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Intro: OLS with weak exogeneity

• Linear regression in time series

yt = x′
tβ + εt, t ∈ {1, . . . , T}

• Object of interest is the linear contrast θ = r′β

• The most commonly used assumption of weak exogeneity:

E[εt |xt, xt−1, . . . ] = 0

• It is common to have feedback from yt to xt+1

• All good properties of OLS (no bias) derived with strict exogeneity:

E[εt | . . . , xt+1, xt, xt−1, . . . ] = 0



Intro: OLS with weak exogeneity

• It is known that OLS is biased in time series
• Common belief: OLS is consistent, asymptotically Gaussian, bias is

small
• Our claim: OLS may have large biases and be even inconsistent
• Factors leading to large bias of OLS:

• violations of strict exogeneity (even mild, one-period)
• regressors are auto-correlated (no strong persistence needed)
• many regressors



Intro: OLS with weak exogeneity

Simulation setup:

• x̃t is K-dimensional AR (1) process with parameter ρ

• εt ∼ i.i.d.N(0, 1) independent from X̃

• violation of strict exogeneity for one period: xt+1 = x̃t+1 + αεt

• yt = x′
tβ + εt

• β̂OLS = (X ′X)−1X ′Y

• θ̂OLS = r′β̂OLS



Intro: OLS with weak exogeneity

Simulation results (T = 200):
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Figure 1: Absolute Bias and Standard Deviation of OLS

Same results with MA(1) process Results with T=800



Intro: OLS with weak exogeneity

• We derive formula for OLS (feedback) bias
• We propose a new estimator that is nearly unbiased

• Our estimator uses an oblique projection (IV motivated)
• Uses an ‘invalid’ IV; an endogenous instrument
• ‘Instrument’ is constructed (from regressors) so that

endogeneity bias cancels with the feedback bias.

• Our estimator is consistent and asymptotically Gaussian
• In most settings, simulated changes to standard deviations are

minimal in comparison to OLS



Intro: OLS with weak exogeneity

Comparison with new estimator (T = 200):
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Figure 2: Absolute Bias and Standard Deviation of OLS and IV



Plan for This Talk

• Why is OLS biased?
• New estimator
• Consistency and asymptotic Gaussianity
• Multi-period feedback



Why OLS is biased?



Why OLS is biased?

Special case (only first regressor is weakly exogenous)

• Y = Xβ + ε

• X are T × K observed regressors
• X̃ are strictly exogenous variables:

E[εt |X̃] = 0, E[εtεs |X̃] = σ21{s = t}

• Feedback: x1,t = x̃1,t + aεt−1,
• All other regressors are strictly exogenous X−1 = X̃−1

• Normalization: X̃ ′X̃/T = IK



Why OLS is biased?

• Frisch-Waugh theorem:

β̂OLS
1 = X ′

1M−1Y

X ′
1M−1X1

; β̂OLS
1 − β1 = X ′

1M−1ε

X ′
1M−1X1

M−1 = I − X̃−1(X̃ ′
−1X̃−1)−1X̃ ′

−1 is projection orthogonal to X̃−1

• x1,t = x̃1,t + aεt−1

X ′
1M−1ε =

∑
s,t

MstXsεt = X̃ ′
1M−1ε + a

∑
s,t

Mstεs−1εt

• Partialling out mixes up timing!!!
• E

[∑
s,t Ms,tεs−1εt |X̃

]
= σ2 ∑

t Mt+1,t



Why OLS is biased?

β̂OLS
1 − β1 = X ′

1M−1ε

X ′
1M−1X1

• The denominator is T + a2σ2(T − K) + op(T )
• The order of the bias in β̂OLS

1 is

aσ2 ∑
t Mt+1,t

T + a2σ2(T − K)



Why OLS is biased?

• ∑
t Mt+1,t = −

∑
t Pt+1,t, where P = X̃(X̃ ′X̃)−1X̃ ′

• Normalization: X̃ ′X̃/T = IK , then
∑

t

Mt+1,t = − 1
T

∑
t

X̃ ′
t+1X̃t ≈ −EX̃ ′

t+1X̃t

• ∑
t Mt+1,t measures a linear connection between X̃t and X̃t+1

• In stationary time series we should expect∑
t

Mt+1,t ≈ −ρK,

where ρ is average of the first order auto-correlation coefficients



Why OLS is biased?

Summary

• If only first regressor is weakly exogenous: x1,t = x̃1,t + aεt−1

• Then
• the coefficient β̂OLS

1 is biased by

aσ2 ∑
t Mt+1,t

T + a2σ2(T − K)
≈ − aσ2ρK

T + a2σ2(T − K)

• Inconsistency when: K/T → const; a and ρ separated from zero
• Bias comparable to standard error when: K2/T → const; a and ρ

separated from zero
• All other coefficients are nearly unbiased

• Special case is more general than you may think – rotations!



Why OLS is biased; one period feedback

Assumption 1

(i) The regressors xt satisfy xt = x̃t + αεt−1 where X̃ has full rank
(ii) The errors {εt}

T
t=0 are i.i.d. conditionally on X̃ with E[εt |X̃] = 0,

σ2 = E[ε2
t |X̃] and E[ε4

t ] < ∞
(iii) The non-random vectors r, α ∈ RK satisfy r′(X̃ ′X̃/T )−1r = Op(1)

and α′(X̃ ′X̃/T )−1α = Op(1).
(iv) The number of regressors K may diverge with the sample size T ;

T − K diverges to infinity



Why OLS is biased; one period feedback

Theorem: Asymptotic bias of OLS

Suppose Assumption 1 holds. Then,

r′β̂OLS − r′β = σ2r′S̄−1α
∑

t

M̃t+1,t + op(1),

where

• S̄ = X̃ ′X̃ + αα′σ2(T − K)
• M̃ = I − X̃(X̃ ′X̃)−1X̃ ′.

• Value of r′S̄−1α = O(1/T ) is not known and hard to assess,
• Value of ∑

t M̃t+1,t ≈
∑

t Mt+1,t is observed



Is it empirically important?

• Stock and Watson (2016) data set: quarterly observations from
1964 to 2013 (T = 200) on 108 US macro indicators

• Extracted cyclical component = a two-year-ahead forecast error
based on a AR(4) forecast (as in Hamilton (2018))

• 100 experiments:
• randomly draw a regression with K regressors
• estimate feedback
• keep exogenous part of regressors, simulate outcome with feedback
• calculate bias based on 1000 draws



Is it empirically important?

Simulation results with US macro data for x̃t (T = 200):
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Figure 3: Absolute Bias and Standard Deviation of OLS



New Estimator



New Estimator: one period case

• Assume 1-period violation of strict exogeneity
• Oblique projection:

PZ,X = X(Z ′X)−1Z ′, MZ,X = I − PZ,X

• M2
Z,X = MZ,X but not symmetric

• Direction of projection: zt,γ = zt = xt − γxt+1

β̂IV(γ) = (Z ′X)−1Z ′Y



New Estimator: one period case

• Generalization of Frisch-Waugh:

β̂IV
1 (γ) − β1 =

Z ′
1MZ−1,X−1

ε

Z ′
1MZ−1,X−1

X1

• Special case with 1 weakly exogenous regressor: the same logic
• MZ−1,X−1

is exogenous
• x1,t = x̃1,t + aεt−1

• z1,t = z̃1,t + a(εt−1 − γεt)

Z ′
1MZ−1,X−1

ε = Z̃ ′
1MZ−1,X−1

ε + a
∑
s,t

(εs−1 − γεs)Mγ,stεt

E
[
Z ′

1MZ−1,X−1
ε
∣∣∣ X̃] = aσ2 ∑

t

(Mγ,t+1,t − γMγ,tt)



New Estimator: one period case

• When the direction of projection: zt = xt − γxt+1,

β̂IV(γ) = (Z ′X)−1Z ′Y

• Main bias term:

E
[
Z ′

1MZ−1,X−1
ε
]

= aσ2 ∑
t

(Mγ,t+1,t − γMγ,tt)

• Idea: choose γ in such a way to make this zero
• Solution is possible since diagonal elements are larger than lower

diagonal
• Estimator has IV interpretation: technical ’instrument’

zt = xt − γxt+1 is invalid if/when xt is not strictly exogenous
• γ is selected s.t. endogeneity bias of IV cancels OLS bias of weak

exogeneity



New Estimator: one period case

∑
t

(Mγ,t+1,t − γMγ,tt) = 0

• Non-linear equation
Lemma: Existence and uniqueness

• If X ′X has rank K and T ≥ 5K, then equation always has a
solution

• If |
∑

t Mt+1,t| ≤ µK and T > K(1 + (√µ + 1)2), then equation has
a solution |γ| <

√
µ√

µ+1

• Solution is a fixed point of a contraction



Asymptotics



New estimator: consistency

Theorem: Consistency of IV

Suppose Assumption 1 holds.

(i) If |γ| < 1 is fixed, then

r′β̂IV(γ) − r′β = σ2r′S̄−1
γ α

∑
t

(M̃γ,t+1,t − γM̃γ,tt) + op(1),

• S̄γ = Z̃ ′X̃ + σ2αα′ ∑
t(M̃γ,tt − γM̃γ,t,t+1)

• M̃γ = I − X̃(Z̃ ′X̃)−1Z̃ ′

(ii) If γ̂ solves equation ∑
t(Mγ,t+1,t − γMγ,tt) = 0, then

r′β̂IV(γ̂) − r′β = op(1).



Asymptotics: gaussianity

Assumption 2 maxt ∥(X̃ ′X̃)−1/2x̃t∥ = op(1)

Theorem: Gaussianity

Suppose Assumptions 1 and 2 hold. If γ̂ solve trace equation, then

r′β̂IV(γ̂) − r′β

σ̂T

d−→ N(0, 1) as T → ∞

where

• σ̂2
T = σ̂2(γ̂)∥r′(Z ′

γ̂X)−1Z ′
γ̂∥2

• σ̂2(γ̂) = y
′(I−γ̂D)Mγ̂y

tr
[
(I−γ̂D)M̃γ̂

] where D is ‘lag operator matrix’



Size in simulation

Simulation results with the US macro data for x̃t (T = 200):
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Figure 4: Size of Nominal 5% two-sided tests using OLS and IV with T = 200



Summary

• We showed that the typical time series OLS estimator with large
number of regressors is prone to large biases

• Factors leading to bias:
• Weak exogeneity (feedback)
• Autocorrelation of regressors
• Number of regressors

• Potential for bias can be assessed by the size of lower traces of M



Summary

• We proposed a new estimator
• Relies on oblique projection
• Correction is made on regressors without looking on the outcome or

assessing the direction of feedback
• Consistent under mild assumptions, asymptotically gaussian
• Standard deviation is comparable to that of OLS



Intro: OLS with weak exogeneity

Simulation results with MA(1)-process for x̃t (T = 200):
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Figure 5: Absolute Bias and Standard Deviation of OLS

Back to presentation



Intro: OLS with weak exogeneity

Simulation results (T = 800):
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Figure 6: Absolute Bias and Standard Deviation of OLS

Back to presentation
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