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Abstract

Social disruption occurs when a policy creates or destroys many network connections
between agents. It is a costly side effect of many interventions and so a growing em-
pirical literature recommends measuring and accounting for social disruption when
evaluating the welfare impact of a policy. However, there is currently little work char-
acterizing what can actually be learned about social disruption from data in practice.
In this paper, we consider the problem of identifying social disruption in a research
design that is popular in the literature. We provide two sets of identification results.
First, we show that social disruption is not generally point identified, but informative
bounds can be constructed using the eigenvalues of the network adjacency matrices
observed by the researcher. Second, we show that point identification follows from
a theoretically motivated monotonicity condition, and we derive a closed form repre-
sentation. We apply our methods in two empirical illustrations and find large policy
effects that otherwise might be missed by alternatives in the literature.

1 Introduction

Many policies are socially disruptive in that they alter a substantial fraction of agents’ social

or economic connections. Since networks determine a wide range of economic activities, dis-

rupting them can be harmful. For example, Carrell et al. (2013) study a change in classroom
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composition that was supposed to improve academic performance but instead segregated

students which exacerbated inequality. Barnhardt et al. (2017) analyze an antipoverty pro-

gram that was intended to provide economic opportunity but instead isolated participants

which led to financial insecurity. Both policies were well intentioned but, because they were

socially disruptive, ultimately hurt the agents that they were designed to help.

In light of these and other examples, a growing literature recommends measuring and

accounting for social disruption when evaluating the welfare impact of a policy (see, for

instance, Banerjee et al. 2021; Jackson 2021). But identifying social disruption from data

is not always straightforward in practice. Economists typically characterize the disruptive

impact of a policy by comparing the average number of connections between agents with

and without it. While easy to compute, comparing averages generally understates social

disruption. The reason for this is that economic policies usually have heterogeneous effects:

they create some connections and destroy others. If the amount of created connections is

roughly the same as the amount of destroyed connections, then the average difference will

be small, even when the total number of connections affected by the policy is not.1

In this paper, we go beyond comparing averages and consider the problem of separately

identifying the amount of connections created and the amount of connections destroyed by

a policy. We focus on a research design that is popular in the literature. Agents are first

randomly (or as good as randomly) assigned to one of two groups. The policy is imple-

mented in one of the groups but not the other. The agents in each group then interact and

report their connections. Versions of this design are considered, for example, by Carrell et

al. (2013); Feigenberg et al. (2013); Cai et al. (2015); Bajari et al. (2021); Banerjee et al.

(2021); Comola and Prina (2021); Heß et al. (2021); Johari et al. (2022).

Our first contribution is to propose a new framework to characterize the impact of a policy

on the structure of a network in a randomized experiment. We do not specify an econometric

model of link formation. Instead, we use the classical implication of random assignment,

that the agents in the group subjected to the policy form connections that are in some sense

1This disruption is policy relevant. It represents actual relationships that are upended, requiring time
and resources to replace. The literature shows that new connections may be of lower quality, associated with
less trust, communication, peer influence, etc. As a result, this disruption negatively impacts welfare, even
when the average number of connections with and without the policy is similar.
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representative of what the agents in the group not subjected to the policy would have realized

had they been subjected to the policy. Formalizing this condition in the context of network

data is not standard in econometrics, however, and our framework builds on ideas from the

graph theory and operations research literatures (see, generally, Lovász 2012; Cela 2013).

Our second contribution is to derive two new sets of identification results. In the first set

of results, we show that under no additional assumptions the amount of connections created

or destroyed by a policy is partially identified. Sharp bounds on the identified set are given

by a quadratic assignment problem (QAP), but these bounds are analytically and compu-

tationally intractable. Instead, we propose conservative outer bounds based on intersecting

several relaxations of the QAP. These bounds are formed by simple rearrangements of the

eigenvalues of the networks observed from the experiment, and so are straightforward to

analyze and compute. In the second set of results, we give a sufficient condition for point

identification. Our condition is a monotonicity assumption that is strong, but motivated

from the network theory literature. Under this condition, the amount of social disruption

is given by a difference in network eigenvalues that is also straightforward to analyze and

compute. Though not the focus of our paper, sufficient conditions for consistent estimation

and valid inference can be found in the online appendix. An R package for implementation

can be found at https://github.com/yong-cai/MatrixHTE.

We demonstrate our methodology with two empirical illustrations. The first illustration

uses data from Banerjee et al. (2021). Villages participate in a microfinance program and

the network connections are informal risk sharing links between households. The authors

compare the average number of connections between villages that do and do not participate

and find that participation is associated with a one percent decrease in connections. We find

disruptive effects that are nine to twenty one times larger using our bounds. The second

illustration uses data from Athey et al. (2011). Plots of timberland are randomly assigned to

a sealed or open auction format and the network connections are bids on the plots made by

loggers and mills. The authors compare the average number of bids across the two formats

and find that the sealed bid format encourages a small fraction of firms to participate. We

find disruptive effects that are six to twenty three times larger using our bounds.

Our paper relates to two relatively new literatures on endogenous network formation and
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partial identification with network data (see, generally, reviews by Bramoullé et al. 2020;

Graham 2020; Molinari 2020). Most of this work focuses on recovering the structural pa-

rameters of a social interaction or network formation model, rather than identifying specific

network statistics. Two exceptions we know of are Chandrasekhar and Lewis (2011); Thir-

kettle (2019). While these authors focus on identifying centrality measures from sampled

networks, our interest is in social disruption from an experiment.

Our paper also relates to an older literature on Frechet-Hoeffding-Makarov bounds (Ho-

effding 1940; Fréchet 1951; Makarov 1982) and quantile treatment effects (Doksum 1974;

Lehmann 1975; Whitt 1976). See, for instance, Manski (1997; 2003); Heckman et al. (1997);

Bitler et al. (2006); Firpo (2007); Fan and Park (2010); Tamer (2010); Abadie and Cat-

taneo (2018); Masten and Poirier (2018; 2020); Firpo and Ridder (2019); Frandsen and

Lefgren (2021) for work in econometric program evaluation. However, the structure of our

identification problem is fundamentally different, introducing challenges not present in this

literature. Intuitively, what distinguishes our framework is that while agents are individ-

ually assigned to policies, connections are measured between pairs of agents.2 It turns

out that this distinction substantially alters the identification problem. Standard results

are not generally valid and standard tools when naively applied often fail to identify any

social disruption. We provide intuition as to how our problem is different and why our

methodology is more appropriate in Section 2. Our formal framework and results are in

Sections 3 and 4, with some extensions in Section 5. Two empirical illustrations are in

Section 6. Proofs are in the appendix. Additional details are in the online appendix at

https://yong-cai.github.io/MatrixHTE/onlineAppendix.pdf.

2 An illustration of the main identification problem

This section provides a simplified illustration of the main identification problem, deferring

the general framework and results to Sections 3 and 4. We focus on identifying the magni-

tude of connections destroyed by a change in policy. The problem similar in spirit to that

2This is sometimes called “double randomization,” see Graham (2011); Graham et al. (2014); Bajari et al.
(2021); Johari et al. (2022) for related research designs, but fundamentally different identification problems.
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of bounding the joint distribution of two random variables using their marginals originally

considered by Hoeffding (1940); Fréchet (1951). However, our problem has a fundamen-

tally different structure. We give an example where naively applying the bounds from this

literature fails to identify any social disruption. Our methodology does.

2.1 A simplified setup

To learn about the disruptive impact of a new policy, we conduct an experiment where we

randomly assign N agents to a treatment group and N agents to a control group. We im-

plement the new policy in group 1 and maintain the status quo in group 0. For example, the

new policy could be that every agent in the group participates in an antipoverty program.

The status quo could be that no agent participates. The N agents in the treatment group

interact and form one network. The N agents in the control group interact and form another

network. Taking the size of the two groups to be the same simplifies our illustration, but is

not necessary for the general framework.

We use potential outcome notation. Let policy 1 refer to the new policy, policy 0 refer

to the status quo, group 1 refer to the treatment group, and group 0 refer to the control

group. Then Yij,s(t) is the potential connection between agents i and j in group s under

policy t. That is, Yij,s(t) describes what the connection between agents i and j in group s

would be if policy t were implemented in that group. Yij,s(t) is observed if and only if s = t.

To simplify our illustration, we assume that the networks are unweighted and undirected so

that Yij,s(t) ∈ {0, 1}. Weighted and directed networks are allowed in the general framework.

For this illustration, the parameter of interest is the number of network connections

between the N agents assigned to the control group that would be destroyed by implementing

the new policy in that group. That is,

1

2

N∑
i,j=1

(1− Yij,0(1))Yij,0(0). (1)

The problem is that Yij,0(1) is not observed. Without additional assumptions, Yij,0(1) could
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Figure 1: A toy example of an experiment. The six agents assigned to the treatment group
form a line. The six agents assigned to the control group form a star.

take any value in {0, 1} so that the identified set for (1) is

{
θ ∈ N : θ =

1

2

N∑
i,j=1

MijYij,0(0) for any Mij =Mji ∈ {0, 1}

}
. (2)

Since (2) is often too large to be informative, the idea is to leverage the assumption that the

agents are randomized to the treatment and control groups to refine it.

Example 1. A toy example with N = 6 is illustrated in Figure 1. The six agents assigned

to the treatment group form a line. The six agents assigned to the control group form a

star. There are five connections between the agents in the control group out of a possible

total of fifteen. Without additional assumptions, (2) says that the number of connections

that would be destroyed by implementing the policy in this group is between 0 and 5.

2.2 The main identification assumption

Our first main contribution is to propose a condition that formalizes how randomization

restricts the identified set. Our main identification assumption is that Y0(1) and Y1(1) are

weakly isomorphic. We defer a formal definition of this condition to Section 3. In words,

it says that the frequency of any network configuration such as a link between two agents,

a triangle between three agents, a star between six agents, etc. would be the same for the

two treatment groups if they were both assigned the new policy. It is a network analog

of the conventional assumption that the entries of Y0(1) and Y1(1) have the same empiri-
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cal distribution. Equality of distribution is a strong but ubiquitous implication of random

assignment, see Chapter 7.3 of Manski (2009) for an in depth discussion.

As with equality of distribution in a conventional experiment, randomization only gener-

ally implies that Y0(1) and Y1(1) are weakly isomorphic in large samples or in expectation.

However, to illustrate the main identification problem, we will in this section make the strong

and potentially unrealistic assumption that it holds exactly in the realized experiment. What

this means is that the configuration of links connecting the N agents in the treatment group

describe exactly how the N agents in the control group would be linked under the new policy.

Formally, there exists an N×N permutation matrix Π, unknown to the researcher, such that

Yij,0(1) =
N∑

k,l=1

Ykl,1(1)ΠikΠjl. (3)

Condition (3) suggests an experiment conducted on N pairs or “clones” of agents. One

member of each pair is randomly assigned to each group and the counterfactual connection

between agents in the control group is given by their clones in the treatment group. If the re-

searcher knows which pairs of agents are clones, then they can compute (1) by simply substi-

tuting Yij,0(1) with Ycicj ,1(1) where ci is the identity of i’s clone. But the researcher has forgot-

ten this information so that, in principle, any matching between the agents of the treatment

and control groups (as represented by some permutation matrix) could be the correct one.

Randomization does not generally imply that (3) holds exactly in finite samples. Instead,

it is an approximation to what randomization does in large samples. The idea that random-

ization can be characterized by an approximate matching is not original to our paper: an

analogous condition plays a key role in the identification arguments of the Frechet-Hoeffding-

Makarov bounds and quantile treatment effects literature. See Whitt (1976); Heckman et al.

(1997) for detailed discussions. What is new in our setting is that the quadratic structure

of (3) makes the problem of identifying social disruption with network data fundamentally

different. We discuss this complication in Section 2.2.2 below.
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2.2.1 The identified set under the main identification assumption

Though condition (3) is intended to be a large sample approximation, to illustrate its iden-

tifying content in this section we suppose it holds exactly. Plugging (3) into (1) implies that

the number of links destroyed by the policy is

1

2

N∑
i,j=1

(1− Yij,0(1))Yij,0(0) =
1

2

N∑
i,j,k,l=1

(1− Yij,1(1))Ykl,0(0)ΠikΠjl.

The substitution solves the initial problem that Y0(1) is not known because both Y1(1) and

Y0(0) on the right-hand side are observed. However, the right-hand side now depends on the

unknown Π. Since, under (3), any permutation matrix suggests a number of destroyed links

that is consistent with the observed network connections, the identified set is

{
θ ∈ N : θ =

1

2

N∑
i,j,k,l=1

(1− Yij,1(1))Ykl,0(0)PikPjl for any permutation matrix P

}
. (4)

Example 1. (continued) In the toy example, condition (3) implies that if the new policy

were implemented in the control group, the agents would change their social connections

to form a line. Under this assumption, the identified set for the number of connections de-

stroyed by the policy is {3, 4}. The logic behind this result is illustrated in Figure 2. There

are three ways up to symmetry to match the six agents in the control group to the six agents

in the treatment group. Matching a in the control group to position 1 in the treatment

group destroys four connections. This is because all five connections in the control group are

adjacent to a and 1 has only one connection in the treatment group. Similarly, matching a

to positions 2 or 3 destroys three connections. Since these are the only unique matches up

to symmetry, the policy must destroy 3 or 4 out of 5 connections (60 or 80 percent). Under

(3), this example necessarily has a large amount of social disruption.

2.2.2 The identified set is typically uncomputable

It is straightforward to compute the identified set in our toy example because N is small.

However, this is not possible in most cases of interest. The reason for this is that the prob-
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a→ 1 a→ 2 a→ 3

Figure 2: There are three ways to match agents in the control group to the treatment group
up to symmetry. A black dashed line indicates a destroyed connection. It exists under the
status quo but not the new policy. A colored and a black solid line indicates a maintained
connection. It exists under both the status quo and the new policy. A colored line only
indicates a created connection. It exists under the new policy but not the status quo.

lem of finding the largest or smallest element of (4) is equivalent to solving a quadratic

assignment problem which is strongly NP hard in theory and uncomputable in practice for

instances with more than a few dozen agents. See, generally, Section 1.5 of Cela (2013).

Our second main contribution is to instead propose tractable outer bounds that are both

informative about social disruption and computationally feasible even for large networks.

Intuitively, it is hard to compute sharp bounds on (4) because searching over permutation

matrices is difficult. Our bounds instead search over orthogonal matrices. To illustrate this

idea, we replace (4) with

{
θ ∈ N : θ =

1

2

N∑
i,j,k,l=1

(1− Yij,1(1))Ykl,0(0)OikOjl for any orthogonal matrix O

}
. (5)

There are two reasons for this substitution. First, because all permutation matrices are

orthogonal, (5) contains (4) and so any bounds on (5) will also be valid for (4). Second,

solving for the smallest and largest element of (5) is relatively straightforward: the minimum

is
∑N

r=1 λr(1)λN−r(0) and the maximum is
∑N

r=1 λr(1)λr(0) where λr(t) is the rth largest

eigenvalue of (1− Yt(t))
tYt(t)

1−t. See Lemma 2 in Appendix Section A.1.3.3

3The idea of bounding a QAP by searching over orthogonal matrices was originally proposed by Finke et
al. (1987), however applying this logic to our general setting is not straightforward and requires arguments
not typical of the QAP literature. See Section 4.1 for a discussion.
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2.2.3 Our bounds can be much more informative than conventional methods

Conventional methods such as computing the difference in the number of connections or the

Frechet-Hoeffding bounds are not generally effective at identifying social disruption.4 The

difference in the number of connections, 1
2

∑N
i,j=1 Yij,0(0)−

1
2

∑N
i,j=1 Yij,1(1), is also the num-

ber of connections destroyed by the new policy minus the number of connections created.

It is only a good approximation of the number of destroyed connections if the number of

created connections is close to zero, which is rare in practice.

The Frechet-Hoeffding lower bound on (1) is max(1
2

∑N
i,j=1 Yij,0(0)−

1
2

∑N
i,j=1 Yij,1(1), 0).

The upper bound is min(1
2

∑N
i,j=1(1 − Yij,1(1)),

1
2

∑N
i,j=1 Yij,0(0)). These bounds are valid in

that (1) is necessarily between them, but they are not generally informative. The lower

bound is essentially the difference in the number of connections and is zero if the policy

creates at least as many connections as it destroys. The upper bound is large if there are

many pairs of agents that are connected in the control group and many pairs of agents that

are not connected in the treatment group. Both are common in practice.

The problem with these methods is that they do not use all of the information provided

by condition (3). They only use the relatively weak implication that Y1(0) and Y0(0) have

the same number of connections. Our bounds often perform better because there can be

important identifying information in the former restriction that is not in the latter.

Example 1. (continued) Neither of the conventional methods in Section 2.2.3 are informa-

tive about social disruption in the toy example. The difference in the number of connections

between treatment groups is 5 − 5 = 0, which does not identify any social disruption. The

upper Frechet-Hoeffding bound is min(5, 10) = 5 and the lower bound is 5 − 5 = 0, which

are equivalent to the trivial bounds derived in Section 2.1.1 that do not use condition (3).

Our bounds, in contrast, give an upper bound of 4.17 and a lower bound of 1.6.5 They

imply that the number of destroyed links belongs to {2, 3, 4} which is close to the identified

4Technically the literature runs dyadic regressions. That is, they regress an indicator for whether or not
a pair of agents is connected on an indicator for whether the agents are subjected to the new policy and
additional covariates. Without covariates, this is equivalent to comparing averages. Including covariates
does not generally make these regressions informative about social disruption. See, for example, our first
empirical illustration in Section 6.

5These bounds are in Proposition 2 of Section 4.1 and use the adjustment in Section 5.2. They are
implemented in an R package available at https://github.com/yong-cai/MatrixHTE
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set of {3, 4} derived in Section 2.2.2. In particular, our bounds imply that the fraction of

destroyed links is between 40 and 80 percent, which is a substantial improvement from the

conventional/trivial bounds of 0 and 100 percent.

The performance of our methodology is not limited to the toy example. Section 6 pro-

vides two empirical illustrations showing that our bounds can also be much more effective

at identifying social disruption than conventional methods in real world settings.

3 General framework

This section describes our general framework. We focus on unipartite and undirected net-

works which are represented by symmetric adjacency matrices indexed by one population of

agents. The framework and results immediately extend to asymmetric matrices or matrices

indexed by two different populations under a standard symmetrization argument in Section

5.1. Our main results are in Section 4.

3.1 Setting

A population of agents is indexed by the interval [0, 1]. This choice of indexing set is arbi-

trary and the population may be finite or infinite. The population of agents may be assigned

one of two policies, policy 0 or policy 1. Example policies include assigning every agent in

the population to a treatment, assigning a random fraction of agents to a treatment, in-

forming the entire population about the existence of a product, informing only community

leaders about the existence of a product, etc. Our analysis does not depend on what the

policy actually does, it only matters that the policy somehow determines the agents’ network

connections. Specifically, we focus on identifying the social disruption caused by changing

the policy from policy 0 to policy 1 for the population of agents indexed by [0, 1].

Potential outcomes (network connections) are defined for every pair of agents and policy,

and given by the measurable function (Y ∗
1 , Y

∗
0 ) : [0, 1]

2 → R2. In words, Y ∗
t (u, v) describes

the connection between agents with indices u and v in the event that the population is as-

signed policy t.6 We take these potential outcomes to be fixed and bounded. Boundedness

6This function is simply a definition of a matrix that allows for arbitrarily sized index sets. Any finite
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is straightforward but tedious to relax. Incorporating stochastic networks may be straight-

forward depending on the complexity of the statistical model chosen by the researcher. But

since this complication is unrelated to our main identification results, we defer it to Online

Appendix Sections D.4 where we discuss large sample estimation and inference.

Remark 1. We do not rule out social spillovers, market forces, or other interactions between

agents. Instead, we follow the literature and consider these interactions to be intermediate

outcomes part of the policy effect of interest. While we could not find any examples of this

in the network experiments literature, it is possible that a researcher could be interested in

characterizing the impact of a change in policy under counterfactual interactions not ob-

served in one of the treatment groups. For example, the researcher may be interested in

alternative market equilibria that could have been but were not realized in the experiment.

So long as the researcher is able to characterize the alternative equilibria using, for instance,

a structural model, our methodology can be used to identify the relevant policy effect.

Example 2. N households in a village may participate in a microfinance program. Let

{Y ∗
ij,t}i,j∈[N ],t∈{0,1} be the fixed potential risk sharing links between every pair of households

when they all participate (t = 1) or none participate (t = 0). To apply our framework,

we represent {Y ∗
ij,t}i,j∈[N ] with the function Y ∗

t (u, v) =
∑N

i,j=1 Y
∗
ij,t1{u ∈ τi, v ∈ τj} where

τi = {u ∈ [0, 1] : ⌈Nu⌉ = i}. In words, Y ∗
t (u, v) is the potential risk sharing link between

the ⌈Nu⌉th and ⌈Nv⌉th households under policy t.

3.2 Parameters of interest

We focus on two parameters: the joint distribution of potential outcomes and the distribu-

tion of treatment effects. Our proposed measures of social disruption, including the fraction

of network connections created or destroyed by a policy, can be written as simple functions

of these parameters. The two parameters are also of interest to the literature on Frechet-

Hoeffding-Makarov bounds and quantile treatment effects. What is new in our setting is the

information available to identify them, see Section 3.4 below.

dimensional matrix can be represented by such a function, see Example 2 below, and it is analogous to
representing a vector of data with its quantile function. This function is not an econometric model of
network formation, nor does it impose any behavioral or functional form restrictions.
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The first parameter of interest is the joint distribution of potential outcomes (DPO)

F (y1, y0) :=

∫ ∫
1{Y ∗

1 (u, v) ≤ y1}1{Y ∗
0 (u, v) ≤ y0}dudv (6)

where y1, y0 ∈ R. In words, F (y1, y0) is the mass of agent pairs with potential network

connection less than y1 under policy 1 and less than y0 under policy 0.

The second parameter of interest is the distribution of treatment effects (DTE)

∆(y) :=

∫ ∫
1{Y ∗

1 (u, v)− Y ∗
0 (u, v) ≤ y}dudv. (7)

In words, Y ∗
1 (u, v) − Y ∗

0 (u, v) is the change in network connection for a pair of agents with

indices u and v caused by switching from policy 0 to policy 1. ∆(y) is the mass of agent

pairs for which this individual treatment effect is less than y.

The fraction of binary network connections destroyed by a change in policy is F (0, 1)−

F (0, 0) or ∆(−1). The fraction created is F (1, 0)− F (0, 0) or ∆(1)−∆(0). For real-valued

outcomes, which may refer to the amount of migration between counties or the value of trans-

actions between buyers and sellers, the DPO and DTE describe the fraction of connections

that increase or decrease by more than a certain amount.

Example 2. (continued) Recall that Y ∗
t (u, v) is the potential risk sharing link between

the ⌈Nu⌉th and ⌈Nv⌉th households under policy t ∈ {0, 1} for u, v ∈ [0, 1]. Then the DPO

is exactly the empirical distribution of the potential risk sharing links for the
(
N
2

)
house-

hold pairs F (y1, y0) =
1
N2

∑N
i,j=1 1{Y ∗

ij,1 ≤ y1, Y
∗
ij,0 ≤ y0}. When Y ∗

ij,t takes values in {0, 1},
1
N2

∑N
i,j=1(1 − Y ∗

ij,1)Y
∗
ij,0 = F (0, 1) − F (0, 0) = ∆(−1) is the fraction of risk sharing links

destroyed by switching from a policy where no household participates in the microfinance

program (policy 0) to one where every household participates (policy 1).

3.3 The main identification problem

The entries of Y ∗
1 and Y ∗

0 are not all known and so the researcher conducts an experiment to

learn about the DPO and DTE. They collect agents into two groups: group 0 and group 1.

The agents in each group are also indexed by [0, 1], although there is generally no relation-
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ship between the index assignments in group 0, group 1, or the population of interest that

defines Y ∗
1 and Y ∗

0 . For t ∈ {0, 1}, the researcher implements policy t in group t. The agents

in group t interact and the researcher observes their network connections Yt : [0, 1]
2 → R2.

3.3.1 The main identification assumption

We assume that groups 0 and 1 are constructed so that the network connections between

agents in the treatment groups Yt are representative of the population of interest Y ∗
t in

the sense that the magnitude of any configuration of connections between agents is the

same. For example, Yt and Y ∗
t have the same magnitude of connections between pairs of

agents
∫ ∫

Yt(u, v)dudv =
∫ ∫

Y ∗
t (u, v)dudv. They also have the same magnitude of triangles

between triplets of agents

∫ ∫ ∫
Yt(u, v)Yt(v, w)Yt(w, u)dudvdw =

∫ ∫ ∫
Y ∗
t (u, v)Y

∗
t (v, w)Y

∗
t (w, u)dudvdw

or stars between sextets of agents

∫
...

∫
Yt(u, v1)...Yt(u1, v5)dudv1...dv5 =

∫
...

∫
Y ∗
t (u, v1)...Y

∗
t (u1, v5)dudv1...dv5.

In general, the magnitude of the connections between any finite collection of pairs of agents

is, on average, the same for group t and the population of interest under policy t.

Formally, our main identification assumption is

Assumption 1: For any t ∈ {0, 1} and multigraph7 G

∫
[0,1]|V (G)|

∏
ij∈E(G)

Yt(ui, uj)
∏

i∈V (G)

dui =

∫
[0,1]|V (G)|

∏
ij∈E(G)

Y ∗
t (ui, uj)

∏
i∈V (G)

dui. (8)

The functions of Yt and Y
∗
t that are balanced in Assumption 1 are called homomorphism den-

sities and when the condition holds Yt and Y
∗
t are said to be weakly isomorphic, see Lovász

(2012), Chapter 7. Intuitively, homomorphism densities describe the moments of a network

and Assumption 1 presumes that the moments of Yt match those of Y ∗
t . In this sense, it is

7A multigraph G is a duple (V (G), E(G)) where V (G) is a finite set of vertices and E(G) is an ordered
multiset of pairs of vertices.
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the network analog of assuming that the entries of Yt and Y ∗
t are equal in distribution, a

condition that is ubiquitous in the experiments literature.

The logic behind Assumption 1 is that the treatment groups are constructed so that the

interactions within group t represent what would occur in the population of interest under

policy t. When the group interactions are determined by the characteristics of the agents in

the group, Assumption 1 may be justified by random assignment, if the randomization is con-

ducted in a way that ensures that the distribution of characteristics in the treatment groups

match the population of interest. We formalize this intuition with a general large sample

model of strategic network formation in Online Appendix Section C.3. To be sure, it is al-

ready common in the literature on network experiments to posit that network statistics such

as average degree, clustering, or eigenvector centrality are balanced across treatment groups

under the same policy. Assumption 1 is our proposed way of formalizing this condition.

Remark 2. As in a conventional experiment, Assumption 1 may be unrealistic in many set-

tings. For example, group t may not be representative of the population of interest if there

is selection into or attrition out of the experiment. Or the network formation process may

have multiple equilibria and the equilibrium selected in the experiment is different from what

the population of interest would select under the same policy. Depending on the setting,

violations of Assumption 1 may be addressed with control variables, instruments, structural

modeling, etc, but due to space limitations we do not formally consider such extensions here.

Example 2. (continued) Recall that Y ∗
t describes the potential risk sharing links between

N households in a village when all of the households participate (t = 1) or no household

participates (t = 0) in a microfinance program. Suppose that the researcher enrolls all of

these households so that Y1 := Y ∗
1 is observed but Y ∗

0 is not. To learn the missing potential

outcomes, the researcher randomly selects M additional households from a control village

that does not participate in the program and observes Y0, the risk sharing links between them.

Assumption 1 presumes that the homomorphism densities of Y0 and Y
∗
0 are the same. In-

tuitively, this means that the interactions between the random sample of control households

are the same as those that would have occurred between the participating households had

they not participated in the program. Assumption 1 may be implausible if, for example, the
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participating households are from a less wealthy village, so that their counterfactual inter-

actions are not well-represented by the wealthier households drawn from the control village.

3.3.2 An alternative formulation of the main identification assumption

We introduce homomorphism densities because they are the network analog of the mo-

ments of a distribution that are presumed to be balanced by randomization in a conven-

tional experiment. However, it will be more convenient to work with an alternative state-

ment of Assumption 1. Let M be the set of measure preserving functions on [0, 1], that is

M := {ϕ : [0, 1] → [0, 1] s.t. |ϕ−1(A)| = |A| for any Lebesgue measurable A ⊆ [0, 1]}. Then

Assumption 1 is equivalent to the condition that

Yt(φt(u), φt(v)) = Y ∗
t (ψt(u), ψt(v)) (9)

almost everywhere with respect to the Lebesgue measure for some unknown φt, ψt ∈ M.8

Intuitively, (9) says that Yt and Y
∗
t record the same agent interactions, only that their rows

and columns have been shuffled so that Y1 and Y0 do not reveal any information about how

Y ∗
1 and Y ∗

0 are related. It is an analog of (3) from Section 2.2 for our general framework.

We now formally state our main identification problem. The problem is to identify the

DPO and DTE from Section 3.2 using Y1 and Y0 under the restriction (9). We consider this

problem in Section 4 below.

3.4 Why the conventional characterization is incomplete

Our main identification problem is similar in spirit to the conventional one of identifying

the joint distribution of two random variables using their marginals originally considered

by Frechet and Hoeffding. However, the tools of this literature are not appropriate for

our setting. The reason for this is that the marginal distribution function does not fully

characterize all of the relevant information that Yt contains about Y
∗
t under Assumption 1.

8This is Corollary 10.35 of Lovász (2012). An analogous identification condition plays a key role in the the
conventional Frechet-Hoeffding-Makarov bounds and quantile treatment effects literature. See, for instance,
Lemma 5.3 of Whitt (1976).
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To see this, recall that Yt and Y
∗
t have the same marginal distribution if and only if

∫ ∫
h(Yt(u, v))dudv =

∫ ∫
h(Y ∗

t (u, v))dudv (10)

for any bounded continuous function h : R→ R. The conventional identification problem is

to identify the DPO and DTE using Y1 and Y0 under the restriction (10).

Intuitively, the difference between this problem and our problem is that the class of mo-

ments of Yt and Y
∗
t that are balanced by (10) is much smaller than that in Assumption 1.

Specifically, (10) implies that Yt and Y
∗
t have the same magnitude of connections between

pairs. It does not imply that Yt and Y
∗
t have the same magnitude of triangles, stars, or other

configuration between collections of agents of size greater than two. As a result, while the

Frechet-Hoeffding-Makarov bounds on the DPO and DTE may be sharp under (10), they

are not under Assumption 1.

Example 2. (continued) In the program evaluation literature, a common way to write

the conventional identification condition (10) is

P (Yij,0 ≤ y |Di = Dj = 1) = P (Yij,0 ≤ y |Di = Dj = 0)

where P (Yij,0 ≤ y |Di = Dj = 1) is the (unobserved) frequency of risk sharing connections

(less than some y) between pairs of households in the group that all participates in the

program under the counterfactual event that none participate. P (Yij,0 ≤ y |Di = Dj = 0) is

the (observed) frequency for the treatment group where none actually participate. When

the risk sharing connections are binary, this condition only implies that

E [Yij,0 |Di = Dj = 1] = E [Yij,0 |Di = Dj = 0] .

That is, the two networks have the same frequency of connections or network density.

Condition (10) does not fully characterize the amount of information contained in As-

sumption 1. For example, the network experiments literature typically expects that collec-

tions of network statistics such as degree distributions, clustering coefficients, eigenvector

centralities, etc. are the same in large samples for the two groups being compared in an

17



experiment under the same policy. This is not generally implied by (10), but it does follow

from Assumption 1 because all of these statistics are determined by homomorphism densities.

4 Main results

In this section, we first describe sharp but infeasible bounds on the DPO. We then pro-

pose tractable outer bounds on the DPO and DTE. Finally, we show that the DTE is point

identified under a monotonicity assumption and provide a closed form representation. Our

results use the eigenvalues of the potential outcomes associated with each treatment group.

Eigenvalues of functions are defined differently than their matrix counterparts, see Appendix

Section A.1 for details. Proofs are in Appendix Sections A.2-4.

4.1 Bounds on the DPO and DTE

4.1.1 Sharp bounds are analytically and computationally intractable in general

Ideally, we would directly characterize the identified set for the parameters of interest. Un-

fortunately, and in contrast to the conventional problem based on (10), it is not possible to

derive the identified set in a meaningful way using Assumption 1. To see this, we consider

the problem of computing sharp bounds on the DPO. Our first result is

Proposition 1: Suppose Assumption 1. Then for any (y1, y0) ∈ R2

min
φ0,φ1∈M

∫ ∫ ∏
t∈{0,1}

1{Yt(φt(u), φt(v)) ≤ yt}dudv ≤ F (y1, y0)

≤ max
φ0,φ1∈M

∫ ∫ ∏
t∈{0,1}

1{Yt(φt(u), φt(v)) ≤ yt}dudv. (11)

Proposition 1 is essentially derived by plugging (9) into the definition of the DPO (6). The

bounds are analytically and computationally intractable in general because the measure pre-

serving function φt appears twice in the optimization problems on the right and left-hand

sides of (11) and so they generalize the quadratic assignment problem described in Section 2.

Solutions are only known for stylized examples of Y1 and Y0 that are not good characteriza-
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tions of social or economic networks. See Cela (2013), Section 1.5 for an in depth discussion.

One can also derive sharp bounds on the DTE by inserting Proposition 1 into the proof of

Proposition 3 below, but these bounds are also intractable and so we do not report them here.

4.1.2 Our proposed bounds on the DPO and DTE

We instead propose bounds based on the intersection of several relaxations of (11). Our

bounds are not sharp, but they are tractable and use enough information from (9) to often

outperform conventional methods based only on (10). Our main idea is to rearrange the

eigenvalues of the networks associated with each policy since, under Assumption 1, Yt and

Y ∗
t have the same eigenvalues. Specifically, let λ1t(y1) ≥ λ2t(y1) ≥ ... ≥ λRt(yt) be the R

largest in magnitude eigenvalues of 1{Yt(·, ·) ≤ yt} ordered to be decreasing and sR(r) =

R−r+1. For any t, t′ ∈ {0, 1}, let
∑

r λrtλrt′ := limR→∞
∑R

r=1 λrt(yt)λrt′(yt′),
∑

r λrtλs(r)t′ :=

limR→∞
∑R

r=1 λrt(yt)λsR(r)t′(yt′) and
∑

r λ
2
rt :=

∑
r λrtλrt. Our second result is

Proposition 2: Suppose Assumption 1. Then for any (y1, y0) ∈ R2

max

(∑
r

(
λ2r1 + λ2r0

)
− 1,

∑
r

λr1λs(r)0, 0

)
≤ F (y1, y0)

≤ min

(∑
r

λ2r1,
∑
r

λ2r0,
∑
r

λr1λr0

)
. (12)

The proof of Proposition 2 can be found in Appendix Section A.2. The result is similar in

spirit to the conventional Frechet-Hoeffding bounds, but builds on relaxations of (9) instead

of (10), and so the arguments behind the proofs are fundamentally different. Intuitively,

a common way to prove the Frechet-Hoeffding bounds is to rearrange the quantiles of the

outcome functions associated with each policy. See, for instance, the second proof of The-

orem 2.1 in Whitt (1976). Our bounds instead work by rearranging the eigenvalues of the

outcome functions building on a proposal by Finke et al. (1987) for the finite dimensional

QAP described in Section 2.2.2. That their logic extends to the infinite dimensional setting

and so is useful for large sample approximations in econometric program evaluation is not

obvious, requires arguments from functional analysis that are not typical of the QAP liter-

ature, and is to our knowledge original to our paper. Specifically, the Finke et al. (1987)
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bounds work in the finite dimensional case because the matrix of eigenvectors has orthogonal

columns. Eigenfunctions of operators do not have an analogous property and so we instead

consider bounding the DPO on a sequence of histogram-like approximations to the operator.

See our Lemmas 1 and 3 in Appendix Section A.1. Unlike the bounds in (11), those in (12)

are tractable because they only depend on the eigenvalues of 1{Yt(·, ·) ≤ yt} which can be

computed or estimated, see Online Appendix Section D.4, using standard tools.

The bounds on the DPO can be used to bound the DTE. Our third result is

Proposition 3: Suppose Assumption 1. Then for any y ∈ R

sup
(y1,y0)∈R2:
y1−y0=y

max

(∑
r

(
λ2r1 − λ2r0

)
,
∑
r

(
λ2r1 − λr1λr0

)
, 0

)
≤ ∆(y)

≤ 1 + inf
(y1,y0)∈R2:
y1−y0=y

min

(∑
r

(
λ2r1 − λ2r0

)
,
∑
r

(
λr1λr0 − λ2r0

)
, 0

)
(13)

where the eigenvalue λrt is implicitly a function of yt. The proof of Proposition 3 can be found

in Appendix Section A.3. The result is similar in spirit to the conventional Makarov bounds,

but uses our Proposition 2 instead of Frechet-Hoeffding. In finite data, it only requires the

researcher to compute eigenvalues for at most N(N + 1) values of y1 and y0 where N is the

number of agents. Optimizing over a smaller set gives valid but potentially wider bounds.

4.2 Point identification of the DTE

We show that the DTE is point identified under a monotonicity condition. The conventional

monotonicity condition is not appropriate for network data and so we propose an alternative.

4.2.1 Conventional rank invariance is inappropriate for networks

In the literature on quantile treatment effects (QTE), the DTE is often identified by the

rank invariance condition Y ∗
1 = g(Y ∗

0 ) for some nondecreasing g : R → R. Specifically, the

DTE is determined by a difference in the quantiles of Y1 and Y0.

While popular in many settings, this conventional monotonicity condition is not appro-

priate for identifying social disruption with binary network data. The reason for this is
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because when the entries of Y ∗
1 and Y ∗

0 take values in {0, 1}, it implies that the policy can

only create links or it can only destroy links. It can not do both. Since disruptive policies

are typically thought to create and destroy many links in practice, the assumption is theo-

retically undesirable. Furthermore, we often find positive lower bounds on both the number

of created and destroyed links using our more general bounds from Section 4.1, so that the

conventional monotonicity assumption is contradicted by the data. This was the case in our

toy example in Section 2. It is also true for our empirical illustrations in Section 6 below.

4.2.2 Our matrix rank invariance condition

We propose an alternative monotonicity condition that we call matrix rank invariance. To

define it, we rely on the notion of a matrix function from Horn and Johnson (1991), Chapter

6.1. For any f : R → R that admits the representation f(x) =
∑∞

r=1 crx
r and function

A : [0, 1]2 → R, the matrix lift of f is f(A) =
∑∞

r=1 crA
r where Ar is the rth operator power

of A, i.e. Ar(u, v) =
∫ ∫

...
∫
A(u, t1)A(t1, t2)...A(tr−1, v)dt1dt2...dtr−1.

Definition 1: A change in policy is matrix rank invariant if Y ∗
1 = g(Y ∗

0 ) where g is the

matrix lift of some nondecreasing g : R → R.

Intuitively, if we think of the policy working by taking in Y ∗
0 and producing Y ∗

1 = g(Y ∗
0 ),

then rank invariance implies that the policy affects the eigenvalues but not the eigenfunc-

tions of Y ∗
0 . This is analogous to the conventional rank invariance condition under which the

policy affects the quantiles but not the ranks of the outcomes. As with conventional rank

invariance, our condition is a strong assumption. But there are many examples of policies

that, according to economic theory, have matrix rank invariant policy effects. We give three

examples in Online Appendix Section C.1.

4.2.3 Spectral treatment effects

To show that the DTE is identified under matrix rank invariance, we introduce a new mea-

sure of social disruption that we call spectral treatment effects (STE). Let {σrt}Rr=1 be the

R largest in absolute value eigenvalues of Yt ordered to be decreasing and {ϕr}∞r=1 be any

orthogonal basis of L2([0, 1]).
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Definition 2: The spectral treatment effects parameter is

STE(u, v;ϕ) := lim
R→∞

R∑
r=1

(σr1 − σr0)ϕr(u)ϕr(v). (14)

The STE is similar to the diagonalized difference in the eigenvalues of Y1 and Y0 but its exact

values depend on a choice of basis. Two natural choices are the eigenfunctions of Y1 and

Y0, denoted {ϕr1}∞r=1 and {ϕr0}∞r=1 respectively, see Appendix Section A.1. We call STE(ϕ1)

and STE(ϕ0) the spectral treatment effects on the treated (STT) and untreated (STU).

In words, the STT takes the observed matrix Y1 and subtracts a counterfactual formed by

keeping the eigenfunctions of Y1 and inserting the eigenvalues of Y0. That is,

STT (u, v) = Y1(u, v)− lim
R→∞

R∑
r=1

σr0ϕr1(u)ϕr1(v).

= Y1(u, v)−
∫ ∫

Y0(s, t)W (u, s)W (v, t)dsdt

where W (u, s) = limR→∞
∑R

r=1 ϕr1(u)ϕr0(s). The second line suggests an alternative inter-

pretation of the STT where the counterfactual outcome for a pair of agents assigned to policy

1 is formed by a weighted average of the outcomes of agent pairs assigned to policy 0. The

weights are nonnegative and integrate to 1 when the policy is matrix rank invariant.

The STT or STU are network analogs of the conventional QTE parameter which imputes

a counterfactual for an agent assigned to policy 1 by using the outcome of a similarly ranked

agent assigned to policy 0. In this analogy, the eigenfunctions serve the role of the agent

ranks and the eigenvalues serve the role of the quantiles associated with each rank.

4.2.4 The STE provides a lower bound on the total amount of social disruption

We first show that under no additional assumptions (i.e. no rank invariance condition), the

STE is a conservative measure of social disruption. Our fourth result is

Proposition 4: Suppose Assumption 1. Then for any orthogonal basis {ϕr}∞r=1 of L
2([0, 1])

∫ ∫
STE(u, v;ϕ)2dudv ≤

∫ ∫
(Y ∗

1 (u, v)− Y ∗
0 (u, v))

2 dudv. (15)
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The proof of Proposition 4 can be found in Appendix Section A.4 and is demonstrated using

similar techniques to that of Proposition 2. One way to interpret the right-hand side∫ ∫
(Y ∗

1 (u, v)− Y ∗
0 (u, v))

2 dudv is as a measure of aggregate social disruption. For binary

networks, it is the total amount of connections created or destroyed by the change in policy.

The left-hand side is simply the sum of the squared difference in eigenvalues of Y1 and Y0.

Proposition 4 suggests that this measure is a simple way to lower bound the total disruptive

impact of a change in policy in practice. In Online Appendix Section D.3 we use this result

to construct tests of the hypothesis of no social disruption.

4.2.5 Point identification of the DTE under matrix rank invariance

We now show the DTE is point identified under matrix rank invariance. Our fifth result is

Proposition 5: Suppose Assumption 1 and that the policy is matrix rank invariant. Then

∆(y) =

∫ ∫
1{STT (u, v) ≤ y}dudv =

∫ ∫
1{STU(u, v) ≤ y}dudv. (16)

The proof of Proposition 5 can be found in Appendix Section A.5 and is relatively straightfor-

ward when compared to the previous propositions. It essentially follows from the definition

of the STT and STU, the definition of matrix rank invariance, and some algebra.

5 Extensions

Due to space limitations we defer details to Online Appendix Sections C and D.

5.1 Asymmetric outcome matrices

Asymmetric matrices or matrices indexed by two different populations are incorporated

through a symmetrization argument. In words, we represent an asymmetric matrix of trans-

actions between buyers (on the rows) and sellers (on the columns) as a symmetric one that

has the buyers and sellers on both the rows and the columns. The transactions between pairs

of buyers or pairs of sellers are fixed at ∞. Such a symmetrization technique is standard in

the random matrix theory literature. See Online Appendix Section D.1.
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5.2 Row and column heteroskedasticity

Spectral methods can be unreliable when there is nontrivial heterogeneity in the row and

column variances of the outcome matrices, see for instance Auerbach (2022). We adapt an

idea of Finke et al. (1987) and propose an adjustment to our bounds that tends to perform

better in practice under such heteroskedasticity. See Online Appendix Section D.2.

5.3 Estimation and inference

We discuss two strategies for estimation and inference in our setting. Online Appendix

Section D.3 shows how one can test the null hypothesis of no social disruption using a per-

mutation test. In this section, the network connections are treated as fixed and uncertainty

comes from the randomization of agents to the treatment groups. Online Appendix Section

D.4 shows how one can estimate and conduct inference about the bounds on the DPO, DTE,

and the distribution of the STE, by replacing the eigenvalues of Y0 and Y1 with empirical

analogs. In this section, the researcher observes a noisy signal of the potential outcomes due

to, for instance, random sampling, missing data, etc.

5.4 Spillovers

The literature on network experiments is sometimes interested in social spillovers, market

externalities, or other interactions between agents. Our framework and results can be applied

to characterize the distribution of spillover effects in many settings. The kinds of spillovers

that are identified generally depend on the actual policies implemented and assumptions

about how the agents interact. We provide two examples in Online Appendix Section C.2.

5.5 Observed covariates

Our framework and results are all valid conditional on observed agent covariates. One can

potentially get tighter bounds on the DPO and DTE by computing them conditional on

covariates and then taking intersections as in Firpo and Ridder (2019).
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6 Two empirical illustrations

6.1 Illustration 1: microfinance program

Banerjee et al. (2021) study the effect of a microfinance program on informal risk sharing

in Karnataka, India.9 They find, among other things, that participating villages have one-

percent less informal risk sharing links between households. Using our methodology, we find

disruptive effects that are nine to twenty-one times larger.

The Karnataka study is centered around the planned introduction of microfinance in 75

villages by Bharatha Swamukti Samsthe (BSS). BSS selected 43 of these villages in 2006

and implemented the program between 2007 and 2010. They originally planned but did not

ultimately implement the program in the remaining villages because of an external crisis.

Banerjee et al. (2021) argue that the two sets of villages are comparable after controlling for

the number of households. The authors measured social connections between households at

two time periods: before and after BSS implemented the program in the selected villages.

Banerjee et al. (2021) find that the villages selected for the program experience a greater

decline in social connections using difference-in-differences. To measure treatment effect het-

erogeneity, they classify households into those with high (H) or low (L) propensity to borrow

money from the program. Theory suggests that two H households have less incentive to

form links after the introduction of microfinance because they have less need for informal

risk sharing. However, the authors find that L households are more likely to be affected.

We compare two villages: village 57, which participated in the microfinance program,

and village 44, which did not participate. We chose these villages because they are the

most similar in terms of pre-treatment covariates across all potential pairs of villages. Let

Y s
ij,t denote the potential risk sharing connection between households i and j in the village

that participates (t = 1) or does not participate (t = 0) in the program before (s = 0) or

after (s = 1) the program is implemented. Since Banerjee et al. (2021) use a differences-in-

differences identification strategy, we take as the outcome of interest the change in network

connections for a pair of households over time. That is, ∆Yij,t := Y 1
ij,t − Y 0

ij,t. For reference,

9The data can be found at https://zenodo.org/record/7706650#.ZD9Tti-B2gQ.

25

https://zenodo.org/record/7706650#.ZD9Tti-B2gQ


the simple differences-in-differences (DiD) statistic is

∆Y1 −∆Y0 = −0.009

where ∆Yt is the average entry of ∆Yij,t. It suggests that participation in the microfinance

program decreases the average number of connections between households by about one

percent. Banerjee et al. (2021) find similar effects with dyadic regressions on the full sample.

Results from our methodology are in Table 1. The first three rows report our bounds

on the joint distribution of potential outcomes P (∆Yij,1 = y1,∆Yij,0 = y0) using all of the

households in villages 57 and 44.10 We find that

P (∆Yij,1 = 0,∆Yij,0 = 1) ∈ [0.028, 0.068] and P (∆Yij,1 = −1,∆Yij,0 = 0) ∈ [0.012, 0.036].

P (∆Yij,1 = 0,∆Yij,0 = 1) is the fraction of connections that would have been created if not

for the microfinance program. P (∆Yij,1 = −1,∆Yij,0 = 0) is the fraction of connections that

were destroyed because of the program. The lower bounds together imply that at least 4.0%

of connections are prevented by the microfinance program, which is four times larger than

the DiD statistic. We also find that

P (∆Yij,1 = 0,∆Yij,0 = −1) ∈ [0.015, 0.036] and P (∆Yij,1 = 1,∆Yij,0 = 0) ∈ [0.019, 0.056]

which implies that at least 3.4% of connections are created, or not destroyed, as a result of

the program. This is evidence of a positive network externality, in addition to the negative

one identified by the authors. Altogether, our results imply that the total fraction of con-

nections altered by the policy is in [0.089, 0.218], which is why we say that we find disruptive

effects that are nine to twenty-one times larger than the DiD statistic.

The remaining nine rows of Table 1 show our bounds conditional on the H and L types.

10Technically P (∆Yij,1 = y1,∆Yij,0 = y0) is the probability mass function associated with the the DPO
from Section 3.2. We represent the network adjacency matrices as functions as in Example 2 of Section 3.1
and use singular value thresholding to denoise them as in Online Appendix Section D.4. Our bounds use
the adjustment of Online Appendix Section D.2.
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For reference, the DiD statistics for the three possible type combinations are

∆Y1
HH−∆Y0

HH
= −0.011, ∆Y1

LL−∆Y0
LL

= −0.010 and ∆Y1
HL−∆Y0

HL
= −0.015.

For all three combinations, we find disruptive effects that are an order of magnitude larger

than what is indicted by DiD. We also find larger effects for the HH and HL types, suggest-

ing that the program may be more disruptive for households that are more likely to borrow.

This contrasts the authors’ finding that the program was more disruptive for the LL types.

Table 1: Bounds on the joint distribution of potential risk sharing links

∆Yij,0 = −1 ∆Yij,0 = 0 ∆Yij,0 = 1

Lower Upper Lower Upper Lower Upper

Full

∆Yij,1 = −1 0.000 0.007 0.012 0.036 0.000 0.012
∆Yij,1 = 0 0.015 0.036 0.830 0.877 0.028 0.068
∆Yij,1 = 1 0.000 0.010 0.019 0.056 0.000 0.019

HH

∆Yij,1 = −1 0.000 0.020 0.027 0.082 0.000 0.024
∆Yij,1 = 0 0.018 0.064 0.734 0.809 0.026 0.078
∆Yij,1 = 1 0.000 0.018 0.031 0.077 0.000 0.021

LL

∆Yij,1 = −1 0.000 0.002 0.008 0.030 0.000 0.011
∆Yij,1 = 0 0.008 0.014 0.877 0.919 0.014 0.048
∆Yij,1 = 1 0.000 0.003 0.012 0.044 0.000 0.015

HL

∆Yij,1 = −1 0.000 0.004 0.020 0.036 0.000 0.008
∆Yij,1 = 0 0.016 0.026 0.837 0.863 0.040 0.061
∆Yij,1 = 1 0.000 0.005 0.034 0.053 0.000 0.011

Table 1 reports bounds on the joint distribution of potential risk sharing links, P (∆Yij,1 = y1,∆Yij,0 = y0).
Red describes links destroyed by the microfinance program and blue describes links created.

Ultimately, Table 1 shows that the socially disruptive effects of the microfinance pro-

gram are much larger than what is revealed by difference-in-differences, even conditional on

household type. Since risk sharing links, even informal ones, represent actual relationships

between households in a community that take time and resources to develop, this disruption

has welfare implications that a policy maker should take into account. In particular, the

benefit of increased access to borrowing may be undone by the cost of this disruption. See

Banerjee et al. (2021); Jackson (2021) for more detailed discussion.
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We also characterize the disruptive impact of the program using our spectral treatment

effects measure. Figure 1 shows a smoothed density plot of our STT. As a point of reference,

we also plot the distribution of conditional average treatment effects (CATT) estimated by

computing the average difference in connections conditional on household size and number of

rooms. Though the two distributions are similar, there is a benefit to reporting the STT. We

can apply Proposition 4 in Section 4.2.4 and conclude that a nontrivial fraction of links are

disrupted by the microfinance program. The STT also does not require covariate information.

Figure 3: Two Characterizations of the Distribution of Treatment Effects

Figure 3 shows two characterizations of the distribution of treatment effects using data from Banerjee et al.
(2021). The distribution of spectral treatment effects on the treated (STT) is in orange. The distribution
of average treatment effects conditional on household size and number of rooms (CATT) is in blue.

6.2 Illustration 2: auction format

Athey et al. (2011) study the effect of a choice in auction format on the bids made by loggers

and mills on tracts of forest land in the United States.11 The two policies considered are a

sealed bid versus an open auction format. They find, among other things, that the sealed

bid format encourages about 0.2% more firms to participate that otherwise would not have

11The data can be found on Phil Haile’s website http://www.econ.yale.edu/~pah29/timber/timber.

htm. We restrict attention to a subsample proposed by Schuster and Niccolucci (1994) in which the auction
format is randomly assigned.
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under the open auction format. Using our methodology, we find disruptive effects that are

six to twenty-three times larger. For this illustration, policy 1 is the sealed bid format, policy

0 is the open format, and Yij,t indicates whether firm i bids on tract j under format t.

Our results are in Table 2. The first two rows report our bounds on the joint distribution

of bidding decisions for all of the firms in the sample.12 For reference, the average difference

in the fraction of bids between the two formats is 0.002. Using our methodology, we find

P (Yij,1 = 0, Yij,0 = 1) ∈ [0.005, 0.022] and P (Yij,1 = 1, Yij,0 = 0) ∈ [0.007, 0.023].

which says that the change in auction format both encourages and discourages at least half

a percent of firms from bidding. Both effects are more than twice as large as the average

difference of 0.002. Together they imply that the total fraction of bids altered by the pol-

icy is in [0.012, 0.045], which is why we say that we find disruptive effects that are six to

twenty-three times larger than the difference in averages.

To characterize heterogeneity in participation, Athey et al. (2011) consider the impact on

mills and loggers separately. Interestingly, for these specific subgroups, we find results that

are consistent with homogeneous policy effects. That is, once the firm type is accounted for,

our bounds can not rule out that the change in auction format does not discourage (almost)

any loggers from bidding and does not encourage any mills. This is consistent with Athey et

al. (2011)’s theory that the main driver of bidding behavior is profit margins which is well

proxied by firm type. Firms with similar profit margins may react to the change in auction

format in the same way.

Ultimately, Table 2 shows that the change in auction format has large disruptive effects.

Without using any information about the firm types, we find that comparing averages un-

derstates the amount of social disruption by at least a factor of six. When we separately

consider loggers and mills, we corroborate the authors’ findings that the policy encourages

loggers to bid, but we also find that the policy discourages at least 1.4% of mills. If the

policy maker values the participation of both types of firms equally, then the benefit of the

12Technically we report the probability mass function associated with the DPO. We represent the network
adjacency matrices as functions as in Example 2 of Section 3.1, use singular value thresholding to denoise
them as in Online Appendix Section D.4, and symmetrize as in Online Appendix Section D.1, Our bounds
use the adjustment in Online Appendix Section D.2
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Table 2: Bounds on the joint distribution of potential bidding decisions

Yij,0 = 0 Yij,0 = 1

Lower Upper Lower Upper

Full Sample
Yij,1 = 0 0.962 0.978 0.005 0.022
Yij,1 = 1 0.007 0.023 0.000 0.010

Loggers
Yij,1 = 0 0.976 0.986 0.001 0.011
Yij,1 = 1 0.006 0.016 0.000 0.006

Mills
Yij,1 = 0 0.886 0.948 0.014 0.075
Yij,1 = 1 0.000 0.061 0.000 0.039

Table 2 reports bounds on the joint distribution of potential bidding decisions using data from Schuster
and Niccolucci (1994). Red describes entry decisions discouraged by the change in auction format and blue
describes entry decisions encouraged.

increased bidding of loggers may be undone by the decreased bidding of mills. If, however,

the policy maker only cares about increasing the participation of loggers, then the policy

may be desirable.

We also characterize the disruptive impact of the change in auction format using our spec-

tral treatment effects measure. Figure 2 shows a smoothed density plot of our STT, which is

constructed without the use of covariates, and the distribution of conditional average treat-

ment effects estimated using firm size and tract location as covariates. The two distributions

are different. Unlike the CATT, the STT puts much of its mass below 0. The CATT also

concentrates at a few discrete spikes, which is not a feature of the STT. We suspect that the

CATT masks significant heterogeneity within each bin of covariates and so is not a reliable

characterization of the amount of social disruption caused by the change in auction format.

7 Conclusion

This paper characterizes social disruption as measured by the amount of network connections

created or destroyed by a policy. It focuses on a research design where agents are randomly

(or as good as randomly) assigned to two groups. The policy of interest is implemented in

one of the groups but not the other. Agents then interact and form connections. We first for-
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Figure 4: Two Characterizations of the Distribution of Treatment Effects

Figure 4 shows two characterizations of the distribution of treatment effects using data from Schuster and
Niccolucci (1994). The distribution of spectral treatment effects on the treated (STT) is in orange. The
distribution of average treatment effects conditional on tract location and firm size (CATT) is in blue.

malize the identifying content of randomization building on ideas from the graph theory and

operations research literatures. The sharp identified set is given by an intractable quadratic

assignment problem and so we instead propose outer bounds constructed by rearranging the

eigenvalues of the networks observed by the researcher. We also propose a new monotonic-

ity condition under which social disruption is point identified. Two empirical illustrations

show that our methodology is effective at identifying socially disruptive policies in practice.

Alternative methods used in the literature are less effective.
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A Appendix: proof of Propositions 2-5

A.1 Definitions and lemmas

A.1.1 Hilbert-Schmidt integral operators and function embeddings

Our Section 3 model uses bounded symmetric measurable functions to describe the poten-

tial outcomes associated with pairs of agents in the population. Any bounded symmetric
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measurable function f : [0, 1]2 → R defines a compact symmetric Hilbert-Schmidt integral

operator Tf : L2([0, 1]) → L2([0, 1]) where (Tfg)(u) =
∫
f(u, τ)g(τ)dτ . It has a bounded

countable multiset of real eigenvalues {λr}r∈N with 0 as the only limit point. It also admits

the spectral decomposition
∑

r λrϕr(u)ϕr(v) where ϕr : [0, 1] → R is the eigenfunction asso-

ciated with eigenvalue λr, i.e.
∫
f(u, τ)ϕr(τ)dτ = λrϕr(u). The functions {ϕr}r∈N are chosen

to be orthogonal, i.e.
∫
ϕr(u)

2du = 1 and
∫
(ϕr(u)−ϕs(u))

2du = 2 if r ̸= s, and form a basis

of L2([0, 1]). It follows that
∑

r λ
2
r =

∫ ∫
f(u, v)2dudv < ∞. See Chapter 9 of Birman and

Solomjak (2012).

Any square symmetric matrix can be represented by a bounded symmetric measurable

function sometimes called a function embedding. We use this construction in Example 2 of

Section 3.1. Let F be an arbitrary n× n square symmetric matrix with ijth entry Fij. The

function embedding f : [0, 1]2 → R of F is f(u, v) = F⌈nu⌉⌈nv⌉ for u, v ∈ [0, 1]. Intuitively,

f assigns the mass of types in the region Sn
i :=

(
i−1
n
, i
n

]
to observation i. Similarly, any

n × n permutation matrix Πt can be represented as a measure preserving transformation

φt(u) = ⌈nu⌉ − nu + Πt(⌈nu⌉) where Πt(k) = {l ∈ [n] : Πkl = 1}. Intuitively, if Πkl = 1, φt

maps the interval
(
k−1
n
, k
n

]
monotonically to

(
l−1
n
, l
n

]
. See Section 7.1 of Lovász (2012).

The eigenvalues of matrices and their function embeddings are scaled differently. Specif-

ically, if (λFr , ϕ
F
r ) is an eigenvalue and eigenvector pair of F then (λFr /n,

√
nϕF

r (⌈n·⌉)) is an

eigenvalue and eigenfunction pair of f where ϕF
r (i) is the ith entry of the vector ϕF

r .

As introduced in Section 4, we take inner products of eigenvalues in a specific way.

That is, if {λr1} and {λr0} are the eigenvalues of f1 and f0, then
∑

r λr1λr0 refers to

limR→∞
∑

r∈[R] λr1λr0 where {λr1}r∈[R] and {λr0}r∈[R] are the R largest (in absolute value)

elements of {λr1} and {λr0} respectively (counting multiplicities) ordered to be decreasing.

A.1.2 Sets

We use N for the set of positive integers, R for the set of real numbers, [n] for the set

{1, 2, ..., n}, Pn for the set of n × n permutation matrices (square matrices with {0, 1}

valued entries and row and column sums equal to 1), D+
n for the set of n × n doubly

stochastic matrices (square matrices with nonnegative entries and row and column sums

equal to 1), On for the set of n × n orthogonal matrices (square matrices where any two

36



rows or any two columns have inner product 1 if they are the same and 0 otherwise), and

M := {ϕ : [0, 1] → [0, 1] with |ϕ−1(A)| = |A| for any measurable A ⊆ [0, 1]} for the set of all

measure preserving transformations on [0, 1] where |A| refers to the Lebesgue measure of A.

A.1.3 Lemmas

For the following Lemmas, let ft(u, v) refer to either Yt(φt(u), φt(v)) or 1{Yt(φt(u), φt(v)) ≤

yt} for an arbitrary yt ∈ R and φt ∈ M. For any n ∈ N let Sn
i :=

(
i−1
n
, i
n

]
, F n

t be an n× n

matrix with F n
ij,t ∈ R as its ijth entry, and fn

t (u, v) =
∑

ij F
n
ij,t1{u ∈ Sn

i , v ∈ Sn
j } such that∫ ∫

(ft(u, v)− fn
t (u, v))

2 dudv → 0 as n → ∞. In words, F n
t is an n × n matrix approxi-

mation of ft and f
n
t is its function embedding. Intuitively, fn

t is a histogram approximation

to the function f . The existence of such a sequence of matrices F n
t follows from Lemma 1

below. Let {λrt} denote the eigenvalues of ft and {λnrt} the eigenvalues of fn
t .

Lemma 1: For every bounded measurable g : [0, 1]2 → R there exists sequences {Gn}n∈N
and {gn}n∈N where Gn is an n× n matrix with ijth entry Gn

ij and g
n : [0, 1]2 → R with

gn(u, v) =
∑

ij G
n
ij1{u ∈ Sn

i , v ∈ Sn
j } and Sn

i :=
(
i−1
n
, i
n

]
such that for every ε > 0 there

exists an m ∈ N such that
∫ ∫

(g(u, v)− gn(u, v))2 dudv ≤ ε for every n > m.

Proof of Lemma 1: Fix an arbitrary ε > 0. Lusin’s Theorem (see Lemma B1 in Online

Appendix Section B.1) implies that for any measurable g : [0, 1]2 → R and ϵ > 0, there

exists a compact Eϵ
g ⊆ [0, 1]2 of measure at least 1− ϵ such that g is continuous when

restricted to Eϵ
g.

For any N ∈ N, define the N ×N matrix GNϵ with ijth entry

GNϵ
ij =

∫ ∫
(u,v)∈Eϵ

g
gt(u,v)1{u∈SN

i ,v∈SN
j }dudv∫ ∫

(u,v)∈Eϵ
g
1{u∈SN

i ,v∈SN
j }dudv if

∫ ∫
(u,v)∈Eϵ

g
1{u ∈ SN

i , v ∈ SN
j }dudv > 0 and GNϵ

ij = 0

otherwise. Let gNϵ be the function embedding of GNϵ so that for u, v ∈ [0, 1],

gNϵ(u, v) =
∑

ij G
Nϵ
ij 1{u ∈ SN

i , v ∈ SN
j }. Also let ḡ := sup(u,v)∈[0,1]2 |g(u, v)|2 <∞.

Since g is continuous when restricted to Eϵ
g there exists an m(ϵ) ∈ N such that∫ ∫

(u,v)∈Eϵ
g

(
g(u, v)− gNϵ(u, v)

)2
dudv ≤ ϵ for every N > m(ϵ). In addition,∫ ∫

(u,v)̸∈Eϵ
g

(
g(u, v)− gNϵ(u, v)

)2
dudv ≤ 4ḡϵ for every N . It follows that
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∫ ∫
(u,v)∈[0,1]2

(
g(u, v)− gNϵ(u, v)

)2
dudv ≤ (1 + 4ḡ) ϵ for every N > m(ϵ).

Let e†(N) := inf{e > 0 : m(e) ≤ N} where e†(N) → 0 as N → ∞ because m(ϵ) ∈ N for

every ϵ > 0. For every n ∈ N, define Gn = Gne†(n) and gn = gne
†(n). Then∫ ∫

(u,v)∈[0,1]2 (g(u, v)− gn(u, v))2 dudv ≤ (1 + 4ḡ) e†(N) for all n > m(e†(N)) and N ∈ N.

The claim follows by taking N sufficiently large so that (1 + 4ḡ) e†(N) < ε. □

Lemma 2:
∑

r∈[n] λ
n
sn(r)0

λnr1 ≤
∫ ∫

fn
0 (u, v)f

n
1 (u, v)dudv ≤

∑
r∈[n] λ

n
r0λ

n
r1 where

sn(r) = n− r + 1.

Proof of Lemma 2: This lemma follows the logic of Finke et al. (1987), Theorem 3. By

construction
∫ ∫

fn
1 (u, v)f

n
0 (u, v)dudv = 1

n2

∑
ij F

n
ij,1F

n
ij,0 so it is sufficient to show that

n2
∑

r∈[n] λ
n
sn(r)0

λnr1 ≤
∑

ij F
n
ij,1F

n
ij,0 ≤ n2

∑
r∈[n] λ

n
r0λ

n
r1. Also if {λnrt}r∈[n] are the n largest (in

absolute value) eigenvalues of fn
t then {nλnrt}r∈[n] are the eigenvalues of F n

t .

Since F n
t is square and symmetric, the spectral theorem (see Lemma B2 in Online

Appendix Section B.1) implies that F n
ij,t = n

∑
r∈[n] λ

n
rtϕ

n
ir,tϕ

n
jr,t where ϕ

n
ir,t is the eigenvector

of F n
ij,t associated with eigenvalue nλnrt. As a result∑

ij F
n
ij,1F

n
ij,0 = n2

∑
r,s∈[n] λ

n
r1λ

n
s0

[∑
i ϕ

n
ir,1ϕ

n
is,0

]2
.

The matrix
[∑

i ϕ
n
ir,1ϕ

n
is,0

]2
is doubly stochastic and so Birkhoff’s Theorem (see Lemma B4

in Online Appendix Section B.1) implies that

∑
r,s∈[n]

λnr1λ
n
s0

[∑
i

ϕn
ir,1ϕ

n
is,0

]2
=
∑

r,s∈[n]

λnr1λ
n
s0

∑
t∈[m]

αtPij,t =
∑
t∈[m]

αt

∑
r,s∈[n]

λnr1λ
n
s0Pij,t

for some m ∈ N, α1, ..., αm > 0 with
∑

t∈[m] αt = 1, and P1, ..., Pm ∈ Pn.

Hardy-Littlewood-Polya’s Theorem 368 (see Lemma B5 in Online Appendix Section B.1)

implies that

∑
r∈[n]

λnr1λ
n
sn(r)0 ≤

∑
r,s∈[n]

λnr1λ
n
s0Pij ≤

∑
r∈[n]

λnr1λ
n
r0
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for any P ∈ Pn and so

∑
r∈[n]

λnr1λ
n
sn(r)0 ≤

∑
t∈[m]

αt

∑
r,s∈[n]

λnr1λ
n
s0Pij,t ≤

∑
r∈[n]

λnr1λ
n
r0

because
∑

t∈[m] αt = 1. The claim follows. □

Lemma 3: For every ε > 0 there exists an m ∈ N such that

i.
∣∣∫ ∫ fn

1 (u, v)f
n
0 (u, v)dudv −

∫ ∫
f1(u, v)f0(u, v)dudv

∣∣ ≤ ε and

ii.
∣∣∣∑r∈[n] λ

n
σn(r)0

λnr1 −
∑

r λσ(r)0λr1

∣∣∣ ≤ ε,

for every n > m where
∑

r λσ(r)0λr1 refers to limR→∞
∑

r∈[R] λσR(r)0λr1, {λrt}r∈[R] is ordered

to be decreasing, and σR(r) refers to either R or sR(r) := R− r + 1.

Proof of Lemma 3: Fix an arbitrary ε > 0. Part i. follows from∣∣∣∣∫ ∫ fn
1 (u, v)f

n
0 (u, v)dudv −

∫ ∫
f1(u, v)f0(u, v)dudv

∣∣∣∣
=

∣∣∣∣∫ ∫ (fn
1 (u, v)− f1(u, v)) f

n
0 (u, v)dudv +

∫ ∫
(fn

0 (u, v)− f0(u, v)) f1(u, v)dudv

∣∣∣∣
≤
(∫ ∫

(fn
1 (u, v)− f1(u, v))

2 dudv

)1/2

f̄n
0 +

(∫ ∫
(fn

0 (u, v)− f0(u, v))
2 dudv

)1/2

f̄1

≤ ϵ
(
f̄n
0 + f̄1

)
for n > m(ϵ) where m(ϵ) is from the hypothesis of Lemma 1

≤ ε for any n > m (ε) where ε = ϵ(f̄n
0 + f̄1)

where f̄n
0 =

(∫ ∫
fn
0 (u, v)

2dudv
)1/2

and f̄1 =
(∫ ∫

f1(u, v)
2dudv

)1/2
, the first inequality is

due to Cauchy-Schwarz and the triangle inequality, and the second is due to Lemma 1.

To demonstrate Part ii, we bound
∣∣∣∑r∈[n] λ

n
σn(r)0

λnr1 −
∑

r∈[n] λσn(r)0λr1

∣∣∣ where the sum∑
r∈[n] λσn(r)0λr1 is a function of the n largest eigenvalues of f0 and f1 in absolute value.

The remainder
∣∣∣∑r∈[n] λσn(r)0λr1 −

∑
r λσ(r)0λr1

∣∣∣ can be made arbitrarily small since
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∑
r λσ(r)0λr1 := limn→∞

∑
r∈[n] λσn(r)0λr1. We write

∣∣∣∣∣∣
∑
r∈[n]

λnσn(r)0λ
n
r1 −

∑
r∈[n]

λσn(r)0λr1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
r∈[n]

(
λnσn(r)0λ

n
r1 − λσn(r)0λr1

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
r∈[n]

(
λnσn(r)0 − λσn(r)0

)
λnr1 +

∑
r∈[n]

(λnr1 − λr1)λσn(r)0

∣∣∣∣∣∣
≤

∑
r∈[n]

(λnr0 − λr0)
2

1/2∑
r∈[n]

(λnr1)
2

1/2

+

∑
r∈[n]

(λnr1 − λr1)
2

1/2∑
r∈[n]

(λr0)
2

1/2

=

∑
r∈[n]

(λnr0 − λr0)
2

1/2

f̄n
1 +

∑
r∈[n]

(λnr1 − λr1)
2

1/2

f̄0

where the first inequality is due to Cauchy-Schwarz and the triangle inequality. Since fn
t

and ft are bounded functions then for every ϵ > 0 there exists a R,m′ ∈ N such that∑
r∈[n]−[R] (λ

n
rt)

2 < ϵ and
∑

r∈[n]−[R] (λrt)
2 < ϵ for every n > m′ and t ∈ {0, 1}. As a result,

∑
r∈[n]

(λnr0 − λr0)
2

1/2

f̄n
1 +

∑
r∈[n]

(λnr1 − λr1)
2

1/2

f̄0

≤

∑
r∈[R]

(λnr0 − λr0)
2

1/2

f̄n
1 +

∑
r∈[R]

(λnr1 − λr1)
2

1/2

f̄0 + 2
√
ϵ(f̄n

1 + f̄0) for n > m′(ϵ)

≤
√
R

(∫ ∫
(fn

0 (u, v)− f0(u, v))
2 dudv

)1/2

f̄n
1 +

√
R

(∫ ∫
(fn

1 (u, v)− f1(u, v))
2 dudv

)1/2

f̄0

+ 2
√
ϵ(f̄n

1 + f̄0) for n > m′(ϵ)

≤ (
√
Rϵ̃+ 2

√
ϵ)(f̄n

1 + f̄0) for n > max(m′(ϵ),m(ϵ̃)) where m(ϵ̃) is from the hypothesis of Lemma 1

≤ ε/2 for n > max(m′(ε2/(8f̄n
1 + 8f̄0)

2),m(ε/(4
√
Rf̄n

1 + 4
√
Rf̄0)))

where the third inequality follows because the eigenvalues of compact Hermitian operators

are Lipschitz continuous (see the paragraph after Lemma B3 in Online Appendix Section

B.1) and the last inequality follows if ϵ, R, and m′ are chosen so that ϵ = ε2/(8f̄n
1 + 8f̄0)

2

and ϵ̃ and m are chosen so that ϵ̃ = ε/(4
√
Rf̄n

1 + 4
√
Rf̄0). The claim follows. □
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Lemma 4: If fn
0 and fn

1 take values in {0, 1} then max
(∑

r∈[n] ((λ
n
r0)

2 + (λnr1)
2)− 1, 0

)
≤∫ ∫

fn
1 (u, v)f

n
0 (u, v)dudv ≤ min

(∑
r∈[n](λ

n
r0)

2,
∑

r∈[n](λ
n
r1)

2
)
.

Proof of Lemma 4: This lemma follows the logic of Whitt (1976), Theorem 2.1. The

upper bound follows

∫ ∫
fn
1 (u, v)f

n
0 (u, v)dudv ≤ min

t∈{0,1}

∫ ∫
(fn

t (u, v))
2dudv = min

t∈{0,1}

∑
r∈[n]

(λnrt)
2.

The lower bound follows

∫ ∫
fn
1 (u, v)f

n
0 (u, v)dudv =

∫ ∫
fn
1 (u, v) (1− (1− fn

0 (u, v))) dudv

≥
∫ ∫

fn
1 (u, v)dudv −min

(∫ ∫
fn
1 (u, v)dudv,

∫ ∫
(1− fn

0 (u, v)) dudv

)
= max

(
0,

∫ ∫
(fn

1 (u, v))
2dudv +

∫ ∫
(fn

0 (u, v))
2dudv − 1

)

= max

∑
r∈[n]

(
(λnr0)

2 + (λnr1)
2
)
− 1, 0

 .

The claim follows. □

A.2 Proposition 2

Let ft(u, v) = 1{Y ∗
t (u, v) ≤ yt}. For any n ∈ N let Si :=

(
i−1
n
, i
n

]
, F n

t be an n × n ma-

trix with F n
ij,t ∈ R as its ijth entry, and fn

t (u, v) =
∑

ij F
n
ij,t1{u ∈ Si, v ∈ Sj} such that∫ ∫

(ft(u, v)− fn
t (u, v))

2 dudv → 0 as n → ∞ as per Lemma 1. Let {λrt} denote the eigen-

values of ft and {λnrt} the eigenvalues of fn
t .
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For any ϵ > 0 there exists an m ∈ N such that for every n > m

∫ ∫
f1(u, v)f0(u, v)dudv <

∫
fn
1 (u, v)f

n
0 (u, v)dudv + ϵ

≤ min

(∑
r

λnr1λ
n
r0,
∑
r

(λnr1)
2,
∑
r

(λnr0)
2

)
+ ϵ

< min

(∑
r

λr1λr0,
∑
r

λ2r1,
∑
r

λ2r0

)
+ 2ϵ

where the first inequality is due to Part i of Lemma 3, the second inequality is the intersec-

tions of the upper bounds in Lemmas 2 and 4, and the third inequality is due to Part ii of

Lemma 3. Similarly,

∫ ∫
f1(u, v)f0(u, v)dudv >

∫
fn
1 (u, v)f

n
0 (u, v)dudv − ϵ

≥ max

(∑
r

λnr1λ
n
s(r)0,

∑
r

(
(λnr0)

2 + (λnr1)
2
)
− 1, 0

)
− ϵ

> max

(∑
r

λr1λs(r)0,
∑
r

(
λ2r0 + λ2r1

)
− 1, 0

)
− 2ϵ.

Since ϵ > 0 is arbitrary, the claim follows. □
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A.3 Proposition 3

We use the same notation and definitions as in the proof of Proposition 2 above. For any

y1, y0 ∈ R such that y1 − y0 = y we have

∫ ∫
1{Y ∗

1 (u, v)− Y ∗
0 (u, v) ≤ y}dudv ≥

∫ ∫
1{Y ∗

1 (u, v) ≤ y1}1{−Y ∗
0 (u, v) < −y0}dudv

=

∫ ∫
1{Y ∗

1 (u, v) ≤ y1}dudv −
∫ ∫

1{Y ∗
1 (u, v) ≤ y1}1{Y ∗

0 (u, v) ≤ y0}dudv

=

∫ ∫
f1(u, v)dudv −

∫ ∫
f1(u, v)f0(u, v)dudv

≥
∑
r

λ2r1 −min

(∑
r

λ2r1,
∑
r

λ2r0,
∑
r

λr1λr0

)

= max

(∑
r

(λ2r1 − λ2r0),
∑
r

(λ2r1 − λr1λr0), 0

)

and

∫ ∫
1{Y ∗

1 (u, v)− Y ∗
0 (u, v) ≤ y}dudv ≤

∫ ∫
max (1{Y ∗

1 (u, v) ≤ y1},1{−Y ∗
0 (u, v) < −y0}) dudv

= 1 +

∫ ∫
1{Y ∗

1 (u, v) ≤ y1}1{Y ∗
0 (u, v) ≤ y0}dudv −

∫ ∫
1{Y ∗

0 (u, v) ≤ y0}dudv

≤ 1 + min

(∑
r

λ2r1,
∑
r

λ2r0,
∑
r

λr1λr0

)
−
∑
r

λ2r0

= 1 +min

(∑
r

(λ2r1 − λ2r0),
∑
r

(λr1λr0 − λ2r0), 0

)

where the the first inequality in both systems is due to the fact that for any u, v ∈ [0, 1],

1{Y ∗
1 (u, v) ≤ y1}1{−Y ∗

0 (u, v) < −y0} ≤ 1{Y ∗
1 (u, v)− Y ∗

0 (u, v) ≤ y}

≤ max (1{Y ∗
1 (u, v) ≤ y1},1{−Y ∗

0 (u, v) < −y0})

and the second inequality in both systems is due to the upper bound in Proposition 2. Since

these inequalities hold for any y1, y0 ∈ R such that y1 − y0 = y, the claim follows. □
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A.4 Proposition 4

This result is an infinite dimensional analog of the Hoffman-Wielandt inequality (see Lemma

B6 in Online Appendix Section B.1) which to our knowledge is original. Let ft(u, v) =

Y ∗
t (u, v). For any n ∈ N let Sn

i :=
(
i−1
n
, i
n

]
, F n

t be an n× n matrix with F n
ij,t ∈ R as its ijth

entry, and fn
t (u, v) =

∑
ij F

n
ij,t1{u ∈ Sn

i , v ∈ Sn
j } such that

∫ ∫
(ft(u, v)− fn

t (u, v))
2 dudv →

0 as n→ ∞ as per Lemma 1. Let {σrt} and {σn
rt} be the eigenvalues of ft and f

n
t .

For any ϵ > 0 there exists an m ∈ N such that for every n > m

∫ ∫
(f1(u, v)− f0(u, v))

2dudv

=

∫ ∫
f1(u, v)

2dudv +

∫ ∫
f0(u, v)

2dudv − 2

∫ ∫
f1(u, v)f

∗
0 (u, v)dudv

≥
∫ ∫

f1(u, v)
2dudv +

∫ ∫
f0(u, v)

2dudv − 2

∫ ∫
fn
1 (u, v)f

n
0 (u, v)dudv − ϵ

≥
∑
r

σ2
r1 +

∑
r

σ2
r0 − 2

∑
r

σn
r1σ

n
r0 − ϵ

≥
∑
r

σ2
r1 +

∑
r

σ2
r0 − 2

∑
r

σr1σr0 − 2ϵ

=
∑
r

(σr1 − σr0)
2 − 2ϵ

where the first inequality is due to Part i of Lemma 3, the second inequality is due to the

upper bound of Lemma 2, and the third inequality is due to Part ii of Lemma 3.

The claim then follows from the fact that
∫ ∫

STE(u, v;ϕ)2dudv =
∑

r(σr1 − σr0)
2 for

any choice of orthogonal basis {ϕr}r∈N. Specifically,∫ ∫
STE(u, v;ϕ)2dudv =

∫ ∫ ∑
r,s

(σr1 − σr0)(σs1 − σs0)ϕr(u)ϕr(v)ϕs(u)ϕs(v)dudv

=
∑
r,s

(σr1 − σr0)(σs1 − σs0)

[∫
ϕr(u)ϕs(u)du

]2
=
∑
r

(σr1 − σr0)
2.

The last equality is because {ϕr}r∈N is orthogonal and so
[∫
ϕr(u)ϕs(u)du

]2
= 1{r = s}. □
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A.5 Proposition 5

Let g : R → R admit the series representation g(x) =
∑

s csx
s, (σrt, ϕ

∗
rt) be the rth eigenvalue

and eigenfunction pair of Y ∗
t , and (σrt, ϕrt) be the rth eigenvalue and eigenfunction pair of

Yt ordered so that the eigenvalues are decreasing. Then

Y ∗
1 (u, v) = g(Y ∗

0 (u, v)) =
∑
s

csY
∗
0 (u, v)

s =
∑
r,s

csσ
s
r0ϕ

∗
r0(u)ϕ

∗
r0(v) =

∑
r

g(σr0)ϕ
∗
r0(u)ϕ

∗
r0(v)

where Y ∗
0 (u, v)

s =
∫ ∫

...
∫
Y ∗
0 (u, τ1)Y

∗
0 (τ1, τ2)...Y

∗
0 (τs−1, v)dτ1dτ2...dτs−1 is the sth operator

power of Y ∗
0 evaluated at (u, v) and the third equality follows from the fact that for any

bounded symmetric measurable function h with eigenvalue-eigenfunction pairs {(ρr, ψr)}r∈N
we have hs(u, v) =

∑
r ρ

s
rψr(u)ψr(v). Since Y ∗

1 (u, v) =
∑

r σ1rϕ
∗
r1(u)ϕ

∗
r1(v), it follows from

the assumption that g is not decreasing that σr1 = g(σr0) and ϕ
∗
r1 = ϕ∗

r0. As a result,

Y ∗
1 − Y ∗

0 =
∑
r

(g(σr0)− σr0)ϕ
∗
r0ϕ

∗
r0 =

∑
r

(σr1 − σr0)ϕ
∗
r0ϕ

∗
r0 =

∑
r

(σr1 − σr0)ϕ
∗
r1ϕ

∗
r1.

Since Y ∗
t (u, v) = Yt(φt(u), φt(v)) we have ϕ

∗
r1(u) = ϕr1(φ1(u)) and ϕ

∗
r0(u) = ϕr0(φ0(u)). As a

result, STT (u, v) =
∑

r (σr1 − σr0)ϕr1(u)ϕr1(v) and STU(u, v) =
∑

r (σr1 − σr0)ϕr0(u)ϕr0(v)

imply

Y ∗
1 (u, v)− Y ∗

0 (u, v) = STT (φ1(u), φ1(v)) = STU(φ0(u), φ0(v)).

and so because φ1, φ0 ∈ M,

∫ ∫
1 {Y ∗

1 (u, v)− Y ∗
0 (u, v) ≤ y} dudv =

∫ ∫
1 {STT (u, v) ≤ y} dudv

=

∫ ∫
1 {STU(u, v) ≤ y} dudv

as claimed. □
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