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IDENTIFICATION AT THE ZERO LOWER BOUND

SOPHOCLES MAVROEIDIS
Department of Economics, University of Oxford

I show that the Zero Lower Bound (ZLB) on interest rates can be used to identify the
causal effects of monetary policy. Identification depends on the extent to which the ZLB
limits the efficacy of monetary policy. I propose a simple way to test the efficacy of uncon-
ventional policies, modelled via a ‘shadow rate’. I apply this method to U.S. monetary policy
using a three-equation structural vector autoregressive model of inflation, unemployment and
the federal funds rate. I reject the null hypothesis that unconventional monetary policy has no
effect at the ZLB, but find some evidence that it is not as effective as conventional monetary
policy.

KEYWORDS: SVAR, censoring, coherency, partial identification, monetary policy,
shadow rate.

1. INTRODUCTION

The zero lower bound (ZLB) on nominal interest rates has arguably been a challenge for
policy makers and researchers of monetary policy. Policy makers have had to resort to so-called
unconventional policies, such as quantitative easing or forward guidance, which had previously
been largely untested. Researchers have to use new theoretical and empirical methodologies to
analyze macroeconomic models when the ZLB binds. So, the ZLB is generally viewed as a
problem or at least a nuisance. This paper proposes to turn this problem on its head to solve
another long-standing question in macroeconomics: the identification of the causal effects of
monetary policy on the economy.

The intuition is as follows. If the ZLB limits the ability of policy makers to react to macroe-
conomic shocks, as argued, for example, by Eggertsson and Woodford (2003), the response
of the economy to shocks will change when the policy instrument hits the ZLB. Because the
difference in the behavior of macroeconomic variables across the ZLB and non-ZLB regimes
is only due to the impact of monetary policy, the switch across regimes provides information
about the causal effects of policy. In the extreme case that monetary policy completely shuts
down during the ZLB regime, either because policy makers do not use alternative (unconven-
tional) policy instruments, or because such instruments turn out to be completely ineffective,
the only difference in the behavior of the economy across regimes is due to the impact of (con-
ventional) policy during the unconstrained regime. Therefore, the ZLB identifies the causal
effect of policy during the unconstrained regime. If monetary policy remains partially effective
during the ZLB regime, e.g., through the use of unconventional policy instruments, then the
difference in the behavior of the economy across regimes will depend on the difference in the
effectiveness of conventional and unconventional policies. In this case, we obtain only partial
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identification of the causal effects of monetary policy, but we can still get informative bounds
on the relative efficacy of unconventional policy. In the other extreme case that unconventional
policy is as effective as conventional policy, there is no difference in the behavior of the econ-
omy across regimes, and we have no additional information to identify the causal effects of
policy. However, we can still test this so-called ZLB irrelevance hypothesis (Debortoli et al.,
2019) by testing whether the reaction of the economy to shocks is the same across the two
regimes.

There are similarities between identification via occasionally binding constraints and identi-
fication through heteroskedasticity (Rigobon, 2003), or more generally, identification via struc-
tural change (Magnusson and Mavroeidis, 2014). That literature showed that the switch be-
tween different regimes generates variation in the data that identifies parameters that are con-
stant across regimes. For example, an exogenous shift in a policy reaction function or in the
volatility of shocks identifies the transmission mechanism, provided the latter is unaffected by
the policy shift. When the switch from one regime to another is exogenous, regime indicators
are valid instruments, and the methodology in Magnusson and Mavroeidis (2014) is applicable.
However, regimes induced by occasionally binding constraints are not exogenous – whether the
ZLB binds or not clearly depends on the structural shocks, so regime indicators cannot be used
as instruments in the usual way, and a new methodology is needed to analyze these models.

In this paper, I show how to control for the endogeneity in regime selection and obtain iden-
tification in structural vector autoregressions (SVARs).1 The methodology is parametric and
likelihood-based, and the analysis is similar to the well-known Tobit model (Tobin, 1958).
More specifically, the methodological framework builds on the early microeconometrics lit-
erature on simultaneous equations models with censored dependent variables, see Amemiya
(1974), Lee (1976), Blundell and Smith (1994), and the more recent literature on dynamic
Tobit models, see Lee (1999), and particle filtering, see Pitt and Shephard (1999).

A further contribution of this paper is a general methodology to estimate reduced-form VARs
with a variable subject to an occasionally binding constraint. This is a necessary starting point
for SVAR analysis that uses any of the existing popular identification schemes, such as short-
or long-run restrictions, sign restrictions, or external instruments. In the absence of any con-
straints, reduced-form VARs can be estimated consistently by Ordinary Least Squares (OLS),
which is Gaussian Maximum Likelihood, or its corresponding Bayesian counterpart, and infer-
ence is fairly well-established. However, it is well-known that OLS estimation is inconsistent
when the data is subject to censoring or truncation, see, e.g., Greene (1993) for a textbook
treatment. So, it is not possible to estimate a VAR consistently by OLS using any sample that
includes the ZLB, or even using (truncated) subsamples when the ZLB is not binding (because
of selection bias), as was pointed out by Hayashi and Koeda (2019). It is not possible to im-
pose the ZLB constraint using Markov switching models with exogenous regimes, as in Liu
et al. (2019), because exogenous Markov-switching cannot guarantee that the constraint will
be respected with probability one, and also does not account for the fact that the switch from
one regime to the other depends on the structural shocks. Finally, it is not possible to perform
consistent estimation and valid inference on the VAR (i.e., error bands with correct coverage
on impulse responses), using externally obtained measures of the shadow rate, such as the one
proposed by Wu and Xia (2016), as any such measures are subject to large and persistent esti-
mation error that is not accounted for if they are treated as known in subsequent analysis. See

1There is a related literature on Dynamic Stochastic General Equilibrium (DSGE) models with a ZLB, see, e.g.,
Fernández-Villaverde et al. (2015), Guerrieri and Iacoviello (2015), Aruoba et al. (2017), Kulish et al. (2017) and
Aruoba et al. (2020). The papers in this literature do not point out the implications of the ZLB for identification of
monetary policy shocks.
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also Rossi (2019) for a comprehensive discussion of the challenges posed by the ZLB for the
estimation of structural VARs.

The methodology developed in this paper allows for the presence of a shadow rate, estimates
of which can be obtained, but more importantly, it fully accounts for the impact of sampling
uncertainty in the estimation of the shadow rate on inference about the structural parameters
such as impulse responses. Therefore, the paper fills an important gap in the literature, as it
provides the requisite methodology to implement any of the existing identification schemes.
Hayashi and Koeda (2019) develop a VAR model with endogenous regime switching in which
the policy variables that are subject to a lower bound are modelled using Tobit regressions. A
key difference of their methodology from the one developed here is that they impose recursive
identification of monetary policy shocks, which the present paper shows to be an overidenti-
fying, and hence testable, restriction. Moreover, their model does not include shadow rates.
A more recent paper by Aruoba et al. (2020) also studies SVARs with occasionally binding
constraints, but does not focus on the implications of these constraints for identification.

Identification of the causal effects of policy by the ZLB does not require that the policy re-
action function be stable across regimes. However, inference on the efficacy of unconventional
policy, or equivalently, the causal effects of shocks to the shadow rate over the ZLB period,
obviously depends on whether or not the reaction function remains the same across regimes.
For example, an attenuation of the causal effects of policy over the ZLB period may indicate
that unconventional policy is only partially effective, but it is also consistent with unconven-
tional policy being less active (during ZLB regimes) than conventional policy (during non-ZLB
regimes). This is a fundamental identification problem that is difficult to overcome without
additional information, such as measures of unconventional policy stance, or additional iden-
tifying assumptions, such as parametric restrictions or external instruments. This can be done
using the methodology developed in this paper.

The structure of the paper is as follows. Section 2 presents the main identification results
of the paper in the context of a static bivariate simultaneous equations model with a limited
dependent variable subject to a lower bound. Section 3 generalizes the analysis to a SVAR
with an occasionally binding constraint and discusses identification, estimation and inference.
Section 4 provides an application to a three-equation SVAR in inflation, unemployment and the
Federal funds rate from Stock and Watson (2001). Using a sample of post-1960 quarterly US
data, I find some evidence that the ZLB is empirically relevant, and that unconventional policy
is only partially effective. Proofs and simulation results are given in the Appendix at the end.
Additional supporting material is provided in a Supplementary Appendix available online.

2. SIMULTANEOUS EQUATIONS MODEL

I first illustrate the idea using a simple bivariate simultaneous equations model (SEM), which
is both analytically tractable and provides a direct link to the related microeconometrics litera-
ture. To make the connection to the leading application, I will motivate this using a very stylized
economy without dynamics in which the only outcome variable is inflation πt and the (conven-
tional) policy instrument is the short-term nominal interest rate, rt. In addition to the traditional
interest rate channel, the model allows for an ‘unconventional monetary policy’ channel that
can be used when the conventional policy instrument hits the ZLB. An example of such a policy
is quantitative easing (QE), in the form of long-term asset purchases by the central bank. Here
I discuss a simple model of QE.2

2The more general SVAR model of the next section can also incorporate forward guidance in the form of Reif-
schneider and Williams (2000) and Debortoli et al. (2019), as shown in Ikeda et al. (2020).
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Abstracting from dynamics and other variables, the equation that links inflation to monetary
policy is given by

πt = c+ β (rt − rn) +ϕbL,t + ε1t, (1)

where c is a constant, rn is the neutral rate, bL,t is the amount of long-term bonds held by the
private sector in log-deviation from its steady state, and ε1t is an exogenous structural shock
unrelated to monetary policy. Equation (1) can be obtained from a model of bond-market seg-
mentation, as in Chen et al. (2012), where a fraction of households is constrained to invest only
in long-term bonds, see the Supplementary Appendix for more details. In such a model, the pa-
rameter ϕ that determines the effectiveness of QE is proportional to the fraction of constrained
households and the elasticity of the term premium with respect to asset holdings, both of which
are assumed to be outside the control of the central bank.

The nominal interest rate is set by a Taylor rule subject to the ZLB constraint, namely,

rt = max (r∗t ,0) , (2a)

r∗t = rn + γπt + ε2t, (2b)

where r∗t represents the desired target policy rate, and ε2t is a monetary policy shock. When r∗t
is negative, it is unobserved. The unobserved r∗t will be referred to as the ‘shadow rate’, and it
represents the desired policy stance prescribed by the Taylor rule in the absence of a binding
ZLB constraint.

Suppose that QE is activated only when the conventional policy instrument rt hits the ZLB,3
and follows the same policy rule (2b), up to a factor of proportionality α, i.e.,

bL,t = min (αr∗t ,0) .

Substituting for bL,t in eq. (1) and letting β∗ := αϕ, we obtain

πt = c+ β (rt − rn) + β∗min (r∗t ,0) + ε1t. (3)

A special case arises when QE is ineffective (ϕ= 0) , or the monetary authority does not
pursue a QE policy (α= 0) , so that eq. (3) becomes

πt = c+ β (rt − rn) + ε1t, (4)

and monetary policy is completely inactive at the ZLB.
Another special case of the model given by equations (2) and (3) arises when β∗ = β in

eq. (3). This happens when ϕ 6= 0 and α is chosen by the monetary authority to be equal to
β/ϕ. This can be done when policy makers know the transmission mechanism in eq. (1) and
have no restrictions in setting the policy parameter α so as to fully remove the impact of the
ZLB on conventional policy. In that case, the equation for the outcome variable becomes

πt = c+ β (r∗t − rn) + ε1t. (5)

The model given by equations (2) and (5) is one in which monetary policy is completely un-
constrained and there is no difference in outcomes across policy regimes. Such models have

3The assumption that QE is only active during the ZLB regime is only made for simplicity, as it is inconsequential
for the resulting functional form of the transmission equation. We can let QE be active all the time, and even allow
for a different rule for QE above and below the ZLB, i.e., bL,t = αmin (r∗t ,0) +α1 max(r∗t ,0). Then, substituting
back into (1) yields an equation that is isomorphic to (3), i.e., πt = c1 + β̄rt + β̄∗min (r∗t ,0) + ε1t, with β̄ :=
β +ϕα1 and β̄∗ := ϕα.
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been put forward by Swanson and Williams (2014), Debortoli et al. (2019) and Wu and Zhang
(2019).

The nesting model given by eq. (3) allows the effects of conventional and unconventional
policy to differ. This could reflect informational as well as political or institutional constraints
that prevent policy makers from calibrating their unconventional policy response to match ex-
actly the policy prescribed by the Taylor rule. For instance, it may be that policy makers do
not know the effectiveness of the QE channel ϕ, or that the scale of asset purchases needed to
achieve the desired policy stance during a ZLB regime is too large to be politically acceptable.
Such a consideration may be particularly pertinent, for example, in the Eurozone. Importantly,
one does not need to take a theoretical stand on this issue, because the methodology that I de-
velop in the paper can accommodate a wide range of possibilities, and, as I demonstrate below,
the issue can be studied empirically.

To complete the specification of the model, I assume that the structural shocks εt = (ε1t, ε2t)
′

are independently and identically distributed (i.i.d.) Normal with covariance matrix Σ =
diag (σ2

1 , σ
2
2).

The analysis in this paper assumes that the shadow rate r∗t is only observed above the ZLB. If
r∗t < 0 were observed up to scale, for instance, if we could measure QE bL,t from the balance
sheet of the central bank, then the computation of the likelihood would be much simpler –
no filtering would be needed to deal with lags of r∗t < 0 on the right hand side of the SVAR
model introduced in the next section, but the identification problem would remain the same.
More generally, we could assume that r∗t < 0 is observed with some measurement error ηt,
and include the measurement equation bL,t = min (αr∗t + ηt,0) in the model together with a
specification of the distribution of ηt. The estimation method in this paper can then be seen
as a special case where we are entirely agnostic about the measurement error. Adding such
measures of unconventional policy is a potentially very useful extension of the method since,
if correctly specified, they will likely improve estimation accuracy.

Connection to the microeconometrics literature Equations (2) and (3) form a SEM with a
limited dependent variable. The special case with β∗ = 0 in (3) can be referred to as a kinked
SEM (KSEM), while the opposite case of β∗ = β in (3) can be called a censored SEM (CSEM).
Variants of the KSEM model have been studied in the early microeconometrics literature on
limited dependent variable SEMs. Amemiya (1974) and Lee (1976) studied multivariate ex-
tensions of the well-known Tobit model (Tobin, 1958). Nelson and Olson (1978) argued that
the KSEM was less suitable for microeconometric applications than the CSEM, and the lat-
ter subsequently became the main focus of the literature (Smith and Blundell, 1986, Blundell
and Smith, 1989). Blundell and Smith (1994) studied the unrestricted model using external
instruments, so they did not consider the implications of the kink for identification.

One important lesson from the microeconometrics literature is that establishing existence
and uniqueness of equilibria in this class of models is non-trivial. Gourieroux et al. (1980)
define a model to be ‘coherent’ if it has a unique solution for the endogenous variables in
terms of the exogenous variables, i.e., if there exists a unique reduced form. More recently,
the literature has distinguished between existence and uniqueness of solutions using the terms
coherency and completeness of the model, respectively (Lewbel, 2007). Establishing coherency
and completeness is a necessary first step before we can study identification and estimation.

2.1. Identification

Substituting for r∗t in (3) using (2) and rearranging, we obtain

πt = c̃+ β̃ (rt − rn) + ε̃1t, where (6)
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β̃ =
β − β∗

1− γβ∗
, c̃=

c

1− γβ∗
, and ε̃1t =

ε1t + β∗ε2t
1− γβ∗

. (7)

The system of equations (2) and (6) is now a KSEM, for which the necessary and sufficient
condition for coherency and completeness (existence of a unique solution) is β̃γ < 1 (Nelson
and Olson, 1978). Using (7), the coherency and completeness condition can be expressed in
terms of the structural parameters as

1− γβ
1− γβ∗

> 0. (8)

This condition evidently restricts the admissible range of the structural parameters. It is satisfied
in the present monetary policy model, where it is natural to assume that β,β∗ ≤ 0 and γ > 0.
Therefore, it is possible that the coherency condition may not provide additional information
relative to what is often available from natural sign restrictions on the parameters.

Under condition (8), the unique solution of the model can be written as

πt = µ1 + u1t − β̃Dt (µ2 + u2t) , and (9)

rt = max (µ2 + u2t,0) , (10)

where Dt := 1{rt=0} is an indicator (dummy) variable that takes the value 1 when rt is on the
boundary and zero otherwise, and

u1t =
ε̃1t + β̃ε2t

1− γβ̃
=
ε1t + βε2t

1− γβ
, u2t =

γε1t + ε2t
1− γβ

, (11)

µ1 =
c

1− γβ
, µ2 =

γc

1− γβ
+ rn.

Equations (9) and (10) express the endogenous variables πt, rt in terms of the exogenous
variables ε1t, ε2t, and correspond to the decision rules of the agents in the model. It is clear that
those decision rules differ in a world in which the ZLB occasionally binds, which is character-
ized by β̃ 6= 0, compared to a world in which it never does (i.e., the CSEM), where β̃ = 0.What
is important for identification, however, is that in a world in which the ZLB occasionally binds,
agents’ reaction to shocks differs across regimes, and the difference depends on the parameter
β̃, which from eq. (7), depends on the difference between the impact of conventional and un-
conventional policies, β and β∗, respectively. I will show that this change provides information
that identifies the structural parameters: we get point identification when β∗ = 0 (the KSEM
case), and partial identification when β∗ 6= β. The identification argument leverages the coeffi-
cient on the kink, β̃, in the ‘incidentally kinked’ regression (9), which is identified by a variant
of the well-known Heckit method (Heckman, 1979). I will sketch out the argument below, and
provide more details for the full SVAR model in the next section.

2.1.1. Identification of the KSEM

Recall that in the KSEM model β̃ = β. Consider the estimation of β in (4) from a regression
of πt on rt using only observations above the ZLB,

E (πt|rt, rt > 0) = c+ β (rt − rn) + ρ

(
rt − µ2 + τ

φ (a)

1−Φ (a)

)
, a=

−µ2

τ
, (12)
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where ρ = cov (u1t, u2t)/τ
2 − β = γσ2

1 (1− γβ)/ (γ2σ2
1 + σ2

2), τ =
√
var (u2t), and φ (·) ,

Φ (·) are standard Normal density and distribution functions, respectively. The coefficient ρ is
the bias in the estimation of β from the truncated regression (12). Now, the mean of πt using
the observations at the ZLB is

E (πt|rt = 0) = c− βrn + ρτ
φ (a)

Φ (a)
. (13)

Next, observe that µ2, τ and hence φ (a)/Φ (a) can be estimated from the Tobit regression
(10). Therefore, we can recover the bias ρ and identify β. A simple way to implement this is
the control function approach (Heckman, 1978). Let

ht (µ2, τ) := (1−Dt) (rt − µ2)−Dt

τφ (a)

Φ (a)
,

and run the regression

E (πt|rt) = c1 + βrt + ρht (µ2, τ) , (14)

where c1 = c − βrn is an unrestricted intercept. The rank condition for the identification of
β is simply that the regressors in (14) are not perfectly collinear. This holds if and only if
0< Pr (Dt = 1)< 1. So, as long as some but not all the observations are at the boundary, the
model is generically identified.

2.1.2. Partial identification of the unrestricted SEM

The discussion of the previous subsection shows that β̃ is identified from the kink in the
reduced-form equation for πt (9). It follows from eq. (7) and the order condition that β,β∗ are
not point identified. I will now demonstrate that they are partially identified.

The assumption cov (ε1t, ε2t) = 0 implies (see proof of Proposition 3 for a derivation)

γ =
ω12 − ω22β

ω11 − ω12β
(15)

where ωij := cov (uit, ujt). Substituting for γ in (7) using (15) yields

β̃ =
β − β∗

1− ω12 − ω22β

ω11 − ω12β
β∗
. (16)

For any given value of the reduced-form parameters β̃,Ω := var(ut), ut = (u1t, u2t)
′, the

identified set for (β,β∗) is a one-dimensional manifold in <2 defined by eq. (16) intersected
with the coherency condition (8).

It is instructive to illustrate the identified set graphically at some given value of β̃ and Ω.
Consider, for example, the case Ω equal to the identity I2, at which (15) yields γ = −β, and
the coherency condition (8) reduces to 1 + ββ∗ > 0, and (16) yields the function β = β̃+β∗

1−β̃β∗ .

Figure 1 plots this function at β̃ =−1/2. and highlights in dark gray the region of incoherency
defined by 1 + ββ∗ ≤ 0. The identified set is the part of the function β = β̃+β∗

1−β̃β∗ that lies to the

right of the pole at 1/β̃, i.e., in the region β∗ > 1/β̃ =−2 in this example.
Now, consider the additional restrictions β ≥ β∗ ≥ 0 or β ≤ β∗ ≤ 0, highlighted by the light

gray shaded areas in Figure 1. The interpretation of those restrictions is that unconventional
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policy neither has the opposite effect from conventional policy, nor is it more effective than
conventional policy. With this additional restriction, we see that the identified set further shrinks
to the part of β = β̃+β∗

1−β̃β∗ in the interval (β̃−1,0]. The projection of the identified set onto the β

axis yields β ∈ (−∞, β̃], since β̃ < 0, while its projection onto the β∗ axis yields β∗ ∈ (β̃−1,0].
Because equations (8) and (16) encapsulate all the information in the reduced-form parameters
about β,β∗, the identified set obtained from them is sharp.

FIGURE 1.—The identified set for (β,β∗) when Ω = I and β̃ = −1/2, obtained by the intersection of
β = β̃+β∗

1−β̃β∗
and 1 + ββ∗ > 0 (coherency condition). Light gray area corresponds to β ≤ β∗ ≤ 0 and β ≥ β∗ ≥ 0.

The thick part of the curve β = β̃+β∗

1−β̃β∗
indicates the identified set obtained from the combined restrictions, and the

bold intervals on the axes give the projections of the identified set onto β and β∗.

Let us define a new parameter λ such that β∗ = λβ. The restriction indicated by the light
gray areas in Figure 1 corresponds to λ ∈ [0,1]. If we interpret λ as a measure of the efficacy of
unconventional policy, this restriction implies that unconventional policy is neither counter- nor
over-productive. This reparameterization offers a convenient way to discretize the parameter
space when we compute the identified set numerically, as is the case in the more general model
discussed in the next section.

In this bivariate model, it is possible to characterize the identified set analytically. Here, I
discuss the identified set for β and defer the discussion of λ to Appendix A.1.

We have already established that β is completely unidentified when β = β∗ (equivalently
λ= 1), which corresponds to the CSEM. From the definition of β̃ in (7), it follows that β = β∗

implies β̃ = 0. So, when β̃ = 0, β is completely unidentified. It remains to see what happens
when β̃ 6= 0. Let γ0 := ω12/ω11, which can be interpreted as the value the reaction function
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coefficient γ in (2) would take if β = 0, i.e., the value corresponding to a Choleski identification
scheme where rt is placed last. In Appendix A.1, I prove the following bounds

if β̃ = 0 or β̃γ0 < 0, then β ∈<; otherwise
if ω12 = γ0 = 0, then β ∈ (−∞, β̃] if β̃ < 0 or β ∈ [β̃,∞) if β̃ > 0;
if 0< β̃γ0 ≤ 1, then β ∈

[
1
γ0
, β̃
]

if β̃ < 0 or β ∈
[
β̃, 1

γ0

]
if β̃ > 0;

if β̃γ0 > 1, then λ < 0.

(17)

We see that when β̃ 6= 0 and 0 ≤ β̃γ0 ≤ 1, we can identify both the sign of the causal effect
β of rt on πt and get bounds on its magnitude. In particular, the identified coefficient β̃ is
an attenuated measure of the true causal effect β. Moreover, β̃γ0 > 1 implies that β∗ has the
opposite sign from β, i.e., unconventional policy has the opposite effect of the conventional
one. That could be interpreted as saying that unconventional policy is counterproductive.

Finally, the hypothesis that unconventional policy is as effective as conventional policy,
β∗ = β or λ = 1, is equivalent to the null hypothesis H0 : β̃ = 0. The alternative that uncon-
ventional policy is less effective than conventional policy, β > β∗ if β > 0, or β < β∗ if β < 0,
corresponds to the two-sided alternative H1 : β̃ 6= 0. This can be tested using a likelihood ratio
test.

3. SVAR WITH AN OCCASIONALLY BINDING CONSTRAINT

I now develop the methodology for identification and estimation of SVARs with an occasion-
ally binding constraint. Let Yt = (Y ′1t, Y2t)

′ be a vector of k endogenous variables, partitioned
such that the first k− 1 variables Y1t are unrestricted and the kth variable Y2t is bounded from
below by b.4 Define the latent process Y ∗2t that is only observed, and equal to Y2t, whenever
Y2t > b. If Y2t is a policy instrument, Y ∗2t can be thought of as the ‘shadow’ instrument that
measures the desired policy stance. The pth-order SVAR model is given by the equations

A11Y1t +A12Y2t +A∗12Y
∗
2t =B10X0t +

p∑
j=1

B1,jYt−j +

p∑
j=1

B∗1,jY
∗
2,t−j + ε1t, (18)

A∗22Y
∗
2t +A22Y2t +A21Y1t =B20X0t +

p∑
j=1

B2,jYt−j +

p∑
j=1

B∗2,jY
∗
2,t−j + ε2t, (19)

Y2t = max (Y ∗2t, b) ,

for t ≥ 1 given a set of initial values Y−s, Y ∗2,−s, for s = 0, ..., p− 1, and X0t are exogenous
and predetermined variables.

Equation (19) can be interpreted as a policy reaction function because it determines the
desired policy stance Y ∗2t. Similarly, ε2t is the corresponding policy shock. The above model is
a dynamic SEM. Two important differences from a standard SEM are the presence of (i) latent
lags amongst the predetermined variables on the right-hand side, which complicates estimation;
and (ii) the contemporaneous value of Y2t in the policy reaction function (19), which allows
it to vary across ZLB and non-ZLB regimes. The presence of latent lags Y ∗2,t−j in the policy

4The lower bound does not need to be constant. All we need is to observe the periods in which the economy is at
the ZLB regime.
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rule (19) is particularly useful because it allows the model to incorporate forward guidance
(Reifschneider and Williams, 2000, Debortoli et al., 2019), see the Supplementary Appendix
for details.

Collecting all the observed predetermined variables X0t, Yt−1, ..., Yt−p into a vector Xt, and
the latent lags Y ∗2,t−1, ..., Y

∗
2,t−p into X∗t , and similarly for their coefficients, the model can be

written compactly as:

(
A11 A

∗
12 A12

A21 A
∗
22 A22

)Y1t

Y ∗2t
Y2t

=BXt +B∗X∗t + εt, (20)

Y2t = max{Y ∗2t, b} .

The vector of structural errors εt is assumed to be i.i.d. Normally distributed with zero mean
and identity covariance.

In the previous section, we defined the KSEM as a special case of the general model, where
Y ∗2t < b has no (contemporaneous) impact on Y1t. In the dynamic setting, it feels natural to
define the corresponding ‘kinked SVAR’ model (KSVAR) as a model in which Y ∗2t has neither
contemporaneous nor dynamic effects. Therefore, the KSVAR obtains as a special case of (20)
when both A∗12 = 0, and B∗ = 0, which corresponds to a situation in which the bound is fully
effective in constraining what policy can achieve at all horizons.

The opposite extreme to the KSVAR is the censored SVAR model (CSVAR). Again, unlike
the CSEM, which only characterizes contemporaneous effects, the idea of a CSVAR is to im-
pose the assumption that the constraint is irrelevant at all horizons. So, it corresponds to a fully
unrestricted linear SVAR in the latent process (Y ′1t, Y

∗
2t)
′. This is a special case of (20) when

both A12 = 0 and the elements of B corresponding to lagged Y2t are equal to zero. Finally, I
refer to the general model given by (20) as the ‘censored and kinked SVAR’ (CKSVAR).

Define the k× k square matrices

A :=

(
A11 A12 +A∗12
A21 A22 +A∗22

)
, and A∗ :=

(
A11 A

∗
12

A21 A
∗
22

)
. (21)

A determines the impact effects of structural shocks during periods when the constraint does
not bind. A∗ does the same for periods when the constraint binds.

To analyze the CKSVAR, we first need to establish existence and uniqueness of the reduced
form. This is done in the following proposition.

PROPOSITION 1: The model given in eq. (20) is coherent and complete (i.e., it has a unique
solution) if and only if

κ :=
A22 −A21A

−1
11 A12

A∗22 −A21A
−1
11 A

∗
12

> 0. (22)

Note that (22) does not depend on the coefficients on the lags (whether latent or observed), so
it is exactly the same as in a static SEM. This condition is useful for inference, e.g., when con-
structing confidence intervals or posteriors, because it restricts the range of admissible values
for the structural parameters. It can also be checked empirically when the structural parameters
are point-identified.

If condition (22) is satisfied, there exists a reduced-form representation of the CKSVAR
model (20). For convenience of notation, define the indicator (dummy variable) that takes the
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value one if the constraint binds and zero otherwise:

Dt = 1{Y2t=b}. (23)

PROPOSITION 2: If (22) holds, and for any initial values Y−s, Y ∗2,−s, s = 0, ..., p − 1, the
reduced-form representation of (20) for t≥ 1 is given by

Y1t =C1Xt +C
∗
1X
∗
t + u1t − β̃Dt

(
C2Xt +C

∗
2X
∗
t + u2t − b

)
(24)

Y2t = max
(
Y
∗
2t, b
)
, (25)

Y
∗
2t =C2Xt +C

∗
2X
∗
t + u2t, (26)

Y ∗2t = (1−Dt)Y
∗
2t +Dt

(
κY
∗
2t + (1− κ) b

)
, (27)

where ut = (u′1t, u2t)
′ = A

−1
εt, C

∗
=
(
C
∗′
1 ,C

∗′
2

)′
= κA

−1
B∗, X

∗
t = (xt−1, ..., xt−p)

′ , xt =

min
(
Y
∗
2t − b,0

)
, x−s = κ−1 min

(
Y ∗2,−s − b,0

)
, s= 0, ..., p− 1,

β̃ =
(
A11 −A∗12A∗−1

22 A21

)−1 (
A∗12A

∗−1
22 A22 −A12

)
, (28)

κ is defined in (22) and the matrices C1,C2, are given in eq. (49) in the Appendix.

Note that the “reduced-form” latent process Y
∗
2t is, in general, different from the “structural”

shadow rate Y ∗2t defined by (27). They coincide only when κ= 1. This holds, for example, in
the CSVAR model.

Equation (25) combined with (26) is a familiar dynamic Tobit regression model with the
added complexity of latent lags included as regressors wheneverC

∗
2 6= 0. Likelihood estimation

of the univariate version of this model was studied by Lee (1999). The k− 1 equations (24) are
‘incidentally kinked’ dynamic regressions, that I have not seen analyzed before.

3.1. Identification

3.1.1. Identification of reduced-form parameters

Let ψ denote the parameters that characterize the reduced form (24)-(25): β̃,C, C
∗

and
Ω = var (ut) . It is useful to decompose ψ into ψ2 =

(
C2,C

∗
2, τ
)′
, where τ =

√
var (u2t), and

ψ1 =
(
vec
(
C1

)′
, vec

(
C
∗
1

)′
, β̃′, δ′, vech (Ω1.2)

)′
, where δ = Ω12/τ

2, Ω1.2 = Ω11 − δδ′τ2,
and Ωij = cov (uit, ujt).

Equation (25) is the dynamic Tobit regression model studied by Lee (1999). So, its parame-
ters, ψ2, are generically identified provided that the regressors are not perfectly collinear. This
requires that 0< Pr (Dt = 1)< 1.

Given ψ2, the identification of the remaining parameters, ψ1, can be characterized using a
control function approach. Consider the k− 1 regression equations

E
(
Y1t|Y2t,Xt,X

∗
t

)
=C1Xt +C

∗
1X
∗
t + β̃Z1t + δZ2t, (29)

where

Z1t =Dt

(
b−C2Xt −C

∗
2X
∗
t −

τφ (at)

Φ (at)

)
, (30)
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Z2t = (1−Dt)
(
Y2t −C2Xt −C

∗
2X
∗
t

)
+Dt

τφ (at)

Φ (at)
, (31)

at =
(
b−C2Xt−C

∗
2X
∗
t

τ

)
, and φ (·) , Φ (·) are the standard Normal density and distribution func-

tions, respectively. When C
∗

is different from zero, regressors X
∗
t , Z1t, and Z2t in (29) are un-

observed, so we need to replace them with their expectations conditional on Y2t, Yt−1, ..., Y1.

Then, the regressors on the right-hand side of (29) become Xt :=
(
X ′t,X

∗′
t|t,Z1t|t,Z2t|t

)′
,

where ht|t := E
(
h
(
X
∗
t

)
|Y2t, Yt−1, ..., Y1

)
for any function h (·) whose expectation exists.5

The coefficients C1,C
∗
1, β̃, and δ are generically identified if the regressors Xt are not per-

fectly collinear.

3.1.2. Identification of structural parameters

From the order condition, we can easily establish that there are not enough restrictions to
identify all the structural parameters in the CKSVAR (20). Let k0 = dim (X0t) denote the
number of predetermined variables other than the own lags of Yt. For example, in a standard
VAR without deterministic trends, we have X0t = 1, so k0 = 1. The number of reduced-form
parameters ψ is k0k + k2p (in C) plus kp (in C

∗
) plus k − 1 (in β̃) plus k (k+ 1)/2 (in Ω).

The number of structural parameters in (20) is k0k+ k2p (in B) plus kp (in B∗) plus k2 (in A)
plus k (in A∗12 and A22). So, the CKSVAR is underidentified by k (k− 1)/2 + 1 restrictions.
Nevertheless, I will show that the impulse responses to ε2t are identified. Specifically, they are
point-identified when A∗12 = 0, and partially identified when A∗12 6= 0 but A∗12 and A12 have the
same sign, analogous to the bounds given in equation (17) in the previous section.

Because the CKSVAR is nonlinear, IRFs are obviously state-dependent, and there are many
ways one can define them, see Koop et al. (1996). The IRF to ε2t, according to any of the
definitions proposed in the literature, is identified if the reduced-form errors ut can be expressed
as a known function of ε2t and a process that is orthogonal to it, i.e., ut = g (ε2t, et) , where
et is independent of ε2t. From Proposition 2, it follows that the function g is linear, and more
specifically,

u1t =
(
Ik−1 − βγ

)−1 (
ε̄1t + βε̄2t

)
, and (32)

u2t =
(
1− γβ

)−1
(ε̄2t + γε̄1t) , (33)

where

β :=−A−1
11 A12, γ :=−A−1

22 A21, (34)

ε̄1t :=A−1
11 ε1t, ε̄2t :=A

−1

22 ε2t,

and A22 = A∗22 + A22, defined in (21). Note that β can be interpreted as the response of Y1t

to a shock that increases Y2t by one unit, and γ are the contemporaneous reaction function
coefficients of Y2t to Y1t when Y2t > b (unconstrained regime). The shock vector ε1t is not
structural but it is orthogonal to ε2t, so it plays the role of et in ut = g (ε2t, et) . Hence, the IRF
is identified if and only if β, γ, and A22 are identified.

The following proposition shows identification when A∗12 = 0.

5In the KSVAR model, we have C∗1 = 0 and C∗2 = 0, so X∗t drops out of (29), and the regressors Z1t,Z2t are
observed, so Zjt|t = Zjt, j = 1,2.
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PROPOSITION 3: When A∗12 = 0 and the coherency condition (22) holds, the parameters in
(32)-(33) are identified by the equations β = β̃,

γ =
(

Ω′12 −Ω22β
′
)(

Ω11 −Ω12β
′
)−1

, and (35)

A
−1

22 =
√

(−γ,1) Ω (−γ,1)′. (36)

Remarks 1. β = β̃ follows immediately from the definition (28) with A∗12 = 0. Equations
(35) and (36) hold without the restriction A∗12 = 0. They follow from the orthogonality of the
shocks ε2t and ε1t.

2. An instrumental variables interpretation of this identification result is as follows. Define
the instrument

Zt := Y1t − β̃Y2t =A−1
11 B1Xt +A−1

11 B
∗
1X
∗
t +A−1

11 ε1t,

where the second equality holds when A∗12 = 0. The orthogonality of the errors E (ε1tε2t) = 0
implies E (Ztε2t) = 0. So, Zt are valid k− 1 instruments for the k− 1 endogenous regressors
Y1t in the structural equation of Y2t = max (Y ∗2t, b), where Y ∗2t is given by (19). Normalizing
(19) in terms of Y ∗2t yields the structural equation in the more familiar form of a policy rule:

Y2t = max
(
γY1t + B̄2Xt + B̄∗2X

∗
t + ε̄2t, b

)
, (37)

where B̄2 = A
−1

22 B2, B̄
∗
2 = A

−1

22 B
∗
2 . Since A−1

11 is non-singular, the coefficient matrix of Zt
in the ‘first-stage’ regressions of Y1t is nonsingular, so the coefficients of (37) are generically
identified by the rank condition. An alternative to the Tobit IV regression model (37) is the indi-
rect Tobit regression approach used in the static SEM by Blundell and Smith (1994). Equation
(37) can be written as the dynamic Tobit regression

Y2t = max
(
γ̃Zt + B̃2Xt + B̃∗2X

∗
t + ε̃2t, b

)
, (38)

where γ̃ =
(
1− γβ

)−1
γ, B̃2 =

(
1− γβ

)−1
B̄2, B̃

∗
2 =

(
1− γβ

)−1
B̄∗2 and ε̃2t =

(
1− γβ

)−1
ε̄2t.

Note that the coherency condition (22) becomes κ= A22

A∗22

(
1− γβ

)
> 0, so 1− γβ 6= 0, which

guarantees the existence of the representation (38). Given β = β̃, the structural parameter γ

can then be obtained as γ = γ̃
(
Ik−1 + β̃γ̃

)−1

, and similarly for the remaining structural pa-
rameters in (37).

3. The parameter A22 allows the reaction function of Y ∗2t to differ across the two regimes.
The special case A22 = 0 thus corresponds to the restriction that the reaction function remains
the same across regimes. The parameters A22 and A∗22 are not separately identified. Hence,
A∗−1

22 , the scale of the response to the shock ε2t during periods when Y2t = b, is not iden-
tified.6 Similarly, κ = A22

A∗22

(
1− γβ

)
is not identified, and therefore, neither is the structural

shadow value Y ∗2t in eq. (27). Identification of these requires an additional restriction on A22,
e.g., A22 = 0. Turning this discussion around, we see that a change in the reaction function
across regimes does not destroy the point identification of the effects of policy during the un-
constrained regime, since the latter only requires β,γ and A22, not A∗22 or κ.

6This is akin to the well-known property of a probit model that the scale of the distribution of the latent process is
not identifiable.
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Next, we turn to the case A∗12 6= 0, and derive identification under restrictions on the sign and
magnitude of A∗12 relative to A12 and A∗22 relative to A22. The first restriction is motivated by a
generalization of the discussion on the SEM model in Subsection 2.1.2. Specifically, if A12 =
A12 +A∗12 measures the effect of conventional policy (operating in the unconstrained regime)
and A∗12 measures the effect of unconventional policy (operating in the constrained regime),
then the assumption that A12 and A∗12 have the same sign means that unconventional policy
effects are neither in the opposite direction nor larger in absolute value than conventional policy
effects. In other words, unconventional policy is neither counterproductive nor over-productive
relative to conventional policy. This can be characterized by the specification A∗12 = ΛA12 and
A12 = (Ik−1 −Λ)A12, where Λ = diag (λj) , λj ∈ [0,1] for j = 1, ..., k − 1. I further impose
the restriction that λj = λ for all j, so that A∗12 = λA12 and A12 = (1− λ)A12 with λ ∈ [0,1] .
This, in turn, means that Y2t and Y ∗2t enter each of the first k − 1 structural equations for Y1t

only via the common linear combination λY ∗2t + (1− λ)Y2t, which can be interpreted as a
measure of the effective policy stance.

We also need to consider the impact of A22 on identification. The parameter ζ = A22/A
∗
22

gives the ratio of the standard deviation of the monetary policy shock in the constrained relative
to the unconstrained regime. It is also the ratio of the reaction function coefficients in the two
regimes, e.g.,A∗−1

22 A21 versusA
−1

22 A21. I will impose ζ > 0, so that the sign of the policy shock
does not change across regimes. With the above reparametrization and the definitions in (34),
the identified coefficient β̃ in (7) can be written as

β̃ = (1− ξ)
(
I − ξβγ

)−1
β, ξ := λζ. (39)

Similarly, given ζ > 0, the coherency condition (22) reduces to
(
1− γβ

) (
1− ξγβ

)
> 0. No-

tice that the parameters λ, ζ only appear multiplicatively, so it suffices to consider them together
as ξ = λζ. Once β is known, the remaining structural parameters needed to obtain the IRF to
ε2t are γ andA22, and they are obtained from Proposition 3. So, the identified set can be charac-
terized by varying ξ over its admissible range. Without further restrictions on ζ, the admissible
range is obviously ξ ≥ 0. If we further assume that ζ ≤ 1, i.e., that the slope of the reaction
function coefficients is no steeper in the constrained regime than in the unconstrained regime,
then ξ ∈ [0,1] , and so partial identification proceeds exactly along the lines of the SEM in the
previous section where λ played the role of ξ. In the case k = 2, the bounds derived in eq. (17)
apply, with β = β in the notation of the present section. However, when k > 2, it is difficult
to obtain a simple analytical characterization of the identified set for β. In any case, we will
typically wish to obtain the identified set for functions of the structural parameters, such as
the IRF. This can be done numerically by searching over a fine discretization of the admissible
range for ξ. An algorithm for doing this is provided in Supplementary Appendix E.2.

3.2. Estimation

Estimation of the CKSVAR is carried out by Maximum Likelihood (ML) using either a ver-
sion of the sequential importance sampler (SIS) of Lee (1999) or the fully adapted particle filter
(FAPF) of Malik and Pitt (2011) to evaluate the likelihood, except in the case of the KSVAR
model for which the likelihood is available analytically. The details are given in Supplementary
Appendix E.1.

Using the limit theory of Newey and McFadden (1994), the ML estimator can be shown to
be consistent and asymptotically Normal and the LR statistic asymptotically χ2 with degrees of
freedom equal to the number of restrictions. Standard asymptotics arise when the probability of
each regime occurring is bounded away from zero. Infrequent visits to one of the two regimes
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will slow down the rate of convergence of the estimator, but will not lead to a non-standard lim-
iting distribution. Since the focus of this paper is on identification, I will not discuss primitive
conditions for these results, such as geometric ergodicity, which can be shown, for example, by
bounding the joint spectral radius of the companion-form representation of the model (Lieb-
scher, 2005). Instead, I report Monte Carlo simulation results on the finite-sample properties of
ML estimators and LR tests in Appendix B. They show that the Normal distribution provides
a very good approximation to the finite-sample distribution of the ML estimators. I find some
finite-sample size distortion in the LR tests of various restrictions on the CKSVAR, but this can
be addressed effectively with a parametric bootstrap, as shown in the Appendix.

One interesting observation from the simulations is that the LR test of the CSVAR restrictions
against the CKSVAR appears to be less powerful than the corresponding test of the KSVAR
restrictions against the CKSVAR. Thus, we expect to be able to detect deviations from KSVAR
more easily than deviations from CSVAR. In other words, finding evidence against the hy-
pothesis that unconventional policies are fully effective (CSVAR) may be harder than finding
evidence against the opposite hypothesis that they are completely ineffective (KSVAR).

4. APPLICATION

I use the three-equation SVAR of Stock and Watson (2001), consisting of inflation, the un-
employment rate and the Federal Funds rate to provide a simple empirical illustration of the
methodology developed in this paper. As discussed in Stock and Watson (2001), this model
is far too limited to provide credible identification of structural shocks, so the results in this
section are meant as an illustration of the new methods.

The data are quarterly and are constructed exactly as in Stock and Watson (2001).7 The
variables are plotted in Figure 2 over the extended sample 1960q1 to 2018q2. I will consider all
periods in which the Fed funds rate was below 20 basis points to be on the ZLB. This includes
28 quarters, or 11% of the sample.

4.1. Tests of efficacy of unconventional policy

I estimate three specifications of the SVAR(4) with the ZLB: the unrestricted CKSVAR
specification, as well as the restricted KSVAR and CSVAR specifications. The maximum log-
likelihood for each model is reported in Table I, computed using the SIS algorithm in the case
of CKSVAR and CSVAR, with 1000 particles. The accuracy of the SIS algorithm was gauged
by comparing the log-likelihood to the one obtained using the resampling FAPF algorithm. In
both CKSVAR and CSVAR the difference is very small. The results are also very similar when
we increase the number of particles to 10000. Finally, the table reports the LR tests of KSVAR
and CSVAR against CKSVAR using both asymptotic and parametric bootstrap p-values.

The KSVAR imposes the restriction that no latent lags (i.e., lags of the shadow rate) should
appear on the right hand side of the model, i.e., B∗ = 0 in (20) or C

∗
1 = 0 and C

∗
2 = 0 in

(24) and (25). This amounts to 12 exclusion restrictions on the CKSVAR(4), four restrictions
in each of the three equations. This is necessary (but not sufficient) for the hypothesis that
unconventional policy is completely ineffective at all horizons. It is necessary because C

∗
=(

C
∗′
1 ,C

∗′
2

)′
6= 0 would imply that unconventional policy has at least a lagged effect on Yt.

7The inflation data are computed as πt = 400ln(Pt/Pt−1), where Pt, is the implicit GDP deflator and ut is the
civilian unemployment rate. Quarterly data on ut and it are formed by taking quarterly averages of their monthly
values.
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FIGURE 2.—Data used in Stock and Watson (2001) over the extended sample 1960q1 to 2018q2.

TABLE I

ESTIMATED CKSVAR MODELS IN INFLATION, UNEMPLOYMENT AND THE FEDERAL FUNDS RATEa

Model log lik (FAPF) # restr. LR stat. Asym. p-val. Boot. p-val.

CKSVAR(4) -81.64 -81.94
KSVAR(4) -97.05 - 12 30.82 0.002 0.011
CSVAR(4) -94.86 -94.87 14 26.43 0.023 0.117

aMaximized log-likelihood of various SVAR models in inflation, unemployment and Federal funds rate. CKSVAR corresponds to the unre-
stricted specification (24)-(25); KSVAR excludes latent lags; CSVAR is a purely censored model. CKSVAR and CSVAR likelihoods computed
using sequential importance sampling with 1000 particles (alternative estimates based on Fully Adapted Particle Filtering with resampling are
shown in parentheses). Asymptotic p-values from χ2

q , q = number of restrictions. Bootstrap p-values from parametric bootstrap with 999
replications. Sample: 1960q1-2018q2 (234 obs, 11% at ZLB)

C
∗

= 0 is not sufficient to infer that unconventional policy is completely ineffective because it
may still have a contemporaneous effect on Y1t if A∗12 6= 0, and the latter is not point-identified.
The result of the test in Table I shows that lags of the shadow rate are statistically significant at
the 5% level, rejecting the null hypothesis that unconventional policy has no effect.

The CSVAR model imposes the restriction that only the coefficients on the lags of the shadow
rate (which is equal to the actual rate above the ZLB) are different from zero in the model,
i.e., the elements of B corresponding to lags of Y2t in (20) are all zero, or equivalently, the
elements of C corresponding to lags of Y2t in (24) and (25) are all equal to C

∗
. In addition,

it imposes the restriction that β̃ = 0 in (24), i.e., no kink in the reduced-form equations for
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inflation and unemployment across regimes, yielding 14 restrictions in total. This is necessary
for the hypothesis that the ZLB is empirically irrelevant for policy in that it does not limit
what monetary policy can achieve. The evidence against this hypothesis is not as strong as
in the case of the KSVAR. The asymptotic p-value is 0.023, indicating rejection of the null
hypothesis that unconventional policy is as effective as conventional policy at the 5% level,
but the bootstrap p-value is 0.117. Note that this difference could also be due to fact that the
test of the CSVAR restrictions may be less powerful than the test of the KSVAR restrictions, as
indicated by the simulations reported in the previous section. Thus, I would cautiously conclude
that the evidence on the empirical relevance of the ZLB is mixed. Further evidence on the
efficacy of unconventional policy will also be provided in the next subsection.

4.2. Impulse response functions

Based on the evidence reported in the previous section, I estimate the IRFs associated with
the monetary policy shock using the unrestricted CKSVAR specification, and compare them
to recursive IRFs from the CSVAR specification that place the Federal funds rate last in the
causal ordering. From the identification results in Section 3, the CKSVAR point-identifies the
nonrecursive IRFs only under the assumption that the shadow rate has no contemporaneous
effect of Y1t, i.e., A∗12 = 0 in (18). Note that, due to the nonlinearity of the model, the IRFs are
state-dependent. I use the following definition of the IRF from Koop et al. (1996):8

IRFh,t
(
ς,Xt,X

∗
t

)
=E

(
Yt+h|ε2t = ς,Xt,X

∗
t

)
−E

(
Yt+h|ε2t = 0,Xt,X

∗
t

)
. (40)

Figure 3 reports the nonrecursive IRFs to a 25 basis points monetary policy shock at the
end of the sample, 2018q3 (at which point X

∗
t = 0 in (40) because interest rates had been

above the ZLB over the previous four quarters), from the CKSVAR under the assumption that
unconventional policy has no contemporaneous effect (λ = 0). It also reports two different
estimates of recursive IRFs using the identification scheme in Stock and Watson (2001) with
interest rates placed last. The first estimate is obtained from the CSVAR specification, and
the second is a “naive” OLS estimate of the IRF that ignores the ZLB constraint – a direct
application of the method in Stock and Watson (2001) to the present sample. The figure also
reports 90% bootstrap error bands for the nonrecursive IRFs.

In the nonrecursive IRF, the response of inflation to a monetary tightening is negative on
impact, albeit very small, and, with the exception of the first quarter when it is positive, it stays
negative throughout the horizon. Hence, the incidence of a price puzzle is mitigated relative
to the recursive IRFs, according to which inflation rises for up to 6 quarters after a monetary
tightening (9 quarters in the OLS case). Note, however, that the error bands are so wide that
they cover (pointwise) most of the recursive IRF, though less so for the OLS one. Turning
to the unemployment response, we see that the nonrecursive IRF starts significantly positive
on impact (no transmission lag) and peaks much earlier (after 4 quarters) than the recursive
IRF (10 quarters). In this case, the recursive IRF is outside the error bands for several quarters
(more so for the naive OLS IRF). Finally, the response of the Federal funds rate to the monetary
tightening is less than one on impact and generally significantly lower than the recursive IRFs.
This is both due to the contemporaneous feedback from inflation and unemployment, as well
as the fact that there is a considerable probability of returning to the ZLB, which mitigates the
impact of monetary tightening.

8The kink in the reduced-form representation of the model makes it difficult to approximate the IRFs by local
projections on simple nonlinear functions of the data, such as powers or interactions with the regime indicator, see
the Supplementary Appendix for further discussion of this point.
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FIGURE 3.—IRFs to a 25bp monetary policy shock in 2018q3 from a CKSVAR(4) estimated over the period
1960q1 to 2018q2. The solid line corresponds to point estimates from the nonrecursive identification using the ZLB
under the assumption that unconventional policy is ineffective on impact, with 90% bootstrap error bands in gray.
The dashed line corresponds to the nonlinear recursive IRF, estimated with the CSVAR(4) under the restriction that
the contemporaneous impact of Fed Funds on inflation and unemployment is zero. The dotted line corresponds to the
recursive IRF from a linear SVAR(4) estimated by OLS with Fed Funds ordered last.

Next, I turn to the identified sets of the IRFs that arise when I relax the restriction that
unconventional policy is ineffective, i.e., λ can be greater than zero. I consider the range of
ξ = λζ ∈ [0,1] , recalling that λ measures the efficacy of unconventional policy and ζ measures
the ratio of the reaction function coefficients and shock volatilities in the constrained versus
the unconstrained regimes. The shaded areas in Figure 4 report the identified sets without any
other restrictions. The striped areas (a subset of the aforementioned identified sets) show the
tightening of the identified sets when I impose the additional sign restriction that the contem-
poraneous effect of the monetary policy shock to the Fed Funds rate should be nonnegative.
The bold lines show the IRFs under the (point-identifying) assumption λ= 0. The latter are the
same as the nonrecursive point estimates reported in Figure 3.

We observe that the identified set for the IRF of inflation is bounded from above by the
limiting case λ = 0. This is also true of the response of the Fed Funds rate. The case λ =
0 provides a lower bound on the effect to unemployment only from 0 to 9 quarters. Even
though the point estimate of the unemployment response under λ= 0 remains positive over all
horizons, the identified set includes negative values beyond 10 quarters ahead. We also notice
that the identified sets are fairly large, albeit still informative. Interestingly, the identified IRF
of the Fed Funds rate includes a range of negative values on impact. These values arise because
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for values of ξ > 0, there are generally two solutions for the structural VAR parameters β,γ
in the equations (35), (39), with one of them inducing such strong responses of inflation and
unemployment to the interest rate that the contemporaneous feedback in the policy rule would
in fact revert the direct positive effect of the policy shock on the interest rate. If we impose
the additional sign restriction that the contemporaneous impact of the policy shock to the Fed
Funds rate must be non-negative, then those values are ruled out and the identified sets become
considerably tighter. This is an example of how sign restrictions can lead to tighter partial
identification of the IRF.

FIGURE 4.—Identified sets of the IRFs to a 25bp monetary policy shock in 2018q3 from a CKSVAR(4) estimated
over the period 1960q1 to 2018q2. The shaded area denotes the identified set, the solid line indicates the point-i-
dentified IRF under the restriction that unconventional policy is ineffective on impact. The striped area imposes the
restriction that the response of the Fed funds rate on impact should be nonnegative.

With an additional assumption on ζ, the method can be used to obtain an estimate of the
identified set for λ, the measure of the efficacy of unconventional policy. In particular, if we set
ζ = 1, i.e., the reaction function remains the same across the two regimes, then the identified
set for λ is [0.0.506] . In other words, the identified set excludes values of the efficacy of policy
beyond 51%, so that, roughly speaking, unconventional policy is at most 51% as effective
as conventional one. Note that this estimate does not account for sampling uncertainty and
relies crucially on the assumption that the reaction function remains the same across the two
regimes. This assumption could be justified by arguing that there is no reason to believe that
policy objectives may have shifted over the ZLB period, and that any desired policy stance
was feasible over that period. The latter assumption may be questionable. For example, one
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can imagine that there may be financial and political constraints on the amount of quantitative
easing policy makers could do, which may cause them to proceed more cautiously over the
ZLB period than over regular times. Within the context of our model, this would be reflected
as a flatter policy reaction function over the ZLB period than over the non-ZLB periods, i.e.,
it will correspond to ζ < 1. To illustrate the implications of this for the identification of λ,
suppose that ζ = 1/2, i.e., the shadow rate reacts half as fast to shocks during the ZLB period
than it does in the non-ZLB period. Then, the identified set for λ would include 1, i.e., the
data would be consistent with the view that unconventional policy is fully effective. So, under
this alternative assumption on ζ , the reason we observed a subdued response to policy shocks
over the ZLB period is because policy was less active over that period, and policy shocks were
smaller, not because unconventional policy was partially ineffective.

As I discussed in the introduction, it is difficult to make further progress on this issue without
further information or additional assumptions. The technical reason is that the scale of the latent
regression over the censored sample is not identified, so additional information is required to
untangle the structural parameters λ and ζ from ξ = λζ . One possibility would be to identify λ
from the coefficients on the lags of Y2t and Y ∗2t by imposing the (overidentifying) restriction that
Y2t−j and Y ∗2t−j appear in the model only via the linear combination Y eff

2t−j := λY ∗2t−j +(1− λ)
Y2t−j for all lags j = 1, ..., p, where Y eff

2t can be interpreted as the effective policy stance.
Provided that the coefficients on the lags of Y ∗2t or Y2t are not all zero, this restriction point
identifies λ, and hence, partially identifies ζ from ξ. One could obtain tighter bounds by using
sign restrictions (see Ikeda et al., 2020), or obtain point identification by using conventional
identification schemes. For instance, one can identify β directly using external instruments, as
in Gertler and Karadi (2015), and hence point identify ξ from (39).

5. CONCLUSION

This paper has shown that the ZLB can be used constructively to identify the causal effects
of monetary policy on the economy. Identification relies on the (in)efficacy of alternative (un-
conventional) policies. When unconventional policies are partially effective in mitigating the
impact of the ZLB, the causal effects of monetary policy are only partially identified. A gen-
eral method is proposed to estimate SVARs subject to an occasionally binding constraint. The
method can be used to test the efficacy of unconventional policy, modelled via a shadow rate.
Application to a core three-equation SVAR with US data suggests that the ZLB is empirically
relevant and unconventional policy is only partially effective.

APPENDIX A: PROOFS

A.1. Derivation of identified set for model of Section 2

Using the notation β∗ = λβ, eq. (16) can be expressed as

β̃ = g (β)β, g (β) :=
1− λ

1− λβ (ω12 − ω22β)

ω11 − ω12β

. (41)

When ω12 = 0, we have g (β) = 1−λ
1+λω22β2/ω11

∈ (0,1) for all λ ∈ (0,1) . Therefore, when

β̃ 6= 0, the sign of β is the same as that of β̃ and its magnitude is lower, as stated in (17).
Next, consider ω12 6= 0. It is easily seen that g (0) = 1−λ and limβ→±∞ (β) = 0. Moreover,

∂g

∂β
= λ (1− λ)

ω12ω22β
2 − 2ω11ω22β + ω11ω12(

ω11 − βω12 − βλω12 + β2λω22

)2 .
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For λ ∈ (0,1) , the above derivative function has zeros at ω12ω22β
2− 2ω11ω22β+ω11ω12 = 0,

which occur at

β1 =
ω11ω22+

√
ω11ω22(ω11ω22−ω2

12)
ω12ω22

β2 =
ω11ω22−

√
ω11ω22(ω11ω22−ω2

12)
ω12ω22

, if ω12 6= 0.

Now, because 0 < (ω11ω22 − ω2
12) < ω11ω22 implies

√
ω11ω22 (ω11ω22 − ω2

12) < ω11ω22, we
have βi < 0, i= 1,2, when ω12 < 0 and βi > 0, i= 1,2, when ω12 > 0.

By symmetry, it suffices to consider only one of the two cases, e.g., the case ω12 < 0. In
this case, g′ (β) = ∂g

∂β
< 0 for all β > 0 and, since g (0) = 1 − λ and g (∞) = 0, it follows

that g (β) ∈ (0,1− λ) for all β > 0. Thus, from (41) we see that β̃ < 0 cannot arise from
β > 0 when ω12 < 0. In other words, observing β̃ < 0 must mean that β < 0. Moreover, since
g′ (β)< 0 for all β > β1 and β1 < 0, it must be that g (β)> 0 for all β > β1, and hence, also for
β1 < β ≤ 0. At β < β1, g

′ (β)> 0, and since g′ (β)< 0 for all β < β2 < β1, and g (−∞) = 0,
it has to be that g (β) approaches zero from below as β → −∞, and therefore, g (β) must
cross zero at some β0 ∈ (β2, β1) , and g (β) ≥ 0 for all β ∈ [β0,0] . Inspection of (41) shows
that β0 = ω11/ω12 = 1/γ0, which corresponds to γ =−∞ from (15). Since g (β) ∈ [0,1− λ]

for all β ∈ [β0,0] , and λ ∈ (0,1), it follows from (41) that
∣∣∣β̃∣∣∣ ≤ |β|. In other words, β̃ is

attenuated relative to the true β.
Finally, we notice that there is a minimum value of β̃ that one can observe under the re-

striction λ ∈ [0,1] (at λ = 1, β̃ = 0). Given the attenuation bias and the fact that β̃ < 0 if
and only if β ∈ [β0,1] , the smallest value of β̃ occurs when λ = 0 and β = ω11/ω12, so
β̃min = ω11/ω12 = 1/γ0. Thus, observing β̃ < ω11/ω12 and ω12 < 0, or β̃ω12/ω11 > 1, vio-
lates the identifying restriction that λ ≥ 0, for only with a λ < 0 can we get g (β) > 1 when
β < 0 and hence β̃ < β < 0.

A.1.1. Bounds on λ

The bounds on λ are obtained by finding all the values of λ for which equation (41) has a
solution for β. This equation implies

β2
(

(1− λ)ω12 + β̃λω22

)
− β

(
(1− λ)ω11 + β̃ (1 + λ)ω12

)
+ β̃ω11 = 0,

whose discriminant is the following quadratic function of lambda:

D (λ) =
(

(1− λ)ω11 + β̃ (1 + λ)ω12

)2

− 4β̃ω11

(
(1− λ)ω12 + β̃λω22

)
.

Hence, the identified set for λ corresponds to Sλ = {λ :D (λ)≥ 0}. This set is non-empty
because D (0)≥ 0. It can be computed analytically and can take the following three shapes: (i)
Sλ = < if D (λ)≥ 0 for all λ ∈ <; (ii) Sλ = (−∞, λlo] ∪ [λup,∞) if ω11 − β̃ω12 6= 0, where
λlo < λup are the roots of D (λ) = 0; and (iii) Sλ = (−∞, λlo] if ω11− β̃ω12 = 0, because ω2

11

−
(
ω11

ω12

)2

ω2
12− 2

(
ω11

ω12

)
ω11ω12 + 2

(
ω11

ω12

)2

ω11ω22 = 2ω2
11
ω11ω22−ω2

12

ω2
12

> 0. If we also impose
the restriction λ ∈ [0,1] , then the identified set is Sλ ∩ [0,1].
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A.2. Proof of Proposition 1

Define Ai2 := A∗i2 + Ai2, i = 1,2 as the right blocks of A that was defined in (21). Ap-
plying (Gourieroux et al., 1980, Theorem 1), coherency holds if and only if detA and detA∗

have the same sign. Without loss of generality, we can assume that A11 is nonsingular (this
can always be achieved by reordering the variables in Yt). From (21), we have detA∗ =
detA11 det

(
A∗22 −A21A

−1
11 A

∗
12

)
and detA = detA11 det

(
A22 −A21A

−1
11 A12

)
(Lütkepohl,

1996, p. 50 (6)). The coherency condition can be written as detA/detA∗ > 0, which, given
that

(
A22 −A21A

−1
11 A12

)
and

(
A∗22 −A21A

−1
11 A

∗
12

)
are scalars, yields (22).

A.3. Proof of Proposition 2

Define Ai2 :=A∗i2 +Ai2, i= 1,2 as the right blocks of A that was defined in (21). Also let
Y ∗t := (Y ′1t, Y

∗
2t)
′ . When the coherency condition (22) holds, the solution of (20) exists and is

unique. It can be expressed as

Y ∗t =

{
CXt +C∗X∗t + ut, if Dt = 0

C̃Xt + C̃∗X∗t + c̃b+ ũt, if Dt = 1
(42)

where

C =A
−1
B, C∗ =A

−1
B∗, ut =A

−1
εt (43)

and

C̃ =A∗−1B, C̃∗ =A∗−1B∗, c̃=−A∗−1

(
A12

A22

)
b, ũt =A∗−1εt. (44)

Using the partitioned inverse formula, we obtain

C̃1 =
(
A11 −A∗12A∗−1

22 A21

)−1 (
B1 −A∗12A∗−1

22 B2

)
C̃2 =

(
A∗22 −A21A

−1
11 A

∗
12

)−1 (
B2 −A21A

−1
11 B1

)
and

C1 =
(
A11 −A12A

−1

22 A21

)−1 (
B1 −A12A

−1

22 B2

)
C2 =

(
A22 −A21A

−1
11 A12

)−1 (
B2 −A21A

−1
11 B1

)
.

Solving the latter for B1 and B2 yields

B1 =A11C1 +A12C2, and B2 =A22C2 +A21C1.

Thus,

C̃1 =C1 +
(
A11 −A∗12A∗−1

22 A21

)−1 (
A12 −A∗12A∗−1

22 A22

)
C2 =C1 − β̃C2, and

C̃2 =
(
A∗22 −A21A

−1
11 A

∗
12

)−1 (
A∗22 −A21A

−1
11 A

∗
12 +A22 −A21A

−1
11 A12

)
C2 = κC2,

where κ is given in (22). The exact same derivations apply to C̃∗, i.e.,

C̃∗1 =C∗1 − β̃C∗2 , and C̃∗2 = κC∗2 .
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Next,

c̃1 =
(
A11 −A∗12A∗−1

22 A21

)−1 (
A∗12A

∗−1
22 A22 −A12

)
b= β̃b, and

c̃2 =−A22 −A21A
−1
11 A12

A∗22 −A21A
−1
11 A

∗
12

b= (1− κ) b.

Finally, ũt =A∗−1Aut = (ũ′1t, ũ2t)
′, where

ũ1t = u1t − β̃u2t, and ũ2t = κu2t.

Substituting back into (42), the reduced-form model for Y1t becomes

Y1t = (1−Dt) (C1Xt +C∗1X
∗
t + u1t)

+Dt

((
C1 − β̃C2

)
Xt +

(
C∗1 − β̃C∗2

)
X∗t + u1t − β̃u2t

)
, (45)

and for Y ∗2t it is

Y ∗2t =C2Xt +C∗2X
∗
t + u2t − (1− κ)Dt (C2Xt +C∗2X

∗
t + u2t − b) . (46)

Next, define

Ỹ ∗2t :=C2Xt +C∗2X
∗
t + u2t, (47)

and rewrite (46) as

Y ∗2t = Ỹ ∗2t − (1− κ)Dt

(
Ỹ ∗2t − b

)
= (1−Dt) Ỹ

∗
2t +Dt

(
κỸ ∗2t + (1− κ) b

)
. (48)

Let q = dimXt denote the number of elements of Xt and define, for each i= 1,2,

Cij =

{
Cij , j ∈ {1, q} :Xtj 6= Y2,t−s for all s ∈ {1, p}
Cij +C∗is, j ∈ {1, q} :Xtj = Y2,t−s, for some s ∈ {1, p} . (49)

In other words, C contains the original coefficients on all the regressors other than the lags of
Y2t, while the coefficients on the lags of Y2t are augmented by the corresponding coefficients
of the lags of Y ∗2t. For example, if p= 1 and there are no other exogenous regressors X0t, then,
for i= 1,2,

CiXt +C∗iX
∗
t =Ci1Y1t−1 +Ci2Y2t−1 +C∗i Y

∗
2t−1,

so Ci = (Ci1,Ci2 +C∗i ). Using (49), we can rewrite (47) as

Ỹ ∗2t =C2Xt +C∗2 min (X∗t − b,0) + u2t. (50)

Now, observe that

min (Y ∗2t − b,0) =Dt (Y ∗2t − b) = κDt

(
Ỹ ∗2t − b

)
= κmin

(
Ỹ ∗2t − b,0

)
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So, letting X̃∗t denote the lags of Ỹ ∗2t, we have min (X∗t − b,0) = κmin
(
X̃∗t − b,0

)
, and

consequently,

C∗min (X∗t − b,0) =C
∗

min
(
X̃∗t − b,0

)
,

where C
∗

= κC∗. Now, from (50) we have

Ỹ ∗2t =C2Xt +C
∗
2 min

(
X̃∗t − b,0

)
+ u2t.

Recall the definition of Y
∗
2t in (26):

Y
∗
2t :=C2Xt +C

∗
2X
∗
t + u2t,

where X
∗
t := (xt−1, ..., xt−p)

′ , and xt := min
(
Y
∗
2t − b,0

)
, with initial conditions x−s = κ−1

min
(
Y ∗2,−s − b,0

)
, s= 0, ..., p−1. It follows that min

(
X̃∗t − b,0

)
=X

∗
t for all t≥ 1, so that

Ỹ ∗2t = Y
∗
2t. Substituting Y

∗
2 for Ỹ ∗2 in (48), we get (27). Using the reparametrization (49) and

the relationship between X∗t and X
∗
t in (45), we obtain (24).

Finally, from eq. (46), it follows that the event Y ∗2t < b is equivalent to

b+ κ (C2Xt +C∗2X
∗
t + u2t − b)< b,

which, since κ > 0 by the coherency condition (22), is equivalent to

u2t < b−C2Xt −C∗2X∗t . (51)

Using the definition (26), and (49), the inequality (51) can be written as Y
∗
2t < b, which estab-

lishes (25).
Comment: Note that κ appears in the reduced form only multiplicatively with C∗, so κ

and C∗ are not separately identified, only C
∗

= κC∗ is. The reparametrization from C to C is
convenient because C is identified independently of κ, while C,C∗ and κ are not separately
identified.

A.4. Proof of Proposition 3

We solve ut =A
−1
εt using the partitioned inverse formula to get

u1t =
(
A11 −A12A

−1

22 A21

)−1 (
ε1t −A12A

−1

22 ε2t

)
(52)

u2t =
(
A22 −A21A

−1
11 A12

)−1 (
ε2t −A21A

−1
11 ε1t

)
. (53)

Using the definitions

β :=−A−1
11 A12, γ :=−A−1

22 A21,

ε̄1t :=A−1
11 ε1t, ε̄2t :=A

−1

22 ε2t,

we can rewrite (52)-(53) as (32)-(33).
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Note that

ε̄1t =A−1
11

(
A11u1t +A12u2t

)
= u1t − β̄u2t,

ε̄2t =A
−1

22

(
A21u1t +A22u2t

)
=−γu1t + u2t,

so,

var (ε̄1t) =
(
Ik−1,−β̄

)
Ω
(
Ik−1,−β̄

)′
,

var (ε̄2t) = (−γ̄,1) Ω (−γ̄,1)′ ,

and

cov (ε̄1t, ε̄2t) =
(
Ik−1,−β

)(Ω11 Ω12

Ω′12 Ω22

)
(−γ,1)′

=−
(
Ω11 − βΩ′12

)
γ′ + Ω12 − βΩ22 = 0.

The last equation identifies γ given β. Specifically,

γ′ =
(
Ω11 − βΩ′12

)−1 (
Ω12 − βΩ22

)
.

APPENDIX B: NUMERICAL RESULTS

This section provides Monte-Carlo evidence on the finite-sample properties of the pro-
posed estimators and tests. The data generating process (DGP) is a trivariate VAR(1), given
by equations (18) and (19). I consider three different DGPs corresponding to the CKSVAR,
KSVAR and CSVAR models, respectively. In all three DGPs, the following parameters are
set to the same values: the contemporaneous coefficients are A11 = I2, A12 = A∗12 = 02×1,
A∗22 = 1 and A22 = 0; the intercepts are set to zero, B10 = 02×1 and B20 = 0; the coef-
ficients on the lags are B1,1 = (ρI2,0) , B∗1,1 = 02×1, B2,1 = (01×2,B22,1), with ρ = 0.5.
Finally, each of the three DGPs is determined as follows. DGP1: B22,1 = B∗2,1 = 0 (both
KSVAR and CSVAR restrictions hold, since lags of Y2,t and Y ∗2,t all have zero coefficients);
DGP2: B22,1 = ρ, B∗2,1 = 0 (KSVAR restrictions hold but CSVAR restrictions do not); DGP3:
B22,1 = 0, B∗2,1 = ρ (CSVAR restrictions hold but KSVAR restrictions do not). The setting of
the autoregressive coefficient ρ = 0.5 leads to a lower degree of persistence than is typically
observed in macro data (e.g., in the Stock and Watson, 2001, application, the three largest roots
are 0.97, 0.97 and 0.8), because I want to avoid confounding any possible finite-sample issues
arising from the ZLB with well-known problems of bias and size distortion due to strong per-
sistence (near unit roots) in the data. Finally, the bound on Y2t is set to b= 0, the sample size is
T = 250, the initial conditions are set to 0 and the number of Monte Carlo replications is 1000.
In all cases, the CKSVAR and CSVAR likelihoods are computed using SIS with R = 1000
particles. The notation for the reported parameters is given in Table B.I.

Figure B.1 reports the sampling distribution of the ML estimators of the reduced-form pa-
rameters in Proposition 2 for the CKSVAR model under DGP1. The results for the KSVAR and
CSVAR models, which are also correctly specified under DGP1, are omitted because they are
entirely analogous. The sampling densities appear to be very close to the superimposed Normal
approximations, indicating that the Normal asymptotic approximation is fairly accurate.

Table B.II reports moments of the sampling distributions of the above mentioned estimators
for the CKSVAR model. Again, the results for the KSVAR and CSVAR models are entirely
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TABLE B.I

PARAMETER NOTATION IN REPORTED SIMULATION RESULTS

Mnemonic Description

τ st. dev. of reduced form error u2t in Y2t (constrained variable)
Eq. 3 reduced form equation for Y2t

Eq. j red. form equation for Y1j,t, j = 1,2 (unconstrained variables)
β̃j coefficient on kink in eq. j
eq. i Y1j_1 coefficient of Y1j,t−1 in eq. i
eq. i Y2_1 coefficient of Y2,t−1 in eq. i
eq. i lY2_1 coefficient of min

(
Y ∗2,t−1 − b,0

)
in eq. i

δj coefficient of regression of u1j,t (red. form error in Eq. j) on u2t

Ch_ij (i,j) element of Choleski factor of Ω1.2
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FIGURE B.1.—Sampling densities of ML estimators of reduced-form coefficients of CKSVAR(1) under DGP1
(solid lines) and approximating Normal densities (dashed lines). T = 250, 1000 Monte Carlo replications. Parameter
names described in Table B.I.

analogous and are therefore omitted. We notice no discernible biases. Results with T = 100 and
T = 1000 given in the Supplementary Appendix indicate that the RMSE declines at rate

√
T in

accordance with asymptotic theory. It is noteworthy that the estimators of β̃ have substantially
larger RMSE than the estimators of the other parameters.
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TABLE B.II

MOMENTS OF SAMPLING DISTRIBUTION OF ML ESTIMATORS OF THE PARAMETERS OF CKSVAR(1)a

ML-CKSVAR true mean bias sd RMSE

τ 1.000 0.983 -0.017 0.068 0.070
Eq.3 Constant 0.000 -0.006 -0.006 0.175 0.176

Eq.3 Y11_1 0.000 0.000 0.000 0.061 0.061
Eq.3 Y12_1 0.000 -0.000 -0.000 0.064 0.064

Eq.3 Y2_1 0.000 -0.010 -0.010 0.173 0.173
Eq.3 lY2_1 0.000 -0.013 -0.013 0.258 0.258

β̃1 -0.000 -0.008 -0.008 0.356 0.356
β̃2 0.000 -0.004 -0.004 0.359 0.359

Eq.1 Constant 0.000 0.002 0.002 0.213 0.213
Eq.1 Y11_1 0.500 0.489 -0.011 0.057 0.058
Eq.1 Y12_1 0.000 0.002 0.002 0.060 0.060

Eq.1 Y2_1 0.000 -0.002 -0.002 0.163 0.163
Eq.2 Constant 0.000 0.005 0.005 0.214 0.214

Eq.2 Y11_1 0.000 0.000 0.000 0.058 0.058
Eq.2 Y12_1 0.500 0.491 -0.009 0.057 0.058

Eq.2 Y2_1 0.000 -0.001 -0.001 0.159 0.159
Eq.1 lY2_1 0.000 0.005 0.005 0.232 0.232
Eq.2 lY2_1 0.000 0.002 0.002 0.233 0.233

δ1 0.000 -0.001 -0.001 0.157 0.157
δ2 0.000 -0.004 -0.004 0.155 0.155

Ch_11 1.000 0.975 -0.025 0.044 0.051
Ch_21 0.000 -0.001 -0.001 0.066 0.066
Ch_22 1.000 0.972 -0.028 0.046 0.054

aComputed under DGP1 with T = 250 using 1000 MC replications. Parameter names described in Table B.I.

The DGPs in the previous simulations have the property that the frequency of the ZLB regime
is around 50%. The Supplementary Appendix reports simulation results with a slight modifica-
tion to the DGPs to match the frequency in the sample of the empirical application in the paper
(11%). The results are very similar to those reported in Figure B.1 and Table B.II: the Normal
approximation of the sampling distribution of the ML estimator remains very accurate and the
bias is negligible. The only difference is that the standard deviation of β̃ is larger.

Next, I turn to the properties of the LR test of KSVAR against CKSVAR and CSVAR against
CKSVAR. The former hypothesis involves three restrictions (exclusion of the latent lag Y ∗2,t−1

from each of the three equations), so the LR statistic is asymptotically distributed as χ2
3 under

the null. The latter hypothesis involves five restrictions (exclusion of the observed lag Y2,t−1

from each of the three equations, plus β̃ = 0), and the LR statistic is asymptotically distributed
as χ2

5. Table B.III reports the rejection frequencies of the LR tests for each of the two hypothe-
ses in each of the three DGPs at three significance levels: 10%, 5% and 1%. In addition to
the asymptotic tests, I also report the rejection frequency of the tests using parametric boot-
strap critical values. The parametric bootstrap uses draws of Normal errors and the estimated
reduced-form parameters to generate the bootstrap samples of Yt and Y ∗2t. The Monte Carlo
rejection frequencies are computed using the “warp-speed” method method of Giacomini et al.
(2013). Note that both null hypotheses hold under DGP1, but only the KSVAR is valid under
DGP2 and only the CSVAR is valid under DGP3. For convenience, I indicate the rejection
frequencies under the alternative in bold in the table.

There is evidence that the LR tests reject too often under H0 relative to their nominal level
when we use asymptotic critical values. Moreover, the size distortions are very similar across
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TABLE B.III

REJECTION FREQUENCIES OF LR TESTS OF H0 AGAINST H1 ACROSS DIFFERENT DGPSa

H0 : KSVAR, H1 : CKSVAR H0 : CSVAR, H1 : CKSVAR

Sign. Level 10% 5% 1% 10% 5% 1%

DGP1 asymptotic 0.173 0.093 0.020 0.155 0.084 0.022
bootstrap 0.107 0.045 0.005 0.109 0.052 0.012

DGP2 asymptotic 0.149 0.080 0.018 0.319 0.206 0.073
bootstrap 0.117 0.050 0.011 0.242 0.141 0.041

DGP3 asymptotic 0.587 0.454 0.244 0.141 0.067 0.019
bootstrap 0.471 0.365 0.194 0.103 0.053 0.018

aComputed using 1000 Monte Carlo replications, T = 250. The asymptotic tests use χ2
3 and χ2

5 critical values for KSVAR and CSVAR
resp. The bootstrap rej. frequencies were computed uisng the warp-speed method of Giacomini et al. (2013). Bold numbers indicate that the
rejecction frequencies were computed under H1 (power).

null hypotheses and DGPs. Unreported results show that size distortion eventually disappears
as the sample gets large, but this level of overrejection is unsatisfactory at T = 250, which is a
typical sample size in macroeconomic applications. The parametric bootstrap appears to do a
remarkably good job at correcting the size of the tests. In all cases considered, the parametric
bootstrap rejection frequency is not significantly different from the nominal level when the
null hypothesis holds (all but the numbers in bold in the Table). To shed further light on this
issue, Figure B.2 reports the QQ plots of the sampling distributions of the two LR statistics
against their asymptotic and parametric bootstrap approximations for all three DGPs under the
null hypothesis. The sampling distributions of the LR statistics stochastically dominate their
asymptotic approximations, but the bootstrap approximations are quite accurate.

Finally, the rejection frequencies highlighted in bold in Table B.III correspond to the power
of the tests against two very similar deviations from the null hypothesis. The numbers on the left
under DGP3 show the power of the test to reject the KSVAR specification under the alternative
at which the coefficient on the latent lag B∗2,1 = 0.5. Similarly, the bold numbers on the right
give the power of rejecting CSVAR against the alternative where the coefficient on the observed
lag B22,1 = 0.5. Since the lower bound is set to zero, and the sample contains about 50% of
observations at the ZLB, the two deviations from the null are of equal magnitude. Yet, we notice
the LR test is significantly more powerful against the KSVAR than against the CSVAR. This
could be because CSVAR imposes more restrictions than the KSVAR, so one would expect it
to have lower power than the KSVAR against similar deviations from the null.

REFERENCES

Amemiya, T. (1974). Multivariate regression and simultaneous equation models when the dependent variables are
truncated normal. Econometrica 42(6), 999–1012.

Aruoba, S. B., P. Cuba-Borda, K. Higa-Flores, F. Schorfheide, and S. Villalvazo (2020). Piecewise-Linear Approxi-
mations and Filtering for DSGE Models with Occasionally Binding Constraints. Technical report.

Aruoba, S. B., P. Cuba-Borda, and F. Schorfheide (2017). Macroeconomic dynamics near the ZLB: A tale of two
countries. The Review of Economic Studies 85(1), 87–118.

Aruoba, S. B., F. Schorfheide, and S. Villalvazo (2020). SVARs with Occasionally-Binding Constraints. Technical
report.

Blundell, R. and R. J. Smith (1994). Coherency and estimation in simultaneous models with censored or qualitative
dependent variables. Journal of Econometrics 64(1-2), 355 – 373.

Blundell, R. W. and R. J. Smith (1989). Estimation in a class of simultaneous equation limited dependent variable
models. The Review of Economic Studies 56(1), 37–57.



IDENTIFICATION AT THE ZERO LOWER BOUND 29

χ
2

3
 Bootstrap 

0.0 2.5 5.0 7.5 10.0 12.5

5

10

15

DGP 1, KSVAR

χ
2

3
 Bootstrap χ

2
5
 Bootstrap 

0.0 2.5 5.0 7.5 10.0 12.5 15.0

5

10

15

DGP1, CSVAR

χ
2

5
 Bootstrap 

χ
2

3
 Bootstrap 

0.0 2.5 5.0 7.5 10.0 12.5

2.5

5.0

7.5

10.0

12.5

15.0
DGP2, KSVAR

χ
2

3
 Bootstrap χ

2
5
 Bootstrap 

0.0 2.5 5.0 7.5 10.0 12.5 15.0

5

10

15

DGP3, CSVAR

χ
2

5
 Bootstrap 

FIGURE B.2.—QQ plots of the sampling distribution under the null hypothesis of LR statistics of KSVAR against
CKSVAR (left) and CSVAR against CKSVAR (right). Solid (dashed) lines plot quantiles against asymptotic χ2

(bootstrap) approximation. Computed for T = 250 using 1000 Monte Carlo replications.

Chen, H., V. Cúrdia, and A. Ferrero (2012, November). The macroeconomic effects of large-scale asset purchase
programmes. The Economic Journal 122, F289–F315.

Debortoli, D., J. Gali, and L. Gambetti (2019). On the Empirical (Ir) Relevance of the Zero Lower Bound Constraint.
In NBER Macroeconomics Annual 2019, volume 34. University of Chicago Press.

Eggertsson, G. B. and M. Woodford (2003). Zero bound on interest rates and optimal monetary policy. Brookings
papers on economic activity 2003(1), 139–233.

Fernández-Villaverde, J., G. Gordon, P. Guerrón-Quintana, and J. F. Rubio-Ramirez (2015). Nonlinear adventures at
the zero lower bound. Journal of Economic Dynamics and Control 57, 182–204.

Gertler, M. and P. Karadi (2015). Monetary policy surprises, credit costs, and economic activity. American Economic
Journal: Macroeconomics 7(1), 44–76.

Giacomini, R., D. N. Politis, and H. White (2013). A warp-speed method for conducting Monte Carlo experiments
involving bootstrap estimators. Econometric theory 29(3), 567–589.

Gourieroux, C., J. Laffont, and A. Monfort (1980). Coherency Conditions in Simultaneous Linear Equation Models
with Endogenous Switching Regimes. Econometrica 48(3), 675–695.

Greene, W. H. (1993). Econometric Analysis. New York: MacMillan.
Guerrieri, L. and M. Iacoviello (2015). OccBin: A toolkit for solving dynamic models with occasionally binding

constraints easily. Journal of Monetary Economics 70, 22–38.
Hayashi, F. and J. Koeda (2019). Exiting from Quantitative Easing. Quantitative Economics 10, 1069–1107.
Heckman, J. J. (1978). Dummy Endogenous Variables in a Simultaneous Equation System. Econometrica 46(4),

931–959.
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica 47(1), 153–161.
Herbst, E. P. and F. Schorfheide (2015). Bayesian estimation of DSGE models. Princeton and Oxford: Princeton

University Press.



30

Ikeda, D., S. Li, S. Mavroeidis, and F. Zanetti (2020). Testing the effectiveness of unconventional monetary policy in
Japan and the United States. Discussion paper 2020-E-10, Institute for Monetary and Economic Studies, Bank of
Japan. Available at https://www.imes.boj.or.jp/research/papers/english/20-E-10.pdf.

Koop, G., M. H. Pesaran, and S. M. Potter (1996). Impulse response analysis in nonlinear multivariate models.
Journal of econometrics 74(1), 119–147.

Kulish, M., J. Morley, and T. Robinson (2017). Estimating DSGE models with zero interest rate policy. Journal of
Monetary Economics 88(C), 35–49.

Lee, L.-F. (1976). Multivariate regression and simultaneous equations models with some dependent variables trun-
cated. "Discussion paper" 76-79, "University of Minnesota", "Minneapolis, USA".

Lee, L.-F. (1999). Estimation of dynamic and ARCH Tobit models. Journal of Econometrics 92(2), 355–390.
Lewbel, A. (2007). Coherency and completeness of structural models containing a dummy endogenous variable*.

International Economic Review 48(4), 1379–1392.
Liebscher, E. (2005). Towards a unified approach for proving geometric ergodicity and mixing properties of nonlinear

autoregressive processes. Journal of Time Series Analysis 26(5), 669–689.
Liu, P., K. Theodoridis, H. Mumtaz, and F. Zanetti (2019). Changing macroeconomic dynamics at the zero lower

bound. Journal of Business & Economic Statistics 37(3), 391–404.
Lütkepohl, H. (1996). Handbook of Matrices. England: Wiley.
Magnusson, L. M. and S. Mavroeidis (2014). Identification using stability restrictions. Econometrica 82(5), 1799–

1851.
Malik, S. and M. K. Pitt (2011). Particle filters for continuous likelihood evaluation and maximisation. Journal of

Econometrics 165(2), 190–209.
Nelson, F. and L. Olson (1978). Specification and estimation of a simultaneous-equation model with limited depen-

dent variables. International Economic Review 19(3), 695–709.
Newey, W. K. and D. McFadden (1994). Large sample estimation and hypothesis testing. In R. F. Engle and D. Mc-

Fadden (Eds.), The Handbook of Econometrics, Volume 4, pp. 2111–2245. North-Holland.
Pitt, M. K. and N. Shephard (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American

statistical association 94(446), 590–599.
Reifschneider, D. and J. C. Williams (2000). Three lessons for monetary policy in a low-inflation era. Journal of

Money, Credit and Banking 32(4), 936–966.
Rigobon, R. (2003). Identification through heteroskedasticity. The Review of Economics and Statistics 85(4), 777–

792.
Rossi, B. (2019). Identifying and estimating the effects of unconventional monetary policy: How to do it and what

have we learned? Discussion Paper DP14064, CEPR.
Smith, R. J. and R. W. Blundell (1986). An exogeneity test for a simultaneous equation tobit model with an application

to labor supply. Econometrica 54(3), 679–685.
Stock, J. H. and M. W. Watson (2001). Vector autoregressions. Journal of Economic Perspectives 15(4), 101–115.
Swanson, E. T. and J. C. Williams (2014). Measuring the effect of the zero lower bound on medium- and longer-term

interest rates. American Economic Review 104(10), 3154–3185.
Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica 26(1), 24–36.
Wu, J. C. and F. D. Xia (2016). Measuring the macroeconomic impact of monetary policy at the zero lower bound.

Journal of Money, Credit and Banking 48(2-3), 253–291.
Wu, J. C. and J. Zhang (2019). A shadow rate New Keynesian model. Journal of Economic Dynamics and Con-

trol 107, 103728.

https://www.imes.boj.or.jp/research/papers/english/20-E-10.pdf

	Introduction
	Simultaneous equations model
	Identification
	Identification of the KSEM
	Partial identification of the unrestricted SEM


	SVAR with an occasionally binding constraint
	Identification
	Identification of reduced-form parameters
	Identification of structural parameters

	Estimation

	Application
	Tests of efficacy of unconventional policy
	Impulse response functions

	Conclusion
	Appendix A: Proofs
	Derivation of identified set for model of Section 2
	Bounds on 

	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Appendix B: Numerical results
	References

