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THIS SUPPLEMENTARY APPENDIX is organized as follows: Section G contains the proof of
Proposition 4; Section H presents the proof of Theorem 2; Section I contains examples
showing that Theorem 1 does not hold in the absence of genericity assumptions; Section J
generalizes our main results to unbounded experiments; in Section K we show that the
Rényi order remains a necessary condition for large sample dominance in the case of
more than two states; finally, in Section L we show our our main results can be applied to
prove a conjecture by Jensen (2019) on the majorization order.

APPENDIX G: PROOF OF PROPOSITION 4

That (i) implies (ii) follows from the fact that Rényi divergences are monotone in the
Blackwell order, and additive with respect to independent experiments.

To show (ii) implies (i), we introduce some notation. Given two experiments P =
(Ω�P0�P1) and Q = (Ξ�Q0�Q1), for each α ∈ [0�1] we denote by αP + (1 − α)Q =
(Ψ�M0�M1) the mixed experiment where the sample space is the disjoint union Ψ =
Ω � Ξ endowed with the corresponding σ-algebra, and the measures M0, M1 satisfy for
every measurable E ⊆Ψ

Mθ(E)= αPθ(E ∩Ω)+ (1 − α)Qθ(E ∩Ξ)	

Intuitively, the mixed experiment corresponds to a randomized experiment where P is
carried out with probability α and Q with probability 1 − α. The mixture operation and
the product operation satisfy (αP + (1 − α)Q)⊗R= α(P ⊗R)+ (1 − α)(Q⊗R).

Now suppose P dominates Q in the Rényi order, then by Theorem 1, P dominates Q in
the large sample order. The next lemma concludes the proof.

LEMMA 4: Let P , Q be bounded experiments such that P dominates Q in the large sample
order. Then there exists a bounded experiment R such that P⊗R Blackwell dominates Q⊗R.
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This lemma replicates a more general statement that appears in Duan, Feng, Li, and
Ying (2005), Fritz (2017).

PROOF OF LEMMA 4: Assume P⊗n �Q⊗n. Let

R= 1
n

(
Q⊗n + P ⊗Q⊗(n−1) + P⊗2 ⊗Q⊗(n−2) + · · · + P⊗(n−2) ⊗Q⊗2 + P⊗(n−1) ⊗Q

)
	

Then

P ⊗R= P ⊗ 1
n

(
Q⊗n + P ⊗Q⊗(n−1) + · · · + P⊗(n−2) ⊗Q⊗2 + P⊗(n−1) ⊗Q

)
= 1

n

(
P ⊗Q⊗n + P⊗2 ⊗Q⊗(n−1) + · · · + P⊗(n−1) ⊗Q⊗2 + P⊗n ⊗Q

)
� 1

n

(
P ⊗Q⊗n + P⊗2 ⊗Q⊗(n−1) + · · · + P⊗(n−1) ⊗Q⊗2 +Q⊗(n+1)

)
=Q⊗ 1

n

(
Q⊗n + P ⊗Q⊗(n−1) + · · · + P⊗(n−1) ⊗Q

)
=Q⊗R�

where the middle step uses the assumption P⊗n � Q⊗n, so that P⊗n ⊗ Q � Q⊗(n+1).
Q.E.D.

APPENDIX H: PROOF OF THEOREM 2

Throughout this section, we denote by D an additive divergence that satisfies the data-
processing inequality and is finite on bounded experiments.

LEMMA 5: If a bounded experiment P = (Ω�P0�P1) dominates another bounded experi-
ment Q = (Ξ�Q0�Q1) in the Blackwell order, then D(P0�P1)≥D(Q0�Q1).

PROOF: By Blackwell’s theorem there exists a measurable function σ : Ω → 
(Ξ) such
that Qθ(A) = ∫

σ(ω)(A)dPθ(ω) for every measurable A ⊆ Ξ and every θ. Let λ be the
Lebesgue measure on [0�1]. Since Ω and Ξ are Polish spaces, there exists a measur-
able function f : Ω × [0�1] → Ξ such that for every ω ∈ Ω, σ(ω) = f (ω� ·)∗(λ), where
f (ω� ·)∗(λ) is the push-forward of λ induced by the function f (ω� ·) (see, e.g., Proposi-
tion 10.7.6 in Bogachev, 2007). Hence,

Qθ(A)=
∫

λ
({
t ∈ [0�1] : f (ω� t) ∈ A

})
dPθ(ω)= f∗(Pθ × λ)(A)�

where now f∗(Pθ × λ) is the push-forward of Pθ × λ induced by f . Being a divergence,
D satisfies D(λ�λ) = 0. Moreover, by additivity, D(P0 ×λ�P1 ×λ)=D(P0�P1). The data
processing inequality then implies D(P0�P1)=D(P0 × λ�P1 × λ)≥ D(Q0�Q1). Q.E.D.

LEMMA 6: If the bounded experiments P = (P0�P1) and Q = (Q0�Q1) satisfy Rθ
P(t) ≥

Rθ
Q(t) for every t > 0 and θ ∈ {0�1}, then D(P0�P1)≥ D(Q0�Q1).
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PROOF: Suppose first that the strict inequality Rθ
P(t) > Rθ

Q(t) holds for every t > 0,
including at the limit t = ∞ (corresponding to the genericity assumption in the main
text). Then, by Theorem 1 there exists n such that P⊗n dominates Q⊗n in the Blackwell
order. Hence, by applying the previous lemma and by additivity, we obtain

nD(P0�P1)=D
(
Pn

0 �P
n
1

) ≥ D
(
Qn

0�Q
n
1

) = nD(Q0�Q1)	

More generally, suppose we only have the weak inequality Rθ
P(t) ≥ Rθ

Q(t) for t > 0. Fix
a bounded and nontrivial experiment S = (S0� S1). Then, for every k ∈ N we have

Rθ
P⊗k⊗S

(t)= kRθ
P(t)+Rθ

S(t) > kRθ
Q(t)=Rθ

Q⊗k(t)

for every t ∈ (0�∞] and θ ∈ {0�1}. Given what we just proved, it follows that

D
(
Pk

0 × S0�P
k
1 × S1

) ≥D
(
Qk

0 �Q
k
1

)
	

By additivity, D(P0�P1) + 1
k
D(S0� S1) ≥ D(Q0�Q1). Since this holds for every k and

D(S0� S1) is finite, the proof is concluded. Q.E.D.

Let R = [−∞�∞] be the extended real line. Given a bounded experiment P we define
the function HP : R→ R as

HP(t)=
{
R1

P(t) if t ≥ 1/2�
R0

P(1 − t) if t ≤ 1/2	

Recall that the Rényi divergences of an experiment P satisfy the relation (1 − t)R1
P(t) =

tR0
P(1 − t). This implies that the function HP is well-defined, continuous, and bounded. It

is a convenient representation of the Rényi divergences that retains the main properties of
the latter, and has the advantage of being strictly positive whenever P is nontrivial. Since
HP(t) is continuous and has a compact domain, it is furthermore bounded away from 0.
The functional P 
→ HP satisfies two additional properties. An experiment P dominates
an experiment Q in the Rényi order if and only if HP(t) > HQ(t) for every t. Moreover,
the functional is additive: HP⊗Q(t)=HP(t)+HQ(t) for every t.

Thus, to prove Theorem 2 it suffices to show that under the hypotheses of the theorem
there exists a finite measure m on R such that for every bounded pair of measures P0, P1

D(P0�P1)=
∫
R

HP(t)dm(t)

where P is the experiment (P0�P1). The theorem’s conclusion (7) follows easily from this
by setting dm0(t)= −dm(1 − t) and dm1(t)= dm(t) for t ≥ 1

2 .
Let C(R) be the space of continuous functions defined over the compact set R. Each

function HP belongs to C(R). Consider the set

H = {HP : P is a bounded experiment} ⊆ C(R)	

By Lemma 6, if HP = HQ then D(P0�P1)=D(Q0�Q1). Thus there exists a map F : H → R

such that D(P0�P1)= F(HP).
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By Lemma 6, the functional F is monotone. It is moreover additive: Given two experi-
ments P and Q, the additivity of D and the additivity of P 
→ HP imply

F(HP)+ F(HQ)=D(P0�P1)+D(Q0�Q1)

=D(P0 ×Q0�P1 ×Q1)

= F(HP⊗Q)

= F(HP +HQ)	

Next, we define coneQ(H) = {∑n

i=1 αiHPi : αi ∈ Q+�Pi is a bounded experiment} to be
the rational cone generated by H, where coefficients (αi) are positive rational numbers.
Similarly, define

cone(H)=
{

n∑
i=1

αiHPi : αi ∈R+�Pi is a bounded experiment

}

to be the cone generated by H, where coefficients can be all positive numbers. Below we
extend the functional F from H to coneQ(H) and then to cone(H).

Because P 
→HP is additive, H is itself closed under addition. This implies

coneQ(H)=
⋃
n≥1

1
n
H	

Define G : coneQ(H) → R as G( 1
n
HP) = 1

n
F(HP). The functional G is well-defined: If

1
n
HP = 1

m
HQ, then HP⊗m = mHP = nHQ = HQ⊗n , which implies mF(HP)= nF(HQ) by the

additivity of F . Similarly, G inherits the monotonicity and additivity of F on the larger
domain coneQ(H).

We now show G is a Lipschitz functional, where we endow the space C(R) with the sup
norm. Let S0 be a nontrivial experiment, so that HS0(t) is positive and in fact bounded
away from 0 for every t. By letting S = S⊗k

0 for large k, we obtain that HS(t) > 1 for
every t. Given two functions f� f̂ ∈ coneQ(H), we have the pointwise comparison

f (t)≤ f̂ (t)+ ‖f − f̂‖ ×HS(t)	

Let r > ‖f − f̂‖ be a rational number. The additivity and the monotonicity of G imply

G(f)≤G(f̂ + rHS)=G(f̂ )+ rG(HS)	

Symmetrically, G(f̂ )≤G(f + rHS)=G(f)+ rG(HS), so that |G(f)−G(f̂ )| ≤ rG(HS).
By taking the limit r → ‖f − f̂‖ we obtain that G is Lipschitz with Lipschitz constant
G(HS) <∞, that is, ∣∣G(f)−G(f̂ )

∣∣ ≤ ‖f − f̂‖ ·G(HS)	

Thus G can be extended to a Lipschitz functional G defined on the closure of
coneQ(H), which contains cone(H).

We now verify that G is still monotone on cone(H). Let f ≥ f̂ be two functions in
cone(H), and take any two sequences { 1

pn
HPn} and { 1

qn
HQn} in coneQ(H) that converge
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to f and f̂ as n → ∞. For any positive integer m, convergence in the sup-norm implies
1
pn
HPn ≥ f − 1

2mHS for all large n, where S is the experiment with HS > 1 everywhere.

Similarly, 1
qn
HQn ≤ f̂ + 1

2mHS . Since f ≥ f̂ , we thus have 1
pn
HPn ≥ 1

qn
HQn − 1

m
HS for all

large n. By monotonicity and additivity of G, G( 1
pn
HPn) ≥ G( 1

qn
HQn) − 1

m
G(HS), which

implies G(f)≥G(f̂ )− 1
m
G(HS) by taking n→ ∞. As m is arbitrary, we have shown that

G is monotonic.
We show G is additive and satisfies G(af + bf̂ ) = aG(f ) + bG(f̂ ) for any functions

f� f̂ ∈ cone(H) and a�b ∈ R+. To show this, first suppose a, b are rational numbers. Con-
sider { 1

pn
HPn} → f and { 1

qn
HQn} → f̂ as above, where f need not be bigger than f̂ . Then

the sequence of functions { a
pn
HPn + b

qn
HQn} ∈ coneQ(H) converges to af + bf̂ . It follows

that

G(af + bf̂ )= lim
n→∞

G

(
a

pn

HPn + b

qn

HQn

)

= a · lim
n→∞

G

(
1
pn

HPn

)
+ b · lim

n→∞
G

(
1
qn

HQn

)
= a ·G(f)+ b ·G(f̂ )	

If a, b are real numbers, we can deduce the same result by the Lipschitz property of G.
Consider next V = cone(H) − cone(H), which is vector subspace of C(R). G can be

further extended to a functional I : V → R, defined as

I(M1 −M2)= G(M1)−G(M2)

for all M1�M2 ∈ cone(H). The functional I is well-defined and linear because G is affine.
Moreover, by monotonicity of G, I(f ) ≥ 0 for any nonnegative function f ∈ V .

The following theorem, a generalization of the Hahn–Banach theorem (see, e.g., The-
orem 8.32 in Aliprantis and Border (2006)), shows that I can be further extended to a
positive linear functional on the entire space C(R):

THEOREM 5—(Kantorovich (1937)): Let V be a vector subspace of C(R) with the prop-
erty that for every f ∈C(R) there exists a function g ∈ V such that g ≥ f . Then every positive
linear functional on V extends to a positive linear functional on C(R).

The “majorization” condition g ≥ f is satisfied because every function in C(R) is
bounded by some n, and V contains the function nHS which takes values greater than
n everywhere.

To summarize, we have obtained a positive linear functional J defined on C(R) that ex-
tends the original functional F(HP)=D(P0�P1). By the Riesz representation theorem for
positive linear functionals over spaces of continuous functions on compact sets, we con-
clude that J(f ) = ∫

R
f (t)dm(t) for some finite measure m. Hence D(P0�P1) = F(HP) =

J(HP) is an integral of the Rényi divergences of P , completing the proof of Theorem 2.

APPENDIX I: NECESSITY OF THE GENERICITY ASSUMPTION

Here, we present examples to show that Theorem 1 does not hold without the genericity
assumption.
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Consider the experiments P and Q described in Example 2 in Section 3.1. Fix α = 1
4

and β= 1
16 , which satisfy (25). Then by Proposition 2, P dominates Q in large samples.

We will perturb these two experiments by adding another signal realization (to each
experiment) which strongly indicates the true state is 1. The perturbed conditional prob-
abilities are given below:

P̃ :
θ x0 x1 x2 x3

0 ε 1
16

1
2

7
16 − ε

1 100ε 7
16

1
2

1
16 − 100ε

Q̃ :
θ y0 y1 y2

0 ε 1
4

3
4 − ε

1 100ε 3
4

1
4 − 100ε

If ε is a small positive number, then by continuity P̃ still dominates Q̃ in the Rényi
order. Nonetheless, we show below that P̃⊗n does not Blackwell dominate Q̃⊗n for any n
and ε > 0.

To do this, let p := 100n−1

100n−1+1 be a threshold belief. We will show that a decision maker
whose indirect utility function is (p−p)+ strictly prefers Q̃⊗n to P̃⊗n. Indeed, it suffices to
focus on posterior beliefs p>p; that is, the likelihood ratio should exceed 100n−1. Under
Q̃⊗n, this can only happen if every signal realization is y0, or all but one signal is y0 and
the remaining one is y1. Thus, in the range p > p, the posterior belief has the following
distribution under Q̃⊗n:

p=

⎧⎪⎨
⎪⎩

100n

100n + 1
w.p.

1
2
(
100n + 1

)
εn�

3 · 100n−1

3 · 100n−1 + 1
w.p.

n

8
(
3 · 100n−1 + 1

)
εn−1	

Similarly, under P̃⊗n the relevant posterior distribution is

p =

⎧⎪⎨
⎪⎩

100n

100n + 1
w.p.

1
2
(
100n + 1

)
εn�

7 · 100n−1

7 · 100n−1 + 1
w.p.

n

32
(
7 · 100n−1 + 1

)
εn−1	

Recall that the indirect utility function is (p−p)+. So Q̃⊗n yields higher expected payoff
than P̃⊗n if and only if

n

8
(
3 · 100n−1 + 1

)
εn−1 ·

(
3 · 100n−1

3 · 100n−1 + 1
−p

)

>
n

32
(
7 · 100n−1 + 1

)
εn−1 ·

(
7 · 100n−1

7 · 100n−1 + 1
−p

)
	

That is,

4
(
3 · 100n−1 + 1

) ·
(

3 · 100n−1

3 · 100n−1 + 1
− 100n−1

100n−1 + 1

)

>
(
7 · 100n−1 + 1

) ·
(

7 · 100n−1

7 · 100n−1 + 1
− 100n−1

100n−1 + 1

)
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The LHS is computed to be 8·100n−1

100n−1+1 , while the RHS is 6·100n−1

100n−1+1 . Hence the above inequality
holds, and it follows that P̃⊗n does not Blackwell dominate Q̃⊗n.

APPENDIX J: GENERALIZATION TO UNBOUNDED EXPERIMENTS

In this section, we present two generalizations of Theorem 1 to experiments that may
have unbounded likelihood ratios. Note that the Rényi divergences for an unbounded
experiment can still be defined by (3), (4), and (5), so long as we allow these divergences
to take the value +∞.

The first result shows that Theorem 1 hold without change so long as the dominated
experiment Q is bounded.

THEOREM 6: For a generic pair of experiments P and Q where Q is bounded, the following
are equivalent:

(i) P dominates Q in large samples.
(ii) P dominates Q in the Rényi order.

To interpret the statement, “generic” means (as in the main text) that log dP1
dP0

has dif-
ferent essential maximum and minimum from log dQ1

dQ0
. In the current setting, P may be

unbounded, so that its log-likelihood ratio may have essential maximum +∞ and/or min-
imum −∞. In those cases, the genericity assumption is automatically satisfied.

We also reiterate that dominance in the Rényi order means the Rényi divergences of P
and Q are ranked as Rθ

P(t) > Rθ
Q(t) for all t > 0 and θ ∈ {0�1}. Since Q is by assumption

bounded, Rθ
Q(t) is always finite. Thus the requirement in (ii) is that Rθ

P(t) is either a bigger
finite number, or it is +∞.

Our second result in this section deals with pairs of experiments where both P and Q
may be unbounded, but they still have finite Rényi divergences. To state the result, we
need to generalize the notion of genericity as follows: Say P and Q form a generic pair, if
for both θ = 0 and θ = 1,

lim inf
t→∞

∣∣Rθ
P(t)−Rθ

Q(t)
∣∣> 0	 (29)

Note that when P and Q are bounded, Rθ
P(t) → max[Xθ] and Rθ

Q(t) → max[Yθ] as t →
∞. So in this special case the genericity assumption reduces to the one we introduced in
the main text.

The following result shows that under one extra assumption, Theorem 1 once again
extends.

THEOREM 7: Suppose P and Q are a generic pair of (possibly unbounded) experiments
with finite Rényi divergences. Let (Xθ), (Y θ) be the corresponding log-likelihood ratios,
and suppose further that their cumulant generating functions satisfy supt∈RK

′′
Xθ(t) < ∞ and

supt∈RK
′′
Yθ(t) < ∞.1 Then the following are equivalent:

(i) P dominates Q in large samples.
(ii) P dominates Q in the Rényi order.

1Since KX0(t)=KX1(−1−t), it suffices to check the assumptions supt∈RK
′′
Xθ(t) <∞ and supt∈RK

′′
Yθ (t) <∞

for one of the two states.
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We note that if a random variable X is bounded between −b and b, then its Rényi
divergences are finite, and K′′

X(t) ≤ b2 for every t.2 Thus Theorem 7 is another strict gen-
eralization of Theorem 1 beyond bounded experiments.

More generally, the following is a sufficient condition for Theorem 7 to apply. Roughly
speaking, we require the log-likelihood ratios Xθ, Yθ to have tails decaying faster than
some Gaussian distribution.

LEMMA 7: Let X be a random variable whose distribution admits a density h(x) that is
positive and twice continuously differentiable. Suppose there exists ε > 0 and M > 0 such that
the following holds:

∂2 logh(x)
∂x2 ≤ −ε for all |x| >M	

Then the cumulant generating function KX(t) is finite for every t, and supt∈RK
′′
X(t) <∞.

Note that ∂2 logh(x)
∂x2 ≤ −ε implies the standard assumption that the density h is (strictly)

log-concave. The requirement that the same ε works for all large x makes our assumption
stronger, and in particular rules out densities such as h1(x) = c1 · e−λ1|x| or h2(x) = c2 ·
e−λ2|x|1	99 .3 Nonetheless, any Gaussian density h satisfies the assumption regardless of how
big the variance is, and so does any other density that decays faster at infinity. Hence
Theorem 7 is applicable to a broad class of unbounded experiments.

Below we prove Theorem 6, Theorem 7, and Lemma 7 in turn.

J.1. Proof of Theorem 6

That (i) implies (ii) follows from the same argument as in Section 5.1. To prove (ii)
implies (i), the idea is to garble P into a bounded experiment P̃ that still has higher Rényi
divergences than Q. By Theorem 1, P̃⊗n Blackwell dominates Q⊗n for all large n. But since
P Blackwell dominates P̃ , P⊗n also Blackwell dominates P̃⊗n. Therefore, by transitivity,
we would be able to conclude that P⊗n Blackwell dominates Q⊗n for all large n.

To construct such a P̃ , we first note that by taking t → ∞, R1
P(t) > R1

Q(t) implies
max[X1] ≥ max[Y 1] where X1 and Y 1 are the log-likelihood ratios. Similarly, max[X0] ≥
max[Y 0]. By the genericity assumption, both comparisons are in fact strict. We can thus
find a pair of positive numbers b1 ∈ (max[Y 1]�max[X1]) and b0 ∈ (max[Y 0]�max[X0]) =
(−min[Y 1]�−min[X1]). These numbers will be fixed throughout.

Now take any positive number B ≥ max{b1� b0}. We construct a garbling of P , denoted
PB, as follows: All signal realizations under P that induce a log-likelihood ratio log dP1

dP0

greater than B (if any) are garbled into a single signal s, and similarly all realizations with
log-likelihood ratio less than −B are garbled into another signal s. The remaining signal
realizations under P (with log-likelihood ratio in [−B�B]) are unchanged under PB. It is
easy to see that not only is PB a garbling of P , but more generally PB is a garbling of PB′

2The latter follows by showing K′′
X(t) to be the variance of some random variable X̂ that shares the same

support as X . See Proposition 6 and its proof.
3It is easy to see that the random variable with density h1(x) does not have finite Rényi divergences every-

where. It can also be shown that the random variable with density h2(x) has a cumulant generating function
with K′′

X(t) → ∞ as t → ∞. Thus, it seems difficult to substantially weaken the condition in Lemma 7 while
maintaining the same result.
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whenever B′ > B. Thus, as B increases, the experiment PB becomes more informative in
the Blackwell sense.

Let Rθ
PB
(t) denote the Rényi divergences of PB. Since the Rényi order extends the

Blackwell order, we know that as B increases, Rθ
PB
(t) also increases for each θ and t,

with an upper bound of Rθ
P(t). In fact, we can show that for fixed θ and t,

lim
B→∞

Rθ
PB
(t)=Rθ

P(t)	

The proof is technical and deferred to later. Assuming this, we next show that for suf-
ficiently large B, Rθ

PB
(t) > Rθ

Q(t) holds for all t ≥ 1/2 (thus for all t > 0, by (6)). This
will prove PB as the desired garbling P̃ that dominates Q in the Rényi order, which will
complete the proof of the theorem.4

To this end, fix θ = 1, and define for each B a set

TB = {
t ≥ 1/2 :R1

PB
(t)≤R1

Q(t)
}
	

By continuity of the Rényi divergences, TB is a closed set. Moreover, as t → ∞ we have
R1

PB
(t) → max[X1

B], where X1
B is the log-likelihood ratio of state 1 to state 0, distributed

under the experiment PB and true state 1. By the assumption B ≥ b1 and the construction
of PB, we have that

P
[
X1

B ≥ b1

] = P
[
X1 ≥ b1

]
�

which is positive because b1 < max[X1]. Thus max[X1
B] ≥ b1. It follows that

lim
t→∞

R1
PB
(t)≥ b1 > max

[
Y 1

] = lim
t→∞

R1
Q(t)	

Hence R1
PB
(t) > R1

Q(t) for all large t and TB is a bounded set.
We have shown that each TB is compact set. Note also that because R1

PB
(t) increases in

B, the set TB shrinks as B increases. Therefore, by the finite intersection property, either
there exists some t that belongs to every TB, or TB is the empty set for all large B. The
former is impossible because R1

PB
(t) ≤ R1

Q(t) for all B would imply R1
P(t) ≤ R1

Q(t) in the
limit, contradicting the assumption in (ii).

We thus conclude that TB must be empty for all large B. In other words, when B is large
R1

PB
(t) > R1

Q(t) holds for all t ≥ 1
2 . A symmetric argument shows that R0

PB
(t) > R0

Q(t)

holds for all t ≥ 1
2 , completing the proof.

It remains to show limB→∞ Rθ
PB
(t) = Rθ

P(t). We again fix θ = 1 for easier exposition.
Consider the following three cases:

Case 1: t > 1. We recall that R1
PB
(t)= 1

t−1 logE[e(t−1)X1
B ]. So we need to show

lim
B→∞

E
[
e(t−1)X1

B
] = E

[
e(t−1)X1]

	

Since R1
PB
(t) ≤ R1

P(t) for each B, the LHS above is weakly smaller than the RHS. On the
other hand, by construction X1

B coincides with X1 conditional on being in the interval

4Note that B ≥ max{b1� b2} ensures PB and Q is a generic pair, so we can apply Theorem 1 to deduce
P⊗n
B � Q⊗n for large n. Therefore, P⊗n � P⊗n

B � Q⊗n.
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[−B�B]. As the exponential function is always positive, we have

E
[
e(t−1)X1

B
] ≥ P

[∣∣X1
B

∣∣ ≤ B
] ·E[

e(t−1)X1
B | ∣∣X1

B

∣∣ ≤ B
]

= P
[∣∣X1

∣∣ ≤ B
] ·E[

e(t−1)X1 | ∣∣X1
∣∣ ≤ B

]
	

Taking the limit as B → ∞, we obtain limB→∞ E[e(t−1)X1
B ] ≥ E[e(t−1)X1], which proves they

are equal.

Case 2: t = 1. Here, we have R1
PB
(1)= E[X1

B]. So we need to show

lim
B→∞

E
[
X1

B

] = E
[
X1

]
	

Once again we already know the LHS is weakly smaller, so it suffices to show the opposite
inequality. By construction, X1

B coincides with X1 on the interval [−B�B]. Other than this
part, there is probability P[X1 > B] that signal s occurs under the experiment PB; when
this happens we also have X1

B > B, which contributes a positive amount to E[X1
B].

With remaining probability P[X1 < −B], the signal s occurs, and the induced log-
likelihood ratio X1

B is at least logP[X1 < −B] (since this event occurs with probability
at most one under state 0). Here the contribution to E[X1

B] can be negative, but is no less
than P[X1 <−B] · logP[X1 <−B].

Summarizing, for each B we have

E
[
X1

B

] ≥ P
[∣∣X1

∣∣ ≤ B
] ·E[

X1 | ∣∣X1
∣∣ ≤ B

] + P
[
X1 < −B

] · logP
[
X1 <−B

]
	

Taking the limit as B → ∞, the first summand on the RHS converges to E[X1]. In addi-
tion, the second summand vanishes because P[X1 < −B] → 0 and limx→0 x logx = 0. We
thus obtain limB→∞ E[X1

B] ≥ E[X1] as desired.

Case 3: t ∈ (0�1). In this case, we will again show

lim
B→∞

E
[
e(t−1)X1

B
] = E

[
e(t−1)X1]

	

Since R1
PB
(t) ≤ R1

P(t), and R1
PB
(t) = 1

t−1 logE[e(t−1)X1
B ], the negative factor 1

t−1 implies that
the LHS above is now weakly bigger than the RHS.

To prove it is smaller, we proceed as in Case 2. With probability P[X1 > B] the signal
s occurs, and the induced log-likelihood ratio X1

B is at least logP[X1 > B]. As t − 1 is
negative here, the contribution of this part to E[e(t−1)X1

B ] is at most

P
[
X1 >B

] ·E[
e(t−1) logP[X1>B]] = (

P
[
X1 >B

])t
	

Similarly, the contribution of the signal s is at most (P[X1 < −B])t . We thus have

E
[
e(t−1)X1

B
] ≤ P

[∣∣X1
∣∣ ≤ B

] ·E[
e(t−1)X1 | ∣∣X1

∣∣ ≤ B
] + (

P
[
X1 >B

])t + (
P
[
X1 < −B

])t
	

As B → ∞, both (P[X1 > B])t and (P[X1 < −B])t vanish since t > 0. We therefore con-
clude limB→∞ E[e(t−1)X1

B ] ≤ E[e(t−1)X1], completing the whole proof.
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J.2. Proof of Theorem 7

We only need to prove (ii) implies (i). Here, we will follow the arguments in Section 5.6
and make necessary modifications. Since Lemma 1 remains valid, it suffices to prove (22),
that is,

P
[
X1

1 + · · · +X1
n ≤ na

] ≤ P
[
Y 1

1 + · · · +Y 1
n ≤ na

]
� for all a≥ 0	

The analysis of the four cases in Section 5.6 relies on Lemma 2 and Proposition 5. We
will show later that Lemma 2 continues to hold even if P and Q are unbounded (but have
finite Rényi divergences). On the other hand, Proposition 5 cannot hold as stated, but we
do have the following modified version where b2 is replaced by supt∈RK

′′
X(t):

PROPOSITION 6: Let X and Y be random variables with finite cumulant generating func-
tions KX(t) and KY(t). Further let X1� 	 	 	 �Xn, Y1� 	 	 	 �Yn be i.i.d. copies of X and Y re-
spectively. Suppose a ≥ E[Y ], and η > 0 satisfies K∗

Y (a) − η > K∗
X(a + η). Then for all

n ≥ 4(1 +η)η−3 · supt∈RK
′′
X(t), it holds that

P[X1 + · · · +Xn > na] ≥ P[Y1 + · · · +Yn > na]	

Using Lemma 2 and Proposition 6, we can replicate the results in Cases 1, 2, and 4
in Section 5.6. Specifically, let M = max{supt∈RK

′′
X1(t)� supt∈RK

′′
Y 1(t)}, then for all n ≥

4M(1 + η)η−3 the inequality P[X1
1 + · · · +X1

n ≤ na] ≤ P[Y 1
1 + · · · +Y 1

n ≤ na] holds for
values of a outside of the interval (E[Y ] +η�E[X] −η) in Case 3.

Turning to a ∈ (E[Y ] + η�E[X] − η), we can still use the Chebyshev inequality to de-
duce

P
[
X1

1 + · · · +X1
n ≤ na

] ≤ Var
[
X1

]
nη2 = K′′

X1(0)
nη2 ≤ M

nη2 	

Similarly, we also have

P
[
Y 1

1 + · · · +Y 1
n ≤ na

] ≥ 1 − Var
[
Y 1

]
nη2 ≥ 1 − M

nη2 	

Thus P[X1
1 + · · · +X1

n ≤ na] ≤ P[Y 1
1 + · · · +Y 1

n ≤ na] holds for all n ≥ 2Mη−2, and hence
for all n ≥ 4M(1 + η)η−3. This then implies that P⊗n Blackwell dominates Q⊗n for all
n ≥ 4M(1 +η)η−3.

Below we supply the proofs for Lemma 2 (for unbounded experiments) and Proposi-
tion 6.

PROOF OF LEMMA 2 FOR UNBOUNDED EXPERIMENTS: We note that the second part
K∗

Yθ(a − η) < K∗
Xθ(a) − η continues to hold. This is because, by the same argument as

in the case of bounded experiments, K∗
Yθ(a) < K∗

Xθ(a) holds for all a in the compact in-
terval [0�E[Yθ]]. Thus by (uniform) continuity, we can “squeeze in” a small positive η
without changing the inequality.

The first part of Lemma 2 also holds so long as max[Yθ] is finite, in which case the
range of a under consideration is again compact. If instead max[Yθ] = ∞, we use a new
argument that takes advantage of the genericity assumption. Note that by assumption,
Rθ

P(t) − Rθ
Q(t) is positive for each θ and t. Given this, the genericity assumption (29)
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further implies this difference is bounded away from zero as t → ∞. That is, there exists
small ε > 0 and large T > 1 such that

Rθ
P(t)−Rθ

Q(t) > ε for all θ ∈ {0�1}� t > T	

Since Kθ
X(t)= tRθ

P(t + 1), we deduce

Kθ
X(t)−Kθ

Y(t) > εt >
ε

2
(t + 1) for all θ ∈ {0�1}� t > T	 (30)

We can now prove the first part of Lemma 2. Define δ > 0 by K′
Xθ(T)= E[Xθ]+δ. The

original proof of Lemma 2 yields that for all sufficiently small η> 0,

K∗
Yθ(a)−η>K∗

Xθ(a+η) holds for E
[
Xθ

] −η≤ a≤ E
[
Xθ

] + δ	

Note that E[Xθ] + δ is finite, so the range of a considered above is compact, enabling
us to use the original argument. We claim that by choosing η < ε/2, where ε is defined
earlier, the same inequality holds even if a is bigger than E[Xθ] + δ. For this define t̂ by
K′

Xθ(t̂) = a+η, then t̂ > T by the convexity of KX . Therefore, by (30),

K∗
Xθ(a+η) = t̂(a+η)−KXθ(t̂)

< t̂(a+η)−KYθ(t̂)− ε

2
(t̂ + 1)

< t̂(a+η)−KYθ(t̂)−η(t̂ + 1)

= t̂a−KYθ(t̂)−η

≤K∗
Yθ(a)−η	

This completes the proof of Lemma 2 for unbounded experiments. Q.E.D.

PROOF OF PROPOSITION 6: Following the original proof of Proposition 5, we just need
to show a modified version of Lemma 3 (with supt∈RK

′′
X(t) replacing b2):

P[X1 + · · · +Xn > na] ≥ e−n·K∗
X(a+η)

(
1 −

4 · sup
t∈R

K′′
X(t)

nη2

)
	

This follows the same proof as in Appendix A, except that in applying the Chebyshev
inequality, we now use

Var[Ŝn] = nVar[X̂] = n ·K′′
X(t)≤ n · sup

t̂∈R
K′′

X(t̂)

instead of Var[Ŝn] ≤ nb2. The key equality Var[X̂] =K′′
X(t) holds because

Var[X̂] = E
[
X̂2

] −E[X̂]2 = E
[
X2etX

]
E
[
etX

] −
(
E
[
XetX

]
E
[
etX

] )2

=K′′
X(t)	

Hence the result. Q.E.D.
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J.3. Proof of Lemma 7

We first prove KX is everywhere finite, that is, logE[etX] is finite for every t. Using the
density h(x), we can write

E
[
etX

] =
∫ ∞

−∞
h(x)etx dx =

∫ ∞

−∞
etx+l(x) dx�

where we define �(x) = logh(x). Since by assumption �′′(x) ≤ −ε for |x| >M , it is easy
to show �(x) ≤ − ε

4x
2 as |x| → ∞. Hence the above integral is finite.

To prove K′′
X is bounded, we begin with the formula

K′′
X(t)= E

[
X2etX

] ·E[
etX

] −E
[
XetX

]2

E
[
etX

]2 	

Let X1, X2 be i.i.d. copies of X . Then the denominator above is E[etX1] · E[etX2] =
E[et(X1+X2)]. The numerator can be rewritten as

E
[
X2

1 etX1
] ·E[

etX2
] −E

[
X1etX1

] ·E[
X2etX2

]
= E

[(
X2

1 −X1X2

) · et(X1+X2)
]

= E

[
X2

1 −X1X2 +X2
2 −X1X2

2
· et(X1+X2)

]

= E

[
(X1 −X2)

2

2
· et(X1+X2)

]
�

where the penultimate step uses the symmetry between X1 and X2. Define

D(s)= E
[
(X1 −X2)

2 | X1 +X2 = s
]
	

Then we have shown that

K′′
X(t)=

1
2
E
[
D(X1 +X2) · et(X1+X2)

]
E
[
et(X1+X2)

] 	

Thus, in order to show K′′
X is bounded, it suffices to show D(s) is bounded as s varies.

Recall that by assumption �′′(x) ≤ −ε for |x| >M . We will show (with proof deferred
to later) there exists S > 2M , such that

�′(x)− �′(s − x)≤ −ε

2
(2x− s) for all s > S�x >

s

2
	 (31)

Note that (31) in particular implies �′(x) − �′(s − x) ≤ −1 for x > s
2 + C, with C = ε−1.

Given this, we can show D(s) is bounded.
Without loss consider s ≥ 0. We use the density h(x) to write

D(s)=

∫ ∞

−∞
h(x)h(s − x)(2x− s)2 dx∫ ∞

−∞
h(x)h(s − x)dx

=

∫ ∞

s/2
h(x)h(s − x)(2x− s)2 dx∫ ∞

s/2
h(x)h(s − x)dx

	 (32)
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Since D(s) is continuous, it suffices to prove it is bounded when s > S, where S is given
earlier. We now break the integral in (32) into two parts, with cutoff s/2 + 2C:

D(s) =

∫ s/2+2C

s/2
h(x)h(s − x)(2x− s)2 dx∫ ∞

s/2
h(x)h(s − x)dx

+

∫ ∞

s/2+2C
h(x)h(s − x)(2x− s)2 dx∫ ∞

s/2
h(x)h(s − x)dx

	

The first term is bounded by 16C2, which is the maximum value of (2x − s)2 for x ∈
[s/2� s/2 + 2C]. To bound the second term, we rewrite it as

∫ ∞

s/2+2C

el(x)+l(s−x)∫ ∞

s/2
el(y)+l(s−y) dy

· (2x− s)2 dx	 (33)

As l′(y)− l′(s− y)≤ −1 for y ≥ s/2 +C, we have l(y)+ l(s− y)≥ x− y + l(x)+ l(s−x)
for all x≥ y ≥ s/2 +C. Thus

∫ ∞

s/2
el(y)+l(s−y) dy ≥

∫ x

s/2+C

el(y)+l(s−y) dy ≥
∫ x

s/2+C

ex−y+l(x)+l(s−x) dy = (
ex−s/2−C − 1

)
el(x)+l(s−x)	

Plugging back into (33), the second term contributing to D(s) is bounded above by

∫ ∞

s/2+2C

1
ex−s/2−C − 1

· (2x− s)2 dx =
∫ ∞

C

1
eu − 1

· (2u+ 2C)2 du�

where we used change of variable from x to u = x − s/2 − C. Since the RHS is a finite
constant independent of s, we conclude that D(s) is bounded even as s → ∞.

It remains to prove (31). We write the difference on the LHS as
∫ x

s−x
�′′(u)du. If s−x >

M , the result follows from the fact that �′′(u) ≤ −ε ≤ − ε
2 for every u in the range of

integration. Suppose instead that s − x ≤ M , thus x ≥ s − M . In this case because �′′(u)
can only be positive for u ∈ [−M�M], we have

∫ x

s−x

�′′(u)du≤ −ε(2x− s − 2M)+
∫ M

−M

∣∣�′′(u)
∣∣du

= −ε(x− s/2)− ε(x− s/2 − 2M)+
∫ M

−M

∣∣�′′(u)
∣∣du

≤ −ε(x− s/2)− ε(s/2 − 3M)+
∫ M

−M

∣∣�′′(u)
∣∣du

≤ −ε(x− s/2)	

The penultimate inequality uses x ≥ s − M , whereas the last inequality holds when s is
sufficiently large (since

∫ M

−M
|�′′(u)|du is finite by the assumption that h is positive and

twice continuously differentiable). This completes the proof.
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APPENDIX K: NECESSARY CONDITION FOR LARGE SAMPLE DOMINANCE WITH
MANY STATES

In this section, we show that the Rényi order can be generalized to more than two states
to yield a general necessary condition for large sample dominance. Consider k+ 1 states
θ ∈ {0�1� 	 	 	 �k} and two experiments P = (Ω� (Pθ)), Q = (Ξ� (Qθ)) revealing information
about these states. Conditioning on θ = 0, we consider the moment generating function
of the log-likelihood ratio vector ( dP0

dP1
� 	 	 	 � dP0

dPk
), given by

MX0(t)=
∫
Ω

e
∑k

j=1 tj log
dP0(ω)
dPj(ω) dP0(ω) (34)

with t = (t1� 	 	 	 � tk) ∈ Rk. Similarly, define MY 0(t) for the experiment Q.
By the same argument as in Section 5.1 (see the derivation of (8)), MX0(t) would be the

ex ante expected payoff from observing P , in a decision problem with uniform prior and
indirect utility function

v(p)= (k+ 1)p1+t1+···+tk
0 ·p−t1

1 · · ·p−tk
k �

where p = (p0�p1� 	 	 	 �pk) represents the belief about the k + 1 states. If the function
v(p) were convex in p, then it is indeed an indirect utility function. Blackwell dominance
of P over Q then requires MX0(t) ≥ MY 0(t). Since the moment generating function is
raised to the nth power when n i.i.d. samples are drawn, we would be able to conclude
that MX0(t) ≥ MY 0(t) also has to hold if P dominates Q in large samples. If instead v(p)
were concave, then −v(p) is an indirect utility function, leading to the reverse ranking
between the moment generating functions.

We can characterize those parameters t = (t1� 	 	 	 � tk) that make the function v(p) glob-
ally convex/concave. To make the result easy to state, we make the variables symmetric
and consider a function of the form

v(p) = (k+ 1)pα0
0 ·pα1

1 · · ·pαk
k

with α0 + α1 + · · · + αk = 1.

LEMMA 8: Consider the function v(p) defined above, over the domain p ∈ int(
k). Sup-
pose α0 +α1 +· · ·+αk = 1 and α0 > 0. Then v(p) is convex in p if and only if α1� 	 	 	 �αk are
all nonpositive. Conversely, v(p) is concave in p if and only if α1� 	 	 	 �αk are nonnegative.
Moreover, the convexity/concavity is strict when α1� 	 	 	 �αk are strictly negative/positive.

The proof of this lemma is deferred to the end of the section. Note that unlike the case
of two states, there are situations where v(p) is neither convex nor concave.

By rewriting αj = −tj for 1 ≤ j ≤ k, we obtain the following necessary condition for
Blackwell dominance in large samples. Say the experiments P and Q form a generic pair,
if for every pair of states i �= j, the maximum and minimum of log dPi

dPj
differ from those of

log dQi

dQj
.

PROPOSITION 7: Suppose P and Q are a generic pair of bounded experiments for k + 1
states. If P Blackwell dominates Q in large samples, then the following conditions hold:5

5We exclude t = {0} from the conditions because MX(0) =MY(0)= 1 always holds.
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(i) For all t ∈ Rk
+\{0}, MX0(t) >MY 0(t) and symmetrically MXi(t) >MYi(t) if we define

the moment generating functions for true state i analogously to (34);
(ii) For all t ∈ Rk

−\{0} such that
∑k

j=1 tj > −1, MX0(t) < MY 0(t) and symmetrically
MXi(t) <MYi(t) for 1 ≤ i ≤ k;

(iii) For every pair of states i �= j, the Kullback–Leibler divergence between Pi and Pj ex-
ceeds the divergence between Qi and Qj :∫

Ω

log
dPi(ω)

dPj(ω)
dPi(ω) >

∫
Ξ

log
dQi(ξ)

dQj(ξ)
dQi(ξ)	

To understand Proposition 7, note from (34) that when tj are all positive, a bigger value
of MX0(t) indicates higher likelihood ratios dP0

dPj
between state 0 and every other state j,

when state 0 is the true state. It is intuitive that in this case MX0(t) >MY 0(t) corresponds
to P being (on average) a more informative experiment than Q.6 This is the content of
part (i), which generalizes the comparison of Rényi divergences Rθ

P(t) > Rθ
Q(t) in the two

state case, for t > 1.
Conversely, part (ii) says that when tj are all negative (subject to the extra condition∑
j tj > −1), informativeness is captured by the reverse ranking MX0(t) <MY 0(t). In this

case, the smaller value of MX0(t) actually indicates higher likelihood ratios dP0
dPj

under true
state 0. This part generalizes the comparison Rθ

P(t) > Rθ
Q(t) for t ∈ (0�1).

Finally, part (iii) directly imposes the Rényi comparison Rθ
P(1) > Rθ

Q(1) when it is ap-
plied to every pair of states.

We conjecture that the set of necessary conditions identified in Proposition 7 are also
sufficient for large sample Blackwell dominance; see Section 6 for discussion of the diffi-
culties.

Below we supply the proof of Lemma 8.

PROOF OF LEMMA 8: The Hessian matrix of v(·) at p is computed as

Hessv(p)= v(p)×

⎛
⎜⎜⎜⎜⎝
α0(α0 − 1)

p2
0

α0α1

p0p1
	 	 	

α0α1

p0p1

α1(α1 − 1)
p2

1

	 	 	

	 	 	 	 	 	 	 	 	

⎞
⎟⎟⎟⎟⎠ 	

For any direction (x0�x1� 	 	 	 � xk), the directional second derivative of v(·) at p is thus

(x0�x1� 	 	 	 ) ·

⎛
⎜⎜⎜⎜⎝
α0(α0 − 1)

p2
0

α0α1

p0p1
	 	 	

α0α1

p0p1

α1(α1 − 1)
p2

1

	 	 	

	 	 	 	 	 	 	 	 	

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎝x0

x1

	 	 	

⎞
⎠ =

(
k∑
i=0

αixi

pi

)2

−
k∑
i=0

αix
2
i

p2
i

� (35)

6To prove the strict inequality MX0(t) > MY 0(t), suppose that t1� 	 	 	 � tl are positive whereas tl+1� 	 	 	 � tk

are zero, for some 1 ≤ l ≤ k. Let P̃ = (Ω� (P0� 	 	 	 �Pl)) be the restriction of the experiment P to the first l + 1
states; similarly, define Q̃. Then P⊗n �Q⊗n implies P̃⊗n � Q̃⊗n, which must in fact be a strict comparison by the
genericity assumption. Therefore, as the indirect utility function ṽ(p0� 	 	 	 �pl)= (k+ 1)p1+t1+···+tl

0 ·p−t1
1 · · ·p−tl

k

is strictly convex on the smaller belief space 
l (Lemma 8), the ex ante expected payoff MX0(t) must be strictly
higher than MY 0(t).
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where for simplicity we have ignored the positive factor v(p) as it does not affect the sign.
We first use this to show that if α1 > 0 (or any αj > 0), then the function v(p) is not con-

vex for p ∈ int(
k). Indeed, consider the direction (1�−1�0�0� 	 	 	 �0), which maintains
p ∈ int(
k). The directional second derivative can be computed as

α0(α0 − 1)
p2

0

− 2α0α1

p0p1
+ α1(α1 − 1)

p2
1

	

Suppose p0 = α0x, p1 = α1x for some small positive number x, and p2�p3� 	 	 	 are arbi-
trary. Then the above second derivative simplifies to − (α0+α1)

α0α1x
2 < 0. Thus v(p) is not convex

along this direction.
Suppose instead α1� 	 	 	 �αk ≤ 0, we will show v(p) is convex. For this it suffices to show

the RHS of (35) is nonnegative. Indeed, by the Cauchy–Schwarz inequality,

((
k∑
i=0

αixi

pi

)2

+ −α1x
2
1

p2
1

+ · · · + −αkx
2
k

p2
k

)
· (1 + (−α1)+ · · · + (−αk)

)

≥
(

k∑
i=0

αixi

pi

+ −α1x1

p1
+ · · · + −αkxk

pk

)2

=
(
α0x0

p0

)2

	

Using α0 + α1 + · · · + αk = 1 to simplify, this exactly implies (
∑k

i=0
αixi
pi

)2 ≥ ∑k

i=0
αix

2
i

p2
i

as

desired. In fact, v(p) is convex for all p � 0, including p ∈ int(
k).
Moreover, if α1� 	 	 	 �αk are strictly negative, then the equality condition of the Cauchy–

Schwarz inequality above requires
∑k

i=0
αixi
pi

= x1
p1

= · · · = xk
pk

, which in turn implies that
x0�x1� 	 	 	 � xk have the same sign (under the assumption α0 > 0 > α1� 	 	 	 �αk). Thus, for
any direction (x0�x1� 	 	 	 � xk) with x0 +x1 +· · ·+xk = 0, the directional second derivative
of v is strictly positive. So v is strictly convex for p ∈ int(
k).

Next, we will show that if α1 < 0 (or any αj < 0), then the function v(p) is not concave
for p ∈ int(
k). For this, we again consider the second derivative along the direction
(1�−1�0�0� 	 	 	 �0), which is α0(α0−1)

p2
0

− 2α0α1
p0p1

+ α1(α1−1)
p2

1
. As α1 < 0, we have α1(α1 − 1) > 0.

Thus for p0 close to 1 and p1 close to 0, the above second derivative is positive and v(p)
is not concave along this direction.

Finally, we show that if α1� 	 	 	 �αk ≥ 0, then the function v(p) is concave. By the
Cauchy–Schwarz inequality,

(
k∑
i=0

αix
2
i

p2
i

)
·
(

k∑
i=0

αi

)
≥

(
k∑
i=0

αixi

pi

)2

	

Since
∑k

i=0 αi = 1, this implies the RHS of (35) is nonpositive. Hence v has nonpositive
directional second derivatives and must be globally concave.

Moreover, if α1� 	 	 	 �αk are strictly positive, then the equality condition of the Cauchy–
Schwarz inequality requires x0

p0
= x1

p1
= · · · = xk

pk
, which in turn requires x0�x1� 	 	 	 � xk to

have the same sign. By the same argument as above, we conclude that in this case v is
strictly concave for p ∈ int(
k). Q.E.D.
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APPENDIX L: PROOF OF A CONJECTURE REGARDING MAJORIZATION

Jensen (2019) studied the majorization order on finitely supported distributions. Given
two such distributions μ and ν, μ is said to majorize ν if for every n ≥ 1 it holds that the
sum of the largest n probabilities in μ is greater than or equal to the sum of the n largest
probabilities in ν. The Rényi entropy of a distribution μ defined on a finite set S is given
by

Hμ(α)= 1
1 − α

log
(∑

s∈S
μ(s)α

)
�

for α ∈ [0�∞)\{1}. As with our definition of Rényi divergences, this definition is extended
to α = 1 by continuity to equal the Shannon entropy, and extended to α = ∞ to equal
− log maxs μ(s). Hence Hμ is defined on [0�∞].

Note that Hμ(0) is the size of the support of μ. In his Proposition 3.7, Jensen showed
that if Hμ(α) <Hν(α) for all α ∈ [0�∞] then the n-fold product μ×n majorizes ν×n.

Commenting on his Proposition 3.7, Jensen wrote “The author cautiously conjectures
that . . . the requirement of a sharp inequality at 0 could be replaced by a similar condition
regarding the α-Rényi entropies for negative α.”

To understand this statement in terms of the nomenclature and notation of our pa-
per, we identify each distribution μ whose support is a finite set S with the experiment
Pμ = (S�P1�P0), where P1 = μ and P0 is the uniform distribution on S. There is a simple
connection between the Rényi entropy of μ and the Rényi divergence of Pμ. For α≥ 0,

Hμ(α)= log |S| −R1
P(α)	 (36)

As Jensen suggests, Hμ(α) for negative α is also important, as it relates to R0
P . For α≤ 0,

Hμ(α)= log |S| − α

1 − α
R0

P(1 − α)� (37)

which extends to α= −∞ to equal − log mins μ(s). Moreover, note that

H ′
μ(0)= −R0

P(1)= log |S| + 1
|S|

∑
s∈S

logμ(s)	 (38)

As shown by Torgersen (1985, p. 264), when μ and ν have the same support size, then
majorization of ν by μ is equivalent to Blackwell dominance of Pμ over Pν . Thus Jensen’s
Proposition 3.7, which assumes that the support sizes are different, has no implications
for Blackwell dominance. However, our result on Blackwell dominance does have im-
plications for majorization. In particular, the following proposition follows immediately
from the application of Theorem 1 to experiments of the form Pμ.

PROPOSITION 8: Let μ, ν be finitely supported distributions with the same support size
(i.e., Hμ(0)=Hν(0)), and such that Hμ(∞) �=Hν(∞) and Hμ(−∞) �=Hν(−∞). Then the
following are equivalent:

(i) Hμ(α) <Hν(α) for all α ∈ (0�∞], Hμ(α) >Hν(α) for all α ∈ [−∞�0) and H ′
μ(0) <

H ′
ν(0).

7

7This last condition is necessary for majorization, but it was not recognized in the original conjecture of
Jensen (2019).



FROM BLACKWELL DOMINANCE IN LARGE SAMPLES 19

(ii) There exists an n0 such that μ×n majorizes ν×n for every n ≥ n0.

PROOF: For notational ease, let P denote Pμ and Q denote Pν . The assumption
Hμ(α) < Hν(α) for all α > 0 is equivalent, via (36), to R1

P(t) > R1
Q(t) for all t > 0, and

to R0
P(t) > R0

Q(t) for all t ∈ (0�1), using R0
P(t)= t

1−t
R1

P(1 − t) for 0 < t < 1.
On the other hand, Hμ(α) > Hν(α) for all α < 0 and H ′

μ(0) < H ′
ν(0) is equivalent, via

(37) and (38), to R0
P(t) > R0

Q(t) for all t ≥ 1. So (i) is equivalent to P dominating Q in the
Rényi order.

Finally, the assumptions that Hμ(∞) �= Hν(∞) and Hμ(−∞) �= Hν(−∞) translate into
maxs μ(s) �= maxs ν(s) and mins μ(s) �= mins ν(s), which are in turn equivalent to requiring
that P and Q be a generic pair. Therefore, by Theorem 1, (i) is equivalent to P⊗n Blackwell
dominates Q⊗n for every large n. It follows from Torgersen (1985) that (i) is equivalent to
(ii). Q.E.D.
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