it is straightforward to verify that (n, y) — ¢, , is then a quadratic

mean differentiable model with gy, = /dP/dw. Moreover, Lemmas A.2, A.S,
Corollary A.3, and P € P satisfying Assumption 3.6(ii) imply that O, , € P for
all (n,y) € N and N a suitably small neighborhood of (0, 0) in R%. By Theo-
rems 12.2.3 and 13.4.1 in Lehmann and Romano (2005), it then follows that if
||?|| 75 0, then there exists a further subsequence {ny, ) such that

(D.36) ,IE?O Ty, (Q(n,y)/ﬁ) =m(m,y)

for all (0, y) € N, and where r is the power function of a test in a limit exper-
iment that takes the form

(D.37) Z~N<[Z},Iol), IOEF”}LOOH 4”:)” }

Next, we establish that the power function 7 corresponds to a test that con-
trols size for the hypothesis

(D.38)  Ho:n(ho,3)1s + (7, 8 <0, Hi:mlho, $)rz + v(F,5)1 > 0.

Select any (19, vo) € R? such that no(ho, )Lz + Yo(F, S)Lz < 0 and define a path

{— P, to be given by P, = Q (~iny,—1y,- Notice that P, € P for ¢ small due to
Q.y) € Pforall (n,y) € N. Then, as in (D.34),

d - .
(D.39) El!f(V(', Oy(P))| = —{molho, ez + volr, §)L§} >0,

t=0
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and, in addition, since at t =0, Py = P, we~have Yyv(., @)0(150))) =0dueto b, €
d0y(P). Thus, from (D.39) we conclude P, € H(6,) for ¢ in a neighborhood of
zero. Noting Q. y0)/va = P-1/ya, it follows from (34) and (D.36) that

(D4O) 77(770’ yﬂ) = ]lgg) 7Tnkj (Q(ﬂo,yo)/ﬁ) = }Ln; 77-11/{]. (Pfl/ﬁ)

< limsup wn(f’_l/ﬁ) <a.

n—0o0

Since (D.40) holds for any (7, o) such that no(ilo, E)Lﬁ + Yo(F, §>Li < 0, con-
tinuity of the power function = implies it also holds for any (7, v,) with
no(izo, ) 1+ Yo(F, §) = 0. We conclude that 7r corresponds to a test that con-
trols size in (D.38). Therefore, Proposition 15.2 in van der Vaart (1999) and §
being in the linear span of /, and 7 yield

7mm@%+wm@%>

0y

(D.A41)  7(mo, v0) <1 - (D(Zl—a -

L w\2 = 2 312
(ho, S)L%L (r, S)leL _ ”s”Lﬁ

2
= - =+ — =
4llolly, 47N, 4

Ty

b

for any (7, ) such that no(ho, g)L,% + vo(F, E)Lg > 0. Furthermore, since both
n+ /dP,/duand n+— ,/dQ, /du are Fréchet differentiable in Li atn =0
with derivative ho, we also have that, for any % > 0,

(D.42) limsup/n|hs,pm — qa/ymollrz

. n
<lims hi)m—ho— —=h
‘ﬂ?ﬁ{w°¢ﬂ%

q .
o —hy— Ly
+‘61n/f,o 0 NG OL,%}
=0.

Hence, by Theorem 13.1.4 in Lehmann and Romano (2005), P}, - and Q7
converge in total variation, and thus

(D.43) klgrolo T (Pry ) = kll_)ff)lo Ty (O ya,0)-

To conclude, observe that since P, € H(6,), result (D.34) implies that
(hy, E)L,a > 0. If (hy, §>L§ > 0, then 1 > 0 and results (D.33), (D.36), (D.41),
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and (D.43) establish that

(D.44) limsup m,(Ps ) = }LI?O Wnkj(Q(ﬁ,ovﬁ) =m(n,0)

n—oo

<1-— q)(Zla . ZnE[l(Xi)hO(Xi)/hO(Xi)])
E[G{(po)]

where we have used.ag = E[G}(po)], 5(x) = 2i(x)h0(x), and h2 = dP/dpu. If,

on the other hand, (Ao, 5);; =0, then

211 x 0 )

VEIG(po)]

due to (D.33), (D.36), (D.43) together with 7(/0,$).3 + 0 x (7, §);; =0 and
7 controlling size in (D.38). Recall that we assumed |7 2 # 0 in obtain-
ing (D.37), and hence the theorem follows from (D.44) and (D.45) whenever
I7]] 12 # 0. The case ||7|| = 0 follows from the arguments in (D.36)—(D.43)
applied directly to P, (rather than Q,, ,). Q.E.D.

§a=1—(l>(zl_a—

APPENDIX E: PROOF OF THEOREM 3.3

As in the proof of Theorem 3.2, we establish Theorem 3.3 by verifying the
conditions of Theorem 5.2.1 in Bickel et al. (1993), which again requires us to:
(i) characterize the tangent space at P, and (ii) show that Q — v (-, @ ;(Q)) is
pathwise weak-differentiable at P. In this setting, however, both endeavors are
simpler. Lemma E.1 employs Lemma A.16 to characterize the tangent space,
while Lemma E.3 shows Q — v(p, 0, ,(Q)) is pathwise weak-differentiable at
P, and Lemma E.4 extends the result to show pathwise weak-differentiability
of Q> (-, 04,1(Q)).

Subsequent to the proof of Theorem 3.3, we briefly discuss the connection
between pathwise weak-differentiability in this setting, and in the moment in-
equalities model studied in Theorem 3.2.

LEMMA E.1: Let Assumption 3.7 hold, P € Py, and S, ={h € L’:h =

,./dQ/d/u for some Q € Pi}. Then the tangent space of Sy at s = \/dP/du is
Si={heL:[h(x)s(x)du(x)=0}.
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PROOF: Let P € Py and &( f vz dP(x)) denote the smallest singular value of
the matrix [ vz’ dP(x). Since X is compact by Assumption 3.7(i), it follows that
vz’ is bounded, and hence for any net {Q,}4eaq C M with Q, — P,

(E.1) /vz/an(x)—> /vz’dP(x).

Thus, since £ is continuous under the Frobenius norm (Bhatia (1997, p. 78))
it follows from P € Py that there exists a neighborhood N(P) € M such that
£(fvz'dQ(x)) > 0 for all Q € N(P). We conclude that Py is open in M, =
{Q e M: Q « u} and the claim follows from Lemma A.16. O.E.D.

LEMMA E.2: Let Assumption 3.7 hold, and Sy = {h € Li th=.,/dQ/du for

some Q € Pi}. If m+— h,, is a curve in Sy and h, = \/dP,/du, then there is a
neighborhood N C R of zero, such that, for all ny € N,

(E.2) %Z(P,,)‘l :—ZE(P,,U)‘I{/vz’hno(x)h,,o(x)du(x)}E(P,,U)‘l,

N=m0

and in addition, ny — %E(Pn)‘lln:,m is continuous and II%Z(Pn)‘Hn:,,OHF is

uniformly bounded in ny € N.

PROOF: Recall that if n — U(mn) is a square matrix valued function that
is invertible at n = 1o, then -U(0)' =y, = —U(00) " 5-U ()] 5=p, U (m0) "
Hence, since P, € Py implies 3(P,) is invertible, we obtain

(E.3) %Z(P,,)‘l =—Z(P,,U)‘1{ / 2vz’h,,0(x)h,,0(x)du(x)}Z(P,,O)‘l
N=m0
by exploiting that vz’ is bounded by Assumption 3.7(i), and arguing as in
(A.43). Moreover, since P, € Py by assumption, continuity of n — 3(P,) " fol-
lows from (E.1) and ||, — hy, 12 = o(1) implying P, — P,, in the 7-topology.
Since vz’ is uniformly bounded by Assumption 3.7(i), arguing as in (A.49)
in turn implies that f 2vz/izn0(x)hn0(x) dw(x) is continuous in 73, and hence
the continuity of n %Z(P,,)‘ll,,:,70 follows from (E.3). To conclude, note
that ||%E(P,,)*1|,,:0||F < 0o due to || 3(Py) 7 !||r < oo, zv' being bounded, the
Cauchy-Schwarz inequality, | /Ayl| = 1, and ||iz0|| 13 <00 because n — h, is
Fréchet differentiable. Hence, since || %E(Pn)‘%:o” r is finite, continuity im-

plies it must be uniformly bounded in a neighborhood of zero, and the lemma
follows. QO.E.D.

LEMMA E.3: Let Assumption 3.7 hold, and Sy = {h € L :h = ,/dQ/du for
some Q € Py}. If n— h, is a curve in Sy and h, = \/dP,/du, then there is a
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neighborhood N C R of zero, such that, for all (p, ny) € S* x N,

J
(E4) %V(P, @0,1(P1,))

n=n0

22/{%(}7,36,1)%) - tp;(p,x,Pno)}h,,o(x)hw(x)du(x),

where s, and s are as defined in equations (16) and (17), respectively. In ad-
dition, N may be chosen so that (p, 1) — %V(p, 00,1 (Py))|y=y, is continuous

and uniformly bounded in (p, ny) € S% x N.
PROOF: First note that since P, € Py, it follows that f vz’ dP,(x) is invert-

ible, while P,, « w and Assumption 3.7(ii) imply P,(Y, < Yy) = 1. Therefore,
Proposition 2 in Bontemps, Magnac, and Maurin (2012) implies that

(ES) V(p, @O,I(Pn))
= / PP (v + 1 p'Z(P,) v >0} (yu — y)) AP, (x),
provided P, (Y, < Yy) > 0, while direct calculation shows that (E.5) holds

when P, (Y, = Yy) =1, since then 0, ,;(P,) = {3(P,)~" [vy,dP,(x)}. Let
Y. (p,v) = p'3(P,) v and note that if (p,, 1,) = (po, no) With p, € S%, then

(E6) /'L<(yL’ Yu, U, Z)3nli_££101{’)/n,,(l7na U) > 0} = 1{77;0([705 U) > 0}) = 1>

since (p,n) — v,(p,v) is continuous, and u((yr, yu, v, z): py2(Py) v =
0) = 0 by Assumption 3.7(iii). Moreover,

(E.7) lim sup

n—oo
peSdO

/U(i)(yU - )’L)l{%n(l” v) > O}(hfm(x) - hfm(x)) dp(x)

< sup2|lx|” x lim {12y, = Ryyllez X g, + hogllz } =0,

xeX

for any 1 < i < d;, by compactness of X, the Cauchy-Schwarz inequality,
A, 1= 1 for all n, and n — h, being Fréchet differentiable. Hence, com-

pactness of X, result (E.6), and the dominated convergence theorem imply
€8)  tim [ 000 =301, (prv) > O}, () dia)

= / v(yu — Y ¥ay (P, v) > 0} 13 (x) dp(x).
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Therefore, for any p € S%, we can conclude from (E.8) and n — X(P,) ! being
differentiable by Lemma E.2 that

1
(E9)  lim E— /(m(p, V) = Yo (25 V) (Vv — Y1)

e |1 —

x vy, (p,v) > 0}A7 (x)du(x)

n=m0 }

x /v(yu—yL)l{vno(p, v) > 0}h7 (x)dp(x).

I i -1
—p{MZ(Pn)

Next, note that y,,(p,v)(yy — y.) is uniformly bounded by compactness of
S% x X, and hence, arguing as in (A.43),

. 1
(E.10)  lim Tl / Yao (P V) Yo = yo) {7y, (p, v) > 0}

x (B2 (x) = B2 () = 201 — M0) g () 1y (1)) dpa(x) = 0.

Thus, results (E.6) and (E.10), compactness of X, and the dominated conver-
gence theorem yield

. 1

(E11)  lim —/vno(p, v)(Yu — Y1)
n—co |1, — M|

x vy, (p,v) > 0} (B3, (x) = I, (%)) dpu(x)

:Z[YUU(pa ’U)()’U _yL)l{‘Ym)(p? U) > O}I:Zno(x)hng(x)dp’(x)-

In addition, Lemma E.2 and the mean value theorem imply that, for some
7n,.(x) between n,, and 7,

(E-12) }Lg‘/vnﬂ(p,v)(yU — L)

X (H{¥n, (P, v) > 0} = L vy, (p,v) > O}) 13 (x) dpu(x)

=}Lr§o‘/'y%(1?, v)(Yu — yL)

n_ﬁn(x)}

J
X <1{7n0(p, v) > (mo — nn)%%,(p, V)
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— Yym(pyv) > 0}>hf]0(x) du(x)

< ,}Lrlgloflvno(p, V) (v — y)|
X |2y (P, 0)| < MImo = mal} 12 () dpu(),
where the inequality holds for some M > 0 due to Lemma E.2 and compact-

ness of S% x X implying ﬁ%( D> V)|y=n, is uniformly bounded for 7, in a
neighborhood of zero. Therefore, from (E.12) we conclude

, 1
(E13)  lim m'/m(p, v)(Yu = y)

X ({1, (P, v) > 0} = 1y, (p,v) > 0}) A2 (x) dpu(x)

<2sup x|l x lim M [ 1{]y,,(p, v)| < MIno — nal} A5, (x) du(x)
xex n—00
=0,
where the final equality results from the monotone convergence theorem, and

w((ye, Yyu, v, 2): p'3(P,,)"'v=0) = 0 by Assumption 3.7(iii) and p'3(P,,) " #
0. Finally, combining results (E.9), (E.11), and (E.13), we can obtain

P
(E.14) %{/ Yo (2, V) (Yo — y) vy (p,v) > O}hf,(x)du(x)}

_ K o
—/(p {ﬁnZ(Pn)

x (yu — y) v, (P, v) > 0} dp(x).

=m0

}Uh%m (%) + zyno(p’ U)hno (x)h,m (x))

n=n0

Similarly, Lemma E.2, compactness of X, and arguing as in (E.9) and (E.11)
allow us to establish that

d
(E.15) %{/%(p,v)thf,(X)du(X)}

_ KA o
_/(p :ME(P")

+ 270, (D, v)izno(x)hno(x))yL du(x).

N=m0

}vhfm (x)

n=
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Result (E.4) then follows from (E.14), (E.15), Lemma E.2, and the definitions
of ¢, and ¢ 5.

To establish continuity, let (p,,, 1,) — (po, no) € S% x N. Results (E.6) and
(E.7) then imply that

(E.16) }Lngo/v(yu — Y)Yy, (pus v) > 0} 12 (x) dpu(x)
= / v(yu — Y) 1 ¥no(Po, v) > O} 12 (%) dpa(x)

by the dominated convergence theorem. Next, note that by compactness of X’
and the Cauchy-Schwarz inequality,

(E17)  lim ‘ / v (yy = y1)

X Yy (Ps 0) > O} (P, () g, (X) — Py (X) P () dpa(x)

< 2sup || x|*
XeX

< im {12y, — g 13 Wi, 122+ W, = Byl 1 122}
=0,

since || A, || 1= 1 for all n and 1 — h,, is continuously Fréchet differentiable.
Hence, we can conclude that

(E.18) JLIEO/U(yU — YO, (P, v) > O}y, (X) 1y, (x) dpa(x)
= / vy = Y) ¥y (o, ©) > O}ty (X) Py () dpa(x)

by (E.6) and the dominated convergence theorem. Therefore, (E.14), (E.16),
(E.18), and Lemma E.2 yield

9
(E.19) ,}ggloﬁ{/vn(pn,v)(yu =y U yu(pu, v) > O}hi(x)du(x)}

N="n

d
— %{/ Ya(Po, V)(Yu = y) {5 (po, v) > O}hi(x)dp,(x)}

n=n0
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Similarly, employing the same arguments as in (E.16) and (E.18) together with
result (E.15), it is possible to show:

0
(E20)  lim %{ / vn(pn,v)thi(x)du(x)}

N="Nn

J
= (9—{/ Ya(Pos U)thi(x) d,u(x)}
mn

n=n0

Thus, continuity of (p, 19) = %v(p, 00.1(P,))y=n, follows from (E.5), (E.19),
and (E.20). Finally, note that since n — h, is continuously Fréchet differ-
entiable, we may choose the neighborhood N C R so that ||ﬁn|| 12 is uni-
formly bounded in n € N. The Cauchy-Schwarz inequality then implies
|fl'z,,(x)h,7(x)d/u(x)| < ||hn||L£||hn||L% < oo uniformly in n € N. Therefore,
compactness of X x S%, Lemma E.2, and results (E.5), (E.14), and (E.15) im-
ply %v(p, 00,1(Py)) =y, is uniformly bounded in (p, 1) € S% x N, and the
lemma follows. Q.E.D.

LEMMA E.4: Let Assumption 3.7 hold, and p;:Py — C(S¥) be given by
pr(P) =v(-, 0 ;(P)). Then p; is pathwise weak-differentiable at any P € Py, and
for s =/dP/du, the derivative p;: Sy — C(S%) satisfies

pi(ho)(p) =2 / {9.(p, 2, P) = ds(p, x, Py ho () ho(x) d (),
where s, and s are as defined in equations (16) and (17), respectively.

‘ PROOF: We first note that Lemma E.3 implies p,(fzo) € C(S%) for any ho €
S;. In addition, p; is linear by inspection, while ¢,(p, x, P) and ¢s(p, x, P)
being uniformly bounded in (p, x) € S% x X’ by Assumption 3.7(i) imply

(E21)  sup |pi(ho)|_ = sup 2

gl 2 =1 (p)esdoxx
i

wv(p?x’P)’ + WZ(PJC,P)H

xsup {llAllz x kol }

ol 2 =1
oll,2
< 00,
and hence p; is continuous as well. Moreover, for any finite Borel measure

B on S% and curve n + P, € Py with i, = s, the mean value and dominated
convergence theorems together with Lemma E.3 yield

/{V(Py O (P,,)) —v(p, Oy (P))

(E.22) lim
Mo

1n9—0

- w’zo)(p)} dB(p)=0
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(see also (A.57)). Result (E.22) verifies that p, is the weak derivative of p;, and
the lemma follows. Q.E.D.

PROOF OF THEOREM 3.3: As in the proof of Theorem 3.2, we let B = C(S%)
and B* denote the set of finite Borel measures on S%, which is the dual of B
by Corollary 14.15 in Aliprantis and Border (2006). Let p; : P; — B be given
by p;(P) =wv(-, 0, (P)), which has weak derivative p; by Lemma E.4. For any
B € B*, then define

(E.23) i)IT(B)(x)EZ/ {y(x, p, P) — E[Y(X,, p, P)]}s(x) dB(p),
S

dp
where s = \/dP/dw, and the measurability of the integrand can be estab-
lished arguing as in (A.59). In what follows, we aim to show p; :B* — §; is
the adjoint of p,:S; — B. To this end, note that p;(B) € L’ for any B € B*

since ¢ (p, x, P) =, (p, x, P) — ¥s(p, x, P) is uniformly bounded in (p, x) €
S% x X, as argued in (E.21). Moreover,

(E.24) / pr(B)(x)s(x) du(x)
=2 [ [ (vt p. Py~ E[X, p. D]} aP (0 aBCp =0,
sdo J x

by exchanging the order of integration and exploiting that s> = dP/d . Hence,
Lemma E.1 and (E.24) verify that p] (B) € S for any B € B*. Finally, for any
fzo € $; and B € B*, we can use that ffzo(x)s(x)du(x) =0 by Lemma E.I,
exchange the order of integration, and exploit Lemma E.4 to obtain that

(E.25) / pL(B)(x)ho(x) du(x) = / / W(x, p, PYho(x)s(x) du(x) dB(p)
x sdo J x
= f p1(ho)(p) dB(p).
sdo

From result (E.25), we conclude that pT:B* — § is indeed the adjoint of

p1:S; — B, and the theorem then follows from Theorem 5.2.1 in Bickel et
al. (1993). O.E.D.

The principal challenge in establishing Theorem 3.3 is in verifying pathwise
weak-differentiability of the support function of the identified set. Differentia-
bility of the support function in particular implies that the scalar valued pa-
rameter Q > v(py, O ;(Q)) must be differentiable at every p, € S%, which,
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by (15), is equivalent to

(E26) V(p(), QO,I(PU))

= / PE)Z(Pn)AU()’L + 1{1962(1)17)7111 > 0}()’U - YL)) dP,(x)

being differentiable in n for any parametric submodel n — P,. Inspect-
ing (E.26), however, reveals that nondifferentiability at n = 0 may occur if
P(py2(P)"'V =0) > 0—a situation that is ruled out by Assumption 3.7(iii).
Interestingly, when V' is a discrete random vector, the identified set @ ;(P)
has “flat” or “exposed” faces, and the p, € S% such that P(p,3(P)"'V =0) >0
are precisely the p, € S% that are orthogonal to these flat faces; see Bontemps,
Magnac, and Maurin (2012). In close connection to Remark 3.2, it is then pos-
sible to show that Q — v(py, 0, ,(Q)) is not pathwise weak-differentiable at
any such p, by constructing a path n — P, that alters the slope of the exposed
face.

EXAMPLE E.1: Suppose Z=V =1, W), W e{-1,0,1},and Y;, Yy €Y C
Rwith Y compact. Furtherlet X = (Y, Yy, V'), X =Y x YV x {1} x{-1,0, 1},
and p € M satisty Assumption 3.7(ii). The set of 6 = («, B)" with
(E27) E[Y —a-WB]=0, E[W({ -a-Wp)]=0,

for some Y satisfying Y, < Y < Yy, then constitutes the identified set under
P. Further suppose P is such that

(E28) P(W=-1)=PW=0)=P(W=1)= %

for a € {—1,0,1} and ¢ € {L, U} define Ep[Y{|W =a] = [ y,1{w = a}dP(x)/
P(W = a), and for simplicity let

(E29)  Ep[Y,|W =0]=Ep[Yy|W =0]=0.

Let us consider a submodel satisfying Ep, [Y(|W = a] = Ep[Y,|W = a] for all
ae{—1,0,1}and ¢ € {L, U}, and

(E30) P,(W=-1)= %(1 — ),
Py =0) = 51+ 2m),

1
Py (W =1)=3(1=n).
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Along the submodel n — P,, we can then obtain by direct calculation that the
identified set at P, is given by

(E31)  Oy(P,)

. 3 «
= {9€R25(1) Ep [YL W =-1] < 21—n —B=Ep,[YylW=-1],

. 3
(i) Er, [YiIW =11 577+ B < B [YolW = 1]}.

Thus, O,(P,) is a parallelogram with the slope of exposed faces depending on
1. As in Remark 3.2, n — v(po, @y(P,)) is not differentiable at n = 0 for an
appropriate choice of p,. For instance, for p, = (%, J%), we obtain by (E.26)

2—n n
E.32 ,00(P,))) = =——=E[Yy|W =1]— — (E[Y,|W = -1
( ) v(po, Ou(Py)) NiE [Yyl 1 m( [Y.] ]

+E[Yy =Y. [W=-1]1{n < O}),

which is not differentiable at n =0 if E[Yy — Y. |W = —1] # 0. Thus, n —
v(po, O(P,)) is not differentiable at n = 0 precisely at a p, that is orthogonal
to one of the exposed faces of the identified set @ (P).

APPENDIX F: DISCUSSION OF EXAMPLES 2.1, 2.2, 2.3, AND 2.4

In this appendix, we revisit Examples 2.1, 2.2, 2.3, and 2.4 from the main text.
We map each example into our general framework, and examine Assumptions
3.2,3.3,3.4, 3.5, and 3.6 in their context.

EXAMPLE 2.1—Interval Censored Outcome:

In this example, X = (Y, Yy, Z’) andwe let Y CR, Z = {zy, ..., zx} with
K <oo,and X =) x )V x Z. For M the set of Borel probability measures on
X and any Q € M such that Q(Z = z;) > 0, then denote, for £ € {L, U},

/yzl{Z =z} dQ(x)

(Fl) EQ[Y(|Z=Zk]E .
/ 1Z = 2,)dO(x)

For a parameter space ® C R% and any Q € M, then recall that, in this exam-
ple, the identified set under Q is

(F2) @O(Q)E{QGQ:EQ[YL|Z=ZI(]SZ;HﬁEQ[Y(AZ:Zk]
forall1 <k <K}.
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To map this setting into the framework of (2) and (3), we let 1:(z) = (1{z =
zi}, .o, Hz = 2z¢}) and mg(x, 0) = (y12(2), yul=z(2)', 12(2)") for all 6 € O.
Then define Fs:R** — R?*X to be pointwise given by

o)

—, i=1,...,K,
(F3) FO@={v"0

v

—W, i:K+1,...,2K.

If QO € M satisfies Q(Z = z;) > 0 for some 1 < k < K, then (E3) im-
plies F{*'([ ms(x, 0) dQ(x)) = EolY,|Z = z] and F ([ ms(x, 6) dQ(x)) =
—Eo[Yy|Z = z]. Hence, setting A = (—zi, ..., —zk, z1, ..., Zx)', Wwe obtain

(F4)  0y(Q)= {06@:A6+F5</ms(x, 0)dQ(x)> 50}.

The following more primitive assumptions suffice for verifying Assumptions
3.2-3.6 in this example.

ASSUMPTION E1: (i) Y is compact; (i) © = {6 € R%: ||||> < By} with B, <
oo satisfying CyBy > K{sup,,, y*}, where Cy = inf o0, D (p, z)?; (iii) K > dy;
(iv) any subset C € Z with #C < d, is linearly independent.

ASSUMPTION E2: (i) For some 6y € R, Ep[Y,|Z = z;] < z,,6p < Ep[Yy|Z =
zi]forall 1 <k <K; (ii) P(Z =z;) > 0 and Ep[Y; — Yy|Z = z,] <0 for all
1 <k <K; (iii) #.A(0, P) < d, for all 6 € Oy(P).

Assumption F.1(i) imposes that Y, and Y, have compact support, which we
require to verify Assumption 3.4(i). Assumption F.1(ii) defines ® to be a ball

of radius v/B,, where B, is chosen to ensure that @y(P) C @° as required by
Assumption 3.6(i). Assumption F.1(iii)-(iv) imposes a linear independence re-
striction on the support points of Z, which together guarantee that @,(P) is
bounded. Assumption E.2 contains the main requirements on P. In particular,
Assumption E2(i), which holds if the model is properly specified, guarantees
that @y(P) # . The requirement Ep[Y; — Yy|Z = z,] < 0 ensures that there
isno 6 € Oy(P) such that Ep[Y}|Z = z;]1 = 2,0 = Ep[Yy|Z = z,], which would
violate Assumption 3.6(iv). Finally, Assumption F.2(iii) requires that the num-
ber of binding constraints at each 0 € @y(P) be less than or equal to dy, and,
together with Assumption F.1(iv), implies Assumption 3.6(iv). We note that
if K = d,, then Assumption E1(iv) and Ep[Y; — Yy|Z = 2] < 0 imply that
Assumption F2(iii) is automatically satisfied. In general, however, Assump-
tion F.2(iii) imposes additional requirements on P.

PROPOSITION E.1: In Example 2.1, Assumptions F.1 and F2 imply Assump-
tions 3.2-3.6.
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PROOF: Assumption 3.2 is implied by Assumption F.1(ii). Further note that
since the 2K x d, matrix A is known, Assumption 3.3 holds. Moreover, since
Y is compact by Assumption E1(i), ms(x, 0) = (y.12(2), yylz(2), 12(2))
is uniformly bounded in & x ® and hence m(x, 0) = (mg(x, ), 0’ A’) and
0 being compact by Assumption E.1(ii) verify Assumption 3.4(i). In addition,
given the definition of mg(x, 6), Assumption 3.4(ii)—(iii) directly follows from

(ES)  Vem(x,0)=VY, [msifé 0)] = [fﬂ :

In order to verify Assumption 3.5, set 0 < &, < inf, P(Z = z;), which is possi-
ble by Assumptlon E2(ii), and M, > 0 so that max{sup,,, |y|, Bosup,.; [ z[} <
M, < oo, which is possible by compactness of ). Then defining

(F6) I/0 = (_MOa MO)ZK X (80; 1) X (_M(Ja M0)2K7

and noting that F(v) is differentiable unless v = 0 for some 2K +1 <i < 3K,
it follows that Assumption 3.5(i) holds. Moreover, since VF is continuous on
the closure of 1 and V4 is precompact, Assumption 3.5(ii) holds as well.

We next verify that P satisfies Assumption 3.6. First observe that Assump-
tion F2(i) implies 6, € Oy(P) and hence @y(P) # #. Next, also note that if
0 € Oy(P), then (F2) implies that for, any 1 <k <K,

(E7)  |z.6| <max{|Ep[Y.|Z = = z:]|} <sup|yl.
yey
Furthermore, Assumption F.1(iii)-(iv) implies R = span{z,, ..., zx}, and

hence C; = infpesdﬁ > (P> zx)* > 0 by compactness of S%. Therefore, since
/10| € S%, we obtain from (E.7) that, for any 6 € @y(P),

0 2
(E8)  1I61°Co < 11011? Z<zk, ”0”> < Ksupy’.

yey

It then follows from Assumption F1(ii) that if § € ©,(P), then ||6||> < B, and
hence ®y(P) C ®°. However, since @, (P) is closed, we must have 6y (P) C O°,
which verifies Assumption 3.6(i).

Since mgs(x, 6) = (y.1z(z), yu1z(2)’, 12(2)")" does not depend on 6, it fol-
lows that S; = ¢ for all 1 <i < 2K (see (4)), and hence Assumption 3.6(ii)
actually holds for all Q € M. In turn, by definitions of &, and M, we also have
[ m(x,0)dP(x) €V, for all 6 € @ and thus Assumption 3.6(iii) holds as well.
Finally, note that

(E9) VF® (/ m(x, 0) dP(x)) fvgm(x, 6) dP(x)

| =z, if1<i<K,
+z;, fK+1<i<2K.
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For notational simplicity, let P(0) = {VFY([ m(x,6)dP(x)) [ Vym(x,
0) dP(x)}icac.p)- Then note that since Ep[Y, — Yy|Z = z] < 0, it follows,
for 1 <i <K, that if i € A(6, P), then K + i ¢ A(6, P)—or equivalently, if
—z; € P(0), then z; ¢ P(0). Assumptions F.1(iv) and F2(iii) then imply that
the elements of P(6) are linearly independent for all § € @ (P), which verifies
Assumption 3.6(iv). Q.E.D.

EXAMPLE 2.2—Discrete Choice:

The structure of this example is identical to that of Example 2.1, though the
notation is substantially more cumbersome. In this example, X = (Y’, Z¥)’,
and we let ) € R, Also recall Z* is assumed to have finite support Z =
{z1,...,zx} with K < 00. Set X =) x Z, and let M denote the set of Borel
measures on X'. For notational convenience, we also define A(y, z;, zx) =
Y (y, zj) — p(y, z,) and the set V to be given by

(FlO) VE{Zl—Zz,...,Zl—ZK,Zz—Z3,...,Zz—ZK,...,ZK,l—ZK}.

For any Q € M such that Q(Z* = z,) > 0, let ElA(Y, z;, z )| 2" = z] =
[ AW, zj, z){z* = 2.} dQ(x)/ [ 1{z* = z,} dQ(x) (as in (F.1)), and note that
for a parameter space O, the identified set under Q € M in this example is

(F11)  0y(Q)={0€O:EG[A(Y, z;, )| Z" = z]
+(z;—zx)'0 <Oforall z; # zk},

To identify (F.11) with the framework of (2) and (3), for each 1 < k < K, let
vi(y, z¥) € RE-! satisfy

D oo JAD zj 2oz =2z}, 1<j<k,
(Elz) vy (y’z)_{A(y,2j+1,Zk)1{Z*=Zk}, kf]SK—l

Then let U(ya Z*) = (Ul(ya Z*)/7 s aZUK(y, Z*)/)/y 12(2*) = (1{2* = 21}9 LR
1{z* = zx})" and set mg(x, 6) € RX" to be given by mg(x, 0) = (v(y, z*),
12(z*)")". We can then define Fs:RX’ — RKE-D to be pointwise given by

o

(E13) FPv) = i=1,...,K(K—-1),

pKK=D+[i/(K=1)])°
where [c] denotes the smallest integer k such that k > c¢. Given these defini-
tions, if Q e Mis such that Q(Z*=z;) >0and (K - 1)(k—-1)+1<i< (K —
D)k, then Fy"([ ms(x, 0) dQ(x)) = EolA(Y, zj, z:)| Z* = z] for some j # k.
Moreover, by setting A = ((z1 — z3), ..., (zZ1 — Zk),y -+, (Zk — 21)y .-, (2K —
Zkx_1))', we obtain

(F14)  04(Q) = {0 €0: A0+ Fy (/ my(x, H)dQ(x)) < 0}.
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Given the identical structure of Examples 2.1 and 2.2, we can derive suf-
ficient conditions for Assumptions 3.2-3.6 by recasting Assumptions F.1 and
E2 in the present context. A formal proof that Assumptions F.3 and F4 im-
ply Assumptions 3.2-3.6 can be obtained by arguments identical to those of
Proposition E1 and is therefore omitted.

ASSUMPTION E3: (i) ¢: Y x Z — R is bounded; (ii) @ = {# € R% :||0|]> <
By} with By < oo satisfying 2CyBy > K(K — Dfsup, ey z (P (s z))?}, where
Co=inf, g4 3,0, (Ps v)?%; (iii) K(K — 1) > 2d,; (iv) any subset C C V) satisfying
#C < d, is linearly independent.

ASSUMPTION E4: (i) For some 6, € RY, Ep[A(Y, zj, zx)|Z* = z] + (z; —
z;)'8p < 0 for all z; # z, € Z; (il)) P(Z* =2z) >0 for all 1 <k <K;
(iii) Ep[A(Y, z;, zi)| Z* = z;1 # Ep[A(Y, zj, zy) | Z* = zx] forany 1 < j <k <K
(iv) #A(0, P) < d, for all 8 € Oy(P).

Assumption E3(i) guarantees m(x, 6) is bounded as required by Assump-
tion 3.4(i). As in Assumption F1(ii), ® C R% is defined to be a sufficiently large
sphere to ensure that @y (P) C ©°, as demanded by Assumption 3.6(i). The gra-
dient VFO( [ m(x, 6) dP(x)) [ Vom(x, 8) dP(x) at each active constraint is of
the form (z; — z,) for some z; # z, € Z. Therefore, to ensure that Assump-
tion 3.6(iv) holds, we must rule out that a 6 € @y (P) satisfies

(E15)  E[A(Y,z;,z)|Z" =z | + (z; — z,)' 0
=0=E[AY, z, z)|Z" = z;] + (2 — 2))'0,

which is guaranteed by Assumption F4(iii). A consequence of Assump-
tion F4(iii) is that when Z* has K points of support, it generates K (K — 1) con-
straints, of which at most K(K — 1)/2 can be active. For this reason, Assump-
tion F.3(iii) requires K (K —1)/2 > d,, which, together with Assumption E3(iv),
implies Oy (P) is bounded. Assumption F4(i) is satisfied if the model is prop-
erly specified and implies @((P) # §. Finally, Assumptions F3(iv) and F4(iv)
together provide a sufficient condition for Assumption 3.6(iv) to be satisfied.

REMARK F.1: The moment inequalities in (6) are a special case of a larger
system implied by the optimality condition in (5). In particular, for any 7 mea-
surable random variable 1/, equation (5) implies that, for any z; € Z,

(E16)  E[((#(Y,2) — (Y, Z")) + (2, — Z7) 0)g(V)] <0,

provided g(V') > 0 almost surely; see, for example, Ho (2009). Indeed, note
that (F.16) reduces to (6) by setting V' = Z* and g(V') = 1{Z* = z,}. Unlike
(6), however, it is not possible to write (F.16) as a linear inequality constraint
with known slope for a general g(}7). On the other hand, (F.16) does satisfy
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Assumption 4.2. Therefore, Theorem 4.3 implies that the “plug-in” estimator
is still efficient for estimating v (-, @y(P)) for any C satisfying Assumption 4.1.

EXAMPLE 2.3—Pricing Kernel:

For this example, we set X = (Y, Z',U’) with Y € R, Z € R%7, and U € Rz,
and hence X C R x R% x R%, Recall § = (p, y)' € R?, and to ensure that the
identified set is bounded, we impose the constraints 0 <p <pand0<y <7y
for some ¥y > 0 and p > 0. Formally, for a parameter space @, the identified set
is given by

(E17)  0(0) = :Oe@:/(% —u) dQ(x) <0 and 6 € [0, 5] x [0, y]}.

To map this example into (2) and (3), we let A, mg: X x ® — R, and
Fs:R97 — R%* be given by

—y )
{ly_{_‘;_ua Fs(U):(U/,—ﬁ,O,—i/,O),

0, 1 -1 0 0
A= %
0, 0 0 1 -1

(F18)  my(x, 0) =

where 0,, stands for 0 € R¢z. Given this notation, the constraints 1 <i < d,
correspond to (7), while the restriction 6 € [0, p] x [0, ¥] is imposed in the
constraints d; + 1 <i < d + 4. Therefore, we obtain the representation

(F19)  0,(0) = {He @:A6+FS</ ms(x, H)dQ(x)) 50}.

The following conditions are sufficient for verifying Assumptions 3.2-3.6 in
Example 2.3.

ASSUMPTION E5: (i) X C [g, 00) X Rdf x RYz for some & > 0; (ii) X is
compact; (iii) ® =[-1/2,2p] x [-1/2,2¥].

ASSUMPTION FE6: (i) E[Yl‘j’f — U] <0 for some 6 € [0,p] x [0,7];
(ii) P(Z® > 0) > 0 for all 1 <i < dy; (iii) for all (p,y) = 6 € Oy(P), and
{i, )} S A0, P) with 1 <i<j<d,+2, E[lY " (Z" — m,;ZP)log(Y)] # 0,
where m;; = E[lUY]/E[UV]if j < d; and m; ; = 0 otherwise; (iv) #.4(6, P) <2
for all 6 € @y(P).

Assumption FE5(i) requires Y, the ratio of future over current consump-
tion, to be bounded away from zero. Together with compactness of X x 6,
Assumption E5(i) ensures m: X x @ — R*z** is bounded and differentiable,
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as required by Assumption 3.4. The constraint 6 € [0, p] x [0, y] can be inter-
preted as imposing restrictions defining the parameter space of interest (see
Remark 3.4). However, our arguments require regularity of m in a neighbor-
hood of ®,(P), and for this reason Assumption 3.6(i) further demands that we
may define a set ® such that @,(P) C O°. In this example, this is easily accom-
plished through Assumption F5(iii); alternatively, for example, we could have
set @ =[-8, p+ 8] x [—8,y+ 6] for any 0 < & < 1. Assumption 3.6(i) implies
Oy (P) #0, and is satisfied if the model is properly specified. In turn, Assump-
tion E.6(ii) is necessary for 6 — F;i)(f mg(x, 0) dP(x)) to be strictly convex for
1 <i < d. Finally, Assumption 3.6(iii)—(iv) is equivalent to Assumption 3.6(iv)
in this model. Unfortunately, unlike in the linear models of Examples 2.1 and
2.2, the gradients of constraints 1 < i < d, depend on P, and as a result the
requirement on P is more complex.

PROPOSITION E2: In Example 2.3, Assumptions E5 and F.6 imply Assump-
tions 3.2-3.6.

PROOF: Assumption 3.2 is implied by Assumption FE5(iii), while Assump-
tion 3.3 has already been verified in (F.18) and (F.19). Moreover, since y > &) >
0 for all x e X and p > —1/2 for all (p,y)'= 6 € @, and X x O is compact by
Assumption E5(i)—(ii), it also follows that mg(x, 6) is uniformly bounded on
(x, 0) € X x 0. Therefore, m(x, 0) = (ms(x, 0)', 6’ A’)’ implies that Assump-
tion 3.4(i) also holds. Next, note by direct calculation that

E20 \Y =| -
( ) Hms(x’ 0) |: (1+p)2 (1+p)

Yz y7log(y)z }

and hence since p > —1/2 and y > g, by Assumptions E5(i) and E5(iii), it
follows that (x, ) — Vymg(x, 0) is uniformly bounded in X x @. Assump-
tion 3.4(ii) then follows from V,m(x, 0) = (Vems(x, 6)’, A')'. Moreover, (F.20)
further implies (6, x) — Vym(x, 6) is continuous on X x @. However, by com-
pactness of X x O, (6, x) — Vym(x, 6) is uniformly continuous, and therefore
0 — Vym(x, 0) is equicontinuous in x € X, verifying Assumption 3.4(iii). Fi-
nally, employing m(x, 0) = (mg(x, 6), 8 A)' and F([ m(x, 0) dQ(x)) = A6 +
Fs([ mg(x, 6)dQ(x)), we obtain

I .
(F21) VF(v)= [ijz :1[,24,

where I, denotes the k x k identity matrix, and 0, 4, is a 4 x d, matrix of zeroes.
From (F.21), it follows that Assumption 3.5(i)—(ii) holds with Vj = R*z*+4,

To verify Assumption 3.6, first observe that Assumption E2(i) directly im-
poses Oy(P) # . Moreover, since Oy(P) C [0, p] x [0,¥] C (—1/2,2p) x
(—=1/2,2y) = ©° by Assumption E5(iii), it follows that Assumption 3.6(i)
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holds. To verify Assumption 3.6(ii), first note that by (E18), S; = {1, 2} for
1<i<dyand S;=0ford; +1<i<d;+ 4. Thus, we need only show that
O [ m(s”(x, 0) dQ(x) is strictly convex for all 1 <i <d and Q in a suitable
neighborhood of P. To this end, first exploit that p > —1/2 for all (p, y)' € ®
and y > g, for all x € X to deduce that

2y77z® y~ " log(y)z"
; 1+p) (1+p)?
F22) Vim{(x,0)= ( . .
(B22) Voms 5 0= o log(y)2®  yrlogh(z® |7
(1+p)? (1+p)

for any (x,0) € X x © and 1 <i < d. By (F22), V2m{'(x, 0) is positive
definite for any x € X’ such that z” > 0. Hence, since z” > 0 on X, and
m{’(x, §) = —u whenever z’ = 0, we conclude that, for any A € (0, 1) and
1<i<dy,

(F23) /mg"(x, A0, + (1 —1)6,) dQ(x)

< )\/m(si)(x, 0)d0O(x)+ (1 — A)/méi)(x, 0,)dQO(x),

provided that Q € M satisfies Q(Z > 0) > 0. However, by Assumption 3.6(ii),
P(Z®» >0) >0 for all 1 <i<d,. Hence, for each 1 <i < d, there exists a
neighborhood N;(P) € M in the 7-topology such that Q(Z” > 0) > 0 for all
Q € N;(P). Therefore, by (F23), Assumption 3.6(ii) then holds with N(P) =
(), N:(P). In turn, Assumption 3.6(iii) trivially holds since ¥, = R**z**. Finally,
to verify Assumption 3.6(iv), first note

(F24) VF(/ m(x, 0) dP(x))fo,m(x, 0)dP(x)

y 'z /
— P 1 -1
/(1+p)2d (x) 0 O
_ / y " log(y)z’
(1+p)

by direct calculation and (F21). Since P(Z?” > 0) > 0 for all 1 <i <d,
and y > g > 0 for all x € X, we must have E[Y"Z?] > 0. Therefore,
VFO([ m(x, 0)dP(x)) [ Vom(x, 0)dP(x) # 0 for all 1 <i < d, and thus
{VFO([ m(x,0)dP(x)) [ Vem(x, 6) dP(x)}ic ac0.p) are linearly independent if
A(#0, P) is either empty or singleton valued. Hence, by Assumption 3.6(iv), we
need only consider the case A(0, P) = {i, j} with i # j. However, note that
if je{d;+3,d;+ 4}, then i <d; + 2 (since the d; + 3 and d; + 4 con-
straints cannot simultaneously bind), and, by (F.24) and E[YYZ®] > 0, As-

dP(x) 0 0 1 -1



76 H. KAIDO AND A. SANTOS

sumption 3.6(iv) is satisfied. Finally, for the case 1 <i < j < dz + 2, Assump-
tion 3.6(iv) follows by direct calculation, Assumption 3.6(iii), and exploiting
thatif i € A(0, P) and i <dg, then E[Y"Z"] = (1+ p)E[U®]. Q.E.D.

EXAMPLE 2.4—Participation Constraint:

In order to write this example in the form of (2) and (3), let X =
(C,W,L,Z' with (C,W,L)e R} and Z € Riz. We denote the parameter
6 = (a, B)' € R? and we ensure Oy (P) is bounded by imposing the constraints
0<a<aand0< B < Bwitha>0and B> 0. For a parameter space @, then
define the identified set

(E25)  64(0)

E{ee@;/( w _§> dQ(x)SOandOG[O,&]X[O,B]}-

C—w

Further let mg(x, ) = (Zw/(c — «), z’/1) and define a (d, + 4) x 2 matrix A
and Fg:R*z — R+ by

@
g’ ifl<i<dy,
. () !
(F26) F{(v)=1-a, ifi=d;+1,
0,_ ifie{d,+2,d,+4},
_Ba 1fl:dz+3,

0, 1 -10 0
A=| %
-1, 0 0 1 -1
Z

where 1,, is a vector of ones in R?Z, and recall that 0,, denotes 0 € R%z. Thus,
for 1 <i < d,, we obtain the constraint

EWZ9/(C — a)]
E[Z0/L] °

(E27) F® (/ m(x, 6) dP(x)) =—B+

while constraints dz + 1 <i <d; + 4 impose 6 € [0, a] x [0, B1. Given this
notation, we may then rewrite

(E28) 0,(0) = {0 € @:AGH—FS(/ mg(x, 0) dQ(x)) < 0}.

Assumptions F.7 and E8 impose sufficient conditions for verifying Assump-
tions 3.2-3.6.

ASSUMPTION E7: (i) & C [gg,00) X R, X [g1, +00) X Rdf for some g > «
and g, > 0; (ii) X is compact; (iii) @ =[-8, @ + 8)] x [, B + 8] for some
0<50<(80—C_l).
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ASSUMPTION E8: (i) E[(ZL — £)Z] < 0 for some 6 € [0,a] x [0, B];

(i) POWZD = 0) > 0 for all 1 < i < dy; (iii) for all (a, B) = 6 € Oy(P),
and {i, j} € A0, P) with 1 <i < j <d,, E[--25(Z" — m,;Z")] # 0, where

(C—a)?

;= E[Z21/E[22]; (iv) #A(6, P) <2 for all 6 € Oy(P).

In Assumptions F.7(i) and E7(iii), we impose that C — « and L be bounded
away from zero, as required for m(x, #) to be bounded and utility to re-
main finite (recall u(C, L) =log(C — a) + Blog(L)). As in Example 2.3, in
Assumption E7(iii) we define @ to be an expansion of the parameter con-
straints 6 € [0, a] x [0, B]. Assumption E8(i) ensures @y(P) # @, while As-
sumption E8(ii) is required so that constraints 1 < i < d are strictly convex
in «. Finally, Assumptions F.8(iii) and E8(iv) are necessary and sufficient for
P to satisfy Assumption 3.6(iv) in this model. As in Example 2.3, the gradi-
ents of constraints 1 < i < d; depend on P, which leads to a more complex
requirement than was necessary in Examples 2.1 and 2.2.

PROPOSITION E3: In Example 2.4, Assumptions E7 and E8 imply Assump-
tions 3.2-3.6.

PROOF: Assumption 3.2 is implied by Assumption E.7(iii), while Assump-
tion 3.3 was already verified in (F.28). Moreover, compactness of X x @ im-
plies wz and z are uniformly bounded, while ¢ > &y > @ + 8y > « and [ > &,
imply (¢ — a)~! and /7! are uniformly bounded as well. Therefore, mg(x, 0) =
(Zw/(c — @), 2’/ 1) is uniformly bounded in (x, ) € X x O and hence so is
m(x, 0) = (ms(x, 0), 0’ A’), which verifies Assumption 3.4(i). Similarly,

wz 0
(E29) Vyms(x, 0)= |: (c—a)? ¢ :|

04, 04,

is also bounded, which, together with Vym(x, 6) = (Vems(x, 6), A'), im-
plies Assumption 3.4(ii) holds as well. In turn, by compactness of X x @
and (F29), (x, 6) — Vem(x, 6) is uniformly continuous on X x @ and there-
fore 6 — Vym(x, #) is equicontinuous in x € X as demanded by Assump-
tion 3.4(iii). Next, let 0y < inf, E[Z® /L] and note that we may set ny > 0
due to Assumption ES8(ii) and P(W > 0) = 1 by definition of &". Similarly, let
Sup ., llm(x, 0)|| < M, and note that since Assumption 3.4(ii) holds, we may
set M, < oco. Then defining

(E30) Vo= (=M, My)* x (m0, Mo)™ x (=My, My)*#*,

and noting that F(v) is differentiable unless v = 0 for some d, +1 < i <2d,,
it follows that Assumption 3.5(i) holds. In addition, since VF is continuous on
the closure of 1; and such closure is compact, it follows that Assumption 3.5(ii)
holds as well.
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To verify that P satisfies Assumption 3.6, first note that by Assumptions
E7(iii) and E8(i), ¥ # O (P) < [0, a] x [0, B] C (=8¢, @+ 8¢) X (—8, B+ 8y) =
®°, which verifies Assumption 3.6(i). Next observe S; =0 for d; + 1 <i <
dz+4,and S; = {1} for 1 <i < dj. Therefore, to show that Assumption 3.6(ii)
holds, it suffices to establish that

/(wzm/(c —a))dO(x)

(E31) Eé”(/ m(x, 0) dQ(x)) =
/ (2971 dQ(x)

is strictly convex in « for all Q in an appropriate neighborhood of P. However,
by Assumptions E7(i) and E8(ii), E[Z"/L] > 0 and E[W Z"] > 0, and there-
fore there exists a neighborhood N;(P) € M such that [(z?/1)dQ(x) > 0 and
Jwz??dQ(x) > 0 for all Q € N;(P). Letting N(P) = (), N;(P) and noting that
Q(C—a=>0)=1forall «€[0,a] and Q € M by Assumption E7(i), we ob-
tain that @ > Fy’ ([ m(x, 8) dQ(x)) is indeed strictly convex for all Q € N(P),
thus verifying Assumption 3.6(ii). In turn, Assumption 3.6(iii) is also satisfied
by construction of V; in (F.30) and definitions of 1, and M,. Finally, note that
by (F29) and direct calculation,

(E32) VF</ m(x, 0) dP(x)) / Vom(x, 0) dP(x)

’

|:E[WZ//(Ca)2] L1 o 0}

E[Z'L]
-1, 0 0 1 -1

Hence, since E[WZ®/(C — a)] > 0 and E[Z? /L] > 0 for all « € [0, @] and
1 <i < dz by Assumptions E7(i) and FE8(ii), (F32) implies VF®( [ m(x,
0) dP(x)) [ sim(x, 0)dP(x) #0 for any 1 <i <d, and j € {1,2}. As a re-
sult, it follows that {VF( [ m(x, 8) dP(x)) [ Vom(x, 0) dP(x)}ica,p) are lin-
early independent whenever A(6, P) is empty or a singleton, and also when
{i, j} = A(0, P) with i < j and j > d; + 1. Therefore, by Assumption E8(iv), to
verify Assumption 3.6(iv) it only remains to consider the case {i, j} = .A(6, P)
with j < dz. However, in this instance, {VF? ([ m(x, 8)dP(x)) [ Vom(x,
0) dP(x)}icac0.p) are linearly independent by result (F.32), Assumption E8(iv),
and direct calculation, and hence P satisfies Assumption 3.6(iv) as well.

Q.E.D.

APPENDIX G: SIMULATION EVIDENCE

In this appendix, we assess the finite sample performance of the efficient
estimator and illustrate its ease of implementation with a Monte Carlo exper-
iment based on Example 2.1. For comparison purposes, we also include the
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results of employing the uniformly valid procedures proposed in Andrews and
Soares (2010) and Bugni (2010).

For our design, we let Z; = (Z'", Z®), where Z" =1 s a constant and Z*
is uniformly distributed on a set Z, of K equally spaced points on [—5, 5]. For
a true parameter 6, = (1,2)’, we then generate Y; according to

(Gl) KZZ;OQ—FS[, i=1,...,n,

where ¢; is a standard normal random variable independent of Z;. We assume
Y; is unobservable, but create observable upper and lower bounds (Y} ;, Yy.;)
such that Y; ; < Y; < Yy ; almost surely. Specifically, we let

(G2) Y., =Y,—C-V(Z?), i=1,....n,
Yo=Y+ C+Vi(Z®), i=1,...,n,

where C > 0 and V; is uniformly distributed on [0, 0.2] independently of
(Y;, Z!)'. As discussed in Example 2.1, @(P) consists of all 8 € @ such that
ElY,:|1Z]1 < Z!6 < E[Yy,;|Z;] almost surely (see also (E.2)). All our reported
simulation results are based on 5000 replications.

Our Monte Carlo experiment is designed to examine the robustness of
the estimator to the two free parameters K and C. Since dr = 2K, the con-
stant K determines the number of constraints, while C controls the diameter
of the identified set, with point identification occurring at C = 0—see Fig-
ure 1. Throughout our simulation study, we will examine specifications with
C€e{0.1,0.5,1} and K € {5, 9, 15}, with the latter corresponding to 10, 18, and
30 moment inequalities, respectively. Heuristically, high values of K or low val-
ues of C yield specifications where P is closer to violating Assumption 3.6(iv).
In such instances, we therefore expect our asymptotic results to provide a less
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FIGURE 1.—Identified set as a function of C and K.
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reliable approximation to finite sample distributions, while uniform procedures
should remain accurate. )
We first compare the performance of the efficient set estimator 0, =

co{@(P,)} (see (20)) with that of
(G.3) O,(r,) = :0 €@:F® (/ m(x, 6) d]sn(x)) < i&é”
vn
fori:l,...,dp},

where (6”)?* is a consistent estimator for the asymptotic variance of constraint
number i."> Chernozhukov, Hong, and Tamer (2007) and Bugni (2010) showed
that @,,(T,,) is a consistent estimator for ®@,(P) under the Hausdorff metric
provided that 7,/4/n | 0. Notice, in particular, that the efficient estimator @n
corresponds to setting 7, = 0, and is therefore by construction always smaller
than @n(Tn) whenever 7, > 0. This is not necessarily a favorable property, how-
ever, since an estimator that is too small may perform poorly in terms of Haus-
dorff distance to ®,(P). For example, in certain specifications, we find in many
replications that @n(’rn) = ¢ for values of 7, € {0, log(log(n))}, in which case
the Hausdorff distance to @y(P) is set to equal infinity. Table I reports the
proportion of replications for which this event occurs in each specification. As
expected, the most problematic specifications are those with many moment
inequalities (K = 15) and O, (P) near point identification (C = 0.1).

TABLE 1
PROPORTION OF SIMULATED SAMPLES WITH EMPTY SET ESTIMATORS

K=5 K=9 K=15

Sample Size Cc=0.1 Cc=05 c=1 Cc=0.1 C=05 Cc=1 C=0.1 Cc=05 c=1

Estimator 0, (13,,)
n =200 - - - 0.201 - - 0.792 0.010 -
n =500 - - - 0.035 - - 0.420 - -
n=1000 - - - 0.003 - - 0.152 - -
Estimator @,,(7,,) With 7, =log(log(n))
n =200 - - - - - - 0.007 - -
n=500 - - - - - - - - -
n=1000 - - - - - - - - -

In particular, for m,(6) = [ m(x, 6) dP,(x), and 2,(0) = J(m(x, 0) — m,(0))(m(x, 6) —

11,(0)) dP,(x), we let (60)2 = VFO([ m(x, 0)dP,(x))Q,(0)VFY([ m(x, 0)dP,(x)). Tt is
easy to verify that & does not depend on 6.
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TABLE II
MEDIAN HAUSDORFF DISTANCE

K=5 K=9 K=15
Estimator C=01 C=05 c=1 C=01 C=05 Cc=1 C=01 C=05 Cc=1
n=200
Efficient 0.131 0132 032 0232 0208 0209 Inf 0332 0332
r,=log(log(n)) 0372 0372 0372 0423 0423 0423 0393 0392 0392
7, =log(n) 0.941 0941 0941 1138 1138 1138 1226 1226 1.226
7, =n't 0414 0414 0414 0476 0476 0476 0455 0455 0455
T, =n' 0702 0702 0702 0.838 0.838 0838 0879 0879 0.879
n =500
Efficient 0080 0081 0081 0136 030 0131 029 0205 0204
r,=log(log(n)) 0251 0251 0251 0316 0316 0316 0315 0315 0315
7, = log(n) 0.692 0692 0692 0890 0890 0890 1021 1021 1021
7, =n't 0285 0285 0285 0362 0362 0362 0371 0371 0371
7, =n 0.542 0542 0542 069 069 0.696 0783 0783  0.783
n=1000
Efficient 0.058 0058 0058 0.093 0092 0093 0172 0144 0.144
r,=log(log(n)) 0185 0185 0.85 0244 0244 0244 0257 0257 0257
7, = log(n) 0.537 0537 0537 0713 0713 0713 0841 0841 0841
7, =n' 0216 0216 0216 0285 0285 0285 0308 0308 0.308
T, =n' 0447 0447 0447 0592 0592 0592 0690 0.690 0.690

Table II reports the median of the Hausdorff distance between the dif-
ferent set estimators and @,(P) across replications—see Remark G.1 for
computational details. We report median, rather than mean, Hausdorff

distance because dH(@n(Tn),@o(P)) is infinite in replications for which

O,(1,) = 0. As expected, the median Hausdorff distance decreases with sam-
ple size across all specifications and choices of 7,. Interestingly, for 7, €
{log(log(n)), log(n), n'/®, n'/*}, the performance of 0,(1,) is completely in-
sensitive to the choice of C across all specifications, while the performance of
the efficient estimator is only sensitive to the value of C when many moment
inequalities are present (K = 15). In contrast, the median Hausdorff distance
of all estimators deteriorates as the number of moment inequalities increases.
Remarkably, across almost all specifications, the median Hausdorff distance is
monotonically increasing in 7,, with the efficient estimator outperforming all
the alternative estimators.'® The notable exception is the specification K = 15,
C =0.1, and n = 200, in which the median Hausdorff distance of the efficient
estimator is infinite due to @y(P,) being empty in over half the replications
(see Table I).

1*Note that for all the values of n we consider, log(log(n)) < n'/® <log(n) < n'/*.
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Next, we examine the performance of inferential procedures based on the
semiparametric efficient estimator and compare it to that of alternative meth-
ods that are asymptotically valid uniformly in P. To this end, we first consider
the construction of confidence regions C, for the identified set @ (P) satisfying
the coverage requirement

(G4) liminfP(Oy(P)<C,)>1—a.

Following the discussion in Example 5.1, we employ the efficient estimator to
obtain a confidence region satisfying (G.4) by using a construction proposed
in Beresteanu and Molinari (2008)—see Remark G.2 for computational de-
tails. Additionally, we also obtain confidence regions satisfying (G.4) by utiliz-
ing a criterion function based approach, as developed in Chernozhukov, Hong,
and Tamer (2007) and Bugni (2010). Specifically, defining the criterion func-
tion

(GS5) 0,(0) = max

1 . A
NG (F " ( / m(x, 0) dPAX))) :
I<i=dr ¢, "

we examine confidence regions of the form CS,(7,) = {60 € ©:0,(0) <
¢t (1,)/+/n}, where ¢ (7,) is the critical value proposed in Bugni (2010)—
see Remark G.3. Employing the maximum, rather than the sum, across con-
straints in defining O, implies CS, (7,) is a convex polygon, which greatly sim-
plifies our computations. All bootstrap procedures employed 200 replications
in computing critical values.

Table III reports the coverage probabilities of the different confidence re-
gions under alternative values of (n, K, C) for a nominal coverage of 0.95.
A confidence region based on the efficient estimator is considered to have
failed to cover @,(P) in any replication for which @o(ﬁn) = (. Similarly, the
criterion based confidence region is considered to have failed to cover @y(P)

whenever @,,(T,,) = ()—see Remark G.3. As in Table II, the performance of
the confidence region based on the efficient estimator is more sensitive to K
than to C. In specifications with 10 moment inequalities (K = 5), the actual
coverage is always close to its nominal level, while under 30 moment inequal-
ities (K = 15), size distortions upwards of 5% remain even for n = 1000. Un-
surprisingly, the most severe undercoverage occurs in specifications for which
Oy(P,) =9 in a large number of replications (K = 15, C = 0.1). In contrast,
the criterion based confidence regions have actual coverage above the nominal
level for all specifications. The coverage probability is closest to the nominal
level under 10 moment inequalities (K = 5), but can be quite conservative for
larger values of the slackness parameter 7, (7, € {log(n), n'/*}).

In Table IV, we report the median Hausdorff distance between the dif-
ferent confidence regions and the identified set @y(P). For specifications in
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TABLE III
SET CONFIDENCE REGION COVERAGE PROBABILITY—NOMINAL COVERAGE = (.95

K=5 K=9 K=15

Procedure cC=01 C=05 C=1 C=01 C=05 C=1 C=01 C=05 C=1

n =200
Efficient 0945 0942 0940 0.790 0913 0.895 0208 0.885 0.820
B. 7, =log(log(n)) 0980 0984 0.986 0990 0992 0992 0.989 0.997 0.998
B. 7, =log(n) 0998 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000
B.7,=n!8 0983 0986 0987 0.993 0993 0.994 0.994 0.998 0.999
B.7,=n'* 0994 0995 0995 0.999 0.999 0.999 1.000 1.000 1.000

n=>500
Efficient 0950 0940 0940 0946 0916 0916 0573 0.879 0.870
B. 7, =log(log(n)) 0967 0972 0.978 0983 0982 0982 0.986 0.988 0.990
B. 7, =log(n) 0994 0993 0995 0.999 0.999 0998 1.000 1.000 1.000
B.7,=n!8 0971 0975 0979 0987 0984 0.986 0.990 0.991 0.991
B.7,=n'* 0989 0989 0990 0998 0998 0.997 0.999 1.000 1.000

n=1000
Efficient 0959 0946 0946 0975 0926 0925 0829 0.891 0.889
B. 7, =log(log(n)) 0.969 0971 0.979 0983 0981 0980 0981 0983 0.982
B. 7, =log(n) 0991 0993 0994 0.998 0.998 0.997 1.000 1.000 0.999
B.7,=n!8 0970 0973 0981 0987 0984 0.983 0985 0.986 0.986
B.7,=n'* 0989 0989 0992 0.997 0996 0.994 0.999 0.999 0.998

which all confidence regions control size, the median Hausdorff distance of
the confidence region based on the efficient estimator is always smaller than
that of its competitors. These results suggest that while the criterion based
confidence regions can deliver uniform size control, they can also underper-
form when our asymptotic results provide an accurate approximation to finite
sample distributions. Finally, in Table V, we tabulate the median computa-
tion time in seconds for each confidence region. The computational time of all
approaches is small, but longest for the confidence region based on the effi-
cient estimator. It is worth noting that the Lagrange multipliers A(p, P,) and
maximizers 6(p) needed to construct G7(p) (as in (23)) are by-products of
computing v(p, @0(15,,)). As a result, simulating the distribution of G* only re-
quires sampling {W;}/_,, which significantly reduces computation time relative
to a procedure that recomputes the support function in each bootstrap itera-
tion.

We further evaluate the size and power of the test based on J,(6) (see (28))
for the null hypothesis:

(G6) HOOE@O(P), H]Hi@o(P)
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TABLE IV
SET CONFIDENCE REGION MEDIAN HAUSDORFF DISTANCE—NOMINAL COVERAGE (.95

K=5 K=9 K=15

Procedure C=01 C=05 C=1 C=01 C=05 C=1 C=01 C=05 C=1

n=200
Efficient 0.439 0430 0.430 0.639 0502 0.498 Inf 0.542 0.524
B. 7, =log(log(n)) 0.566 0.576 0.585 0.826 0.855 0.871 1504 1.645 1.724
B. 7, =log(n) 0.710 0.718 0.727 1.245 1.259 1.275 3.257 3359 3413
B.7,=n 0.577 0585 0594 0.855 0.882 0.897 1.629 1.764 1.834
B.7,=n"* 0.645 0.651 0660 1.058 1.075 1.092 2505 2593 2.672

n=>500
Efficient 0276 0273 0273 0.398 0349 0.349 0.740 0.371 0.373
B. 7, =log(log(n)) 0.328 0.334 0.344 0.468 0.481 0.488 0.580 0.600 0.609
B. 7, =log(n) 0384 0387 0392 0.597 0.603 0.608 0.862 0.876 0.883
B.7,=n'8 0332 0.339 0.347 0478 0490 0496 0.600 0.618 0.626
B.7,=n"* 0366 0369 0374 0.551 0557 0562 0.759 0.773  0.779

n=1000
Efficient 0.195 0.193 0.193 0.282 0.262 0.262 0.388 0.282 0.283
B. 7, =log(log(n)) 0.226 0.227 0.237 0.326 0.335 0.341 0394 0405 0411
B. 7, =log(n) 0257 0258 0261 0.389 0.392 0.394 0.514 0519 0.523
B.7,=n'8 0.228 0.230 0.239 0.333 0341 0345 0404 0414 0419
B.7,=n"* 0.250 0.252 0.254 0372 0376 0378 0480 0.485 0.489

In order to make size control nontrivial, we let 6 be a boundary point of @y (P).
In particular, for the vectors

!

(G.7) 0= (v((1,0),00(P)),0), 6x=(0,v((0,1),00(P))),

we consider the hypothesis testing problem in (G.6) when 6 € {6, 6x}. No-
tice that 6 and 6k are respectively points in a “flat face” and at a “kink”
of ®,(P) for all values of (C, K) (see Figure 1). Thus, 6y is supported by a
unique hyperplane while 6 is supported by multiple hyperplanes, which im-
plies that Theorem 5.3 applies to the former but not the latter. For compar-
ison purposes, we also examine the performance of the generalized moment
selection procedure developed in Andrews and Soares (2010). Specifically,
for 6 € {6r, 0k}, we consider a test that rejects the null hypothesis in (G.6)
whenever /nQ,(6) > ¢ () for a bootstrap critical value ¢{'S (9)—see Re-
mark G.4. Both procedures require a choice of slackness parameter (see (30)),
which we select from the set {log(log(n)), log(n), n'/%, n'/*}.

Tables VI and VII report the actual size of tests of (G.6) for a nominal size
of 0.05 and 0 € {6, 6«}. For tests based on the efficient estimator, we consid-
ered the null hypothesis in (G.6) to be rejected in any replication for which

@O(ﬁn) = ). The performance of the tests for (G.6) when 6 = 6y are similar
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TABLE V
MEDIAN CONFIDENCE REGION COMPUTATION TIME IN SECONDS

K=5 K=9 K=15

Procedure cC=01 C=05 C=1 (C=01 C=05 C=1 C=01 C=05 C=1

n =200
Efficient 2528 2.683 2751 3741 4061 4319 5824 6138 6.514
B.7,=log(log(n)) 1997 1946 1917 2308 2436 2535 3.023 3342 3501
B. 7, = log(n) 1925 1.890 1907 2434 2492 2545 3311 3431 3495
B.7,=n'? 1995 1944 1917 2335 2455 2546 3.086 3368 3.519
B. 7, =n' 1976 1923 1921 2421 2503 2572 3281 3452 3.542

n =500
Efficient 2577 2691 2730 3.805 4191 4493 5867 6397 6.839
B.7,=log(log(n)) 2086 2002 1936 2420 2554 2660 3277 3538 3.741
B. 7, = log(n) 2007 1947 1919 2543 2607 2678 3536 3.627 3.749
B.7,=n'} 2082 1998 1936 2442 2565 2.670 3.344 3.565 3.758
B. 7, =n!/* 2049 1983 1933 2534 2617 2702 3528 3.644 3797

n=1000
Efficient 2587 2649 2654 3758 4203 4484 5742 6383 6952
B.7, =log(log(n)) 2174 2055 1979 2532 2656 2754 3366 3.626 3.767
B. 7, = log(n) 2086 2010 1947 2641 2709 278 3613 3729 3.802
B.7,=n'} 2166 2049 1980 2551 2.673 2769 3427 3.668 3.804
B. 7, =n'* 2124 2034 1963 2653 2728 2812 3613 3760 3.854

to those of the confidence regions for ®,(P) (Table III). In particular, the test
based on the efficient estimator provides accurate size control under ten mo-
ment inequalities (K = 5), but can fail to do so under 30 moment inequalities
(K = 15). With the exception of those specifications in which @y(P,) = in a
significant number of replications, however, the size distortions are not as se-
vere as those in Table III. In contrast, the test of Andrews and Soares (2010)
always provides adequate size control, though it can sometimes be severely
conservative, for instance for K = 15 and C = 0.1. The patterns when 6 = 6
are similar, though all tests have a weakly lower rejection rate than when
0 = 0 in a majority of the specifications. As a result, for larger values of «,
(k. € {log(n), n'/*}), the test based on the efficient estimator delivers adequate
size control in all specifications except those for which @0(13,1) =( in a large
proportion of replications (see Table I).

In order to evaluate the local power of the proposed tests, we further test
(G.6) when 6 is of the form

h
(G8)  0=bc+ =0,
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TABLE VI
EMPIRICAL SIZE Hj: 6y € Oy(P) (ON FLAT FACE)—NOMINAL SIZE = 0.05

K=5 K=9 K=15

Procedure cC=01 C=05 C=1 C€=01 C=05 C=1 C=01 C=05 C=1

n =200
Eff. k, =log(log(n)) 0.037 0.055 0.056 0.205 0.066 0.073 0.792 0.113 0.146
Eff. k, =log(n) 0.034 0.054 0.056 0.204 0.057 0.067 0.792 0.089 0.134
Eff. k, =n'/ 0.036  0.054 0.056 0.205 0.065 0.072 0.792 0.110 0.144
Eff. k, =n'/* 0.035 0.054 0.056 0.204 0.058 0.068 0.792 0.094 0.136
A.S. 7, =log(log(n)) 0.040 0.040 0.039 0.012 0.016 0.015 0.004 0.006 0.007
AS. 7, =log(n) 0.011 0.017 0.019 0.006 0.008 0.009 0.003 0.004 0.004
AS. 7, =n"8 0.039 0.039 0.039 0.012 0.014 0.014 0.003 0.006 0.007
AS.7,=n"* 0.018 0.024 0.026 0.007 0.011 0.011 0.003 0.004 0.005

n=>500
Eff. k, =log(log(n)) 0.040 0.052 0.052 0.045 0.053 0.053 0421 0.090 0.093
Eff. k, =log(n) 0.034 0.052 0.052 0.040 0.047 0.047 0.420 0.076 0.082
Eff. k, =n'/ 0.039 0.052 0.052 0.044 0.052 0.052 0.420 0.089 0.092
Eff. k, = n'/* 0.035 0.052 0.052 0.040 0.048 0.048 0.420 0.079 0.084
AS. 7, =log(log(n)) 0.049 0.050 0.049 0.017 0.022 0.022 0.012 0.018 0.017
A.S. 7, =log(n) 0.016 0.027 0.027 0.007 0.012 0.011 0.006 0.008 0.010
AS. 1, =n'8 0.049 0.050 0.049 0.016 0.021 0.021 0.011 0.016 0.016
AS. 7, =n"* 0.024 0.043 0.041 0.008 0.014 0.013 0.008 0.011 0.012

n=1000
Eff. k, =log(log(n)) 0.048 0.049 0.049 0.054 0.056 0.056 0.189 0.105 0.105
Eff. k, =log(n) 0.038 0.049 0.049 0.020 0.054 0.054 0.154 0.082 0.083
Eff. k, =n'/® 0.030 0.048 0.048 0.011 0.048 0.048 0.152 0.070 0.071
Eff. k, =n'/* 0.037 0.048 0.048 0.017 0.054 0.054 0.154 0.080 0.081
AS. 7, =log(log(n)) 0.050 0.050 0.048 0.026 0.027 0.028 0.016 0.020 0.051
AS. 1, =log(n) 0.023  0.045 0.043 0.008 0.011 0.011 0.006 0.009 0.020
AS.1,=n'8 0.050 0.050 0.048 0.020 0.023 0.024 0.014 0.018 0.009
AS. 7, =n'* 0.024 0.049 0.048 0.008 0.014 0.015 0.007 0.011 0.017

where 0¢ € {0F, 0k}, and 0,4 = (1,0)" if 6¢c = 0 and 6c = (0, 1)" otherwise.
It can be verified by direct calculation that 4/\/n = inf.q ) |6 — 6] When-
ever h > 0, and hence A controls the distance of the local alternative to the
identified set. Tables VIII and IX report rejection probabilities for tests with
a nominal size of 0.05. We focus on specifications with K € {5, 9} so that both
tests provide adequate size control, and ignore specifications with n = 500 for
conciseness. Notice that results with 2 = 0 correspond to the actual size of the
test. For local deviations away from 6 = 6 (Table VIII), the test based on the
efficient estimator is more powerful than its competitors in almost all speci-
fications, and the pattern is robust to the choice of slackness parameters. In-
terestingly, all tests are more powerful in detecting local deviations away from
6 = 0 (Table IX) than from 6 = 6,. However, in this instance, the tests are
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TABLE VII
EMPIRICAL SIZE H,: 6 € Oy (P) (ON KINK)—NOMINAL SIZE = 0.05

K=5 K=9 K=15

Procedure c=01 C=05 C=1 C=01 C=05 C=1 C=01 C=05 C=1

n=200
Eff. k, = log(log(n))  0.028 0.044 0062 0214 0056 0.090 079 0.110 0.149
Eff. k, = log(n) 0.024 0005 0024 0206 0017 0017 0793 0046 0.046
Eff. k, = n'/3 0.028 0.039 0057 0213 0050 0080 0795 0098 0.137
Eff. , =n'/* 0.025 0013 0037 0208 0025 0035 0793 0060 0.073
AS.7,=log(log(n)) 0.028 0035 0027 0016 0013 0017 0003 0.003 0.005
AS. 7, =log(n) 0020 0019 0023 0010 0010 0013 0002 0002 0.004
AS.7,=n'8 0.027 0032 0026 0015 0012 0015 0003 0002 0.005
AS. 7, =nV* 0023 0020 0025 0012 0010 0013 0003 0002 0.004

n =500
Eff. k, = log(log(n))  0.010 0.048 0.055 0.060 0.047 0.087 0435 0089 0.119
Eff. k, = log(n) 0.009 0.007 0.029 0.045 0012 0017 0426 0024 0.029
Eff. k, = n'/3 0.010 0.043 0052 0058 0040 0078 0434 0079 0.106
Eff. k, = n'/* 0.009 0016 0.037 0048 0015 0033 0428 0034 0.047
AS.7,=log(log(n)) 0.026 0045 0029 0023 0020 0028 0018 0016 0.017
AS. 7, =log(n) 0020 0017 0024 0013 0010 0019 0011 0011 0013
AS. 7, =n'8 0026 0.044 0028 0022 0019 0026 0017 0015 0017
AS. 7, =n" 0.023 0023 0024 0016 0011 0020 0012 0012 0015

n=1000
Eff. k, =log(log(n))  0.006 0.050 0.054 0037 0047 0082 0.197 0089 0.107
Eff. , = log(n) 0.002 0012 0033 0016 0007 0022 0175 0023 0027
Eff. k, =n'/* 0.004 0.044 0.050 0.033 0037 0073 0.194 0075 0.09
Eff. k, = n'/* 0.002 0.020 0037 0018 0010 0033 0178 0032 0.041
AS.7,=log(log(n)) 0.029 0053 0.038 0024 0024 0030 0025 0017 0.061
AS. 7, =log(n) 0.022 0020 0023 0013 0011 0018 0012 0010 0.024
AS. 7, =n'/8 0026 0.052 0033 0022 0021 0028 0022 0015 0016
AS. 7, =nV* 0022 0035 0023 0016 0012 0019 0014 0011 0022

also more sensitive to the choice of slackness parameters «, and 7,. As a re-
sult, the power comparison of tests in detecting deviations away from 6 = 6 is
not as conclusive as in Table VIII.

In the results reported in Tables II-IV and VI-VII, the performance of
statistics based on the efficient estimator is always worst in specifications for
which @y(P,) =¥ in a large number of replications. However, upon finding
0y(P,) = ¢, it is evident that our asymptotic approximation is inadequate; in
fact, the developed statistics cannot even be computed. For completeness, it is
therefore also important to examine the performance of these procedures con-
ditional on having found O(P,) # (. These results are reported in Table X.
Surprisingly, the procedures perform well, with our confidence intervals and
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TABLE VIII
EMPIRICAL POWER H): 6 € @y(P) (ON FLAT FACE)—NOMINAL SIZE = 0.05

CcC=05 C=1
Procedure h=0 h=25 h=5 h=75 h=10 h=0 h=25 h=5 h=75 h=10
n=200and K =5
Eff. k, =log(log(n)) 0.055 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996
Eff. k, =log(n) 0.054 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996
Eff. k, =n'/® 0.054 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996
Eff. k, =n'/* 0.054 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996
AS. 7, =log(log(n)) 0.040 0.227 0.550 0.837 0.971 0.039 0.231 0.550 0.843 0.970
AS. 7, =log(n) 0.017 0.144 0.483 0.827 0.970 0.019 0.143 0.484 0.830 0.969
AS.71,=n"8 0.039 0.219 0.536 0.833 0.971 0.039 0.221 0.536 0.839 0.970
AS. 7, =n"* 0.024 0.155 0.488 0.829 0.971 0.026 0.158 0.489 0.833 0.970
n=200and K =9
Eff. k, =log(log(n)) 0.066 0.293 0.685 0.943 0.996 0.073 0.295 0.686 0.943 0.996
Eff. k, =log(n) 0.057 0.271 0.672 0.940 0.996 0.067 0.279 0.674 0.941 0.996
Eff. k, = n'/® 0.065 0.290 0.682 0.943 0.996 0.072 0.293 0.683 0.943 0.996
Eff. k, = n'/* 0.058 0.276 0.674 0.941 0.996 0.068 0.282 0.675 0.941 0.996
AS. 7, =log(log(n)) 0.016 0.074 0.225 0.488 0.744 0.015 0.072 0.232 0.494 0.745
AS. 7, =log(n) 0.008 0.045 0.186 0.447 0.728 0.009 0.049 0.190 0.455 0.727
AS.7,=n"8 0.014 0.071 0.222 0.486 0.743 0.014 0.068 0.229 0.491 0.744
AS. 1, =n"* 0.011 0.059 0.207 0.470 0.735 0.011 0.058 0.209 0.473 0.736
n=1000and K =5
Eff. k, =log(log(n)) 0.049 0.285 0.702 0.954 0.998 0.049 0.285 0.702 0.954 0.998
Eff. k, =log(n) 0.048 0.285 0.701 0.954 0.998 0.048 0.285 0.701 0.954 0.998
Eff. k, =n'/8 0.048 0.285 0.702 0.954 0.998 0.048 0.285 0.702 0.954 0.998
Eff. k, = n'/* 0.048 0.285 0.701 0.954 0.998 0.048 0.285 0.701 0.954 0.998
AS. 7, =log(log(n)) 0.050 0.295 0.709 0.952 0.998 0.048 0.294 0.708 0.954 0.997
AS. 7, =log(n) 0.045 0.223 0.566 0.884 0.988 0.043 0.221 0.567 0.884 0.988
AS.7,=n'8 0.050 0.295 0.709 0.952 0.997 0.048 0.294 0.708 0.954 0.997
AS. 7, =n"* 0.049 0.282 0.645 0.903 0.988 0.048 0.282 0.646 0.904 0.988
n=1000and K =9
Eff. k, =log(log(n)) 0.054 0.209 0.529 0.851 0.987 0.054 0.209 0.529 0.851 0.987
Eff. k, =log(n) 0.048 0.193 0.508 0.844 0.985 0.048 0.194 0.508 0.844 0.985
Eff. k, =n'/® 0.054 0.208 0.526 0.850 0.987 0.054 0.208 0.526 0.850 0.987
Eff. k, =n'/* 0.050 0.197 0.509 0.844 0.985 0.050 0.198 0.509 0.844 0.985
AS. 7, =log(log(n)) 0.027 0.109 0.333 0.679 0.926 0.028 0.112 0.332 0.680 0.927
AS. 7, =log(n) 0.011 0.072 0.256 0.600 0.894 0.011 0.071 0.255 0.595 0.892
AS.1,=n"8 0.023 0.106 0.330 0.676 0.921 0.024 0.107 0.329 0.675 0.922
AS. 7, =n"* 0.014 0.081 0.269 0.604 0.895 0.015 0.082 0.269 0.601 0.894
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TABLE IX
EMPIRICAL POWER H) : Ok € @ (P) (ON KINK)—NOMINAL SIZE = 0.05
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C=05 C=1
Procedure h=0 h=25 h=5 h=75 h=10 h=0 h=25 h=5 h=75 h=10
n=200and K =5
Eff. k, =log(log(n)) 0.044 0.904 1.000 1.000 1.000 0.062 0.977 1.000 1.000 1.000
Eff. k, =log(n) 0.005 0.526 0.998 1.000 1.000 0.024 0.921 1.000 1.000 1.000
Eff. k, = n'/® 0.039 0.892 1.000 1.000 1.000 0.057 0.976 1.000 1.000 1.000
Eff. k, = n'/* 0.013 0.734 0.999 1.000 1.000 0.037 0.957 1.000 1.000 1.000
AS. 7, =log(log(n)) 0.035 0.784 1.000 1.000 1.000 0.027 0.896 1.000 1.000 1.000
AS. 7, =log(n) 0.019 0.751 1.000 1.000 1.000 0.023 0.891 1.000 1.000 1.000
AS.7,=n8 0.032 0.781 1.000 1.000 1.000 0.026 0.896 1.000 1.000 1.000
AS. 7, =n'/* 0.020 0.762 1.000 1.000 1.000 0.025 0.896 1.000 1.000 1.000
n=200and K =9
Eff. k, =log(log(n)) 0.056 0.665 0.986 1.000 1.000 0.090 0.895 1.000 1.000 1.000
Eff. k, =log(n) 0.017 0.346 0.963 0.999 1.000 0.017 0.577 0.995 1.000 1.000
Eff. k, =n'/ 0.050 0.632 0.985 1.000 1.000 0.080 0.872 0.999 1.000 1.000
Eff. k, = n'/* 0.025 0.457 0.976 0.999 1.000 0.035 0.711 0.997 1.000 1.000
AS. 7, =log(log(n)) 0.013 0.322 0.881 0.970 0.983 0.017 0.495 0.939 0.979 0.987
AS. 7, =log(n) 0.010 0.313 0.881 0.970 0.983 0.013 0.481 0.939 0.979 0.987
AS.1,=n8 0.012 0.321 0.881 0.970 0.983 0.015 0.494 0.939 0.979 0.987
AS. 7, =n'* 0.010 0.315 0.881 0.970 0.983 0.013 0.490 0.939 0.979 0.987
n=1000and K =5
Eff. k, =log(log(n)) 0.050 0.937 1.000 1.000 1.000 0.054 0.961 1.000 1.000 1.000
Eff. k, =log(n) 0.012 0.811 1.000 1.000 1.000 0.033 0.931 1.000 1.000 1.000
Eff. k, = n'/8 0.044 0.934 1.000 1.000 1.000 0.050 0.960 1.000 1.000 1.000
Eff. k,, = n'/* 0.020 0.864 1.000 1.000 1.000 0.037 0.944 1.000 1.000 1.000
AS. 7, =log(log(n)) 0.053 0.917 1.000 1.000 1.000 0.038 0.899 1.000 1.000 1.000
AS. 7, =log(n) 0.020 0.848 1.000 1.000 1.000 0.023 0.899 1.000 1.000 1.000
AS. 7, =n'8 0.052 0.908 1.000 1.000 1.000 0.033 0.899 1.000 1.000 1.000
AS. 1, =n* 0.035 0.869 1.000 1.000 1.000 0.023 0.899 1.000 1.000 1.000
n=1000and K =9
Eff. k, =log(log(n)) 0.047 0.601 0.995 1.000 1.000 0.082 0.944 1.000 1.000 1.000
Eff. k, =log(n) 0.007 0.303 0.979 1.000 1.000 0.022 0.661 1.000 1.000 1.000
Eff. k, = n'/8 0.037 0.547 0.993 1.000 1.000 0.073 0.935 1.000 1.000 1.000
Eff. k, =n'/* 0.010 0.331 0.983 1.000 1.000 0.033 0.780 1.000 1.000 1.000
AS. 7, =log(log(n)) 0.024 0.532 0.999 1.000 1.000 0.030 0.829 1.000 1.000 1.000
AS. 7, =log(n) 0.011 0.473 0.999 1.000 1.000 0.018 0.803 1.000 1.000 1.000
AS.1,=n"8 0.021 0.524 0.999 1.000 1.000 0.028 0.823 1.000 1.000 1.000
AS. 1, =n* 0.012 0.486 0.999 1.000 1.000 0.019 0.803 1.000 1.000 1.000
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TABLE X
STATISTICS CONDITIONAL ON @y (P,) # (°

Specification Med. dy ((‘*)0(13,,), Oy (P)) 0 (P) CI Coverage 6 on Flat Face Size 0 on Kink Size
n =200
K=9,C=0.1 0.200 0.989 0.005 0.016
K=15,C=0.1 0.250 0.998 0.000 0.017
n=>500
K=9,C=0.1 0.133 0.980 0.010 0.026
K=15,C=0.1 0.202 0.987 0.002 0.027
n =200
K=9,C=0.1 0.093 0.978 0.017 0.034
K=15,C=0.1 0.157 0.978 0.003 0.054

AEmpirical size for tests of Hy: 6y € Oy (P) reported for k,, = log(log(n)).

tests actually being conservative in such instances. We emphasize, however,
that there is no reason to expect the results of Table X to hold in generality.
Thus, special care should be taken in applying procedures based on the effi-
cient estimator whenever there is reason to doubt the relevance of Assump-
tion 3.6(iv).

REMARK G.1: Since each function 6 — F( [ m(x, 6) dP,(x)) is linear for

all 1 <i < dp, the sets @,,(Tn) are convex polygons. Moreover, their support
functions are easily computable through the optimization problem!’

(G9) V(ps @n(Tn)) = Sup(p, 0) s.t.
9
F<i)</ m(x, 6) dﬁn(x)) < %&“) fori=1,...,dg.

In our simulations, we approximate S* by letting G be a 100 point grid of
[—r, 7], and considering the vectors

(G.10)  p(y) = (sin(y), cos(y))

for y € G. Exploiting (9), we then approximate dH(@n(Tn),@O(P)) by
max,eg [V(p(y), O,(7,)) —v(p(y), Ou(P))].

"This problem is easily solvable by standard packages. We employ the open software Matlab
toolboxes YALMIP and MPT, available at http://users.isy.liu.se/johanl/yalmip/ and http://control.
ee.ethz.ch/~mpt/.


http://users.isy.liu.se/johanl/yalmip/
http://control.ee.ethz.ch/~mpt/
http://control.ee.ethz.ch/~mpt/
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REMARK G.2: Because, in this context, all constraints are linear in 6, the
support function has the dual representation

(G.11) V(P,@o(ﬁn)) = migl <w,FS</ mg(x, 0) df’,,(x)>> st. Aw=p,

F
weR

where A and v~ Fg(v) are as defined in Example 2.1, and m(x, ) is constant
in 6 € O (see (F.3)). Moreover, the minimizers of (G.11) are the Lagrange mul-

tipliers A(p, 13,,) of the primal problem that defines v(p, @0(13”)). Therefore,
by (23) and direct calculation, solving (G.11) suffices for computing the boot-
strap process G, given by

A 1<
(G.12) G (p)=—A(p, R»'v&(a > ms(X,, 0))

i=1

1 & 1 <
X ﬁ;w{ms(m, 0) — ;;msm 0)}.

In our simulations, we draw W, from the Rademacher distribution, that is,
P(W;=1) = P(W;=—-1) = 1/2, and we compute the critical value ¢,_, as the
1 — a quantile across bootstrap replications of

(G.13) supmax{G;(p(y)),0},
yeg

where p(y) and G are as in (G.10). The support function for the confidence
region O/ (as in Example 5.1) is then given by v(-, 0,) + Ci_a/A/n, and
hence we check whether @y (P) C O /" by verifying that v(p(y), @y(P)) <
v(p(y), 0,) + & _.//n for all y € G; see also Beresteanu and Molinari (2008).

REMARK G.3: In order to compute ¢ _(7,), we draw samples {X}}7_, from

1l
{Xi}iZ, with replacement, let P, denote the empirical measure induced by
{X;7}L,, and let (67”)* be the corresponding estimate of the asymptotic vari-

ance of constraint number i. We then obtain ¢? (7,) by computing the 1 — &
quantile across bootstrap replications of

1 . N
(G.14) sup max {ﬁ( — F® (/ m(x, 0) dP:(x))
95(':)11(7'}1) 1=izdr On

_ AL(,')FU')(/ m(x, 0) dﬁn(x)>) x wilz)(g)}’
On .

where 0 (60) = {|F? ([ m(x, 0) dP,(x))| < 7,0 //n}. Since CS(7,) is a
convex polygon, we compute its support function in a manner analogous to
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(G.9), and check whether ®,(P) < CS(7,) by verifying that v(p(y), @y(P)) <
v(p(y), CS(1,)) for all y € G, where p(vy) and G are as in (G.10).

REMARK G.4: Following the construction of ¢® (7,), to obtain ¢/*S (6)

a

we draw samples {X;}, from {X;}, with replacement, let f’,’: denote
the empirical measure induced by {X;}-,, and let (6*?)* be the corre-
sponding estimate of the asymptotic variance of constraint i. For »”(0) =

HIFO([ m(x, 0) dP,(x))| < 7,6 //n} and

(G.15) Qo) = max{( 1(i)F<f></m(x, B)dﬁ,’;(x)>

l<i<dp o,

_ %FW(/ m(x, 0) d]sn(x))> % w’(j)(e)}’
Oy .

we then let ¢S (0) be the 1 — a quantile of /nQ? () across 200 bootstrap
replications.
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