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This is a supplement to “The Expected Number of Nash Equilibria of a Normal
Form Game,” Econometrica, 73, 141–174 (henceforth ENNE). Citations refer to the
bibliography of that article.

THE EXPECTED NUMBER OF ROOTS OF A UNIVARIATE POLYNOMIAL

PROPOSITION 3.1 OF ENNE gives the formula for the mean number of roots of
a multihomogeneous system of equations that was first published in McLennan
(2002). A condensed version of the proof from that paper is given in the Ap-
pendix of ENNE. The purpose of this supplement is to illustrate the workings
of this argument by following it from beginning to end in the simplest case,
when there is only one equation and one unknown. Since Section 5 of ENNE
follows a similar sequence of steps, this calculation is also illustrative of the
argument presented there. To some extent the discussion here is modelled on
Edelman and Kostlan (1995), which is a very readable exposition of a broad
range of related ideas.

First of all, consider the problem, first studied by Kac (1943), of determining
the mean number of real roots of a quadratic polynomial at2 + bt + c, where
(a�b� c) is a random point (various distributions will be considered) in R

3 \ {0}.
We wish to determine the probability of the set of coefficient vectors (a�b� c) at
which the discriminant b2 − 4ac is positive, so it seems natural to integrate the
quantity of interest, here the number of solutions, across the given measure on
the parameter space. From a mathematical point of view, however, this sort of
calculation is typically ill-behaved. The set of solutions of an economic model
is typically the set of fixed points of a function or correspondence. For polyno-
mials it is relatively hard to pass from a given polynomial to its roots. In con-
trast, if, for a particular point in the solution space, we ask what parameters have
that point as a solution, the set of such parameters is often very well behaved. For
general equilibrium theory this point of view is emphasized in Balasko (1988)
where the equilibrium manifold of an exchange economy is displayed as a vec-
tor bundle in which the set of endowments that have a particular equilibrium
allocation is the fiber.

For the quadratic polynomial the idea of integrating over the space of so-
lutions leads us to define γ : R → R

3 by γ(t)= (t2� t�1)/‖(t2� t�1)‖. Observing
that t is a root of the polynomial at2 + bt + c if and only if (a�b� c) ⊥ γ(t),
we see that the probability that the polynomial will have a root in the interval
(t� t +�t) is, for small �t, approximately equal to the probability that (a�b� c)
is in the cone lying between the planes orthogonal to γ(t) and γ(t+�t) respec-
tively. In particular, if (a�b� c) is uniformly distributed in the unit sphere in R

3,
this probability is approximately 1/π times the distance from γ(t) to γ(t+�t).
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This line of reasoning (with proper attention to detail) shows that for this dis-
tribution the mean number of real roots is the length of the curve γ divided
by π. While this may not seem like an obvious increase in tractability, in fact
the length of γ, and a host of related issues, have been studied extensively. (Cf.,
Edelman and Kostlan (1995).)

Naturally the most interesting distributions on the space of coefficient vec-
tors are those for which the computation is nontrivial but tractable. To the
extent that the distribution is intended as a model of a “typical” or “randomly
chosen” coefficient vector, a distribution that satisfies some symmetry con-
dition has some automatic claim to being “unbiased.” When the coefficient
vector (a�b� c) is uniformly distributed in the unit sphere, the three coefficients
are treated symmetrically, but this is actually somewhat unnatural. An arguably
more natural approach, which leads to more tractable computations, begins by
homogenizing the polynomial: consider the bivariate quadratic ax2 +bxy+cy2.
The natural spaces in which to look for solutions are the unit circle and one di-
mensional projective space, which is obtained from the circle by identifying
antipodal points.

Consider, for 0 ≤ θ < 2π, the transformation of variables corresponding to
rotating these spaces θ radians:

(x� y)= (w cosθ+ z sinθ�−w sinθ+ z cosθ)�(1)

This substitution results in the quadratic polynomial aθw2 +bθwz+cθz2, where

aθ := a cos2 θ− b cosθ sinθ+ c sin2 θ�

bθ := 2(a− c) cosθ sinθ+ b(cos2 θ− sin2 θ)�

cθ := a sin2 θ+ b cosθ sinθ+ c cos2 θ�

The transformation (a�b� c) �→ (aθ� bθ� cθ) of coefficient vectors maps p :=
(2−1/2�0�2−1/2) to itself, and it maps (0�1�0) to q(θ) := (− cosθ sinθ�
cos2 θ− sin2 θ� cosθ sinθ), which is a unit vector orthogonal to (2−1/2�0�2−1/2).
Let C := {q(θ) : 0 ≤ θ < 2π }. The uniform distribution on any circle in S2 of
the form αp+ βC will be an invariant measure for these transformations. In
particular, this symmetry alone does not determine a unique distribution of
coefficient vectors.

A somewhat different perspective results from assuming that (a�b� c) is cen-
trally multinormally distributed with covariance matrix C . Then (aθ� bθ� cθ) will
also be centrally multinormally distributed, say with covariance matrix Cθ. In-
sisting on invariance, in the sense that Cθ = C for all θ, does not determine
C uniquely. But it turns out that there is a unique diagonal matrix with this
property.

More generally, let C be the (n + 1) × (n + 1) diagonal matrix with
(i+ 1� i+ 1)-entry

(
n

i

)
. If the coefficient vector (a0� � � � � an) of the polynomial
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a0x
n + a1x

n−1y + · · · + anyn is centrally multinormally distributed with covari-
ance matrix C , then the distribution of coefficient vectors is invariant under
the transformations resulting from the substitutions (1). Moreover, C is the
unique (up to multiplication by a scalar) diagonal covariance matrix with this
property.1 Our goal here is to compute the mean number of roots, in one di-
mensional projective space, of the polynomial

f (x� y) := a0x
n + a1x

n−1y + · · · + anyn

when the coefficient vector has this distribution.
Let H be the space of coefficient vectors f = (a0� � � � � an) endowed with the

inner product

〈(a0� � � � � an)� (b0� � � � � bn)〉 =
n∑
i=0

(
n
i

)−1

aibi�(2)

Relative to this inner product, the coefficient vector is multinormally distrib-
uted with covariance matrix equal to the identity matrix. Let M denote the
unit sphere relative to this inner product. Let F :H×R

2 → R be the evaluation
map:

F(f� (x� y)) := f (x� y)= a0x
n + a1x

n−1y + · · · + anyn�
From the point of view of the distribution of roots, the central multinormal
distribution on the space of coefficient vectors and the uniform distribution on
M are equivalent, and the latter is more convenient in certain respects.

Let N denote the unit sphere S1 in R
2. The incidence variety is

V := F−1(0)∩ (M×N)= {
(f� (x� y)) ∈M×N : f (x� y)= 0

}
�

Note that F is invariant under the action

O(f� (x� y)) := (f ◦O−1�O(x� y))

of O(2) on H × R
2, so V is invariant under this action, and there is an action

on V defined by restriction.
We would like to show that each point (f� (x� y)) ∈ V is a regular point

of the restriction of F to M × N , since then the regular value theorem
(e.g., Guillemin and Pollack (1965)) would imply that V is an n-dimensional
C∞ manifold. Since (x� y) �= (0�0), not all of the monomials xn−iyi vanish, so
f is a regular point of F(·� (x� y)) :H→ R. Interpreting f as an element of TfH

1These results, due to Kostlan (1993), are not particularly easy to prove. Perhaps the most
accessible and self contained account is Edelman and Kostlan (1995, pp. 15–17). Kostlan (2002)
gives a fuller characterization of the invariant multinormal distributions.
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and abusing notation by identifying f and (f�0) ∈ T(f�(x�y))(H × R
2), we have

DF(f� (x� y))f = 0. (To see this note that (x� y) is a root of αf for all α ∈ R.)
Since f is a regular point of F(·� (x� y)), there must be a vector v ∈ TfM such
that DF(f� (x� y))v �= 0. It follows that f is a regular point of the restriction of
F(·� (x� y)) to M, which implies that (f� (x� y)) is a regular point of F |M×N , as
desired.

Let

π1 :V →M and π2 :V →N

be the natural projections. Sard’s theorem implies that the critical values of π1

constitute a set of measure zero in M, so they can be ignored in computing
the expected number of real roots of the equation. A measure µ on V may be
defined by requiring that ifU ⊂ V is an open set containing only regular points
of π1 and the restriction of π1 to U is injective, then µ(U)= UM(π1(U)). For
any open Z ⊂ V the expected number of real roots corresponding to points
(x� y) ∈Z is

∫
M

#(π−1
1 (x)∩Z)dUM(x)= µ(Z)�

In turn there is a measure ν on N defined by requiring that, for each mea-
surable E ⊂N , ν(E)= µ(π−1

2 (E)), i.e., ν = µ ◦ π−1
2 . If Z = π−1

2 (π2(Z)), then
µ(Z)= ν(π2(Z)). In this sense ν is the distribution of roots.

It turns out that π2 is the projection of a C∞ sphere bundle. The fiber above
(x� y) ∈N is

V(x�y) :=
{
f ∈M : (f� (x� y)) ∈ V }

�

Consider a particular (x0� y0) ∈N . As the set of coefficient vectors in M that
are orthogonal to (xn0� x

n−1
0 y0� � � � � y

n
0 ), V(x0�y0) is an (n− 1)-dimensional sphere

in M. Varying (x� y) in a neighborhood of (x0� y0) can be thought of as induc-
ing a motion of the sphere V(x�y) in M, and, roughly speaking, the probability
of having a root in a small neighborhood of (x0� y0) will be proportional to the
speed at which V(x�y) moves as we vary (x� y) near (x0� y0).

This intuition is made rigorous, at the natural level of generality, by an inte-
gral formula of Shub and Smale (1993, p. 273). (Cf. Blum et al. (1998, p. 240).)
We now describe the consequence of this formula in the current context. For
(f� (x� y)) ∈ V let

A(f� (x� y)) :T(x�y)N → TfM

be the linear map whose graph is the orthogonal complement ⊥(f�(x�y)) of
T(f�(x�y))V(x�y) in T(f�(x�y))V , and letA∗(f� (x� y)) be the adjoint of this map. In this
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setting the Shub–Smale integral formula states that for any open set Z ⊂ V ,
∫
M

#(π−1
1 (f )∩Z)df(3)

=
∫
N

∫
V(x�y)∩Z

det
(
A∗(f� (x� y))A(f� (x� y))

)1/2
dfd(x� y)�

(The idea expressed in this formula is geometric, insofar as the assumed mea-
sures on M, N , and V(x�y) are the natural notions of volume derived from the
inclusions of these spaces in M, R

2, and M × R
2 respectively.) In particular,

the expected number of roots is the integral of #(π−1
1 (f )) with respect to the

uniform distribution on M, so
∫
M

#(π−1
1 (f )∩Z)dUM(f )= 1

vol(M)

∫
M

#(π−1
1 (f )∩Z)df�(4)

When Z = π−1
2 (Y) for some open Y ⊂N , so that

∫
N

(∫
V(x�y)∩Z

· · · df
)
d(x� y)=

∫
Y

(∫
V(x�y)

· · · df
)
d(x� y)�

the right-hand side of the formula above can be further simplified by exploiting
the invariances arising out of the action

O(f� (x� y))= (f ◦O−1�O(x� y))

of O(2) on M ×N . Without going into any detail at this point (examples of
this sort of argument occur in Section 5 and the Appendix of ENNE) we simply
assert that∫

V(x�y)

det
(
A∗(f� (x� y))A(f� (x� y))

)1/2
df

is a constant function of (x� y) ∈N . So, since the action of O(2) on N is tran-
sitive, for any open Y ⊂N and any (x0� y0) ∈N (including those not in Y )

∫
Y

∫
V(x�y)

det
(
A∗(f� (x� y))A(f� (x� y))

)1/2
df d(x� y)(5)

= vol(Y) ·
∫
V(x0�y0)

det
(
A∗(f� (x0� y0))A(f� (x0� y0))

)1/2
df�

In evaluating the integral on the right-hand side we are now free to choose
(x0� y0) as we please, and it turns out to be simplest to work with (1�0). Note
that for f = (a0� a1� � � � � an) ∈M the condition f ∈ V(1�0) amounts to a0 = 0.
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LEMMA A.1: For all f = (0� a1� � � � � an) ∈ V(1�0),

det
(
A∗(f� (1�0))A(f� (1�0))

)1/2 = |a1|�
PROOF: We have

TfM := {φ= (φ0�φ1� � � � �φn) ∈H : 〈f�φ〉 = 0}

=
{
φ ∈H :

(
n

1

)−1

a1φ1 + · · · +
(
n

n

)−1

anφn = 0
}

and

T(1�0)N = {(ξ�ψ) ∈ R
2 : (1�0) · (ξ�ψ)= 0} = {(0�ψ) :ψ ∈ R}�

Observe that

∂(a1x
n−1y + · · · + anyn)

∂y

∣∣∣∣
(x�y)=(1�0)

= a1

and consequently

DF(f� (1�0))(φ� (0�ψ))=Df(1�0)(0�ψ)+φ(1�0)= a1ψ+φ0�

(Here φ(1�0) is the polynomial φ evaluated at (1�0).) Therefore

T(f�(1�0))V = {
(φ� (0�ψ)) ∈ TfM× T(1�0)N :a1ψ+φ0 = 0

}
�

A vector (φ� (0�ψ)) ∈ T(f�(1�0))V is in T(f�(1�0))V(1�0) if and only if ψ= 0, in which
case φ0 = 0. That is,

T(f�(1�0))V(1�0) =
{(
(0�φ1� � � � �φn)� (0�0)

) ∈ TfM× T(1�0)N
}
�

A vector (φ� (0�ψ)) ∈ T(f�(1�0))V that is orthogonal to T(f�(1�0))V(1�0) must sat-
isfy

0 = 〈φ�φ′〉 =
(
n
1

)−1

φ1φ
′
1 + · · · +

(
n
n

)−1

φnφ
′
n

for all φ′ ∈ TfM such that φ′
0 = 0, and 0 = (

n

1

)−1
a1φ1 + · · · + (

n

n

)−1
anφn since

φ ∈ TfM, so φ1 = · · · =φn = 0. This means that

⊥(f�(1�0))=
{(
(φ0�0� � � � �0)� (0�ψ)

)
:a1ψ+φ0 = 0

}
�

and A(f� (1�0)) is the linear map taking (0�1) ∈ T(1�0)N to (−a1�0� � � � �0) ∈
TfM. The adjoint A∗(f� (1�0)) is the map taking (φ0�φ1� � � � �φn) ∈ TfM to
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(0�−a1φ0) ∈ T(1�0)N . We conclude that A∗(f� (1�0))A(f� (1�0)) is the map
taking (0�1) ∈ T(1�0)N to (0� a2

1) ∈ T(1�0)N , and its determinant is a2
1, as de-

sired. Q.E.D.

We now endow V(1�0) with the geometrically natural coordinate system. Re-
calling that the inner product (2) is not the usual one, let

z0 = a0√(
n

0

) � z1 = a1√(
n

1

) � � � � � zn = an√(
n

n

)

be the system of coordinates for H in which the ith standard unit basis vector
is the vector of unit length, relative to (2), that is a positive multiple of the
coefficient of the monomial xn−iyi. Then V(1�0) is the (n− 1)-dimensional unit
sphere in the coordinate subspace given by z0 = 0, so

∫
V(1�0)

|a1|dz = √
n

∫
V(1�0)

|z1|dz�(6)

Summarizing the work to this point, (3), (4), (5), and (6) combine to imply that,
for any open Y ⊂N :

∫
M

#
(
π−1

1 (f )∩π−1
2 (Y)

)
dUM(f )= vol(Y)

vol(M)
· √n

∫
V(1�0)

|z1|df�(7)

The calculation may be completed in numerous ways. We choose one that il-
lustrates in simplified form the ideas underlying Lemmas 5.11 and 5.12 and the
notation employed there. Let D= (−1�1) be the open unit disk in R

1, and let
E = Sn−2 and F = Sn−1 be the (n−2)-dimensional and (n−1)-dimensional unit
spheres. The fiber V(1�0) corresponds to F , and we will arrive at a more tractable
version of the right-hand side of (7) by means of the change of variables

γ :D×E→ F defined by γ(p� r)= (
p� (1 −p2)1/2r

)
�

The determinant of the Jacobean of this function is computed as follows. The
partial derivative of γ with respect to p is (1�−p(1 − p2)−1/2r) and the norm
of this vector is (1 − p2)−1/2. Evaluating Dγ(p� r) at the various elements of
an orthonormal basis of T(p�r)(D× E) = TpD× TrE whose first element is in
TpD, one finds that the image is a pairwise orthogonal basis of Tγ(p�r)F whose
elements other than the first all have length (1 −p2)−1/2. Therefore

|detDγ(p� r)| = (1 −p2)−1/2((1 −p2)1/2)n−2 = (1 −p2)(n−3)/2�

Noting that the indefinite integral of p(1−p2)(n−3)/2 is −(1−p2)(n−1)/2/(n−1),
we combine these calculations in the change of variables formula, computing
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that ∫
F

|z1|df =
∫
D×E

|p| · |detDγ(p� r)|d(p� r)

= vol(E) ·
∫
D

|p| · (1 −p2)(n−3)/2 dp

= 2 vol(E)
∫ 1

0
p(1 −p2)(n−3)/2 dp

= 2 vol(E)
n− 1

�

Substituting this in (7) and applying the formula

vol(Sm−1)= 2
πm/2

Γ (m2 )
(m≥ 1)(8)

for the volume of the (m − 1)-dimensional unit sphere (e.g., Federer (1969,
p. 251)) we may finally conclude that, for any open Y ⊂N ,

∫
M

#
(
π−1

1 (f )∩ π−1
2 (Y)

)
dUM(x)

= UN(Y) · vol(N) vol(E)
vol(M)

· 2
√
n

n− 1

= UN(Y) · 2π · Γ (n+1
2 ) · 2π(n−1)/2

2π(n+1)/2 · Γ (n−1
2 )

· 2
√
n

n− 1
= UN(Y) · 2

√
n�

where the last equality derives from the formula Γ (s+ 1)= sΓ (s). Since there
are two roots in the circle corresponding to each point in one-dimensional pro-
jective space, the mean number of roots in one-dimensional projective space
is

√
n.
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