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Abstract

In many games of interest (e.g., trade, entry, leadership, warfare, and partnership environments),

one player (the leader) covertly acquires information about the state of Nature before choosing

whether to engage with another player (the follower). The friendliness of the follower’s reaction

depends on his beliefs about what motivated the leader’s choice to engage. We provide necessary

and sufficient conditions for the leader’s value of acquiring more information to increase with the

follower’s expectations. We then derive the economic implications of this characterization, focusing

on three closely related topics (expectation traps, disclosure, and cognitive styles), and drawing policy

implications.
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1 Introduction

Many strategic situations of interest can be thought of as Stackelberg games in which one player, player

L (the leader, “she”) chooses between an “adverse-selection-sensitive” action and an “adverse-selection-

insensitive” one. The reaction of the other player, player F (the follower, “he”) to the adverse-selection-

sensitive action depends on his beliefs about what motivated L’s choice of action. For example, player

L may represent a seller choosing between offering to trade with a buyer (the adverse-selection-sensitive

action) and opting out of the negotiations, as in Akerlof’s (1970) lemons model. More generally, player

F may still act following the adverse-selection-insensitive action. For example, the latter action may

represent the seller’s decision to disclose hard information proving unambiguously what the seller knows

about the value of the asset. In this case, the decision to disclose hard information is adverse-selection-

insensitive because, once the state is revealed, the price offered by the buyer (the follower’s reaction)

is invariant to his beliefs about what motivated the seller’s decision to disclose. The key assumption is

that information that makes player L eager to engage with player F by choosing the adverse-selection-

sensitive action (for example, by choosing not to disclose what she knows) makes player F react in an

unfriendlier manner. Notable examples of such situations include, in addition to Akerlof’s (1970) lemons

model, many entry and partnership games that are central to the Industrial Organization, Finance, and

Organization Economics literatures.

We enrich this classic model by allowing player L to covertly acquire information about the state

of Nature before making her engagement decision. We are particularly interested in understanding how

player L’s information choice depends on player F ’s expectations (the relationship between the two

naturally reflecting how strategic considerations shape the value of information in the class of games

under consideration). We identify sufficient and/or necessary conditions for expectation conformity (EC)

to emerge in these games, namely for player L to find it more valuable to acquire more information

when player F expects her to do so. Besides being of independent interest, EC plays a major role in

equilibrium analysis and has important economic implications. In particular, interactions or markets

may switch behavior abruptly; for instance, asset markets can tip from a pattern in which the assets

receive little scrutiny to one in which they are heavily scrutinized by participants. EC also shapes the

benefits of disclosure of hard information and plays a key role in the possibility that the players end up

in an expectation trap, where they suffer from the information they are expected to acquire.

Section 2 defines a broad class of generalized lemons environments, in which one of the players

acquires information covertly and then decides whether or not to engage with another player (i.e.,

chooses between an adverse-selection-sensitive action and an adverse-selection-insensitive one); as shown

in the online Supplement, a number of familiar games can be reinterpreted within this framework.

Section 3 introduces the notion of EC. To put flesh on the characterization, we compare information

structures through the mean-preserving-spread (MPS) order, or the more refined rotations order. The

MPS order says that the distribution over the posterior mean under a more informative structure is

a mean-preserving spread of the corresponding distribution under a less informative structure, which

is always the case when the former distribution is obtained through an experiment that Blackwell-

dominates the one generating the latter distribution. The rotations order is a strengthening of the

MPS order that obtains, for instance, under non-directed search, that is when player L’s investment
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in information acquisition determines the probability of learning the state of Nature (equivalently, the

value of the interaction with the other player). For more general environments, it is a property of the

family of distributions over player F ’s posterior mean (we give examples with Uniform, Pareto and

Exponential distributions).

The analysis delivers a sufficient (and, under further assumptions, necessary) condition for such

games to satisfy EC. This condition says that the choice by player L of a Blackwell-more-informative

experiment (a) aggravates the adverse selection problem, in a well-defined sense, which makes F ’s

reaction less friendly to player L, and (b) that an unfriendlier reaction by F in turn raises L’s incentive

to acquire a more informative experiment; or that both conditions are simultaneously reversed. The

condition for EC is easier to check than verifying directly that EC prevails. It obtains, for example,

when, holding player F ’s reaction fixed, a more informative experiment reduces the probability of trade,

both when such a probability is computed by player L, given her actual choice of experiment, and by

player F , given the experiment that he expects player L to choose.

In the lemons game under non-directed search where the leader is a seller of an asset and the buyer

a representative of a competitive market, as in Akerlof’s model, EC holds when the gains from trade

are large, but not for low gains. This is because large gains from trade induce the competitive buyer

to offer a high price that the seller finds it optimal to accept when uninformed. The choice of a more

informative experiment (which under non-direct search amounts to a higher probability of the seller

learning the true value of the asset) then reduces the probability of trade by making the seller engage

selectively when informed. Information thus unambiguously aggravates adverse selection, inducing the

buyer to lower the price. This in turn raises the cost for the seller of parting with the asset when its

value is high, raising the seller’s value of acquiring more information. Hence, EC holds in this case.

When, instead, the gains from trade are small, the price offered by the buyer is low, which makes the

seller unwilling to trade based on her prior, i.e., when uninformed. Because the seller engages only when

informed, the choice by the seller of a more informative experiment has no effect on the severity of the

adverse selection problem and hence on the price offered by the buyer. EC thus does not obtain for low

gains from trade.

The paper then derives the economic implications of this characterization in Section 4, focusing on

three closely-related topics: expectation traps, disclosure (of hard information), and cognitive styles.

In generalized lemons games, under the key condition for EC mentioned above (namely, that more

information reduces the probability of trade), the information-acquiring player is worse off in a high-

information-intensity equilibrium than in a low-information-intensity one. This happens because, under

the key condition for EC, information aggravates adverse selection. Consequently, the follower responds

with an unfriendlier reaction when expecting the leader to choose a more informative experiment. Im-

portantly, player L may be trapped into a high-information-intensity equilibrium even when information

is free. In this case, the loss in player L’s payoff originates entirely in the unfriendly response by player

F and is unrelated to the cost of acquiring information. We then modify the game by assuming that

the information-acquiring player can disclose evidence proving that she devoted external resources to

the issue. For example, she can prove that she conducted an experiment resulting in a signal whose

informativeness is no smaller than some threshold. Importantly, the hard information that the player

discloses is about the experiment of her choice and not its realization. We show that the possibility to
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engage in this type of disclosure is mostly irrelevant. The intuition is related to the expectation-trap

phenomenon: This type of disclosure serves to demonstrate that one is knowledgeable, which, under the

key condition for EC, is not profitable. Along a similar vein, we show that it is optimal for the leader

to choose a “cognitive style”whereby she poses as an “informational puppy dog,” e.g., by convincing the

other player that she is dumb or busy, or more generally that her cost to acquire information is high.

Section 5 discusses how the results change in economies in which the lemons assumption is replaced

by its anti-lemon counterpart (that is, states in which the leader is most eager to engage are those in

which the follower’s reaction is most favorable to the leader). The condition for EC is flipped. EC

obtains when the choice of a more informative experiment induces the follower to respond in a friendlier

manner and the marginal benefit of a more informative experiment increases (instead of decreases) with

the friendliness of the follower’s reaction; or both conditions are simultaneously reversed.

Section 6 contains policy analysis. It identifies conditions under which subsidies/taxes to trade are

welfare enhancing as well as conditions under which the endogeneity of information calls for larger policy

interventions. For example, in the Akerlof’s model, subsidies to trade are optimal when (a) the cost of

public funds is small, (b) the choice of a more informative experiment aggravates the adverse selection

problem, and (c) subsidies reduce the seller’s investment in information acquisition. Furthermore,

relative to the case where information is exogenous, the optimal level of the subsidy is larger. This is

because subsidies come with a double dividend under endogenous information: In addition to inducing

player L to engage more often, they discourage player L from acquiring information, with the second

effect further contributing to a reduction in the adverse selection problem and hence to an increase in

trade.

Section 7 discusses the robustness of the key insights to the possibility for player L to choose the

type of information to acquire: The results qualify in what sense the key conditions for EC extend to

certain settings with flexible information acquisition. Section 8 concludes. Omitted proofs are in the

Appendix at the end of the document or in the online Supplement. The latter also contains various

examples of generalized lemons and anti-lemons problems, and discusses the connection to other covert

investment games.

Related Literature. The paper is related to various strands of the literature. The first one is the

literature on the lemons problem under alternative information structures. Kartik and Zhong (2023)

consider a bilateral trading environment with interdependent values and characterize the payoffs that

can be sustained in equilibrium under any possible information structure.1 The analysis parallels the

one in Bergemann, Brooks and Morris (2015) but in a setting with interdependent payoffs. Related

are also Levin (2001), Kessler (2001), and Bar-Isaac et al. (2018). These papers, as Kartik and Zhong

(2023), study how payoffs, the volume of trade, and the efficiency of bargaining outcomes vary with the

information structure in variants of the Akerlof’s model. In contrast, we study (a) how the acquisition

of information is shaped by other players’ expectations, (b) how the latter expectations depend on the

information acquisition technology and the effect of information on the severity of the adverse selection

1Even under private values, the results in Kartik and Zhong (2023) are more general than those in Bergemann, Brooks
and Morris (2015); they cover the possibility that either player is partially informed whereas Bergemann, Brooks and
Morris (2015) assume the buyer is fully informed.
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problem, (c) how players may end up in an expectation trap, and (d) how policy interventions can

alleviate the inefficiencies associated with the endogenous asymmetry of information.

Dang (2008), Lichtig and Weksler (2023), and Thereze (2023) also endogenize the information struc-

ture in the Akerlof’s model. However, the focus of the analysis in these papers is different. Dang (2008)

derives conditions under which no information is acquired in equilibrium as well as conditions under

which the player acquiring information receives positive surplus despite not having bargaining power at

the negotiation stage. Lichtig and Weksler (2023) consider a setting in which the seller can choose, at no

cost, among a finite set of experiments (i.e., distributions over the posterior mean) and show that, when

the distributions can be ranked according to the strict location-independent risk order (a strengthen-

ing of second-order stochastic dominance when distributions have the same mean), in equilibrium, the

seller always selects the riskiest distribution. They also show the robustness of the conclusion to the

possibility that trade is governed by a general (direct incentive compatible) mechanism instead of the

familiar protocol whereby the competitive buyer makes a take-it-or-leave-it offer to the seller. Thereze

(2022) considers a competitive adverse selection market in which the buyers’ information also affects the

sellers’ costs (as in health markets), and investigates how the elasticity of the demand and the market

equilibrium are affected by a change in the cost of information. In Thereze (2022), the buyers acquire

information after seeing the prices asked by the sellers. In contrast, in our model, as in Dang (2008),

and Lichtig and Weksler (2023), information acquisition takes place prior to observing the prices.2

A fairly vast literature studies information acquisition in bargaining games with private values. See

for example Ravid (2020), and Ravid, Roesler, and Szentes (2022) and the references therein. The first

paper considers a repeated bargaining setting with a rationally-inattentive buyer. The second paper

investigates the properties of the equilibrium when the cost of the buyer’s information vanishes in a

one-shot ultimatum-bargaining game. Our paper, instead, considers games with interdependent payoffs

(as in the lemons problem). It investigates how the information acquired in equilibrium is shaped by the

effect of information on the severity of the adverse selection problem. It shows how EC is intrinsically

related to the possibility of expectation traps whereby the information-acquiring player is worse off

in a high-information-intensity equilibrium than in a low-information-intensity one, with these traps

emerging even when information is free and the follower is a representative of a competitive market and

hence obtains no surplus in equilibrium (as in Akerlof’s original model).

Pavan and Tirole (2023a) shares with the present paper the interest in how the possibility to disclose

verifiable/hard information affects equilibrium outcomes in settings with interdependent payoffs. That

paper focuses on the welfare effects of mandatory disclosure laws. The present paper, instead, focuses

on the effects of information on the severity of the adverse selection problem and on policy interventions

aimed at alleviating such a severity. Expectation conformity is also studied in Pavan and Tirole (2023b).

The analysis in that paper is not specific to settings with adverse selection and none of the results in

the present paper have counterparts in that paper.

Finally, the discussion of how benevolent governments can improve the efficiency of markets affected

by adverse selection is related to Philippon and Skreta (2012) and Tirole (2012). The sellers’ information

in those papers is exogenous. Instead, the present paper studies how governments’ programs influence

2See also Cremer and Khalil (1992), and Cremer, Khalil, and Rochet (1998) for earlier work on information acquisition
in other contractual settings.
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the acquisition of information. See also Colombo, Femminis and Pavan (2023) for how governments

can incentivize information acquisition in economies with investment complementarities, and Pavan,

Sundaresan, and Vives (2023) for how governments can influence information acquisition in financial

markets.

2 Framework

2.1 Description

Consider the following game between two players, a “leader” (she) and a “follower” (he).

(a) Actions and timing

Player L (the “leader”) first covertly selects an information structure. After updating her beliefs about

the state of Nature upon observing the realization of the selected information structure (equivalently,

of the selected experiment), player L then chooses between two actions, a = 0 and a = 1. Player F (the

“follower”), after observing player L’s action a but not L’s choice of an information structure and its

realization, then chooses his reaction to the leader’s action. As we explain below, player F ’s reaction

to a = 0 plays no role in the analysis and hence we do not formally describe it. His reaction to a = 1,

instead, will be denoted by r ∈ R. We normalize player F ’s action so that a higher r stands for a

friendlier response: player L’s utility is increasing in r.

(b) Information

Prior to choosing a, player L acquires information about the state of Nature. The state of Nature, say

the car’s quality in the lemons model, is denoted by ω ∈ (−∞,+∞), and is commonly believed to be

drawn from a distribution G with prior mean ω0. We will assume that the two players’ preferences

are affine in ω, so they care only about the posterior mean m of the state. An experiment, indexed

by ρ ∈ R+, will be taken to be the choice of a cumulative distribution function G(·; ρ) of the induced

posterior mean m, satisfying the martingale property

∫ +∞

−∞
mdG(m; ρ) = ω0 for all ρ.3 We will assume

that the set of experiments (equivalently, of distributions, G(·; ρ)) player L can choose from has the

cardinality of the continuum, and then denote such a set by [0,ρ̄), with ρ̄ ∈ R+. To ease the exposition,

we also assume that the distributions are ordered in such a way that, for anym ∈ R, the function G(m; ·)
is differentiable in ρ and then denote by Gρ(m; ρ) the partial derivative of G(m; ρ) with respect to ρ. We

will also assume that Gρ(·; ρ) is integrable in m. As the analysis below will clarify, these assumptions

permit us to describe some of the key conditions in a concise form. None of the qualitative insights

hinge on these differentiability assumptions. However, many of the relevant conditions are heavier when

the derivatives are replaced with differentials across information structures.

For most of the results, we will also assume that the family of distributions (G(·; ρ))ρ∈R+
is consistent

with the mean-preserving-spread (MPS) order.4

3Note that the support of G(·; ρ) can be a strict subset of R.
4Say that each distributions G(·; ρ) is obtained by observing the realization z ∈ Z of some experiment qρ : Ω → ∆(Z),

where Z is a Polish space of signal realizations. Then if higher ρ index distributions (over the posterior mean) generated by
Blackwell-more-informative experiments, the family (G(·; ρ))ρ∈R+

must be consistent with the MPS order. The contrary,

however, is not true. The MPS order is more permissive than the Blackwell order.
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Assumption 1 (MPS). Player L’s set of feasible information structures is consistent with the MPS order

if, for any ρ and ρ′ > ρ, any m∗ ∈ R,
∫m∗

−∞ G(m; ρ′)dm ≥
∫m∗

−∞ G(m; ρ)dm, with
∫ +∞
−∞ G(m; ρ′)dm =∫ +∞

−∞ G(m; ρ)dm.

Consistently with what assumed above, when invoking Assumption 1, we will maintain that G(m; ρ)

is differentiable in ρ, for any m ∈ R. Assumption 1 then boils down to the requirement that, for any

m∗ ∈ R and ρ,
∫m∗

−∞ Gρ(m; ρ)dm ≥ 0, with
∫ +∞
−∞ Gρ(m; ρ)dm = 0. Most of the results below assume

that information structures are consistent with the MPS order. Some of them assume a strengthening

of such an order whereby the spreads correspond to “rotations.”

Definition 1 (rotations). Player L’s set of possible information structures are “rotations” (or “simple

mean-preserving spreads” or experiments consistent with the “single-crossing property”) if, for any ρ,

there exists a rotation point mρ such that Gρ(m; ρ) ≥ 0 for −∞ < m ≤ mρ and Gρ(m; ρ) ≤ 0 for

mρ ≤ m < +∞ (with some inequalities strict).

A simple mean-preserving spread is a mean-preserving spread, but the converse is not true. For example,

a combination of two rotations need not be a rotation, unless they have the same rotation point. As

is well known, however, any mean-preserving spread can be obtained through a sequence of simple

mean-preserving spreads.

A family of distributions G(·; ρ) that are rotations is given by the following example.

Non-directed search. Assume that information collection follows the standard non-directed search

technology. Then,

G(m; ρ) =

 ρG(m) for m < ω0

ρG(m) + 1− ρ for m ≥ ω0.

That is, L learns the true state with probability ρ ∈ [0, 1] and nothing with probability 1 − ρ. In this

example, the rotation point is thus equal to the prior mean ω0. Figure 1 below illustrates the idea for

the special case in which G is uniform.

1 

0 
𝜔0 

𝜌 

m 
(mean = rotation point) 

Figure 1: Cumulative distribution function G(m; ρ) for non-directed search

Other examples of rotations include a normally distributed state ω together with a signal that is

normally distributed around the true state (ρ is then the precision of this signal), and the family of

Pareto, Exponential, and Uniform distributions in Proposition 1 below. See Diamond and Stiglitz (1974)

and Johnston and Myatt (2006) for a broader discussion of rotations and their properties.
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Cost of information. Choosing information ρ costs C(ρ) to player L. When invoking Assumption 1, we

will assume that C is non-decreasing, differentiable, and weakly convex.

(c) Preferences

Follower. Action a = 1 is “adverse-selection-sensitive,” in the sense that player F ’s reaction to a = 1

depends on his beliefs about what information privately held by player L motivated L to engage.

Consider a fictitious game in which L’s information is exogenously fixed at ρ†. We assume that, for any

ρ†, the equilibrium is unique and denote by a∗(·; ρ†) and r(ρ†), respectively, L’s engagement strategy

and F ’s reaction to a = 1 in the unique equilibrium of the ρ†-game. The function a∗(·; ρ†) specifies,

for each posterior mean m, the probability a∗(m; ρ†) ∈ [0, 1] that player L engages when her posterior

mean is m. In the game in which information is endogenous, we assume that, when F expects L to

select information ρ†, he also expects L to engage according to a∗(·; ρ†). We then denote by Ĝ(·; ρ†)
the cumulative distribution function describing F ’s beliefs over L’s posterior mean m, when expecting

L to select information ρ† and engaging according to a∗(·; ρ†), after observing a = 1.5 Given Ĝ(·; ρ†),
F maximizes his expected payoff EĜ(·; ρ†)[uF (1, r, m)] by means of an action r ∈ R, where uF (1, r, m)

is F ’s payoff when L engages (i.e., selects a = 1), F ’s reaction is r, and L’s posterior mean is m.6

By contrast, action a = 0 is “adverse-selection-insensitive.” In some applications, such as Akerlof’s

lemons example below, action a = 0 involves no decision for the follower. More generally, we assume

that the follower’s reaction to a = 0 is independent of his beliefs about ρ†. This is the case, for instance,

when a = 0 corresponds to the decision by player L to disclose hard information proving that the state

(or L’s posterior belief) is m, making F ’s conjecture about L’s information irrelevant.7

Leader. Player L’s payoff differential between a = 1 and a = 0 depends on the friendliness r of F ’s

reaction and on player L’s posterior mean m. Let uL(0, m) denote L’s payoff when choosing a = 0. As

just discussed, this payoff may depend on F ’s reaction. However, because the latter is invariant in F ’s

expectations over L’s information, we can omit it to ease the notation and interpret uL(0,m) as L’s

payoff in state m given F ’s reaction to a = 0. Similarly let uL(1, r, m) denote L’s payoff when choosing

a = 1 and then denote by

δL(r, m) ≡ uL(1, r, m)− uL(0, m)

L’s payoff differential between a = 1 and a = 0, when F ’s reaction to a = 1 is r and L’s posterior mean

is m.

Assumption 2 (leader’s preferences). Player L’s payoff differential, δL, is Lipschitz continuous and

twice continuously differentiable in each argument, strictly increasing in r, strictly decreasing in m, and

5We are interested in situations in which, after choosing information ρ†,L engages with positive probability. In this
case, when expecting information ρ†, player F , after observing a = 1, updates his beliefs G(·; ρ†) about m using Bayes rule
and the engagement strategy a∗(·; ρ†). Also, in some of the applications of interest, it may be more natural to think of L
as engaging after observing F ’s action r. Our results apply to some of these setting as well. For example, in the Akerlof’s
model where F stands for a competitive buyer, whether player L (the seller) observes the price offered by F before deciding
to put the asset on sale, or puts the asset on sale anticipating the price offered by the competitive buyer is inconsequential
because player F ’s reaction is predictable at the time player L engages.

6The assumption that L’s and F ’s payoffs are affine in ω implies that uF (1, r, m) is also F ’s ex-post payoff when the
state is ω = m.

7See example (c) in the online Supplement.
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such that the marginal impact of a friendlier reaction is weakly increasing in L’s posterior mean: for

any (r,m),
∂2

∂r∂m
δL(r,m) ≥ 0. (1)

That δL is increasing in r reflects the normalization that a higher r represents a friendlier reaction,

favoring a = 1. That δL is decreasing in m implies that a lower m favors a = 1. The strict monotonicity

of δL in m in turn implies that, no matter the actual choice of information ρ, L optimally chooses to

engage if and only if m falls below some cutoff m∗(r) that depends on F ’s reaction r, with the cutoff

m∗(r) solving δL(r, m
∗(r)) = 0 and hence strictly increasing in r. Clearly, in any equilibrium in which

L’s actual information is ρ, the information ρ† expected by F coincides with L’s actual information

ρ, and F ’s reaction is r(ρ), where, as explained above, r(ρ) is F ’s equilibrium reaction in a fictitious

game in which L’s information is exogenously fixed at ρ. Condition (1) in Assumption 2 says that L’s

marginal benefit of a friendlier reaction by F is larger in states in which L’s payoff from engaging is

lower. The condition will be used to determine whether information becomes more or less attractive to

player L when player F behaves in a friendlier way (see the proof of Part (iii) of Proposition 1 below).

Let player F anticipate information ρ† by player L. Out-of-equilibrium, ρ† can differ from L’s

actual information ρ, because the choice of information is covert. However, suppose for a moment that

information is exogenous and equal to ρ†. Because player F ’s payoff is quasilinear in ω, his reaction

r(ρ†) depends on the distribution Ĝ(·; ρ†) describing his beliefs over L’s posterior mean m only through

the mean EĜ(·; ρ†)[m] of Ĝ(·; ρ†). Furthermore, as explained above, when L’s information is exogenously

fixed at ρ†, in equilibrium, player L’s engagement strategy a∗(·; ρ†) takes the form of a cutoff rule, i.e.,

L optimally chooses a = 1 if and only if m ≤ m∗, in which case EĜ(·; ρ†)[m] = M−(m∗; ρ†), where, for

any (m∗, ρ†),

M−(m∗; ρ†) ≡ EG(·; ρ†)[m|m ≤ m∗] = m∗ −
∫m∗

−∞G(m; ρ†)dm

G(m∗; ρ†)

denotes the truncated mean of the distribution G(·; ρ†) of m, under information ρ†. An increase in M−

can then be viewed as a reduction of the adverse selection problem.

Assumption 3 (lemons). The friendliness of player F ’s reaction to an increase in player L’s information

depends positively on the effect of L’s information on the severity of the adverse selection problem:8

dr(ρ†)

dρ†
sgn
=

∂

∂ρ†
M−(m∗(r(ρ†

)
); ρ†

)
. (2)

Remark [Relative adverse-selection sensitivity]. As explained above, we assume that action a = 0

is “adverse-selection-insensitive.” However, we expect most of the results to extend to settings in which

8Consistently with what anticipated above, to ease the exposition, we assume that r(·) and M−(m∗(r(ρ†
)
); ·

)
are

differentiable in ρ† and denote by ∂
∂ρ†

M−(m∗(r(ρ†
)
); ρ†

)
the partial derivative of M−(m∗; ρ†) with respect to ρ†, holding

m∗ fixed at m∗ = m∗(r(ρ†
)
), where m∗(r(ρ†

)
) is the engagement threshold for L’s equilibrium strategy a∗(·; ρ†) in the

fictitious game in which L’s information is exogenously fixed at ρ†. These differentiability assumptions permit us to write
Condition (2) in concise terms. The key property behind Assumption (3) is that, for any ρ, ρ† ∈ R+, r(ρ) − r(ρ†)

sgn
=

M−(m∗(r(ρ†
)
); ρ

)
−M−(m∗(r(ρ†

)
); ρ†

)
.

8



F ’s reaction to a = 0 also depends on F ’s beliefs about ρ and m, but with a lower sensitivity to

these variables than F ’s reaction to a = 1. The following example illustrates the type of applications

that this more general setting can capture. Player L is an employee who can choose between a high-

and a low-powered incentive scheme (for brevity, HPIS and LPIS). Action a = 0 corresponds to the

decision to choose HPIS, whereas a = 1 corresponds to the decision to choose LPIS. Let ya denote

the employee’s “skin in the game,” e.g., the amount of shares of the firm held, with 0 ≤ y1 < y0 ≤ 1.

Player F is a (competitive) employer whose payoff is κ+ (1− ya)(ea +m)− ra, where κ is a constant,

ea is the effort optimally exerted by the employee (at increasing and convex private cost ψ(e)) after

choosing action a ∈ {0, 1}, and ra is a fixed wage paid by F to L on top of the money paid through

the incentive payment ya. Hence, in this application, there are two reactions by player F , r1 and

r0, and each may depend on ρ†. Let UL(a, ra,m) and UF (a, ra,m) denote the two players’ payoffs

when the leader takes action a, the follower reacts with action ra, and L’s posterior mean is m. Then

UL(a, ra,m) ≡ maxe{ra+ya(e+m)−ψ(e)} and UF (a, ra,m) ≡ κ+(1−ya)(ea+m)−ra. Let r ≡ r1−r0
and K0 ≡ y1e1 − ψ(e1)− y0e0 + ψ(e0). Then,

δL(r,m) ≡ UL(1, r1,m)− UL(0, r0,m) = r − (y0 − y1)m+K0.

For any r, the engagement threshold is then given by m∗(r) = (r + K0)/(y0 − y1). Let z ≡ (1 −
y0)/(1 − y1) < 1 and K1 ≡ (1 − y1)e1 − (1 − y0)e0 and, for any m∗ and ρ†, denote by M+(m∗; ρ†) ≡
EG(·; ρ†)[m|m > m∗] the expected value of m under the distribution G(·; ρ†), conditional on m exceeding

m∗. Because F is competitive, for any ρ†, r(ρ†) is then given by the solution to

r = K1 + (1− y1)
[
M−(m∗(r); ρ†)− zM+(m∗(r); ρ†)

]
.

In our model, z = 0. Our results extend to this type of settings provided that (1) δL depends only on

r and m and satisfies Assumption 2 above (as in this example), (2) z is small so that action a = 0 is

relatively less “adverse-selection-sensitive” than a = 1, and (c) Assumption 3 holds with M− − zM+

instead ofM− (which is the case, for example, whenm is drawn from a Uniform or a Pareto distribution).

2.2 Examples

The Stackelberg game described above (and its key assumptions, 2 and 3) may look somewhat abstract.

In this subsection, we show how Akerlof’s lemons problem, augmented by the seller’s endogenous covert

information acquisition, maps into the general framework described above, and then briefly discuss other

examples developed in the online Supplement.

Akerlof ’s model. In Akerlof’s (1970) model, player L is a seller of an asset (e.g., a used car). She

can sell the good in the market (a = 1) or keep it for herself for own consumption (a = 0). Player F is

a representative of a set of competitive buyers who choose a price r equal to the expected value of the

good conditional on the good being put in the market. Suppose that the players’ gross values for the

good are m for the seller and m+∆ for the representative buyer, where ∆ parametrizes the gains from

trade, with ∆ ∈ (0, sup{supp(G)} − ω0}), where supp(G) is the support of G.9 Then, r(ρ†) is the price

9When ∆ ≥ sup{supp(G)} − ω0, there is no adverse selection; the competitive buyer offers ω0 +∆ and the seller sells
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offered by the competitive buyer when the seller’s information is exogenously fixed at ρ† and is given

by the solution to the following equation

r = EG(·; ρ†) [m+∆|m ≤ r] =M−(r; ρ†) + ∆, (3)

reflecting the fact that the cutoff m∗(r) for L’s equilibrium engagement strategy a∗(·; ρ†) is equal to r.
Consistently with what was explained above, we assume that the solution to (3) is unique, which is the

case, for example, when G(·; ρ†) is absolutely continuous with density g(·; ρ†), and the inverse hazard

rate G(·; ρ†)/g(·; ρ†) of the distribution of m for information ρ† is increasing in m.10 Assumption 3 is

then satisfied. So is Assumption 2, given that, in this application, δL(r,m) = r −m.

Turning to the case in which the seller’s information is endogenous, we then have that L’s optimal choice

of ρ when L anticipates a reaction r by F is given by

max
ρ

{G(r; ρ)r +
∫ ∞

r
mdG(m; ρ)− C(ρ)}.

When C and G are differentiable in ρ and the above objective function for player L satisfies the appro-

priate quasi-concavity conditions (we will maintain these assumptions throughout the entire paper when

referring to this example), the optimal level of ρ is then given by the following first-order condition11

−
∫ +∞

r
Gρ(m; ρ)dm = C ′(ρ). (4)

Other examples. The general model above also admits as a special case a different version of

the Akerlof model in which the buyer, instead of being competitive, has full bargaining power. This

version is the interdependent-value counterpart of the game considered in Ravid, Roesler, and Szentes

(2022). In the Supplement, we show how a number of other games of interest fit into the framework

introduced above. In the first example, a government engages in asset repurchases so as to jump-start

a frozen market. In the second example, the good is divisible (a share in a project); the owner benefits

from the synergies resulting from taking an associate in the project, but is hesitant about sharing the

proceeds if she knows the project is highly profitable. In the third example, the seller may have hard

information about the quality of the good and chooses whether to keep the evidence secret (which

amounts to engaging in this example) or disclose it to the buyer (not engaging). The fourth example

describes herding with interdependent payoffs; for example, by entering a market, a firm may encourage

a rival to follow suit. The fifth example is a marriage game, in which covenants smooth the hardship

of a subsequent divorce, but also signal bad prospects about the marriage. Some of these examples

naturally feature a non-linear δL function which explains the generality introduced above.12 We refer

the reader to the Supplement for the details.

no matter her posterior mean. This case is not interesting.
10Then ∂M−(r; ρ†)/∂m∗ ∈ (0, 1). See An (1998).
11Note that the FOC for ρ can also be written as

∫ r

−∞ Gρ(m; ρ)dm = C′(ρ). This is because
∫ +∞
−∞ mdG(m; ρ) is invariant

in ρ, implying that
∫ +∞
−∞ Gρ(m; ρ)dm = 0.

12As explained below, a non-linear δL function also brings additional effects to the analysis, for example by making L’s
value for information depend, among other things, on the induced volatility of m.
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3 Expectation conformity

We now investigate how L’s choice of information is influenced by F ’s expectations and how the latter

in turn depend on whether L’s information aggravates adverse selection. Adverse selection is here

captured by the truncated mean M−(m∗; ρ†). Consistently with what discussed above, we will simplify

the notation by assuming that M−(m∗; ρ†) is differentiable in ρ.

Definition 2 (impact of information on adverse selection). Starting from information ρ†, an increase in

information by player L

• aggravates adverse selection if ∂
∂ρ†

M−(m∗(r(ρ†)); ρ†) < 0

• alleviates adverse selection if ∂
∂ρ†

M−(m∗(r(ρ†)); ρ†) > 0.

Simple computations show that, for any information ρ† and truncation point m∗,

∂

∂ρ†
M−(m∗; ρ†)

sgn
= A(m∗; ρ†) (5)

where

A(m∗; ρ†) ≡
[
m∗ −M−(m∗; ρ†)

]
Gρ(m

∗; ρ†)−
∫ m∗

−∞
Gρ(m; ρ†)dm. (6)

The first term of A captures the direct effect of a change in the probability that player L engages on

player F ’s expectation of the state. Because m∗ ≥ M−(m∗; ρ†), an increase in information alleviates

adverse selection when it increases the chances that player L engages (i.e., when Gρ(m
∗; ρ†) > 0),

whereas it aggravates it when it reduces the probability of such an event (i.e., when Gρ(m
∗; ρ†) <

0). The second term, of A,
∫m∗

−∞ Gρ(m; ρ†)dm, in turn is related to the effect of information on the

dispersion of L’s posterior mean m. When more information induces more dispersion in the sense of

second-order stochastic dominance (which is always the case when higher ρ index distributions G(·; ρ)
generated by Blackwell-more-informative experiments), this second effect unambiguously contributes to

an aggravation of the adverse selection problem. Hereafter, we will refer to

A(ρ†) ≡ A(m∗(r(ρ†)); ρ†) (7)

as the “adverse-selection effect” of an increase of information at ρ†. Note that, under Assumption 3,

when A(ρ†) > 0 (alternatively, A(ρ†) < 0), starting from ρ† a small increase in the informativeness of

L’s signal triggers a friendlier (alternatively, an unfriendlier) reaction by F .

Now recall that L’s ex-ante payoff (gross of the cost) from choosing information ρ when expecting a

reaction r to her decision to engage is equal to

Π(ρ; r) ≡ supa(·)

{
UL(0) +

∫ +∞
−∞ a(m) δL(r,m)dG(m; ρ)

}
where UL(0) ≡

∫ +∞
−∞ uL(0,m)dG(m) is L’s ex-ante expected payoff when she never engages, and a(m)

represents the probability that L engages when her posterior mean is m.13

13Note that, because uL(0,m) is affine in m,
∫ +∞
−∞ uL(0,m)dG(m; ρ) =

∫ +∞
−∞ uL(0,m)dG(m) for any ρ, implying that

UL(0) is invariant in ρ.
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Then let

B(ρ; ρ†) ≡ −∂
2Π(ρ; r(ρ†))

∂ρ∂r

denote the effect of a reduction in the friendliness of F ’s reaction, starting from r = r(ρ†), on L’s

marginal value of information, evaluated at ρ. Hereafter, we will refer to B(ρ; ρ†) as the “benefit of

friendlier reactions effect”.

Definition 3 (information incentive effect of unfriendly reactions). Given (ρ, ρ†), a reduction in the

friendliness of player F ’s reaction starting from r = r(ρ†), raises (alternatively, lowers) player L’s

incentive to invest in information at ρ if B(ρ; ρ†) > 0 (alternatively, if B(ρ; ρ†) < 0).

Using the envelope theorem along with the fact that, for any ρ, the optimal engagement strategy

for L when F anticipates information ρ†, is to engage if and only if m ≤ m∗(r(ρ†)), and integrating by

parts, we have that

B(ρ; ρ†) = −∂δL(r(ρ
†),m∗(r(ρ†)))

∂r
Gρ

(
m∗(r(ρ†)); ρ

)
+

∫ m∗(r(ρ†))

−∞

∂2δL(r(ρ
†),m)

∂r∂m
Gρ(m; ρ)dm. (8)

Because δL is increasing in r, the sign of the first term of B(ρ; ρ†) is determined by whether an increase in

information increases or reduces the chances that player L engages. Under Assumption 2, the marginal

benefit of a friendlier reaction by player F is increasing in the posterior mean m. As a result, the second

term of B(ρ; ρ†) is always positive when a higher ρ indexes a mean preserving spread of the induced

posterior mean.

Next, let VL(ρ; ρ
†) ≡ Π(ρ; r(ρ†)) denote the maximal payoff that player L can obtain by choosing

information ρ when player F expects information ρ†.

Definition 4 (expectation conformity). Expectation conformity (EC) holds at (ρ, ρ†) if and only if

∂2VL(ρ; ρ
†)

∂ρ∂ρ†
> 0.

Hence, EC is a local property that says that the marginal value to player L from choosing a more

informative experiment starting from ρ is higher when player F , starting from ρ†,expects player L to

choose a more informative experiment. When there is an interval [ρ1, ρ2] such that the property holds for

all ρ, ρ† ∈ [ρ1, ρ2], the gross value to player L from moving from ρ1 to ρ2 is higher when player F expects

her to choose ρ2 than when he expects her to choose ρ1: VL(ρ2; ρ2)−VL(ρ1; ρ2) > VL(ρ2; ρ1)−VL(ρ1; ρ1).
In this sense, EC captures a complementarity between actual and anticipated information choice. Below

we relate this property to the determinacy of equilibria and a few other phenomena of interest.

Proposition 1 (expectation conformity). Suppose that Assumptions 1, 2, and 3 hold.

(i) EC holds at (ρ, ρ†) if and only if the adverse selection effect and the benefit of a friendlier reaction

effect are of opposite sign: A(ρ†)B(ρ; ρ†) < 0.

12



(ii) Information always aggravates adverse selection at ρ† (i.e., A(ρ†) < 0) when the distribution

G(·; ρ) from which m is drawn is Uniform, Pareto, or Exponential. For other distributions, a sufficient

condition for information to aggravate adverse selection at ρ† is that Gρ(m
∗(r(ρ†)); ρ†) < 0.

(iii) Starting from r(ρ†), a reduction in the friendliness of player F ’s reaction raises player L’s incentive

to invest in information at ρ (i.e., B(ρ; ρ†) > 0) if Gρ(m
∗(r(ρ†)); ρ) < 0.

(iv) Therefore a sufficient condition for EC at (ρ, ρ†) is that

max
{
Gρ(m

∗(r(ρ†)); ρ†), Gρ(m
∗(r(ρ†)); ρ)

}
< 0. (9)

(v) Suppose that, for anym∗,M−(m∗; ρ) is decreasing in ρ (as for the Uniform, Pareto, and Exponential

distributions), implying that, for any ρ†, A(ρ†) < 0. If ∂2δL(r,m)/∂r∂m = 0, as is the Akerlof ’s model

described above, then Gρ(m
∗(r(ρ†)); ρ) < 0 is a necessary and sufficient condition for EC at (ρ, ρ†).14

When the distributions G(·; ρ) are rotations, in the sense of Definition 1, Gρ(m
∗(r(ρ†)); ρ) < 0 if and

only if m∗(r(ρ†)) is to the right of the rotation point mρ.

Proof. (i) By the chain rule and the definitions of the VL and B functions, we have that

∂2VL(ρ; ρ
†)

∂ρ∂ρ†
= −B(ρ; ρ†)

dr(ρ†)

dρ†
.

Assumption 3, together with Conditions (5), (6), and (7) imply that dr(ρ†)/dρ† is of the same sign as

A(ρ†). EC thus holds at (ρ, ρ†) if, and only if, A(ρ†) and B(ρ; ρ†) are of opposite sign.

(ii) Using Condition (5), we have that, for any m∗ ∈ R and ρ†, the sign of ∂M−(m∗; ρ†)/∂ρ† is given by

the sign of A(m∗; ρ†), with A(m∗; ρ†) as defined in (6). Because a higher ρ indexes a mean-preserving

spread, the second term of (6) is always negative. Hence, starting from ρ†, information always aggravates

adverse selection (that is, A(ρ†) < 0) when the first term of (6) is also negative, which is the case when

Gρ(m
∗(r(ρ†)); ρ†) < 0. Note, however, that this condition is sufficient but not necessary for A(ρ†) < 0.

For a number of distributions, ∂M−(m∗(r(ρ†)); ρ†)/∂ρ† < 0 regardless of the sign of Gρ(m
∗(r(ρ†)); ρ†).

These distributions include the Uniform, Pareto, and Exponential distributions, as shown below.

• Uniform distribution: m is drawn uniformly from [m(ρ), m̄(ρ)], with m(ρ) decreasing in ρ and

satisfying m(ρ) ≤ ω0 for all ρ, and m̄(ρ) = 2ω0 −m(ρ) for all ρ (mean preservation). Then for

any m ∈ [m(ρ), m̄(ρ)], G(m; ρ) = (m−m(ρ)) /[2(ω0 − m(ρ))]. This family of distributions is

thus consistent with the rotation order of Definition 1, with rotation point mρ = ω0 for all ρ.

Furthermore, for any m∗ ∈ [m(ρ), m̄(ρ)],

M−(m∗; ρ) =
m∗ +m(ρ)

2

which is decreasing in ρ.

• Pareto distribution: m is drawn from [m(ρ),+∞) according to the survival function 1−G(m; ρ) =

14See also Examples (a), (c), and (d) in the Supplement for alternative games in which ∂2δL(r,m)/∂r∂m = 0.
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(m(ρ)/m)α(ρ), with m(ρ) decreasing in ρ and α(ρ) = ω0/(ω0 −m(ρ)) for all ρ.15 This family of

distributions too is consistent with the rotation order of Definition 1. For each ρ, the rotation

point is mρ = m(ρ) exp ((ω0 −m(ρ)) /m(ρ)). Furthermore, for any m∗ > m(ρ),

M−(m∗; ρ) = ω0

1−
(
m(ρ)
m∗

)α(ρ)−1

1−
(
m(ρ)
m∗

)α(ρ)
which is decreasing in ρ.

• Exponential distribution: m is drawn from [m(ρ),+∞) according to the survival function 1 −
G(m; ρ) = e−λ(ρ)(m−m(ρ)), with m(ρ) decreasing in ρ and λ(ρ) = 1/(ω0 −m(ρ)) for all ρ.16 One

can verify that an increase in ρ induces a rotation of G(m; ρ) in the sense of Definition 1, with

rotation point mρ = ω0 for all ρ. Furthermore, for any m∗ > m(ρ),

M−(m∗; ρ) = ω0 −
(m∗ −m(ρ)) e−λ(ρ)(m∗−m(ρ))

1− e−λ(ρ)(m∗−m(ρ))

which is decreasing in ρ.

(iii) Recall that, starting from r = r(ρ†), a reduction in the friendliness of F ’s reaction raises the

incentive to acquire more information at ρ if and only if B(ρ; ρ†) > 0, with B(ρ; ρ†) satisfying Condition

(8). Note that the second term in the right-hand side of (8) is positive because, by Assumption 1, ρ is a

mean-preserving-spread index and ∂2δL/∂r∂m is positive (by Assumption 2) and constant in m (by the

assumption that δL is affine in m). Because δL is increasing in r by Assumption 2, the first term in the

right-hand-side of (8) is positive provided that Gρ

(
m∗(r(ρ†)); ρ) < 0. Hence, starting from r = r(ρ†),

a reduction in the friendliness of F ’s reaction raises the incentive to acquire more information at ρ if

Gρ

(
m∗(r(ρ†)); ρ) < 0.

(iv) The result follow from parts (i)-(iii) in the proposition.

(v) The result follows from parts (i)-(iii) in the proposition, along with the fact that, in this case, the

second term in the right-hand-side of (8) is zero. Because δL is increasing in r, we thus have that

B(ρ; ρ†)
sgn
= −Gρ

(
m∗(r(ρ†)); ρ).

Hence, B(ρ; ρ†) > 0 if and only if Gρ

(
m∗(r(ρ†)); ρ) < 0. ■

Hence, EC holds at (ρ, ρ†) when, fixing player F ’s reaction at r(ρ†), an increase in the informa-

tiveness of player L’s experiment decreases the probability that L engages, both when such an increase

is evaluated from player L’s perspective (i.e., starting from ρ) and when evaluated from player F ’s

perspective (i.e., starting from ρ†)—formally, when Condition (9) holds. This is because, from F ’s per-

spective, that player L engages less often (formally, that Gρ(m
∗(r(ρ†)); ρ†) < 0) implies an aggravation

15Note that the function α(ρ) is constructed so that, for any ρ, given m(ρ), EG(·;ρ)[m; ρ] =α(ρ)m(ρ)
α(ρ)−1

= ω0 (mean preser-

vation).
16Again, the function λ(ρ) is constructed so that, for any ρ, given m(ρ), EG(·;ρ)[m; ρ] =m(ρ) + 1

λ(ρ)
= ω0 (mean

preservation).
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in the adverse selection problem, which induces player F to respond in an unfriendlier manner (part

(ii) in the proposition). That player F responds in an unfriendlier manner, together with the fact that

Gρ(m
∗(r(ρ†)); ρ) < 0, in turn implies a higher marginal value for player L to acquire more information

starting from ρ (part (iii) in the proposition). Jointly, the above two properties (captured by Condition

(9) in the proposition) thus imply that, when player F expects player L to acquire more information

(starting from ρ†), the benefit for player L to acquire more information (starting from ρ) is higher.

That is, EC holds at (ρ, ρ†). Importantly, Condition (9) is sufficient for EC but not necessary. For

example, when the family of distributions from which the posterior mean is drawn in Uniform, Pareto,

or Exponential, more information always aggravates adverse selection, implying that EC holds at (ρ, ρ†)

if Gρ(m
∗(r(ρ†)); ρ) < 0 irrespectively of whether Gρ(m

∗(r(ρ†)); ρ†) < 0. Furthermore, the sufficiency of

Condition (9) hinges on the information structures being consistent with the MPS order. The result is

thus perhaps less obvious than what it may look like.

Furthermore, EC holds at (ρ, ρ†) also when A(ρ†) > 0 and B(ρ; ρ†) < 0, that is, when the choice of

a more informative signal by player L (starting from ρ†) induces player F to respond in a friendlier way

because it alleviates adverse selection, and a friendlier reaction by player F (starting from r(ρ†)) raises

player L’s marginal value for information (starting from ρ).

Finally, the last part of the proposition establishes that, when information always aggravates adverse

selection and L’s payoff is separable in m and r, as in Akerlof’s model, that more information reduces

the probability of engagement starting from ρ (i.e., that Gρ(m
∗(r(ρ†)); ρ) < 0) is not only sufficient for

EC at (ρ, ρ†), but also necessary.

As we document in the next section, EC is at the core of various economic phenomena. Before doing

so, we first illustrate how EC naturally emerges in Akerlof’s model under non-directed search.

3.1 Example: Akerlof ’s model under non-directed search

Under non-directed search, the rotation point is the prior mean. Proposition 1, when applied to the

Akerlof’s model of Subsection 2.2, thus says that EC holds at (ρ, ρ†) whenever the engagement threshold

m∗ = r(ρ†) is to the right of the prior mean, that is, when the price offered by the competitive buyer is

sufficiently high. In other words, EC arises when the gains from trade (in the example parametrized by

∆) are large, and it never occurs when they are small.

To gather some intuition, recall that, in Akerlof’s model, the seller puts her car up for sale when

her value for the car is small (i.e., when the posterior mean is below a threshold m∗ that coincides

with the price r(ρ†) offered by the buyer). Naturally, when the gains from trade ∆ are large, the price

offered by the buyer is also large, in which case r(ρ†) exceeds the rotation point, which coincides with

the prior mean ω0 of the car’s value for the seller. Economically, what this implies is that the seller

finds it optimal to enter the market both when she is uninformed and when she learns that her value

for the car, ω, is below the price r(ρ†). Starting from such a situation, the expectation by the buyer of

the seller acquiring more information reduces the quality of the car perceived by the buyer after seeing

that the car is on sale. Faced with an exacerbated adverse selection problem, the buyer then reduces

the price offered. But then it becomes even more important for the seller to learn the value of the car,
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that is, to acquire more information starting from ρ. So EC naturally holds for (ρ, ρ†) in this case.17

While the mechanism just described is fairly natural, it is important to appreciate that it need not

always be in place. In fact, EC fails to obtain in this model when the gains from trade are positive but

small. To see this, note that, when ∆ is small, because of the adverse selection problem, the price offered

by the buyer may well be lower than the ex-ante prior mean of the asset, meaning that r(ρ†) < ω0.

Anticipating such a low price, the seller enters the market only if she receives information that reveals

that ω ≤ r(ρ†). The buyer then understands that the expected value of the car conditional on the

seller putting it in on the market is the same independently of the seller’s information: M−(r(ρ†); ρ†) =∫ r(ρ†)
−∞ ωdG(ω)/G(r(ρ†)), which, given the price r(ρ†), is invariant in the information ρ†. When this is

this case, an increase in the information ρ† expected from the seller by the buyer does not affect the

price offered by the buyer, and hence does not increase L’s incentives to search. We thus have the

following result:

Corollary 1 (lemons under non-direct search). In the Akerlof ’s model under non-directed search,

EC holds at (ρ, ρ†) if and only if the gains from trade ∆ are sufficiently large (namely, if and only if the

unique solution r(ρ†) to r =M−(r; ρ†) + ∆ exceeds the prior mean ω0).

3.2 Gains from engagement

The example in the previous subsection suggests that EC is more likely to obtain when the gains from

engagement for player L are large. The next result shows that this is true more generally.

Proposition 2 (gains from engagement). Suppose that Assumptions 1, 2 and 3 hold, and that in-

formation structures take the form of rotations, as in Definition 1. Further assume that player L’s

payoff differential from playing a = 1 instead of a = 0 is δL(m, r) = δ̄L(m, r) + θ, where δ̄L(m, r) is an

arbitrary function satisfying Assumption 2, and θ ∈ R. For all (ρ,ρ†), there exists θ∗(ρ, ρ†) such that,

for all θ ≥ θ∗(ρ, ρ†), EC holds at (ρ,ρ†): EC is more likely, the larger the gains from engagement.

Proof. See the Appendix.

Proposition 2 says that higher gains from engagement reinforce EC. On the other hand, holding

player F ’s reaction fixed, larger gains from engagement reduce the marginal benefit of acquiring more

information under the sufficient condition for EC identified in Proposition 1:

∂2

∂θ∂ρ

[∫ m∗(r(ρ†;θ),θ)

−∞
[δ̄L(r(ρ

†; θ),m) + θ]dG(m; ρ)

]
= Gρ(m

∗(r(ρ†; θ), θ); ρ) ≤ 0.

The reason for this last result is the following: Holding player F ’s reaction fixed, more information

reduces the probability that player L engages, which is costly when the gains from engagement are

large. This property helps clarify that it is only because of the adverse selection problem that larger

gains from engagement contribute to EC. They make player F respond to the anticipation of player

L acquiring more information by reducing r more sharply, which in turn raises player L’s value of

information.
17Consistently with the result in Proposition 1, note that, when r(ρ†) > ω0, Condition (9) always holds (see Figure 1).
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4 Expectation Traps, Disclosure, and Cognitive Styles

We now turn to three phenomena that are intrinsically related to EC in the type of situations described

above, expectation traps, disclosure, and cognitive styles.

4.1 Expectation traps

Proposition 3 (expectation traps). Suppose that Assumptions 2 and 3 hold and that ρ1 and ρ2 are

both equilibrium levels, with ρ1 < ρ2. If, for any ρ† ∈ [ρ1, ρ2], A(ρ
†) < 0 (which is the case, for example,

when either the distributions are Uniform, Pareto, or Exponential, or when Assumption 1 holds and

Gρ(m
∗(r(ρ†)); ρ†) < 0 for all ρ† ∈ [ρ1, ρ2]), then player L is better off in the low-information-intensive

equilibrium ρ1. Conversely, when for any ρ† ∈ [ρ1, ρ2], A(ρ
†) > 0, player L is better off in the high-

information-intensive equilibrium ρ2.

Proof : Under Assumptions 2 and 3, for any ρ† ∈ [ρ1, ρ2], dr(ρ
†)/dρ†

sgn
= A(ρ†). For any given r,

player L’s welfare is given by

V(r) = sup
ρ

{
UL(0) +

∫ m∗(r)

−∞
δL(r,m)dG(m; ρ)− C(ρ)

}
.

The envelope theorem, along with the property that δL(r,m) is increasing in r under Assumption 2,

imply that dV(r)/dr > 0. The result then follows from the fact that r(ρ2) < r(ρ1) when A(ρ†) < 0 for

all ρ† ∈ [ρ1, ρ2], whereas r(ρ2) > r(ρ1) when A(ρ†) > 0 for all ρ† ∈ [ρ1, ρ2]. ■

Expectation traps do not result just from the fact that, when C(ρ) is increasing, in a high-information-

intensive equilibrium, player L spends more resources in information acquisition. In fact, at the margin,

player L’s gain from a more informative structure is equal to the increase in the cost of information

acquisition. Rather, expectation traps occur because player F , anticipating an exacerbated adverse

selection problem when expecting player L to invest more in information, reacts in an unfriendlier way,

which not only forces player L to acquire more information, vindicating player F ’s expectation, but

hurts player L.

To illustrate, consider again the Akerlof’s model under non-direct search of the previous section.

The equilibrium levels of ρ and the corresponding prices r(ρ) are given by the solutions to Conditions

(3) and (4). For example, when G is Uniform over [0, 1], the cost of information is C(ρ) = ρ2/20, and

∆ = 0.25, there are two equilibria in which the price exceeds the prior mean ω0 = 0.5. In the first

equilibrium ρ1 ≈ 0.48 and r(ρ1) ≈ 0.69; in the second equilibrium, ρ2 ≈ 0.88 and r(ρ2) ≈ 0.58. Because,

for any m∗ > ω0, G(m
∗; ρ†) is decreasing in ρ†, information always aggravates adverse selection at ρ†

when r(ρ†) > ω0. In this example, r(ρ†) > ω0 for all ρ† ∈ [ρ1, ρ2], implying that A(ρ†) < 0 for all

ρ† ∈ [ρ1, ρ2]. Hence, the conditions in the previous proposition apply. The seller is better off in the

low-information-intensive equilibrium ρ1 than in the high-information-intensive equilibrium ρ2.

The result in the previous proposition contrasts with what one obtains in markets with private values

and monopolistic screening. To see this, consider a setting in which player F is a seller maximizing

expected profits p− c (ω) by means of a take-it-or-leave-it offer p, whereas player L is a buyer choosing
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how much information ρ to acquire about her gross value ω for the seller’s product and whether or

not to accept the seller’s offer of trading at price p so as to maximize her net payoff ω − p − C(ρ).

When the seller’s cost c is invariant in ω, this model corresponds to the private-value setting of Ravid,

Roesler, and Szentes (2022). In their setting, when information is free and the buyer can choose any

mean-preserving contraction G(·; ρ) of the prior distribution G at no cost, there are multiple equilibria.

All equilibria are Pareto ranked, with each player’s payoff maximized in the equilibrium in which the

buyer fully learns the state. When, instead, payoffs are interdependent and player F is a representative

of a competitive market (as in the Akerlof example above), the result in Proposition 3 suggests that,

when more information by the buyer aggravates the adverse selection problem and this leads the seller

to ask for a higher price, then equilibria in which the buyer acquires more information are equilibria in

which the buyer is necessarily worse off, no matter the cost of information.18

The result in Proposition 3 calls for government interventions aimed at discouraging the players from

acquiring information. We discuss some of these interventions in Section 6. Here, instead, we want to

emphasize that expectation traps are intrinsically related to EC. Recall that EC relates to the benefit

of information in strategic settings. It does not depend on the cost of information. When the sufficient

conditions for EC of Proposition 1 hold, one can identify cost functionals for which multiple equilibria

arise.19 The same conditions then imply that player L is worse-off in the more information-intense

equilibria.

4.2 Disclosure and Cognitive Style

So far we have assumed that information acquisition is covert. Suppose that it is indeed covert, but

that some form of disclosure prior to F ’s action is feasible. Namely, given her actual choice ρ, player L

can prove that her choice is above any level ρ̂ ≤ ρ. The disclosed information is hard. For any ρ̂ ∈ R+,

let the “ρ̂-constrained game” be the no-disclosure game with modified cost function Ĉ(ρ; ρ̂) = C(ρ) if

ρ ≥ ρ̂ and Ĉ(ρ; ρ̂) = +∞ if ρ < ρ̂. Let E(ρ̂) denote the set of equilibrium levels of ρ of the ρ̂-constrained

game and assume that E(ρ̂) is non-empty for all ρ̂ ∈ R+. We say that the function e(·) : R+ → R+ is a

selection if, for any ρ̂ ∈ R+, e(ρ̂) ∈ E(ρ̂).20

Definition 5 (monotone selections). The selection e(·) is monotone if for all ρ̂ and ρ̂ ′, with ρ̂ < ρ̂ ′,

e(ρ̂) ≤ e(ρ̂ ′).

In words, the selection is monotone if, when L is constrained to choose among levels of ρ that exceed

a certain threshold, in equilibrium, as the threshold increases, L selects a higher level. Note that,

because E(ρ̂) ∩ {ρ | ρ ≥ ρ̂′} ⊆ E(ρ̂′), it is always possible to construct monotone selections.

18The seller’s payoff is constant in the equilibrium signal ρ when F is a representative of a competitive market.
19Namely, suppose that Assumptions 1, 2, and 3 hold, and that there exist ρ1 and ρ2, with ρ2 > ρ1, such that

Gρ(m
∗(r(ρ†)); ρ) < 0 for all ρ†, ρ ∈ [ρ1, ρ2]. There exist monotone cost functionals C(·) such that ρ1 and ρ2 are both

equilibrium levels. Furthermore, under any such cost functionals, player L is better off in the low-information-intensive
equilibrium ρ1 than in the high-information-intensive equilibrium ρ2.

20Shishkin (2022) studies an evidence acquisition game. He shows that, when the probability of obtaining information
is small, the Sender’s optimal policy has a pass/fail structure and reveals only whether the quality is above or below a
threshold. The game considered in this section differs in two respects: First, the acquired information is soft; second, the
acquisition is either overt or “semi-overt” in that the intensity of information acquisition can be disclosed but not the actual
information obtained.
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Definition 6 (regularity). Take any equilibrium of the primitive game with disclosure. The equilibrium

is regular if the selection e(·) describing player L’s choice of information following any possible disclosure

ρ̂ ∈ R+ is monotone and e(0) is an equilibrium of the no-disclosure game.

Clearly, in any pure-strategy equilibrium of the game with disclosure, L selects a unique ρ on path.

In this case, regularity imposes restrictions on the off-path behavior of the two players. Namely, for

any pure-strategy equilibrium of the game with disclosure in which player L’s equilibrium investment is

ρ∗, let ρ̂(ρ∗) denote the information L discloses on path. The equilibrium being regular implies, among

other things, that, if L were to disclose any ρ̂ < ρ̂(ρ∗) (alternatively, any ρ̂ > ρ̂(ρ∗)), in the continuation

game, she would then select a ρ weakly below ρ∗ (alternatively, weakly above ρ∗).

Let ρ̄ be the highest level of ρ supported by a pure-strategy equilibrium of the game without dis-

closure. It is easy to see that, without the above refinement, the game with disclosure may admit

pure-strategy equilibria supporting ρ∗ strictly above ρ̄. For example, suppose that information always

aggravates adverse selection (i.e., A(ρ†) < 0 for all ρ†, as in the case of Uniform, Pareto, or Exponential

distributions). These equilibria can be sustained by a strategy for player L according to which, on path,

L discloses ρ̂(ρ∗) = ρ∗ > ρ̄ . Off path, after disclosing any ρ̂ < ρ∗, L selects a ρ above ρ∗ anticipating

a low reaction by player F , supported by the expectation of the choice of an experiment by player L

aggravating the adverse selection problem. In other words, without the refinement, there is not enough

connection between the equilibrium information choices of the game with and without disclosure.

Proposition 4 (disclosure). Assume that Assumptions 2 and 3 hold and that A(ρ†) < 0 for all ρ†,

implying that information always aggravates adverse selection.

• Any pure-strategy equilibrium choice of information ρ of the game in which disclosure is not feasible

is also an equilibrium level in the disclosure game.

• Conversely, the largest and smallest levels of ρ sustained by pure-strategy regular equilibria of the

disclosure game are also equilibrium levels in the game without disclosure.

Proof. See the Appendix.

Under Assumption 3, the choice of a more informative experiment by player L, by aggravating

the adverse selection problem, reduces the friendliness of F ’s reaction. Player L then never gains

from proving that her investment in information acquisition is large, when the disclosure of a higher

investment is interpreted as informative of a high actual choice. When, in addition, the marginal benefit

to player L of a more informative experiment decreases with the friendliness of F ’s reaction (which,

by virtue of part (iii) of Proposition 1, is the case when more information reduces the chances that L

engages, i.e., when, given ρ†, for any ρ, Gρ(m
∗(r(ρ†)); ρ) < 0), player L benefits from aligning her choice

of information with player F ’s expectations (that is, EC holds) as in the game without disclosure.

In the same vein, one can consider the possibility of transparency, namely a commitment to reveal

the exact amount of investment in information made. In this case, ρ̂ = ρ for any ρ (overt information

acquisition). Clearly, player L is better off committing ex ante to transparency than retaining the
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possibility to disclose information voluntary ex post (the case just studied). She is also better off under

transparency than in the game with complete absence of any disclosure. More interestingly, when F ’s

reaction is non-increasing in ρ† (which is the case when information always aggravates adverse selection,

i.e., when A(ρ†) < 0 for all ρ†), under transparency, in equilibrium, player L may choose a level ρ∗ ≤ ρ

that is lower than the lowest equilibrium level in the no-disclosure game. Similar conclusions obtain

when player L cannot reveal her investment in information perfectly, but can prove that it is below

some level ρ̂ of her choice, for example by proving that she is unable to undertake more than a certain

number of informative tests. In such situations, equilibria may exist in which player L proves that her

investment is below the lowest equilibrium level of the no disclosure game.

Another focus of comparative statics concerns player L’s cognitive style. We provide here only an

informal account. Continue to assume that information aggravates adverse selection, but now suppose

that the cost of information C(ρ; ξ) depends on a parameter ξ, interpreted as ability. A higher-ability

player L has a lower marginal cost of information: for any ξ, C(0; ξ) = 0 and Cρ(0; ξ) = 0, whereas

for any ρ > 0, Cρ(ρ; ξ) > 0, and Cρρ(ρ; ξ) > 0, with Cρ(ρ; ξ) decreasing in ξ. Under the conditions for

EC of Proposition 1, as player L’s ability increases, the equilibrium ρ also increases (in case of multiple

equilibria, in the sense of monotone comparative statics, that is, the lowest and highest levels of the

equilibrium set corresponding to ability ξ increase with ξ). Put it differently, player L’s ability, while

directly beneficial, indirectly hurts her as player F becomes more wary of adverse selection. This suggests

that, if player L has side opportunities to signal her ability, she will want to adopt a dumbed-down

profile.

Suppose indeed that player L can be bright (ξH) or dumb (ξL). A bright person can demonstrate

that she is bright (and can always mimic a dumb one), but the reverse is impossible. The set of

equilibrium levels of ρ is monotonically increasing in the posterior probability that ξ = ξH . Let us

assume a monotone selection in this equilibrium set: Player F ’s action r is decreasing in the probability

that she assigns to ξ = ξH (a property automatically satisfied if the equilibrium is unique, for any

possible belief). Then if we add a disclosure stage in which player L can disclose she is bright if this

is indeed the case, the equilibrium is a pooling one, in which the bright player L does not disclose her

brightness. Conversely, player L will disclose, if she can, that she is overloaded with work (assume that

she cannot prove that she has a low workload), and therefore that her marginal cost of information is

high. In either case, player L poses as an “informational puppy dog” (in the sense of Fudenberg and

Tirole (1984)).

5 Anti-lemons

The analysis in the previous sections can be adapted to environments that do not satisfy Assumption

3 above. To see this, suppose that the choice of a more informative experiment by L increases the

friendliness of F ’s reaction, instead of reducing it, when it reduces the truncated mean. Assumption 3

is then reversed and replaced by the following assumption:

Assumption 3′ (anti-lemons). The friendliness of player F ’s reaction to an increase in the informative-

ness of player L’s signal depends negatively on the effect of L’s information on the truncated mean:
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dr(ρ†)

dρ†
sgn
= − ∂

∂ρ†
M−(m∗(r(ρ†

)
); ρ†

)
.

Hence, under Assumption 3’, starting from ρ†,an increase in the informativeness of the signal that F

expects player L to have acquired increases the friendliness of player F ’s reaction if and only if, holding

L’s engagement threshold fixed at m∗(r(ρ†
)
), the increase in ρ (evaluated at ρ†) reduces the truncated

meanM−(m∗(r(ρ†
)
); ρ†

)
— the opposite of what assumed in the analysis above. The following example

illustrates:

Spencian signaling. An agent (player L) has an uncertain disutility of effort ω for studying which is

negatively correlated with the agent’s productivity θ = a − bω from working on the relevant job after

leaving school. The labor market is populated by competitive employers (player F ) offering the agent

a wage r equal to the agent’s expected productivity. Normalizing L’s payoff from not engaging to zero,

we have that, in this model, δL(r,m) = r−m− p, where p is the cost of enrolling in the school program

under consideration (say, an MBA). Hence, the agent enrolls if and only if the cost of studying is low,

that is, m < m∗(r) = r − p, with r satisfying r = a− bM−(m∗(r); ρ†).

In the Supplement, we discuss other settings satisfying Assumption 3’ above. The first one is a

market where player L is an entrepreneur starting a project under the anticipation that, with positive

probability, she may need to liquidate the assets before the latter deliver the cash flows; the decision to

start the project (a = 1) then carries good information for the buyers who purchase the assets in case

of liquidation. The second one is a warfare game in which a country (L) must decide whether to start

a fight against another country (a = 1) or refrain from doing so (a = 0); the decision to engage signals

L’s confidence that the chances ω ∈ [0, 1] of F winning the war in case F does not surrender are low

and hence triggers a friendlier response by F . The third one is a variant of Hermalin (1998)’s leadership

model in which the leader is the a founder of a company who benefits from persuading another key

player that the project will fail with low probability (captured by ω) and hence that it is profitable for

the other player to get on board.

Under Assumption 3′, EC at (ρ, ρ†) requires that A(ρ†)B(ρ; ρ†) > 0 (the opposite of the condition in

Proposition 1). Because A(ρ†) < 0 <B(ρ; ρ†), when

max
{
Gρ(m

∗(r(ρ†)); ρ†), Gρ(m
∗(r(ρ†)); ρ)

}
≤ 0,

that is, when more information reduces the probability that player L engages, no matter whether

evaluated from L’s perspective (i.e., starting from information ρ) or F ’s perspective (that is, starting

from information ρ†) — the key condition for EC in Proposition 1 — EC never arises when Assumption

3 is replaced with Assumption 3’. This is because, when Gρ(m
∗(r(ρ†)), ρ†) ≤ 0, an increase in the

informativeness of L’s signal triggers a friendlier reaction by player F . In turn, because the marginal

value of information decreases with the friendliness of player F ’s reaction when Gρ(m
∗(r(ρ†)), ρ) ≤ 0,

an increase in the informativeness of L’s signal anticipated by player F (starting from ρ†) reduces the

value for L to acquire more information at ρ. Hence EC never arises under the key condition for EC in

Proposition 1.
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The following result summarizes the relationship between expectations and incentives for information

acquisition in the anti-lemons case (the proof follows from the arguments above):

Proposition 5 (expectation conformity – anti-lemons). Suppose that Assumptions 1, 2, and 3’ hold, and

that information reduces the truncated mean M−(m∗(r(ρ†
)
); ρ†

)
, i.e., A(ρ†) < 0 (recall that the last

property holds when information structures are Uniform, Pareto, or Exponential, or, more generally,

when Gρ

(
m∗(r(ρ†)); ρ†) < 0). Then EC holds at (ρ, ρ†) only if

Gρ

(
m∗(r(ρ†)); ρ) > 0,

that is, if, in L’s eyes, it increases the probability that L engages. Furthermore, Gρ

(
m∗(r(ρ†)); ρ) > 0

is both necessary and sufficient for EC at (ρ, ρ†) if ∂2δL(m, r)/∂m∂r = 0 for all m and r (as in the

Spencian model above).21.

Hence, in the case of rotations, EC holds at
(
ρ, ρ†

)
when

mρ† < m∗(r(ρ†)) < mρ,

that is, when the engagement threshold is between the rotation points mρ† and mρ. This condition is

quite stringent. For example, it is never satisfied under non-direct search, for, in that case, mρ†=mρ =

ω0.

Naturally, many of the results in the previous sections are reversed when Assumption 3 (lemons) is

replaced with Assumption 3’ (anti-lemons). For example, disclosure can be effective, and player L may

want to appear an “inoffensive fat cat” (in the sense of Fudenberg and Tirole (1984)) in the anti-lemons

case.

6 Policy Interventions

We now investigate how a benevolent government can improve over the laissez-faire equilibrium by

subsidizing (alternatively, taxing) trade. We start with a fairly general analysis geared at shedding

light on (1) what forces contribute to the optimality of subsidies (alternatively, taxes), and (2) how

the endogeneity of information calls for larger (alternatively, smaller) interventions. We then apply the

insights to the Akerlof’s model of Subsection 2.2 (the analysis also delivers interesting implications for

Example (a) in the Supplement where the government designs an asset purchase scheme to increase the

efficiency of trade in a market affected by adverse selection).

6.1 Optimality of subsidizing/taxing engagement

Let δF (r,m) ≡ uF (1, r, m)−uF (0, m) denote the follower’s payoff from responding with a reaction r to

the leader’s choice of engaging, when L’s posterior mean (equivalently, the state) is m, net of her payoff

in case L does not engage. Let s denote the subsidy (tax if s < 0) the government promises to pay to

21For other anti-lemon settings in which δL is linear, see Examples (f) and (h) in the Supplement.
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player L in case of engagement.22 Abusing notation, for any r and s, we let m∗(r, s) denote the optimal

engagement threshold for player L when player F ’s reaction is r and the subsidy is s, with m∗ implicitly

defined by the solution to δL(r,m
∗) + s = 0. Let ρ∗(s) and r∗(s) denote, respectively, the leader’s

equilibrium information and the follower’s equilibrium response in the continuation game that starts

after the planner announces a subsidy equal of s. Throughout, we assume that, for any s, ρ∗(s) and

r∗(s) are unique, Lipschitz continuous, and differentiable. Likewise, we assume that the payoff functions

δL(r,m) and δF (r,m) and the distributions G(m; ρ) are differentiable and Lipschitz-continuous. In

addition to facilitating the description of the relevant optimality conditions, these properties validate a

certain envelope theorem that we use in the Appendix to establish the results in this section.

For simplicity, assume that player F is a representative of a competitive market, in which case, for

any s, given the leader’s information ρ∗(s), the follower’s reaction r∗(s) satisfies∫ m∗(r∗(s),s)

−∞
δF (r

∗(s),m)dG(m; ρ∗(s)) = 0.

Many of the insights below extend to settings in which player F ’s expected payoff is different from zero

and the planner cares about F ’s payoff. The exposition, however, is heavier and hence we focus here on

the case where F is a competitive player.

For any s, total welfare is given by (up to scalars that are irrelevant for the analysis)

W (s) ≡
∫ m∗(r∗(s),s)

−∞
(δL(r

∗(s),m) + s) dG(m; ρ∗(s))− C(ρ∗(s))− (1 + λ)sG(m∗(r(s), s); ρ∗(s)),

where λ ≥ 0 is the unit cost of public funds (linked to the deadweight loss of non-uniform taxation). The

first two terms represent the leader’s payoff, whereas the last term represents the cost of the program

to the government. Hereafter, we assume that W is strictly quasi-concave.

Proposition 6 (social value of subsidizing/taxing trade). Suppose Assumption 2 holds. In the

lemons case (i.e., when Assumption 3 also holds), there exists a threshold K > 0 such that a strictly pos-

itive subsidy is optimal if d
dsM

−(m∗(r∗(0), s); ρ∗(s))
∣∣
s=0

> K, whereas a tax on engagement is optimal

when the above inequality is reversed. When, instead, Assumption 3’ holds (anti-lemons), there exists a

threshold K < 0 such that a strictly positive subsidy is optimal if d
dsM

−(m∗(r∗(0), s); ρ∗(s))
∣∣
s=0

< K,

whereas a tax on engagement is optimal when d
dsM

−(m∗(r∗(0), s); ρ∗(s))
∣∣
s=0

> K.

Hence, whether subsiding trade is preferable to taxing it depends on whether the government faces

a lemon or an anti-lemon problem, and whether, fixing F ’s reaction at r∗(0), subsidizing (alternatively,

taxing) trade has a strong enough effect on M− to offset the cost of the program. Note that

d
dsM

−(m∗(r∗(0), s); ρ∗(s))
∣∣
s=0

= ∂
∂m∗M−(m∗(r∗(0), 0); ρ∗(0)) ∂m∗(r∗(0),s)

∂s

∣∣∣
s=0

+ ∂
∂ρM

−(m∗(r∗(0), 0); ρ∗(0))dρ
∗(0)
ds .

22More generally, both the decision to engage and that of not engage can be subject to taxes and subsidies. For example,
in the Akerlof’s model, the decision to hold on a car or a security can be taxed. Hence, in the analysis below, s should be
interpreted as the differential in the subsidy/tax when player L engages relative to when she does not engage.
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When information is endogenous, there are two channels through which a subsidy alleviates (alterna-

tively, aggravates) the adverse selection problem. The first one is through its effect on the leader’s

engagement, as captured by the threshold m∗. The second one is through its effect on the leader’s

information, ρ∗. A higher subsidy always increases the engagement threshold m∗. Because, for any ρ,

M− is increasing in m∗, the first effect always contributes to a reduction in M−. Hence, through this

channel, the planner induces a friendlier reaction by player F when Assumption 3 holds (lemons), and a

more adversarial one when, instead, Assumption 3’ holds (anti-lemons). The second effect, instead, can

be either positive or negative, depending on whether information aggravates or alleviates the adverse

selection problem, and whether a positive subsidy increases or decreases the leader’s equilibrium level

of ρ.

The threshold K, whose formula is in the Appendix, depends on the primitives of the environment.

For example, in the Akerlof’s model, K = λ, i.e., the threshold coincides with the unit cost of public

funds, and the following conditions jointly imply that subsidizing trade is optimal:

1. ∂
∂m∗M−(m∗(r∗(0), 0); ρ∗(0)) > λ;

2. ∂
∂ρM

−(m∗(r∗(0), 0); ρ∗(0)) < 0;

3. dρ∗(0)/ds < 0.

The first condition is satisfied when the unit cost of public funds, λ, is small. When information

is exogenous, this condition is jointly necessary and sufficient for a positive subsidy on trade to be

optimal. When, instead, information is endogenous, the other two conditions also play a key role. The

second condition says that information aggravates adverse selection. From Proposition 1, we know

that this condition always holds when information structures are consistent with the MPS order and

Gρ(m
∗(r∗(0), 0); ρ∗(0)) < 0, i.e., information reduces the probability the seller engages by putting the

asset on sale.23 Condition 3, in turn holds when, in addition to Gρ(m
∗(r∗(0), 0); ρ∗(0)) < 0 (which,

as shown in Proposition 1, also implies that the benefit of acquiring more information decreases with

the friendliness of the follower’s reaction), the comparative statics of the equilibrium have the same

monotonicity as those of the best responses.24

6.2 Effects of endogeneity of information on optimal policy

Next we turn to the effects of the endogeneity of information on the optimal policy. Let s∗ denote the

optimal policy when information is endogenous. Now suppose information is exogenous and equal to

ρ = ρ∗(s∗), where ρ∗(s∗) is the equilibrium choice by L when information is endogenous and the subsidy

is equal to s∗. For any s, let r̂(s) denote the follower’s equilibrium reaction when the subsidy is equal to

s and information is exogenous and equal to ρ∗(s∗). Clearly, for s = s∗, r̂(s∗) = r∗(s∗), where r∗(s∗) is

the equilibrium reaction when information is endogenous. Let W#(s) denote welfare when information

is exogenous and equal to ρ∗(s∗). Hereafter, we assume that W#(s) is strictly quasi-concave and then

23Also recall that information always aggravates adverse selection, no matter whether it reduces or increases the proba-
bility of trade, when the distributions from which the mean m is drawn are Uniform, Pareto, or Exponential.

24Note that, holding information fixed at ρ∗(0), an increase in the subsidy, starting from s = 0, always increases the
friendliness of the follower’s reaction. Likewise, holding r fixed at r∗(0), an increase in the subsidy, starting from s = 0,
always reduces the leader’s information when Gρ(m

∗(r∗(0), 0); ρ∗(0)) < 0.
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denote by s∗∗ the level of the policy that maximizes W#(s). Finally, for any (r, s), let

Ŵ (r, s) ≡
∫ m∗(r,s)

−∞
(δL(r,m) + s) dG(m; ρ∗(s∗))− C(ρ∗(s∗))− (1 + λ)sG(m∗(r, s); ρ∗(s∗))

denote the level of welfare that is attained when information is exogenous and equal to ρ = ρ∗(s∗), the

follower’s reaction is r, the subsidy is s, and the leader engages if and only if m < m∗(r, s).25

We then have the following result:

Proposition 7 (effect of endogeneity of information on optimal policy). The endogeneity of the

leader’s information calls for larger policy interventions (i.e., s∗ > s∗∗) if(
dr̂(s∗)

ds
− dr∗(s∗)

ds

)
∂Ŵ (r∗(s∗), s∗)

∂r
+ (1 + λ)s∗Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗))
dρ∗(s∗)

ds
< 0,

whereas the opposite is true (i.e., s∗ < s∗∗) if the above inequality is reversed.

The result is intuitive. The endogeneity of the leader’s information calls for larger policy interventions

when (a) ∂Ŵ (r∗(s∗), s∗)/∂r > 0, meaning that the social value of increasing the follower’s reaction

beyond r∗(s∗) is positive, accounting for the fact that a friendlier reaction induces more engagement

which in turn comes with a larger cost to the government (due to the deadweight-loss of non-uniform

taxation), (b) an increase in the subsidy, starting from s∗, triggers a larger response by the follower

when information is endogenous than when it is exogenous, i.e., dr∗(s∗)/ds > dr̂(s∗)/ds, and (c) the

extra cost

(1 + λ)s∗Gρ(m
∗(r(s∗), s∗); ρ∗(s∗))

dρ∗(s∗)

ds
(10)

that the government incurs to fund the program due to the endogeneity of information is small. Note

that, when s∗ > 0, Gρ(m
∗(r(s∗), s∗); ρ∗(s∗)) < 0 (which, under the MPS order, is the key condition for

EC identified in Proposition 1), and dρ∗(s∗)/ds < 0, the term in (10) is positive: the government expects

to pay s∗ more often when the leader reduces her information in response to a larger subsidy. As a

result, this last effect contributes to a lower level of the optimal policy when information is endogenous.

Next note that the optimality of s∗ when information is endogenous reveals that

dr∗(s∗)
ds

∂Ŵ (r∗(s∗),s∗)
∂r = (1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))∂m

∗(r∗(s∗),s∗)
∂s + λG(m∗(r∗(s∗), s∗); ρ∗(s∗))

+(1 + λ)s∗ dρ
∗(s∗)
ds Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗)).

Hence, when s∗ > 0, dr∗(s∗)/ds > 0, and

dρ∗(s∗)

ds
Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗)) > 0,

necessarily ∂Ŵ (r∗(s∗), s∗)/∂r > 0. That is, under the welfare-maximizing policy s∗, welfare always

25Clearly, W#(s) = Ŵ (r̂(s), s).
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increases with the friendliness of the follower’s response when information reduces the probability of

engagement (i.e., when Gρ(m
∗(r(s∗), s∗); ρ∗(s∗)) < 0) and the comparative statics of the equilibrium r

and ρ have the same monotonicity as those of the best responses (i.e., r∗ increases and ρ∗ decreases

with the subsidy).

To gauge some intuition about whether a higher subsidy triggers a larger response by the follower

when information is endogenous than when it is exogenous, note that

dr∗(s∗)

ds
− dr̂(s∗)

ds

sgn
=

∂δF (r
∗(s∗),m)

∂m

∂

∂ρ
M−(m∗(r∗(s∗), s∗); ρ∗(s∗))

dρ∗(s∗)

ds
,

where ∂δF (r
∗(s∗),m)/∂m is the sensitivity of the follower’s payoff to the state (which is invariant in

m under the maintained assumption that δF is affine in m). Hence, in the lemons case (i.e., when

Assumption 3 holds, in which case ∂δF (r
∗(s∗),m)/∂m > 0), an increase in the subsidy leads to a larger

response by the follower under endogenous information when

∂

∂ρ
M−(m∗(r∗(s∗), s∗); ρ∗(s∗))

dρ∗(s∗)

ds
> 0 (11)

and a smaller response when the inequality is reversed. The opposite conclusions holds in the anti-

lemon case (i.e., under Assumption 3’, in which case ∂δF (r
∗(s∗),m)/∂m < 0). This is also intuitive.

Consider the case in which Assumption 3 holds (i.e., the lemons case). The follower responds more to

an increase in the subsidy when information is endogenous than when it is exogenous if the increase in

the subsidy leads to a reduction in information acquisition and, as a result of it, an alleviation of the

adverse selection problem.

When applied to the Akerlof’s model, the above insights lead to the following:

Proposition 8 (double dividend of the subsidy in Akerlof’s model). Consider the Akerlof ’s model

of Subsection 2.2 and let s∗ denote the optimal subsidy when information is endogenous. Assume that

G(m; ρ∗(s∗))/g(m; ρ∗(s∗)) is increasing in m, information structures are consistent with the MPS order,

and Gρ(m
∗(r∗(s∗), s∗); ρ∗(s∗)) < 0 (meaning that information aggravates adverse selection). Then, when

information is exogenous and equal to ρ∗(s∗), the optimal subsidy, s∗∗, satisfies s∗∗ < s∗.

Recall that the property that G(m; ρ∗(s∗))/g(m; ρ∗(s∗)) is increasing in m guarantees that Assump-

tion 3 holds in the Akerlof’s model (that is, the friendliness of the follower’s reaction increases with

the leader’s information if and only if more information alleviates the adverse selection problem, i.e.,

it increases M−(m∗(r∗(s∗), s∗; ρ∗(s∗))). That information structures are consistent with the MPS or-

der and Gρ(m
∗(r∗(s∗), s∗); ρ∗(s∗)) < 0 in turn implies that, under the optimal subsidy s∗, information

aggravates adverse selection (see Proposition 1). Therefore, under the assumptions in the proposition,

starting from s∗, if the government were to cut the subsidy, it would trigger a larger reduction in the

price offered by the buyer when information is endogenous than when it is exogenous. The optimal

subsidy is thus larger under endogenous information.

The same conclusions apply to the application of Example (a) in the Supplement where the govern-

ment directly controls the price at which the sellers can trade in their assets. Proposition 8 above then

implies that, when information is endogenous, it is optimal for the government to run a more generous
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program, i.e., to offer an asset-purchase program with a higher price.

The results above point to a general insight. When increasing trade is socially beneficial, infor-

mation aggravates adverse selection, and a friendlier reaction by player F reduces the marginal value

of information for player L (which is the case under the conditions for EC in Proposition 1 and for

expectation traps in Proposition 3), the social value of subsidizing trade is higher when information is

endogenous than when it is exogenous. This is because subsidizing trade comes with a double dividend :

in addition to inducing player L to engage more often, it induces L to acquire less information which in

turn alleviates adverse selection and further boosts welfare.

Table 1 in the Appendix summarizes some of the key results from this section and the previous ones.

7 Flexible Information Acquisition

The analysis in the previous sections assumes that the experiments player L has access lead to dis-

tributions (over the posterior mean) consistent with the MPS order— Assumption 1. The key forces

responsible for EC in Proposition 1, however, extend to situations in which player L can choose not

only how much information to acquire but also the “nature” of the experiment, i.e., information is fully

flexible. To see this, consider an arbitrary experiment q : Ω → ∆(Z) mapping states into probability

distributions over a rich (Polish) space of signal realizations Z. Note that any such experiment, when

combined with the prior G over Ω, leads to a distribution Gq of the posterior mean, m. Furthermore,

when combined with the optimal engagement strategy (that is, with the strategy that, for any reaction

r by player F , specifies to engage if and only m ≤ m∗(r)), the experiment q leads to a stochastic choice

rule σ : Ω → [0, 1] specifying the probability that player L engages in each state ω.

Following the rational inattention literature, one can think of player L as choosing directly the rule

σ : Ω → [0, 1] subject to an appropriate specification of the cost functional C(σ), with the interpretation

that, for any σ, C(σ) is the cost of the cheapest experiment q : Ω → ∆(Z) that permits L to imple-

ment the stochastic choice rule σ. A couple of cost functionals that have received special attention in

the literature are those linked to “mutual information” and “maximal slope”. Below we discuss both

specifications and explain how our results are broadly consistent with these specifications.

For any experiment q, let

Iq =

∫
Ω

∫
Z
ln(q(z|ω))q(dz|ω)dG(ω)−

∫
Z
ln

(∫
ω
q(z|ω)dG(ω)

)∫
ω
q(z|ω)dG(ω)

denote the mutual information between the random variables ω and z, where z is the random variable

obtained by combining the prior G with the signal q. Now suppose that there exists a function c : R+ →
R+ such that, for any q, the cost of experiment q is given by C(q) = c(Iq). To facilitate the comparison

with the analysis in the previous sections, assume ρ determines the easiness by which L can absorb

information. Specifically, assume that, for any ρ ∈ R+, player L’s marginal cost of entropy reduction

is 1/ρ. To be able to process information at marginal cost 1/ρ, player L must make an investment

whose cost is C(ρ), with the function C satisfying the same assumptions as in the baseline model. The

difference is that, once ρ is chosen, player L can now pick any experiment q of her choice, with each

experiment costing her c(Iq)/ρ. For simplicity, one can then assume that c is the identity function (i.e.,
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c(Iq) = Iq for any q) so that the cost of each experiment q is given by the mutual information between

its realizations z and the state ω (equivalently, by the reduction in entropy brought by the experiment),

scaled by the (inverse) of L’s choice of ρ.

Alternatively, one can let ρ ∈ R+ denote player L’s“information capacity.” Under this interpretation,

L first purchases capacity ρ at cost C(ρ), and then chooses the experiment that maximizes her expected

payoff among those whose mutual information between ω and the realization z of the selected experiment

is no greater than ρ. The reason for allowing player L to choose both ρ and q is that, with flexible

information, a change in the experiment expected by player F cannot, in general, be interpreted as

player L acquiring more/less information. On the contrary, the anticipation of a larger choice of ρ can

be interpreted, unambiguously, as player L investing more in “processing information”. This in turn

facilitates the comparison with the analysis in the previous sections.

It is well known that, for any investment ρ and any anticipated reaction r by player F , the exper-

iment qρ,r that maximizes player L’s expected payoff net of the above cost is binary, i.e., for any ω, it

assigns positive probability only to two signal realizations. Without loss of generality, label these signal

realizations by z = 1 and z = 0, and interpret z = 1 as a “recommendation to engage” and z = 0 as a

“recommendation to not engage.” Letting qρ,r(1|ω) denote the probability that signal qρ,r recommends

z = 1 when the state is ω and qρ,r(1) ≡
∫
ω q

ρ,r(1|ω)dG(ω) the total probability that player L engages

under qρ,r, we have that the optimal signal is given by the solution to the following functional equation

(see, e.g., Woodford (2009) and Yang (2015)):26

δL(r, ω) =
1

ρ

[
ln

(
qρ,r(1|ω)

1− qρ,r(1|ω)

)
− ln

(
qρ,r(1)

1− qρ,r(1)

)]
.

That is, the change in the log-likelihood that player L engages in state ω (relative to the prior) should

reflect L’s payoff differential from engaging at state ω, given the reaction r.

Next, consider the case in which the cost of inducing a stochastic choice rule σ : Ω → [0, 1] is given

by C(σ) = c (sup {|σ′(ω)|}), where the function c : R+ ∪ {+∞} → R+ ∪ {+∞} is non-decreasing and

satisfies c(0) = 0 and c(k) < ∞ for all k ∈ R+. Here σ′(ω) is the derivative of σ at ω. At any point of

discontinuity of σ, σ′(ω) = +∞, whereas at any point ω at which σ is continuous but non-differentiable,

σ′(ω) is the maximum between the left and the right derivative. Examples of this cost functional can

be found in Robson (2001), Rayo and Becker (2007), Netzer (2009), and more recently Morris and Yang

(2021).

Again, to facilitate the connection with the analysis in the previous sections, assume ρ is the maximal

slope of player L’s stochastic choice rule, selected at cost C(ρ) with C satisfying the same properties

as in the baseline model. Given ρ, player L then selects the experiment that maximizes her expected

payoff, among those inducing a stochastic choice rule σ whose maximal slope is no greater than ρ. For

any ρ and r, the optimal experiment can be taken to be binary and, when

inf(supp{G}) ≤ m∗(r)− 1

2ρ
< m∗(r) +

1

2ρ
≤ sup(supp{G}),

26The formula below is for when 1/ρ measures the marginal cost of entropy reduction. Conclusions similar to those
reported below hold for the case where ρ determines the information capacity, i.e., the maximal level of entropy reduction,
as in Sims (2003)’s original work on rational inattention (see also Mackowiak and Wiederholt (2009)).
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for any ω, it recommends z = 1 (i.e., engagement) with probability qρ,r(1|ω) given by

qρ,r(1|ω) =


1 if ω ≤ m∗(r)− 1

2ρ
1
2 − ρ(ω −m∗(r)) if m∗(r)− 1

2ρ < ω ≤ m∗(r) + 1
2ρ

0 if ω > m∗(r) + 1
2ρ

where m∗(r) is the same engagement cutoff as in the previous sections.

What distinguishes the two examples of flexible information acquisition above from the analysis in

the previous sections is that, for any choice of ρ, there are multiple experiments that share the same

cost C(ρ) and that need not be rankable in the MPS order. After choosing ρ, player L chooses the

experiment that maximizes her expected payoff, with the optimal choice depending on the anticipated

reaction r by player F .

It is evident that, in each of the two cases of flexible information acquisition described above, under

the optimal experiment qρ,r, when player L receives the signal z = 1 (equivalently, when she engages),

her posterior mean, which is given by

E[ω|z = 1; qρ,r] =

∫
ω
qρ,r(1|ω)
qρ,r(1)

dG(ω),

is less than m∗(r), and likewise, after receiving signal z = 0,

E[ω|z = 0; qρ,r] =

∫
ω
1− qρ,r(1|ω)
1− qρ,r(1)

dG(ω)

is greater than m∗(r).

For any choice ρ† anticipated by F , any reaction r by player F , and any cutoff m∗, then let

M−(m∗; ρ†, r) denote the expected value of m conditional on m ≤ m∗, when player L chooses ρ†

and then selects the optimal experiment qρ
†,r anticipating a reaction r by player F . Then note that, for

any ρ† and r, when the cutoff is equal to m∗(r),

M−(m∗(r); ρ†, r) = E[ω|z = 1; qρ
†,r]

and ∂M−(m∗(r); ρ†, r)/∂ρ†
sgn
= A(m∗(r); ρ†, r), with

A(m∗(r); ρ†, r) ≡
[
m∗(r)−M−(m∗(r); ρ†, r)

]
Gρ(m

∗(r); ρ†, r)−
∫ m∗(r)

−∞
Gρ(m; ρ†, r)dm

where, for any m, G(m; ρ†, r) denotes the probability that L’s posterior mean is less than m under the

experiment qρ
†,r and where Gρ(m; ρ†, r) denotes the partial derivative of such a probability with respect

to ρ, evaluated at ρ = ρ†; such a derivative is computed accounting for the fact that, when ρ changes,

the optimal experiment qρ,r (which also depends on the expected reaction r) changes.

As in the baseline model, the sign of A determines whether a higher value of ρ† anticipated by

player F aggravates or alleviates the adverse selection problem. Consistently with the baseline model,

we then continue to interpret A(ρ†) ≡ A(m∗(r(ρ†)); ρ†, r(ρ†)) as the “adverse selection effect.” As in
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the baseline model, r(ρ†) denotes the equilibrium reaction by player F in a fictitious setting in which

player L’s choice of ρ is exogenously fixed at ρ†. However, differently from the baseline model, in this

fictitious setting, player L chooses the distribution G(·; ρ†, q) over her posterior mean m by selecting

an experiment q : Ω → ∆(Z).27 The equilibrium reaction r(ρ†) is thus computed jointly with the

equilibrium choice of experiment q and the equilibrium engagement strategy a(·).
Next, let

Π(ρ; r) ≡ UL(0) +

∫ m∗(r)

−∞
δL(r,m)dG(m; ρ, r) = UL(0) +

∫ +∞

−∞
δL(r, ω)q

ρ,r(1|ω)dG(ω)

denote the payoff, gross of the cost, that player L obtains by choosing ρ when expecting a reaction r by

player F (with the expectation computed under the optimal experiment qρ,r) and then let

B(ρ; ρ†) ≡ −∂
2Π(ρ; r(ρ†))

∂ρ∂r
= −

∫ m∗(r(ρ†))

−∞

∂δL(r(ρ
†),m)

∂r
dGρ(m; ρ, r(ρ†))

= −∂δL(r(ρ
†),m∗(r(ρ†)))

∂r
Gρ

(
m∗(r(ρ†)); ρ, r(ρ†)

)
+

∫ m∗(r(ρ†))

−∞

∂2δL(r(ρ
†),m)

∂r∂m
Gρ(m; ρ, r(ρ†))dm.

As in the baseline model, the function B(ρ; ρ†) measures how a reduction in the friendliness of F ’s

reaction around r(ρ†) affects L’s marginal benefit of expanding her investment in information processing,

starting from ρ. Consistently with the baseline model, we will continue to refer to B(ρ; ρ†) as the“benefit

of friendlier reactions” effect.

The following proposition establishes the precise sense in which results analogous to those in Propo-

sition 1 extend to a setting in which information is flexible and the cost of information is determined

by either entropy reduction or the maximum slope of the induced stochastic choice rule.

Proposition 9 (EC under flexible information acquisition). Suppose that Assumptions 2 and 3

hold and that ρ determines either the marginal cost of entropy reduction or the maximum-slope of the

induced stochastic choice rule.

(i) EC holds at (ρ, ρ†) if and only if the adverse selection and the benefit of friendlier reactions effects

are of opposite sign: A(ρ†)B(ρ; ρ†) < 0.

(ii) A sufficient condition for an increase in ρ to aggravate adverse selection at ρ = ρ† (i.e., for

A(ρ†) < 0) is that, qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1) is increasing in ρ for ω < m∗(r(ρ†)) and decreasing in ρ for

ω > m∗(r(ρ†)) at ρ = ρ†.

(iii) A sufficient condition for a reduction in the friendliness of F ’s reaction at r(ρ†) to raise L’s

marginal value of ρ (i.e., for B(ρ; ρ†) > 0) is that, in addition to qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1) be increasing

in ρ for ω < m∗(r(ρ†)) and decreasing in ρ for ω > m∗(r(ρ†)), the total probability qρ,r(ρ
†)(1) ≡∫

qρ,r(ρ
†)(1|ω)dG(ω) player L engages is non-increasing in ρ.

27Recall that ρ† only pins down the marginal cost of entropy reduction (alternatively, the maximal level of entropy
reduction) or the maximal slope of the induced stochastic choice rule, leaving player L with flexibility over her choice of
experiment q : Ω → ∆(Z).
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(iv) Therefore, a sufficient condition for EC to hold at (ρ, ρ†) is that the conditions in parts (ii) and

(iii) jointly hold.

(v) Suppose that M−(m∗(r(ρ†)); ρ, r(ρ†)) is decreasing in ρ at ρ = ρ†, implying that A(ρ†) < 0, and

that ∂2δL(r,m)/∂r∂m = 0. Then qρ,r(ρ
†)(1) non-increasing in ρ at ρ = ρ† is necessary and sufficient

for EC at (ρ, ρ†).

As in the baseline model, EC obtains when, and only when, the adverse-selection effect is of opposite

sign than the benefit of friendlier reactions effect, i.e., when A(ρ†)B(ρ; ρ†) < 0. The intuition is the

same as in the baseline model.

When information is flexible, an increase in ρ (starting from ρ†) aggravates the severity of the

adverse selection problem when it induces L to select an experiment that makes her engage with a

higher probability at low states (namely for ω < m∗(r(ρ†))) and with a lower probability at high states

(namely for ω > m∗(r(ρ†))), relative to the total probability qρ,r(ρ
†)(1) of engaging. This is because,

in the eyes of player F , such changes make the engagement decision by player L a more informative

signal of the state being less favorable to player F . When, in addition to the last property described,

a higher ρ also reduces the overall probability qρ,r(ρ
†)(1) that player L engages, starting from the

actual level ρ selected by player L, a reduction in the friendliness of player F ’s reaction (starting from

r(ρ†)) increases L’s marginal value of expanding ρ. The property that qρ,r(ρ
†)(1) decreases with ρ is

equivalent to the property in the baseline model that a higher ρ reduces the probability of trade (i.e.,

Gρ

(
m∗(r(ρ†)); ρ)) < 0). This condition is both necessary and sufficient for EC when L’s payoff is

separable in r and ω (as in the Akerlof’s model) and a higher ρ always aggravates the adverse selection

problem in the eyes of player F . The results above are the analogs of those established in Proposition

1 for the case where ρ is a mean-preserving-spread index, thus establishing the robustness of the key

insights to the more general information structures considered in this section.

8 Conclusions

We investigate how incentives to acquire information in generalized lemons problems depend on other

players’ expectations about the acquired information. We show how expectation conformity, i.e., the

value to conform to other players’ expectations, is affected by (a) the impact of information on the

severity of the adverse selection problem, (b) the sensitivity of the marginal value of information to the

friendliness of other players’ reactions, and (c) the overall value of engagement, as captured by the size

of the gains from trade.

We then use the characterization to shed light on the connection between expectation conformity

and expectation traps, and on the role of disclosure of hard information in such games, whereby players

engage in activities that prove how well or poorly informed they are.

Finally, we show how the results change in the anti-lemons case, that is, in settings in which the play-

ers’ payoffs are aligned, and how a benevolent government can improve upon the laissez-faire equilibrium

by subsidizing (alternatively, taxing) trade.

There are many venues for future research. First, in more applied work geared at understanding the

role of endogenous information in financial trading, it would be interesting to investigate how the type

of security issued to finance a project affects the incentives for information acquisition and the resulting
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severity of the adverse selection problem. Second, it would be interesting to study how public disclosures

by benevolent governments impact the incentives for private information acquisition. For example, in

the context of stress testing, the announcement that a bank failed a test may induce a conservative

response by potential asset buyers which may induce asset owners to collect more information, which

in turn aggravates the severity of the adverse selection problem. This is an angle that does not seem

to have been accounted for in the design of the optimal stress tests. Lastly, it would be interesting to

extend the analysis by allowing both sides of the market to acquire information and investigate how

strategic complementarity/substitutability in information acquisition is affected by the adverse selection

problem.
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9 Appendix

Proof of Proposition 2. For any (r, θ), let m∗(r; θ) denote the optimal cut-off below which player L
engages when the gains from engagement are parametrized by θ and F ’s reaction is r. For any (ρ†, θ),
then let r(ρ†; θ) denote player F ’s response when player L’s information is exogenously fixed at ρ† and
the gains from engagement are parametrized by θ. Observe that, under Assumption 2, given r, the
engagement threshold m∗(r; θ), which is implicitly defined by the solution to δ̄L(r,m)+θ = 0, is strictly
increasing in θ. Also observe that, under Assumption 3, given ρ†, r(ρ†; θ) is increasing in θ; this is
because, fixing r and ρ†, a higher θ implies a higher engagement point m∗(r; θ), and hence a higher
truncated mean M−(m∗(r; θ); ρ†) which in turn implies a higher equilibrium response r(ρ†; θ) by virtue
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of Assumption 3. Because, for any θ, m∗(r; θ) is also increasing in r, we conclude that, for any ρ†, and
any θ′′ > θ′,

m∗(r(ρ†; θ′′); θ′′) ≥ m∗(r(ρ†; θ′); θ′). (12)

Now take any (ρ, ρ†, θ′) such that

max
{
Gρ(m

∗(r(ρ†; θ′), θ′); ρ†), Gρ(m
∗(r(ρ†; θ′), θ′); ρ)

}
< 0. (13)

Proposition 1 (part (iv)) implies that, when θ = θ′, EC holds at (ρ, ρ†). That information structures
are rotations in turn implies that max{mρ,mρ†} ≤ m∗(r(ρ†; θ′), θ′), which along with Condition (12),

implies that max{mρ,mρ†} ≤ m∗(r(ρ†; θ′′), θ′′) and hence that

max
{
Gρ(m

∗(r(ρ†; θ′′), θ′′); ρ†), Gρ(m
∗(r(ρ†; θ′′), θ′′); ρ)

}
< 0. (14)

Hence, when EC holds at (ρ,ρ†), it also holds at (ρ, ρ†). ■

Proof of Proposition 4. (i) The logic is similar to the one behind Proposition 3. Consider a pure-
strategy equilibrium of the game without disclosure in which player L selects ρ∗. To see that ρ∗ can
also be supported in a pure-strategy equilibrium of the game with disclosure, for any ρ̂ ∈ R+, let e(ρ̂)
denote the choice of information by L when disclosing ρ̂. Consider the following strategy for L in the
game with disclosure. For any ρ̂ ≤ ρ∗, e(ρ̂) = ρ∗, whereas for any ρ̂ > ρ∗, e(ρ̂) ≥ ρ̂ (the precise
value is not important). Under Assumption 3, that A(ρ†) < 0 for all ρ† implies that F ’s reaction
r(ρ†) is non-increasing in the choice ρ† anticipated by player F . Hence, for any ρ̂ > ρ∗, F ’s reaction is
r(e(ρ̂)) ≤ r∗ ≡ r(ρ∗), whereas, for any ρ̂ ≤ ρ∗, F ’s reaction is r(e(ρ̂)) = r∗. These properties imply that

sup
{ρ,ρ̂}

{∫ m∗(r(e(ρ̂)))

−∞
δL(r(e(ρ̂)),m)dG(m; ρ)− C(ρ)

}
=

∫ m∗(r∗)

−∞
δL(r

∗,m)dG(m; ρ∗)− C(ρ∗),

where the equality follow from the fact that ρ∗ is an equilibrium of the no-disclosure game along with
the fact that L’s payoff is non-decreasing in F ’s reaction by Assumption 2.

(ii) Conversely, let ρ∗ be an information choice supported by a regular equilibrium of the disclosure
game (with associated disclosure ρ̂(ρ∗) ≤ ρ∗ and reaction r∗ ≡ r(ρ∗)). Suppose that ρ∗ < ρ, where ρ is
the lowest equilibrium level of the no-disclosure game. That the equilibrium supporting ρ∗ is regular,
along with the fact that r(·) is non-increasing in ρ† (by virtue of the assumption that A(ρ†) < 0 for all
ρ†) implies that, for any ρ̂ <ρ̂(ρ∗), e(ρ̂) = ρ∗ and hence r(e(ρ̂)) = r∗—for, otherwise, L has a profitable
deviation—and that, for any ρ̂ > ρ̂(ρ∗), e(ρ̂) ≥ ρ∗ and hence r(e(ρ̂)) ≤ r∗. Hence, given any actual
choice ρ, the most profitable disclosure for player L induces a reaction r∗. This means that, under
the reaction r∗, the payoff that L obtains by selecting ρ∗ is weakly higher than the payoff that she
obtains by selecting any other level ρ. Therefore, ρ∗ can also be sustained in the no-disclosure game, a
contradiction. Similar arguments imply that the highest level of ρ that can be sustained in any regular
equilibrium of the disclosure game is ρ̄, where ρ̄ is the largest equilibrium level in the no-disclosure
game. ■

Proof of Proposition 6. Using the envelope theorem, we have that28

28Here we are using the fact that, given s and r∗(s), m∗(r∗(s), s) and ρ∗(s) maximize the leader’s payoff∫ m̂

−∞ (δL(r
∗(s),m) + s) dG(m; ρ)− C(ρ) over (m̂, ρ).
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W
′
(s) =

∫m∗(r∗(s),s)
−∞

[
∂δL(r

∗(s),m)
∂r

dr∗(s)
ds + 1

]
dG(m; ρ∗(s))

− d
ds [(1 + λ)sG(m∗(r∗(s), s); ρ∗(s))] .

The first line is simply the effect of a change in the subsidy on the leader’s expected payoff (holding
ρ∗(s) and m∗(r∗(s), s) fixed by usual envelope-theorem arguments). The second line is the (total) effect
of a change in the subsidy on the cost of the program to the government.

Note that W
′
(s) can be expressed as

W
′
(s) = dr∗(s)

ds

∫m∗(r∗(s),s)
−∞

∂δL(r
∗(s),m)
∂r dG(m; ρ∗(s))− s(1 + λ) d

ds [G(m
∗(r∗(s), s); ρ∗(s))]

−λG(m∗(r∗(s), s); ρ∗(s)).

When W (s) is quasi-concave in s, the optimal s is thus strictly positive when

W
′
(0) =

dr∗(0)

ds

∫ m∗(r∗(0),0)

−∞

∂δL(r
∗(0),m)

∂r
dG(m; ρ∗(0))− λG(m∗(r∗(0), 0); ρ∗(0)) > 0

and strictly negative when the above inequality is reversed.

Because δL is affine in m, it can be expressed as δL(r,m) = aL(r)m+bL(r), for some functions aL(r)
and bL(r). Assumption 2 then implies that, for any r and m, aL(r) < 0 and a′L(r)m+ b′L(r) > 0. This

means that W
′
(0) > 0 when dr∗(0)/ds > r#, whereas W ′(0) < 0 when dr∗(0)/ds < r#, where

r# ≡ λ
∂
∂rδL(r

∗(0),M−(m∗(r∗(0), 0); ρ∗(0))

is a strictly positive constant that depends on the primitives of the problem. For example, in the
Akerlof’s model, δL(r,m) = −m+ r, in which case r# = λ.

Next, observe that, for any s, ρ∗(s) and r∗(s) jointly solve the following two conditions:∫ m∗(r∗,s)

−∞
δF (r

∗,m)dG(m; ρ∗) = 0, (15)

and

ρ∗ = argmax
ρ

{∫ m∗(r∗,s)

−∞
(δL(r

∗,m) + s) dG(m; ρ)− C(ρ)

}
. (16)

Because δF is affine in m, it can be expressed as δF (r,m) = aF (r)m+ bF (r), for some functions aF (r)
and bF (r), with aF (r) > 0 when Assumption 3 holds (lemons), and aF (r) < 0 when Assumption 3’
holds (anti-lemons).29

29To see this, note that, for any m∗, ρ, and r,
∫m∗

−∞ δF (r,m)dG(m; ρ) = G(m∗; ρ)δF (r,M
−(m∗; ρ)). Now fix s and drop

it. The equilibrium r thus solves aF (r)M
−(m∗(r); ρ) + bF (r) = 0. Hence,

dr
dρ

= −
aF (r) ∂

∂ρ
M−(m∗(r);ρ)

∂
∂r

δF (r,M−(m∗(r);ρ))
.

The denominator in the above expression is negative, by assumption. It follows that dr/dρ
sgn
= aF (r)

∂
∂ρ

M−(m∗(r); ρ).
Hence, aF (r) > 0 when Assumption 3 holds, whereas aF (r) < 0 when Assumption 3’ holds.
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Hence, for any s, r∗(s) solves δF (r
∗,M−(m∗(r∗, s); ρ∗(s))) = 0. Using the implicit-function theorem,

we have that
dr∗(s)
ds = −

d
ds

δF (r,M−(m∗(r,s);ρ∗(s)))|
r=r∗(s)

d
dr

δF (r,M−(m∗(r,s);ρ∗(s)))|
r=r∗(s)

where the denominator is negative, by assumption. We thus have that dr∗(0)/ds > r# if

d

ds
δF (r

∗(0),M−(m∗(r∗(0), s); ρ∗(s)))

∣∣∣∣
s=0

> Λ ≡ λ

∣∣∣∣∣
d
drδF (r,M

−(m∗(r, 0); ρ∗(0)))
∣∣
r=r∗(0)

d
drδL(r,M

−(m∗(r, 0); ρ∗(0)))
∣∣
r=r∗(0)

∣∣∣∣∣
whereas dr∗(0)/ds < r# if the above inequality is reversed. The condition says that, at the laissez-faire
equilibrium, holding the follower’s reaction fixed at r∗(0), a small subsidy to engagement has a strong
enough positive effect on the follower’s payoff, accounting for the effect that the subsidy has on both
the leader’s engagement threshold and her choice of information. Note that, in the Akerlof’s model of
Example 1, Λ = λ.

Clearly,

d

ds
δF (r

∗(0),M−(m∗(r∗(0), s); ρ∗(s)))

∣∣∣∣
s=0

= aF (r
∗(0))

d

ds
M−(m∗(r∗(0), s); ρ∗(s))

∣∣∣∣
s=0

.

The result in the proposition then follows by letting K ≡ Λ/aF (r
∗(0)) and noting that K > 0 when

aF (r
∗(0)) > 0, i.e., when Assumption 3 (lemons) holds, whereas K < 0 when aF (r

∗(0)) < 0, i.e., when
Assumption 3’ (anti-lemons) holds. ■

Proof of Proposition 7. The optimal value of s∗ solves dW (s∗)/ds = 0. That is, s∗ solves

dr∗(s∗)
ds

∫m∗(r∗(s∗),s∗)
−∞

∂δL(r
∗(s∗),m)
∂r dG(m; ρ∗(s∗))

−(1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))
[
∂m∗(r∗(s∗),s∗)

∂r
dr∗(s∗)

ds + ∂m∗(r∗(s∗),s∗)
∂s

]
−(1 + λ)s∗ dρ

∗(s∗)
ds Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗))− λG(m∗(r∗(s∗), s∗); ρ∗(s∗)) = 0.

(17)

Next, observe that, when information is exogenous and equal to ρ = ρ∗(s∗), using the envelope
theorem and the fact that r̂(s∗) = r∗(s∗), we have that

dW#(s∗)

ds
=
∂Ŵ (r∗(s∗), s∗)

∂r

dr̂(s∗)

ds
+
∂Ŵ (r∗(s∗), s∗)

∂s

where
∂Ŵ (r∗(s∗),s∗)

∂r =
∫m∗(r∗(s∗),s∗)
−∞

∂δL(r
∗(s∗),m)
∂r dG(m; ρ∗(s∗))

−(1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))∂m
∗(r∗(s∗),s∗)

∂r

and

∂Ŵ (r∗(s∗),s∗)
∂s = −(1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))∂m

∗(r∗(s∗),s∗)
∂s − λG(m∗(r∗(s∗), s∗); ρ∗(s∗)).
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Using (17), we thus have that

dW#(s∗)

ds
=

(
dr̂(s∗)

ds
− dr∗(s∗)

ds

)
∂Ŵ (r∗(s∗), s∗)

∂r
+ (1 + λ)s∗

dρ∗(s∗)

ds
Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗)).

When W#(s) is strictly quasi-concave in s, we then have that s∗∗ < s∗ if dW#(s∗)/ds < 0 and s∗∗ > s∗

if the above inequality is reversed, which establishes to the result in the proposition. ■

Proof of Proposition 8. The result follows from Proposition 7. In fact, in this case,

dr̂(s∗)

ds
− dr(s∗)

ds
=

∂
∂ρM

−(m∗(r∗(s∗), s∗); ρ∗(s∗))dρ
∗(s∗)
ds

∂
∂m∗M−(m∗(r∗(s), s∗); ρ∗(s∗))− 1

.

Using the fact that

∂

∂ρ
M−(m∗; ρ) =

Gρ(m
∗; ρ)[m∗ −M−(m∗; ρ)]−

∫m∗

−∞Gρ(m; ρ)dm

G(m∗; ρ)

and
∂

∂m∗M
−(m∗; ρ) =

g(m∗; ρ)[m∗ −M−(m∗; ρ)]

G(m∗; ρ)
,

along with the fact that m∗(r∗(s∗), s∗) = r∗(s∗) + s∗ and r∗(s∗) = M−(m∗(r∗(s∗), s∗); ρ∗(s∗)) + ∆, we
have that

dr̂(s∗)
ds − dr(s∗)

ds =
(
(s∗ +∆)Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗))−
∫m∗(r∗(s∗),s∗)
−∞ Gρ(m; ρ∗(s∗))dm

) dρ∗(s∗)
ds
D ,

where
D ≡ (s∗ +∆)g(m∗(r∗(s∗), s∗); ρ∗(s∗))−G(m∗(r∗(s∗), s∗); ρ∗(s∗)) < 0

when G(m; ρ∗(s∗))/g(m; ρ∗(s∗)) is increasing in m. Hence, dr̂(s∗)/ds− dr(s∗)/ds < 0 when

G(m; ρ∗(s∗))/g(m; ρ∗(s∗))

is increasing inm, information structures are consistent with the MPS order, Gρ(m
∗(r∗(s∗), s∗); ρ∗(s∗)) <

0, and dρ∗(s∗)/ds < 0.

Furthermore, in this case,

∂Ŵ (r∗(s∗), s∗)

∂r
= G(m∗(r∗(s∗), s∗); ρ∗(s∗))− (1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗)).

Using the fact that

dW#(s∗)

ds
=

(
dr̂(s∗)

ds
− dr∗(s∗)

ds

)
∂Ŵ (r∗(s∗), s∗)

∂r
+ (1 + λ)s∗

dρ∗(s∗)

ds
Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗))
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as established in the proof of Proposition 7, we then have that dW#(s∗)/ds = dρ(s∗)
ds

J
D , where

J ≡ (∆− λs∗)Gρ(m
∗(r∗(s∗), s∗); ρ∗(s∗))G(m∗(r∗(s∗), s∗); ρ∗(s∗))

+
(∫m∗(r∗(s∗),s∗)

−∞ Gρ(m; ρ∗(s∗))dm
)
[(1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))−G(m∗(r∗(s∗), s∗); ρ∗(s∗))] .

Note that J < 0 when information structures are consistent with the MPS order, G(m; ρ∗(s∗))/g(m; ρ∗(s∗))
is increasing in m, and Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗)) < 0.30

We conclude that, under the assumptions in the proposition, dW#(s∗)/ds
sgn
= dρ(s∗)/ds. To see

that, under the assumptions in the proposition, dρ(s∗)/ds < 0, note that

dr∗(s)
ds

= −
∂M−(m∗(r∗(s),s);ρ∗(s))

dm∗ + ∂M−(m∗(r∗(s),s);ρ∗(s))
dρ

dρ∗(s)
ds

∂M−(m∗(r∗(s),s);ρ∗(s))
dm∗ − 1

.

Under the assumptions in the proposition,

∂M−(m∗(r∗(s), s); ρ∗(s))

dm∗ − 1 = D ·G(m∗(r∗(s∗), s∗); ρ∗(s∗)) < 0

and ∂M−(m∗(r∗(s), s); ρ∗(s))/dρ < 0. Hence, dr∗(s)/ds < 0 if dρ(s∗)/ds > 0. This cannot be consistent
with the optimality of s∗. In fact, by cutting the subsidy, the planner would then induce a friendlier
reaction by the follower, permit the leader to economize on her information, and save on the costs of
public funds. The optimality of s∗ thus implies that dρ(s∗)/ds < 0. We conclude that dW#(s∗)/ds < 0.
The strict quasi-concavity of W# then implies that s∗∗ < s∗. ■

Proof of Proposition 9.

(i) The proof follows from the same arguments that establish part (i) of Proposition 1.

(ii) Recall that

∂

∂ρ
M−

(
m∗(r(ρ†)); ρ, r(ρ†)

)
=

∂

∂ρ

(∫
ω
qρ,r(ρ

†)(1|ω)
qρ,r(ρ†)(1)

dG(ω)

)
.

Both when the cost of information is given by entropy reduction and when it is given by maximum slope,

qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1) is a decreasing function of ω. Hence, when qρ,r(ρ

†)(1|ω)/qρ,r(ρ†)(1) is increasing

in ρ for ω < m∗(r(ρ†)) and decreasing in ρ for ω > m∗(r(ρ†)), the collection of distributions
(
F ρ,r(ρ†)

)
ρ
,

indexed by ρ, with each cdf F ρ,r(ρ†) defined by the density

fρ,r(ρ
†)(ω) ≡ qρ,r(ρ

†)(1|ω)
qρ,r(ρ†)(1)

g(ω)

can be ranked according to FOSD, with F ρ,r(ρ†) ≻ F ρ′,r(ρ†) for any ρ < ρ′. This means thatM−(m∗(r(ρ†)); ρ, r(ρ†))
is decreasing in ρ at ρ = ρ† which implies that A(ρ†) < 0,implying that information aggravates adverse
selection.

30Note that, under the optimal subsidy s∗, welfare is equal to G(m∗(r∗(s∗), s∗); ρ∗(s∗)) (∆− λs∗)−C(ρ∗(s∗)). Because
welfare is non-negative under the laissez-faire equilibrium (i.e., when s = 0), it must be that ∆ > λs∗. Also note that, when
∆ > λs∗, (1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗)) − G(m∗(r∗(s∗), s∗); ρ∗(s∗)) < D and hence the second line in J is negative
when information structures are consistent with the MPS order and G(m; ρ∗(s∗))/g(m; ρ∗(s∗)) is increasing in m.
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(iii) Note that

∂Π(ρ; r(ρ†))

∂r
= qρ,r(ρ

†)(1)

∫
∂δL(r(ρ

†), ω)

∂r

qρ,r(ρ
†)(1|ω)

qρ,r(ρ†)(1)
dG(ω). (18)

Under Assumption 2, ∂δL(r(ρ
†), ω)/∂r is increasing in ω. Hence, when

qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1)

is increasing in ρ for ω < m∗(r(ρ†)) and decreasing in ρ for ω > m∗(r(ρ†)), the integral term in
(18) is decreasing in ρ (the arguments are the same as in part (ii)). Hence, a sufficient condition for
B(ρ; ρ†) = −∂2Π(ρ; r(ρ†))/∂ρ∂r to be positive (equivalently, for a reduction in r around r(ρ†) to raise

the marginal value of expanding ρ) is that, in addition to qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1) to be increasing in ρ

for ω < m∗(r(ρ†)) and decreasing in ρ for ω > m∗(r(ρ†)), qρ,r(ρ
†)(1) is non-increasing in ρ.

(iv) The proof is an immediate implication of parts (ii) and (iii).

(v) The proof follows from the fact that, in this case,

B(ρ; ρ†) = −
∂δL

(
r(ρ†),m∗(r(ρ†))

)
∂r

Gρ

(
m∗(r(ρ†)); ρ, r(ρ†)).

Because A(ρ†) < 0, the result in part (i) implies that a necessary and sufficient condition for expectation

conformity to hold at (ρ, ρ†) is thatB(ρ; ρ†) > 0 which is the case if and only ifGρ

(
m∗(r(ρ†)); ρ, r(ρ†))) <

0. Because, for any ρ,

G
(
m∗(r(ρ†)); ρ, r(ρ†))) =

∫
qρ,r(ρ

†)(1|ω)dG(ω) ≡ qρ,r(ρ
†)(1)

the latter property is equivalent to qρ,r(ρ
†)(1) being non-increasing in ρ.
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Lemons dr
dρ†

sgn
= ∂

∂ρ†M
−(m∗; ρ†)

Anti-lemons

dr
dρ†

sgn
= − ∂

∂ρ†M
−(m∗; ρ†)

Does more information lead

to an unfriendlier response?

(dr/dρ† < 0)

Yes if

• MPS and Gρ < 0

• or information always

aggravates adverse

selection (e.g., uniform,

Pareto, exp.)

No if

• MPS and Gρ < 0

• or information always

aggravates adverse

selection (e.g., uniform,

Pareto, exp.)

Does an unfriendlier

response increase L’s

demand for information?(
− ∂2Π(ρ; r)

∂r∂ρ
> 0
)

• Yes if MPS and Gρ < 0

• No if Gρ ≥ 0 and
∂2δL
∂m∂r

= 0 (Akerlof’s

model +ex. a, c, d in

Supplement)

• Yes if MPS and Gρ < 0

• No if Gρ ≥ 0 and
∂2δL
∂m∂r

= 0 (Spence’s

model + ex. f, h in

Supplement)

(Local) EC / expectation

traps

• Yes if MPS and Gρ < 0

• Gρ < 0 is NSC if

information always

aggravates adverse

selection and ∂2δL
∂m∂r = 0

• Yes if information always

aggravates adverse

selection, Gρ > 0, and
∂2δL
∂m∂r = 0

Engagement channel of

subsidy

∂
∂m∗M

−(m∗; ρ†)∂m
∗

∂s

• Benefits player L • Hurts player L

Information channel of

subsidy

∂
∂ρ†M

−(m∗; ρ†)dρ
†

ds

• Benefits player L if MPS

and Gρ < 0

• Hurts player L if MPS

and Gρ < 0

Total effect of subsidy on

welfare

• positive if engagement +

information channels

> K > 0

• negative if engagement +

information channels

> K < 0

Table 1: summary of a few results
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