Knowing your Lemon before You Dump it

Alessandro Pavan Jean Tirole

Motivation

- Situations where decision to "engage" carries information about what is at stake
 - trade
 - partnerships
 - entry
 - marriage
 - ...
- Lemons (Akerlof)
 - negative inferences
- Anti-lemons (Spence)
 - positive inferences

• Endogenous information

- information acquisition/attention
- cognition

This Paper

- Generalized lemons (and anti-lemons)
 - endogenous information
- Information choices
 - type of strategic interaction
 - opponent's beliefs over selected information (expectation conformity)
 - effect of information on severity of adverse selection
 - effect of friendliness of opponent's reaction on value of information
- Expectation traps
- Disclosure and cognitive style
- Welfare and policy implications
- Equilibrium analysis and comparative statics

Literature – Incomplete

• Endogenous info in lemons problem

- Dang (2008), Thereze (2022), Lichtig and Weksler (2023) \rightarrow EC, \neq bargaining game, timing, CS
- Payoffs in lemons problem
 - Levin (2001), Bar-Isaac et al. (2018), Kartik and Zhong (2023)... \rightarrow incentives analysis
- Policy in mkts with adverse selection
 - Philippon and Skreta (2012), Tirole (2012), Dang et al (2017)... \rightarrow endogenous information
- Endogenous info in private-value bargaining
 - Ravid (2020), Ravid, Roesler, and Szentes (2021)...
 → interdependent payoffs, competitive mkt

Expectation conformity

- Pavan and Tirole (2022)
 - \rightarrow different class of games (generalized lemons and anti-lemons)
- Mandatory disclosure laws
 - Pavan and Tirole (2023b)
 - \rightarrow endogenous information

Plan

2 Model

- Expectation Conformity
- Expectation Traps
- Oisclosure and Cognitive Style
- O Policy Interventions
- Flexible Information
- 8 Anti-lemons

Players

- Leader
- Follower

Choices

- Leader:
 - information structure, ρ (more below)
 - two actions:
 - adverse-selection-sensitive, a = 1 ("engage")
 - adverse-selection insensitive, a = 0 ("not engage")
- Follower:
 - reaction, $r \in \mathbb{R}$

State

- $\omega \sim {\rm prior}~G$
- mean: ω_0

Payoffs

- leader: $\delta_L(r, \omega) \equiv u_L(1, r, \omega) u_L(0, \omega)$
 - affine in $\boldsymbol{\omega}$
 - increasing in r (higher r: friendlier reaction)
 - decreasing in ω

- benefit of friendlier reaction (weakly) increasing in state: $\frac{\partial^2 \delta_L}{\partial \omega \partial r} \ge 0$ (benefit of higher *r* largest in states in which *L*'s value of engagement lowest)

• follower:
$$\delta_F(r, \omega) \equiv u_F(1, r, \omega) - u_F(0, \omega)$$

- affine in $\boldsymbol{\omega}$

• Leader: seller

- $u_L(1, r, \omega) = r$ (price)
- $u_L(0, r, \omega) = \omega$ (asset value)

•
$$\delta_L(r, \omega) = r - \omega$$

• Follower: competitive buyer

- $u_F(0,\omega) = 0$
- $u_F(1, r, \omega) = \omega + \Delta r$
- $\delta_F(r, \omega) = u_F(1, r, \omega)$

- Information structures: $\rho \in \mathbb{R}_+$
 - cdf $G(m; \rho)$ over posterior mean m (mean-preserving-contraction of G)
 - $C(\rho)$: information-acquisition cost

Definition

Information structures consistent with **MPS order** (mean-preserving spreads) if, for any $\rho' > \rho$, any $m^* \in \mathbb{R}$, $\int_{-\infty}^{m^*} C(m; a') dm \ge \int_{-\infty}^{m^*} C(m; a) dm$

$$\int_{-\infty}^{\infty} G(m;\rho) dm \ge \int_{-\infty}^{\infty} G(m;\rho) dr$$

with $\int_{-\infty}^{+\infty} G(m; \rho') dm = \int_{-\infty}^{+\infty} G(m; \rho) dm = \omega_0.$

- MPS order and Blackwell informativeness:
 - $G(\cdot; \rho)$ obtained from experiment $q_{\rho}: \Omega \to \Delta(Z)$
 - $G(\cdot; \rho')$ obtained from experiment $q_{
 ho'}: \Omega o \Delta(Z)$
 - If $\rho' > \rho$ means $q_{\rho'}$ Blackwell more informative than q_{ρ} , then

$$G(\cdot; \rho') \succeq_{MPS} G(\cdot; \rho)$$

Definition

Information structures are **rotations** (or "simple mean-preserving spreads") if, for any ρ , there exists rotation point m_{ρ} s.t.

- $G(m; \rho)$ increasing in ρ for $m \leq m_{\rho}$
- $G(m; \rho)$ decreasing in ρ for $m \ge m_{
 ho}$

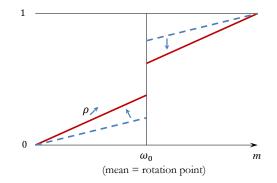
• Diamond and Stiglitz (1974), Johnston and Myatt (2006), Thereze (2022)...

Rotations Example: Non-directed Search

• L learns state with prob. ρ (nothing with prob. $1 - \rho$)

$$G(m;
ho) = \left\{egin{array}{cc}
ho G(m) & ext{for } m < \omega_0 \
ho G(m) + 1 -
ho & ext{for } m \geq \omega_0 \end{array}
ight.$$

• Rotation point: prior mean ω_0



- Combination of rotations need not be a rotation
- But any MPS can be obtained through sequence of rotations
- Other (notable) examples
 - G Normal and $s = \omega + \varepsilon$ with $\varepsilon \sim N(0, \rho^{-1})$
 - Pareto, Exponential, Uniform $G(\cdot; \rho)$...

• For any (ρ, r) , leader engages (i.e., a = 1) iff $m < m^*(r)$

with

$$\delta_L(r, m^*(r)) = 0$$

- r(ρ): eq. reaction under information ρ
 (assumed to be unique)
- Assumption (lemons):

$$\frac{dr(\rho)}{d\rho} \stackrel{\text{sgn}}{=} \frac{\partial}{\partial \rho} M^{-} (m^{*}(r(\rho)); \rho)$$

where

$$M^{-}(m^{*}; \rho) \equiv \mathbb{E}_{G(\cdot; \rho)}[m|m \leq m^{*}]$$

Akerlof Example

- Engagement threshold: $m^*(r) = r$
- Equilibrium price $r(\rho)$: solution to

 $r = M^{-}(r; \rho) + \Delta$

• Lemons:

$$\frac{dr(\rho)}{d\rho} \stackrel{\text{sgn}}{=} \frac{\partial}{\partial \rho} M^{-}(m^{*}(r(\rho)); \rho)$$

- Partnerships
- Entry
- Marriage
- OTC mkts
- ...

Plan

2 Model

- Expectation Conformity
- Expectation Traps
- Oisclosure and Cognitive Style
- O Policy Interventions
- Flexible Information
- 8 Anti-lemons

Expectation Conformity

Effect of information on adverse selection

• $r(\rho)$: eq. reaction under information ρ

•
$$M^{-}(m^{*};\rho) \equiv \frac{\int_{-\infty}^{m^{*}} m dG(m;\rho)}{G(m^{*};\rho)}$$

Definition

Information

• aggravates adverse selection if $\frac{\partial}{\partial \rho}M^{-}(m^{*}(r(\rho)); \rho) < 0$

• alleviates adverse selection if
$$\frac{\partial}{\partial \rho}M^{-}(m^{*}(r(\rho)); \rho) > 0$$

Effect of information on adverse selection

$$\frac{\partial}{\partial \rho} M^{-}(m^{*}; \rho) \stackrel{\text{sgn}}{=} A(m^{*}; \rho)$$

where

$$A(m^*;\rho) \equiv \left[m^* - M^-(m^*;\rho)\right] G_{\rho}(m^*;\rho) - \int_{-\infty}^{m^*} G_{\rho}(m;\rho) dm$$

with $G_{\rho}(m;\rho) \equiv \frac{\partial}{\partial \rho} G(m;\rho)$

• Two channels through which information affects AS:

• prob. of trade, $G_{\rho}(m^*; \rho)$

• dispersion of posterior mean, $\int_{-\infty}^{m^*} G_{\rho}(m; \rho) dm$

•
$$A(\rho) \equiv A(m^*(r(\rho)); \rho)$$
: adverse-selection effect

Effect of unfriendlier reactions on value of information

• L's payoff under information ρ and reaction r:

$$\Pi(\rho; r) \equiv \sup_{\mathsf{a}(\cdot)} \left\{ \int_{-\infty}^{+\infty} \mathsf{a}(m) \, \delta_L(r, m) dG(m; \rho) \right\}$$

$$= \qquad G(m^*(r);\rho)\delta_L(r,M^-(m^*(r);\rho))$$

- Benefit of friendlier reaction effect
 - ρ : actual information choice
 - ρ^{\dagger} : anticipated choice (by F)

$$B(\rho;\rho^{\dagger}) \equiv -\frac{\partial^2}{\partial\rho\partial r}\Pi(\rho;r(\rho^{\dagger}))$$

- Starting from $r(\rho^{\dagger})$, reduction in r
 - raises value of information at ρ if $B(\rho; \rho^{\dagger}) > 0$
 - lowers value of information at ρ if $B(\rho; \rho^{\dagger}) < 0$

$$B(\rho;\rho^{\dagger}) = -\frac{\partial \delta_{L}(r,m^{*}(r(\rho^{\dagger})))}{\partial r}G_{\rho}\left(m^{*}(r(\rho^{\dagger});\rho\right) + \int_{-\infty}^{m^{*}(r(\rho^{\dagger}))}\frac{\partial^{2}\delta_{L}(r,m)}{\partial r\partial m}G_{\rho}(m;\rho)dm$$

Two channels through which, starting from r(ρ[†]), reduction in r affects value of information at ρ:

• prob. of trade,
$$G_{\rho}(m^*(r(\rho^{\dagger}); \rho))$$

• dispersion of posterior mean, $\int_{-\infty}^{m^*(r(\rho^{\dagger}))} \frac{\partial^2 \delta_L(r,m)}{\partial r \partial m} G_{\rho}(m;\rho) dm$

• L's value function when actual information is ρ and F expects information ρ^{\dagger} :

$$V_L(\rho; \rho^{\dagger}) \equiv \Pi(\rho; r(\rho^{\dagger}))$$

Definition

Expectation conformity holds at (ρ, ρ^{\dagger}) iff

$$rac{\partial^2 V_L(
ho;
ho^\dagger)}{\partial
ho \partial
ho^\dagger} > 0$$

•
$$A(\rho^{\dagger}) \stackrel{\text{sgn}}{=} \frac{\partial}{\partial \rho} M^{-}(m^{*}(r(\rho^{\dagger})); \rho^{\dagger})$$
: adverse-selection effect

•
$$B(\rho; \rho^{\dagger}) = -\frac{\partial^2 \Pi(\rho; r(\rho^{\dagger}))}{\partial \rho \partial r}$$
: benefit-of-friendlier-reactions effect

Expectation Conformity

Proposition

Assume MPS order.

(i) EC at (ρ, ρ^{\dagger}) iff $A(\rho^{\dagger})B(\rho; \rho^{\dagger}) < 0$.

(ii) Information aggravates AS at ρ^{\dagger} (i.e., $A(\rho^{\dagger}) < 0$) for Uniform, Pareto, Exponential $G(\cdot; \rho)$, or, more generally, when $G_{\rho}(m^{*}(r(\rho^{\dagger}); \rho^{\dagger}) < 0$.

(iii) Lower r raises value for information at (ρ, ρ^{\dagger}) (i.e., $B(\rho; \rho^{\dagger}) > 0$) if $G_{\rho}(m^{*}(r(\rho^{\dagger}); \rho) < 0.$

(iv) Therefore EC at (ρ, ρ^{\dagger}) if

$$\max\left\{\mathsf{G}_{\rho}(m^{*}(r(\rho^{\dagger}));\rho^{\dagger}),\mathsf{G}_{\rho}(m^{*}(r(\rho^{\dagger}));\rho)\right\}<0$$

(v) Suppose, for any m^{*}, $M^{-}(m^{*}; \rho)$ decreasing in ρ (e.g., Uniform, Pareto, Exponential) and $\partial^{2}\delta_{L}(r, m)/\partial r \partial m = 0$ (e.g., Akerlof). Then, $G_{\rho}(m^{*}(r(\rho^{\dagger}); \rho) < 0$ NSC for EC at (ρ, ρ^{\dagger}) .

• Akerlof model under non-directed search (ρ =prob. seller learns state)

$${\cal G}(m;
ho) = \left\{egin{array}{cc}
ho {\cal G}(m) & {
m for} \ m < \omega_0 \
ho {\cal G}(m) + 1 -
ho & {
m for} \ m \geq \omega_0 \end{array}
ight.$$

Corollary

EC holds holds at (ρ, ρ^{\dagger}) iff $r(\rho^{\dagger}) > \omega_0$, i.e., iff gains from trade Δ large.

- Large Δ : r(ρ[†]) > ω₀
- Increase in anticipated information ρ^{\dagger}
 - \rightarrow seller engages more selectively, $G_{\rho}(m; \rho^{\dagger}) < 0$
 - \rightarrow exacerbated AS (lower $M^{-}(m^{*}(r(\rho^{\dagger})); \rho^{\dagger}))$
 - \rightarrow lower price
 - \rightarrow higher cost for S of parting with valuable item
 - \rightarrow higher value in learning state

- Small Δ : $r(\rho^{\dagger}) < \omega_0$
- *S* engages only when **informed** and $\omega < r(\rho^{\dagger})$
- ${\, \bullet \,}$ variations in anticipated information $\rho^{\dagger} \rightarrow$ no effect on AS
- No EC

Proposition

Suppose info structures are rotations and L's payoff is $\delta_L(m, r) = \tilde{\delta}_L(m, r) + \theta$. For all (ρ, ρ^{\dagger}) , there exists $\theta^*(\rho, \rho^{\dagger})$ s.t., for all $\theta \ge \theta^*(\rho, \rho^{\dagger})$, EC holds at (ρ, ρ^{\dagger}) .

• EC more likely when gains from engagement are large.

Gains from Engagement

- Previous result driven by AS
- Fixing r,

$$\frac{\partial^2 \Pi}{\partial \theta \partial \rho} = G_{\rho}(m^*(r,\theta);\rho)$$

• Hence, marginal value of information decreases with gains from engagement under suff. condition for EC

$$G_{\rho}(m^*(r(\rho^{\dagger};\theta),\theta);
ho)<0$$

 $\bullet~$ Larger gains \rightarrow smaller benefit from learning state

Plan

2 Model

- Expectation Conformity
- Expectation Traps
- Oisclosure and Cognitive Style
- O Policy Interventions
- Flexible Information
- 8 Anti-lemons

Expectation Traps

Proposition

Suppose ρ_1 and $\rho_2 > \rho_1$ are eq. levels and information aggravates AS, i.e., $A(\rho) < 0$ for all $\rho \in [\rho_1, \rho_2]$. Then L better off in low-information equilibrium ρ_1 . Converse true when information alleviates AS, i.e., $A(\rho) > 0$.

Expectation Traps: Non-direct search in Akerlof model

- ρ : prob Seller learns state
- G uniform over [0, 1]
- $C(\rho) = \rho^2/20$
- Δ = 0.25
- Eq. conditions

$$r = M^{-}(r; \rho) + \Delta$$

 $-\int_{r}^{+\infty} G_{\rho}(m; \rho) dm = C'(\rho)$

Two equilibria:

$ ho_1pprox$ 0.48	$r_1 pprox 0.69$
$ ho_2pprox$ 0.88	$r_2 pprox 0.58$

- For any $m^* > \omega_0$, $G_
 ho(m^*;
 ho) < 0 \Rightarrow \mathrm{A}(
 ho) < 0$ (info aggravates AS)
- Seller better off in low-information eq.

- Expectation traps
 - driven by AS effect
 - friendliness of F's reaction decreasing in L's information
 - expectation traps emerge even if information is free

- Contrast to private values + screening (Ravid et al. 2022)
 - equilibria Pareto ranked
 - eq. payoffs increasing in informativeness of signal

plan

Ø Model

- Expectation Conformity
- Expectation Traps
- Disclosure and Cognitive Style
- O Policy Interventions
- Flexible Information
- Anti-lemons
- Onclusions

Policy Interventions

Subsidies to Trade

• Welfare (competitive F):

$$W \equiv \int_{-\infty}^{m^*} \left(\delta_L(r,m) + s \right) dG(m;\rho) - C(\rho) - (1+\lambda) sG(m^*;\rho)$$

where

- s: subsidy to trade
- λ : cost of public funds (DWL of taxation)
- Subsidy impacts:
 - engagement, m*
 - friendliness of F's reaction, r
 - \bullet information, ρ

- Subsidies optimal in Akerlof model when
 - 1. Small cost λ of public funds
 - 2. Information aggravates AS (A(ρ) < 0)
 - 3. CS of eq. same as BR: Subsidies reduce information

 Proposition 6 (in paper) identifies precise conditions for optimality of subsidies/taxes in generalized lemons/anti-lemons problems.

Corollary

In Akerlof model, endogeneity of information calls for **larger** subsidy when information reduces prob. of trade.

• Same condition for EC

- Double dividend of subsidy
 - more engagement
 - less information acquisition
- Implication for Gov. asset repurchases programs: more generous terms

Plan

2 Model

- Expectation Conformity
- Expectation Traps
- Oisclosure and Cognitive Style

O Policy

- Ø Flexible Information
- 8 Anti-lemons

Flexible Information

Flexible Information

• Entropy cost:

- ρ parametrizes MC of entropy reduction (alternatively, capacity)
- L invests in ability to process info (MC or capacity)
- then chooses experiment $q:\Omega
 ightarrow\Delta(Z)$ at cost

$$\frac{1}{\rho}c(I^q)$$

where I^q is mutual information between z and ω

- Max-slope cost:
 - ρ parametrizes max slope of stochastic choice rule $\sigma:\Omega\to[0,1]$ specifying prob. L engages
 - L chooses ρ at cost C(ρ)
 - then selects experiment $q: \Omega \to \Delta(Z)$ and engagement strategy $a: Z \to [0, 1]$ among those inducing stochastic choice rule with slope less than ρ
- Key insights similar to those under MPS order

(Prop-FI)

Equilibrium under Entropy Cost

• Seller's inner problem (given ρ)

$$\int_{\omega} (r-\omega)q(1|\omega)dG(\omega) + \mathbb{E}[\omega] - \frac{I^{q}}{\rho}$$

where

$$I^q = \int_\omega \phi(q(1|\omega)) dG(\omega) - \phi(q(1))$$

is entropy reduction, with

$$\phi(q)\equiv q\ln(q)+(1-q)\ln(1-q)$$

$$q(1)\equiv\int_{\omega}q(1|\omega)dG(\omega)$$

Seller's Optimal Signal

• If
$$r \leq \underline{r}(\rho)$$
, i.e.,
$$\int_{\omega} e^{\rho(r-\omega)} g(\omega) d\omega \leq 1, \quad \int_{\omega} e^{-\rho(r-\omega)} g(\omega) d\omega > 1$$

never engage ightarrow q(1) = 0

• If
$$r \ge \overline{r}(\rho)$$
, i.e.,

$$\int_{\omega} e^{-\rho(r-\omega)} g(\omega) d\omega \le 1, \quad \int_{\omega} e^{\rho(r-\omega)} g(\omega) d\omega > 1$$
always engage $\to q(1) = 1$

• If
$$r \in (\underline{r}(\rho), \overline{r}(\rho))$$
, i.e., if
$$\int_{\omega} e^{\rho(r-\omega)} g(\omega) d\omega > 1, \quad \int_{\omega} e^{-\rho(r-\omega)} g(\omega) d\omega > 1$$

interior solution with information acquisition

with

• Interior $q(1|\omega)$ solves functional eq.

$$egin{aligned} r-\omega &= rac{1}{
ho} \left[\ln\left(rac{q(1|\omega)}{1-q(1|\omega)}
ight) - \ln\left(rac{q(1)}{1-q(1)}
ight)
ight] \ q(1) &= \int_{\omega} q(1|\omega) dG(\omega) \end{aligned}$$

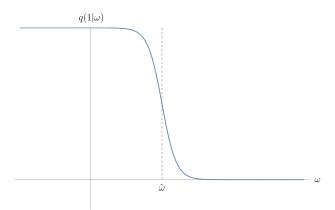
Seller's Optimal (informative) Signal

• Let $\tilde{\omega} \in \mathbb{R}$ solve

$$\tilde{\omega} = r + \frac{1}{\rho} \ln \left(\frac{\int_{\omega} \frac{1}{1 + e^{\rho(\omega - \tilde{\omega})}} dG(\omega)}{1 - \int_{\omega} \frac{1}{1 + e^{\rho(\omega - \tilde{\omega})}} dG(\omega)} \right)$$

• Optimal (interior) signal

$$q(1|\omega)=rac{1}{1+e^{
ho(\omega- ilde{\omega})}}, \hspace{0.5cm} ilde{\omega}=r+rac{1}{
ho}\ln\left(rac{q(1)}{1-q(1)}
ight)$$



Equilibrium of Inner Game

Given ρ , there exists $\underline{r}(\rho), \overline{r}(\rho)$ s.t. seller's optimal signal

$$q(1|\omega) = \begin{cases} 0 \quad \forall \omega \quad \text{if } r \leq \underline{r}(\rho) \\\\ \frac{1}{1+e^{\rho(\omega-\bar{\omega})}} \quad \text{if } r \in (\underline{r}(\rho), \overline{r}(\rho)) \\\\ 1 \quad \forall \omega \quad \text{if } r \geq \overline{r}(\rho) \end{cases}$$

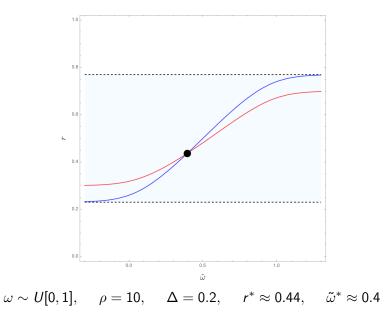
Buyer's optimality (given seller's signal q):

$$r = \int_{\omega} \omega rac{q(1|\omega)}{\int_{\omega} q(1|\omega) dG(\omega)} dG(\omega) + \Delta$$

Best-response analysis in \mathbb{R}^2

$$\begin{cases} \tilde{\omega} = r + \frac{1}{\rho} \ln \left(\frac{\int_{\omega} \frac{1}{1+e^{\rho(\omega-\tilde{\omega})}} dG(\omega)}{1-\int_{\omega} \frac{1}{1+e^{\rho(\omega-\tilde{\omega})}} dG(\omega)} \right) & (seller) \\ \\ r = \int_{\omega} \omega \frac{1}{\int_{\omega} \frac{1}{1+e^{\rho(\omega-\tilde{\omega})}}}{\int_{\omega} \frac{1}{1+e^{\rho(\omega-\tilde{\omega})}} dG(\omega)} dG(\omega) + \Delta & (buyer) \end{cases}$$

(Interior) Equilibrium of Inner Game

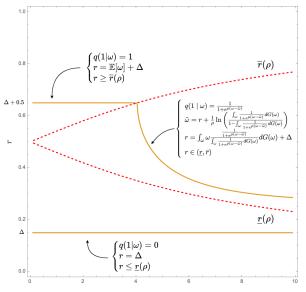


- Interior solutions can coexist with corner solutions (with no information)
- In case of no engagement, need to specify buyer's off-path beliefs
- Following beliefs consistent with most refinements:

$$q^{\dagger}(1|\omega) = egin{cases} 1 & ext{if } \omega = 0 \ 0 & ext{if } \omega
eq 0 \end{cases}$$

- Buyer offers: $\mathbb{E}[\omega|a=1;q^{\dagger}] + \Delta = \Delta$
- If $\Delta < \underline{r}(\rho)$ seller does not deviate

Multiple Equilibria of Inner Game



ρ

- Seller first trains herself in processing information
- Endogenous ρ
- $C(\rho)$: Cost of ρ
- Given ρ , seller chooses signal flexibly
- Seller's payoff

$$\Pi(r,q;\rho) \equiv \int_{\omega} (r-\omega)q(1|\omega)g(\omega)d\omega + \mathbb{E}[\omega] - \frac{I(q)}{\rho} - C(\rho)$$

• Necessary conditions:

$$q^{
ho,r}(1|\omega) = rac{1}{1+e^{
ho(\omega- ilde\omega(
ho,r))}}, \; orall \; \omega \quad ext{if} \; r \in (\underline{r}(
ho), \overline{r}(
ho))$$

$$\tilde{\omega} = r + \frac{1}{\rho} \ln \left(\frac{\int_{\omega} \frac{1}{1+e^{\rho(\omega-\tilde{\omega})}} dG(\omega)}{1-\int_{\omega} \frac{1}{1+e^{\rho(\omega-\tilde{\omega})}} dG(\omega)} \right)$$

$$\frac{I(q^{\rho,r})}{\rho^2} = C'(\rho)$$

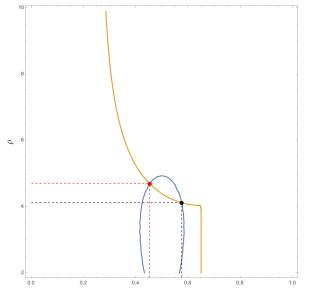
$$r = \int_{\omega} \omega rac{q^{
ho,r}(1|\omega)}{\int_{\omega} q^{
ho,r}(1|\omega) dG(\omega)} dG(\omega) + \Delta$$

Assume

$$C(\rho) = \frac{a\rho^2}{2}$$

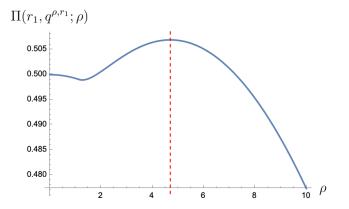
• with $a \approx 1.5$ and $\Delta = 0.15$

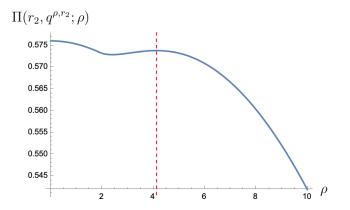
Necessary Conditions: Graphical Analysis



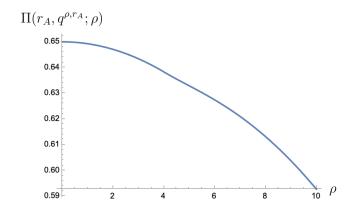
• Two candidate interior equilibria:

$$\rho_1 = 4.7, r_1 \approx 0.45$$
 and $\rho_2 \approx 4.12 r_2 \approx 0.58$



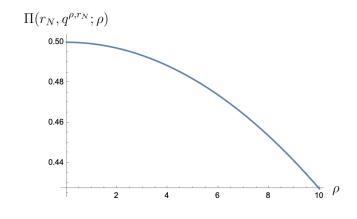


Corner with Full Engagement



 $ho = 0, r_A = \int_{\omega} \omega g(\omega) d\omega + \Delta = 0.65$

Corner with No Engagement



 $ho = 0, r_N = \int_{\omega} \omega g(\omega) d\omega + \Delta = 0.15$

Multiple Equilibria: Welfare Analysis

- Three equilibria in example with $\Delta = 0.15$ and $a \approx 1.5$
- Interior: $\rho^* \approx$ 4.7, $r^* \approx$ 0.45, $\Pi(r^*, \rho^*) \approx$ 0.507
- Corner with engagement: $\rho_A = 0$, $r_A = 0.65$, with $\Pi(r_A, \rho_A) = 0.65$
- Corner with no engagement: $\rho_N = 0$, $r_N = 0.15$, with $\Pi(r_N, \rho_N) = 0.5$
- Equilibria Pareto ranked:

$$(\rho_N, r_N) \prec (\rho^*, r^*) \prec (\rho_A, r_A)$$

Expectation traps

Plan

2 Model

- Expectation Conformity
- Expectation Traps
- Disclosure and Cognitive Style
- Olicy
- Flexible Information
- 8 Anti-lemons
- Onclusions

(Anti-lemons)

- Endogenous information in mks with adverse selection
- Expectation conformity
 - prob of engagement decreasing in informativemess of signal
 - large gains from interaction
- Expectation traps
- Welfare and policy implications
 - endogeneous info: larger subsidies

• Ongoing work:

- bilateral information acquisition
- public information disclosures
- ...

THANKS!

• Suppose L can prove signal informativeness above $\hat{\rho}$

- Hard Information
- $\hat{\rho}(\rho^*)$: hard information disclosed in eq. supporting ρ^*
- Regularity: Equilibrium supporting ρ* is regular if, after disclosing ρ̂ < ρ̂(ρ*), informativeness of L's signal lower than ρ*

• Monotone equilibrium selection

Disclosure

Proposition

Assume information aggravates AS (A(ρ^{\dagger}) < 0 for all ρ^{\dagger})

- Any pure-strategy eq. ρ of no-disclosure game also eq. level of disclosure game
- Largest and smallest equilibrium levels in regular set of disclosure game also eq. levels of no-disclosure game.
- Result driven by AS effect
 - $\bullet\,$ disclosing less than eq. level \rightarrow inconsequential
 - $\bullet~$ disclosing more $\rightarrow~$ unfriendlier reactions
- Without regularity, eq. in disclosure game supporting ρ^{*} > sup{eq.ρ no disclosure game}
 - sustained by F expecting large ρ when F discloses $\hat{\rho} < \hat{\rho}(\rho^*)$

• L's cost $C(\rho; \xi)$ decreasing in ξ

Corollary

Suppose L can acquire information cheaply (ξ_H) or expensively (ξ_L) and can disclose only ξ_H (IQ interpretation) or only ξ_L (work load). Further assume that, in eq., player F's reaction is decreasing in posterior that $\xi = \xi_H$. Then L poses as "information puppy dog", i.e., does not disclose in IQ interpretation and discloses in work load one.

Prop-FI

- $q^{
 ho,r}(1|\omega)$: prob. signal recommends a = 1 at ω
- $q^{\rho,r}(1)$: tot prob. signal recommends a = 1

• Entropy:

$$\delta_L(r,\omega) = \frac{1}{\rho} \left[\ln \left(\frac{q^{\rho,r}(1|\omega)}{1-q^{\rho,r}(1|\omega)} \right) - \ln \left(\frac{q^{\rho,r}(1)}{1-q^{\rho,r}(1)} \right) \right]$$

• Max-slope:

$$q^{
ho,r}(1|\omega) = \left\{egin{array}{cccc} 1 & ext{if} & \omega \leq m^*(r) - rac{1}{2
ho} \ rac{1}{2} -
ho(\omega - m^*(r)) & ext{if} & m^*(r) - rac{1}{2
ho} < \omega \leq m^*(r) + rac{1}{2
ho} \ 0 & ext{if} & \omega > m^*(r) + rac{1}{2
ho} \end{array}
ight.$$

Prop-FI

Proposition

Fix (ρ, ρ^{\dagger}) .

(i) EC holds at (ρ, ρ^{\dagger}) iff $A(\rho^{\dagger})B(\rho; \rho^{\dagger}) < 0$.

(ii) Information aggravates AS at ρ^{\dagger} if $q^{\rho,r(\rho^{\dagger})}(1|\omega)/q^{\rho,r(\rho^{\dagger})}(1)$ increasing in ρ for $\omega < m^{*}(r(\rho^{\dagger}))$, decreasing in ρ for $\omega > m^{*}(r(\rho^{\dagger}))$, at $\rho = \rho^{\dagger}$.

(iii) Reduction in r at $r(\rho^{\dagger})$ raises L's value of information at ρ if condition in (ii) holds and $q^{\rho,r(\rho^{\dagger})}(1)$ non-increasing in ρ .

(iv) Suppose $M^{-}(m^{*}(r(\rho^{\dagger})); \rho)$ decreasing in ρ at $\rho = \rho^{\dagger}$ and $\partial^{2}\delta_{L}(r, m)/\partial r\partial m = 0$ (e.g., Akerlof). Then $q^{\rho,r(\rho^{\dagger})}(1)$ decreasing in ρ at $\rho = \rho^{\dagger}$ NSC for EC at (ρ, ρ^{\dagger}) .

Assumption (anti-lemons). Friendliness of *F*'s reaction to an increase in *L*'s information depends negatively on impact of *L*'s information on adverse selection:

$$\frac{dr(\rho^{\dagger})}{d\rho^{\dagger}} \stackrel{\text{sgn}}{=} -\frac{\partial}{\partial\rho^{\dagger}} \operatorname{M}^{-}(\operatorname{m}^{*}(\operatorname{r}(\rho^{\dagger})); \rho^{\dagger}).$$

- L: agent choosing between enrolling in MBA (a = 1) or not (a = 0)
- Cost of enrolling p
- Disutility from studying: ω
- F: representative of competitive set of employers
- Agent's productivity when employed $\theta = a b\omega$, b > 0
- r : wage offered
- $\delta_L : r (\omega + p)$
- Engagement threshold: $m^*(r) = r p$
- Equilibrium $r(\rho)$:

$$r=a-bM^{-}(m^{*}(r);
ho)$$

- Entrepreneur (L) chooses whether to start a business (a = 1) at cost $c_L > 0$
- 1ω : probability projects succeeds (delivering 1 unit of cash flows)
- *L* may need to liquidate prematurely with prob. *p* (as in Diamond and Dybvig (1983))
- r: price offered by competitive investors (F) in case of liquidation
- L's payoff from engagement

$$\delta_L = (1-p)(1-m) + pr - c_L$$

Hence, L engages iff

$$m \leq m^*(r) = \frac{1-p+pr-c_L}{1-p}$$

- Value of assets for $F: 1 \omega$
- E. price $r(\rho)$

$$r = 1 - M^{-}(m^{*}(r); \rho)$$

Anti-lemons: Warfare example

- Country L: potential invader
- ω : probability country F wins fight
- r: probability F surrenders without fighting
- L's payoff in case of victory: 1; L's cost of defeat: c_L

$$\delta_L(r,m) = r + (1-r)(1-m-mc_L)$$

• Hence, L engages iff

$$m \leq m^*(r) = rac{1}{(1-r)(1+c_L)}$$

- F's payoff from victory: 1; F's defeat cost c_F drawn from cdf H
- Prob. $r(\rho)$ F surrenders

$$r = 1 - H\left(\frac{M^{-}(m^{*}(r); \rho)}{1 - M^{-}(m^{*}(r); \rho)}\right)$$

- r: prob F joins leader's project
- $\delta_L(r,m) = (1-m) + r c_L$
- 1 m : probability project succeeds
- F observes whether L starts project
- F's payoff from joining: $1 m c_F$, with c_F drawn from cdf H
- Equilibrium $r(\rho)$

$$r = H\left(2 - M^{-}\left(1 + r - c_{L};\rho\right)\right)$$

Proposition

Assume MPS order and information aggravates AS at ρ^{\dagger} (i.e., $A(\rho^{\dagger}) < 0$). EC holds at (ρ, ρ^{\dagger}) only if $G_{\rho}(m^{*}(r(\rho^{\dagger})); \rho) > 0$, which, in the case of rotations, happens iff

 $m^*(r(\rho^{\dagger})) < m_{
ho}.$

Furthermore, $G_{\rho}(m^*(r(\rho^{\dagger})); \rho) > 0$ necessary and sufficient for EC if $\partial^2 \delta_L(m, r) / \partial m \partial r = 0$ (e.g., Spence).

opposite of lemons case

