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This supplement contains two main sections. In Appendix B, we formally derive the
closed forms presented in Sections 3.2 and 3.3 in the main text. First, we present the
derivation for the closed forms in levels for CARA and quadratic utility. Then we derive
the closed form in logs, assuming isoelastic preferences and multiplicative (or Cobb–
Douglas) f . Finally, we extend the model to derive the closed form for the model with
two types of income shocks: a permanent and a temporary shock.

In Appendix C, we derive the expression for the bias in the variance induced by the
use of a pseudopanel (such as the one we consider in our estimations) and explain how
we corrected our estimates and tests to take this bias into account.

APPENDIX B: CLOSED FORMS

THIS APPENDIX contains the formal derivation of the closed forms presented
in Sections 3.2 and 3.3 in the main text. First, we present the derivation for
the closed forms in levels for CARA and quadratic utility. Then we derive
the closed form in logs, assuming isoelastic preferences and multiplicative (or
Cobb–Douglas) f . Finally, we extend the model to derive the closed form for
the model with two types of income shocks: a permanent and a temporary
shock.

The outcome of this appendix is a set of closed-form solutions to our model
which give a structural interpretation, in terms of the marginal cost/return of
effort, of the coefficient φ that comes from a generalized permanent income
equation of the form

�ct = Γt +φ�ypt �
where the variable is expressed in levels or in logs, depending on the specifica-
tion, and

φ= 1
a
�

with a ≥ 1 and where 1
a

is the marginal return to shirking. Since in our model
wealth effects are absent (at least in the chosen space), the equilibrium con-
tract implements a constant effort level in all periods, which is normalized
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to a given number: the first best level of effort. So the whole margin in wel-
fare comes from risk sharing. The incentive compatibility constraint hence dic-
tates the degree of such insurance as a function of the marginal cost of effort.
A lower effort cost/return allows the firm to insure the agent a lot without in-
ducing him to shirk, and the firm uses the entire available margin to impose
transfers and obtain consumption smoothing.

B.1. Closed Form in Levels: CARA Utility

B.1.1. Model

Recall that we can perform a change in variable and assume yt = θt + et and
u(c� e)= u(c− v(e)), where

v(et) := 1
a

min{et�0} + 1
b

max{et�0}� with a≥ 1 ≥ b�(S1)

Interestingly, as we saw in Section 3.1 for a = b = 1, we are in the standard
ACK case, hence there is no room for risk sharing at all (on top of self-
insurance) and the allocation replicates that of the Bewley model.

Finally, notice that as long as a > 1 (and b < 1), the first-best effort level is
zero. However, the first-best allocation also implies a constant consumption.
This allocation can only be obtained by imposing a constant tax rate such that
τ′
t = −1. Obviously, this allocation is not incentive feasible in a world where

effort and productivity are private information of the agent.
The main steps toward the derivation of our closed form are as follows. First,

we consider a relaxed optimization problem. More precisely, we consider an
auxiliary problem for the firm that imposes strictly less stringent incentive con-
straints, the same objective function, and the same technological constraints.
Then we show that the solution for the relaxed problem corresponds to our
closed form. Finally, we show that our closed form satisfies the original incen-
tive compatibility constraint. This implies that the closed-form solution solves
the original maximization problem of the firm.

B.1.2. The Relaxed Problem

We eliminate the time subscript whenever possible. Consider the problem

max
τ�y

E0

[
T∑
t=1

δt−1u(y(θt)+ τ(θt)− v(y(θt)− θt))
]

(R)

subject to, for all θt� t ≥ 1�

max
b�θ̂t≤θt

u
(
y(θt−1� θ̂t)+ τ(θt−1� θ̂t)− qtb− v(y(θt−1� θ̂t)− θt)

)
+ δVt((θt−1� θt)� θ̂t� b)



RISK SHARING IN PRIVATE INFORMATION MODELS 3

≤ u(y(θt)+ τ(θt)− v(y(θt)− θt))+ δUt(θ
t)�

0 ≥ E0

[∑
t

(
t∏

n=0

qs

)
τ(θt)

]
�

In the above formulation, Ut(θ
t) is the equilibrium utility and it solves

Ut(θ
t) := Et

[
T−t∑
s=1

δs−1u(y(θt+s)+ τ(θt+s)− v(y(θt+s)− θt+s))
]

=
∫
Θ

[
u(y(θt� θt+1)+ τ(θt� θt+1)− v(y(θt+1)− θt+1))

+ δUt+1(θ
t� θt+1)

]
dΦ(θt+1|θt)�

while Vt((θt−1� θt)� θ̂t� b) represents the highest utility the agent can get by
freely choosing the plan of bonds but telling the truth,

Vt((θ
t−1� θt)� θ̂t� b)

= max
c�b

E

[
T−t∑
s=1

δs−1u
(
c(θt+s)− v(y(θ̂t+s)− θt+s)

)∣∣∣θt]

subject to

ct+s(θt+s)= y(θ̂t+s)+ τ(θ̂t+s)+ qt+sbt+s+1(θ
t+s)− bt+s(θt+s)�

where in the previous expression, for all s ≥ 1, we denote θ̂t+s := (θt−1� θ̂t�
θt+1� � � � � θt+s). Clearly, UT+1 ≡ VT+1 ≡ 0.

The maximization problem is relaxed with respect to the original problem
solved by the firm in equilibrium in a number of dimensions. First, the incentive
constraints are only for downward deviations. Second, the deviation is “local”
because it assumes that the agent never lies for more than one period although
he is allowed to deviate for more than one period in the bond decisions after
a first deviation. Finally, bond deviations are also local since the agent starts
with zero wealth at each node in equilibrium.

LEMMA 1: The contract solving problem (R) implements e(θt)= 0 for all θt .

PROOF: Take any contract and suppose that for some history θt , we have
e(θt) > 0. Then consider the contract that keeps all transfers and recom-
mendations as the previous contract, but at history θt , where it recommends
income ỹ(θt) = y(θt) − e(θt) and zero effort: ẽ(θT−1� θT ) = 0 and transfers
τ̃(θt)= τ(θt)+ (1 − 1

b
)e(θt). It is easy to see that, at all histories, the new con-

tract delivers exactly the same argument of the utility function u in equilibrium.
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We have to show that the incentive constraints are all satisfied under the new
contract. The fact that, in the equilibrium for all histories, the arguments of
u are all the same implies that Us(θ

s) are unchanged for all s and θs. More-
over, it should also be clear that future values Vt+s((θt+s−1� θt+s)� θ̂t+s� b) for
all s ≥ 0, θt+s and θ̂t+s� b do not change either. Finally, since the modification
of the contract leaves the equilibrium utilities unchanged at all nodes (includ-
ing node θt), the values Vt−k((θt−k−1� θt−k)� θ̂t−k� b) for all k≥ 1 are also unaf-
fected by the change: since the argument of the utility flow u in equilibrium is
unchanged—and Vt−k((θt−k−1� θt−k)� θ̂t−k� b) does not contemplate deviations
over declarations after period t−k—the set of consumption plans available by
deviating only in the bond are unchanged by the modification to the contract.

Consider now how the change in the contract might affect the incentive con-
straint in period t. Clearly it can affect the incentives for productivity levels
above θt : call these values θ̄t ≥ θt (we include θ̄t = θt since the agent with pro-
ductivity θt might find the bond deviation profitable under the new contract).
Since the equilibrium utilities (both flows u and values Ut) do not change, to
verify that the new transfer scheme solves the period t incentive constraint, it
suffices to show that for all b and θ̄t > θt , we have

u
(
y(θt−1� θt)+ τ(θt−1� θt)− qtb− v(y(θt−1� θt)− θ̄t)

)
+ δUt((θ

t−1� θt)� θ̄t� b)

≥ u(ỹ(θt−1� θt)+ τ̃(θt−1� θt)− qtb− v(ỹ(θt−1� θt)− θ̄t)
)

+ δUt((θ
t−1� θt)� θ̄t� b)�

But again, since Ut((θ
t−1� θt)� θ̄t� b) is unaffected by the change, it suffices to

show that

u
(
x(θt−1� θt)+ τ(θt−1� θt)− qtb− v(x(θt−1� θt)− θ̄t)

)
≥ u(ỹ(θt−1� θt)+ τ̃(θt−1� θt)− qtb− v(ỹ(θt−1� θt)− θ̄t)

)
�

The last inequality is true because of the following conditions: If y(θt−1� θt)−
θ̄t > e(θ

t−1� θt) > 0, then the change in transfer scheme generates exactly the
same utility to the deviating agent. If y(θt−1� θt) − θ̄t < e(θ

t−1� θt), then the
utility from deviation decreases. We show this by assuming that y(θt−1� θt) −
θ̄t < 0. The case where e(θt) > y(θt)− θ̄t > 0 is a combination of this cases and
the case we just analyzed. We have

u

(
y(θt−1� θt)+ τ(θt−1� θt)− 1

a
(y(θt−1� θt)− θ̄t)

)
= u

(
y(θt−1� θt)− 1

a
y(θt−1� θt)+ τ(θt−1� θt)+ 1

a
θ̄t

)
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> u

(
y(θt−1� θt)− 1

a
y(θt−1� θt)+ τ(θt−1� θt)

+
(

1
a

− 1
b

)
e(θt−1� θt)+ 1

a
θ̄t

)
�

since ( 1
a

− 1
b
)e(θt−1� θt) < 0. The case against e(θt) < 0 follows from a simi-

lar line of proof. This implies that the equilibrium utility of the agent is un-
changed. At this point, we can try to actually increase the agent’s utility, but we
only need to show that our closed-form solution belongs to the set of optimal
contracts. Q.E.D.

Lemma 1 implies that we can rewrite problem (R) as

max
τ(θt )

E0

[
T∑
t=1

δt−1u(θt + τ(θt))
]

subject to, for all θt� t ≥ 1�(R′)

max
b�θ̂t≤θt

u

(
θ̂t + τ(θt−1� θ̂t)− qtb− 1

a
(θ̂t − θt)

)
+ δVt((θt−1� θt)� θ̂t� b)(S2)

≤ u(θt + τ(θt))+ δUt(θ
t)�

0 ≥ E0

[∑
t

qtτ(θt)

]
�

where

Ut(θ
t) := Et

[
T−t∑
s=1

δs−1u(θt+s + τ(θt+s))
]

=
∫
Θ

[
u(θt+1 + τ(θt� θt+1))+ δUt+1(θ

t� θt+1)
]
dΦ(θt+1|θt)

and

Vt((θ
t−1� θt)� θ̂t� b) := max

c�b
E

[
T−t∑
s=1

δs−1u(c(θ̂t+s))
∣∣∣θt]

subject to

ct+s(θt+s)= θt+s + τ(θ̂t+s)+ qt+sbt+s+1(θ
t+s)− bt+s(θt+s)�

ASSUMPTION 1: The utility function takes the exponential (CARA) form

u(c− v(e))= − 1
ρ

exp
{−ρ(c − v(e))}

with ρ > 0 and the function v is as in (S1).
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PROPOSITION 2: If preferences are CARA, for each given θt−1, the present
value of transfers (PVT) solving problem (R′), which are defined as PVTt =∑T−t

n=0(
∏n

s=0 qt+s−1)τt+n(θt+n), obeys the following criteria. There are θt−1, measur-
able functions {ηt}Tt=1 such that for all θt� t ≥ 1,

T−t∑
n=0

(
n∏
s=0

qt+s−1

)
τ(θt+n)= ηt(θt−1)+

T−t∑
n=0

(
n∏
s=0

qt+s−1

)[(
1
a

− 1
)
θt+n

]
(S3)

or, equivalently, for all θt� t ≥ 1,

τt(θ
t)+

T−t∑
n=1

(
n∏
s=1

qt+s−1

)
ηt+n(θt+n)= ηt(θt−1)+

(
1
a

− 1
)
θt�

In particular,
∏T−t

n=0(�
n
s=0qt+s−1)τ(θ

t+n) admits a partial derivative with respect
to θt , and for each fixed past history θt−1 and fixed future θt+1� � � � � θT , we have

∂

∂θt

T−t∑
n=0

(
n∏
s=0

qt+s−1

)
τ(θt+n)=

(
1
a

− 1
)
�

PROOF: Keep in mind that we must show the set of equations

τT (θ
T )= ηT(θT−1)+

(
1
a

− 1
)
θT �

τT−1(θ
T−1)+ qT−1ηT(θ

T−1)= ηT−1(θ
T−2)+

(
1
a

− 1
)
θT−1�

���

τ1(θ1)+
T−1∑
n=1

(
n∏
s=1

qt+s−1

)
ηn+1(θ

n)= η1 +
(

1
a

− 1
)
θ1�

We prove our proposition backward. Let us consider our problem in the last
two periods. It is easy to see from our relaxed problem that since the agent
has von Neumann–Morgenstern utility and the firm maximizes the expected
discounted value of profits, the only link across states comes from the incen-
tive constraints In the proof below, we only consider the relevant incentive
constraints

subject to for all θT−1�

u(θT−1 + τ(θT−1))+ δ
∫
Θ

u(θT + τ(θT−1� θT ))dΦ(θT |θT−1)(S4)
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≥ max
b�θ̂T−1≤θT−1

u

(
θ̂T−1 + τ(θT−2� θ̂T−1)− qT−1b− 1

a
(θ̂T−1 − θT−1)

)
+ δ

∫
Θ

u(θT + b+ τ(θT−2� θ̂T−1� θT ))dΦ(θT |θT−1)

and for all θT−1� θT � and θ̂T ≤ θT �

u(θT + τ(θT−1� θT ))≥ u
(
θ̂T + τ(θT−1� θ̂T )− 1

a
(θ̂T − θT )

)
�(S5)

Q.E.D.

LEMMA 2: If the utility function is CARA, the transfer scheme solving prob-
lem (R′) satisfies the following condition: for all θT−1, we have τ(θT−1� θ′

T ) −
τ(θT−1� θ′′

T )= −(1− 1
a
)(θ′

T −θ′′
T ) for all θ′

T � θ
′′
T . In particular, the partial derivative

∂
∂θT
τ(θT ) exists and equals ( 1

a
− 1) for all θT−1.

PROOF: It is easy to see from (S5) (by taking the inverse of the u transfor-
mation to both sides and applying it to all θ) that τ(θT−1� θ′

T )− τ(θT−1� θ′′
T ) ≥

−(1 − 1
a
)(θ′

T − θ′′
T ) for all θ′

T � θ
′′
T is a necessary condition for incentive compat-

ibility.2 Now suppose that for a range of productivities, we have τ(θT−1� θ
′
T )−

τ(θT−1� θ′′
T ) > −(1 − 1

a
)(θ′

T − θ′′
T ) for all θ′

T � θ
′′
T ∈ [θ0

T − ε�θ0
T + ε]. We claim

that there is a modification to the contract that keeps the same utility to the
agent and reduces the net present value of the transfers for the firm. The new
scheme is such that τ̃(θT−1� θ

′
T )− τ̃(θT−1� θ′′

T )= −(1− 1
a
)(θ′

T −θ′′
T ) and for each

node θT−1, the new transfer solves
∫ θ+ε
θ−ε u(θT + τ̃(θT−1� θT ))dΦ(θT |θT−1) =∫ θ+ε

θ−ε u(θT + τ(θT−1� θT ))dΦ(θT |θT−1). The fact that the new scheme imposes
less consumption dispersion to the agent implies that it is potentially able to
deliver the same agent’s expected utility with lower average transfers. We have
to show that this change is incentive feasible. Let us start with condition (S5).
The new transfer scheme is incentive compatible in the range [θ0

T − ε�θ0
T + ε]

by construction. Moreover, it reduces the utility at the top extreme of the range
while it increases agent’s utility at the bottom of the range. Now, from the spe-
cific form of u, we have∫

Θ

u(θT + b+ τ̃(θT−1� θT ))dΦ(θT |θT−1)

= exp{−ρb}
∫
Θ

u(θT + τ̃(θT−1� θT ))dΦ(θT |θT−1)

= exp{−ρb}
∫
Θ

u(θT + τ(θT−1� θT ))dΦ(θT |θT−1)

2If for a θT <∞, the transfer scheme has slope less than (1 − 1
a
), we can choose θ′

T > θT and
obtain the violation of the incentive compatibility constraint when the agent has shock θ′

T .
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=
∫
Θ

u(θT + b+ τ(θT−1� θT ))dΦ(θT |θT−1)

for all b. The equality in the second row is true since the new scheme solves∫
Θ
u(θT + τ̃(θT−1� θT ))dΦ(θT |θT−1) = ∫

Θ
u(θT + τ(θT−1� θT ))dΦ(θT |θT−1).

This implies that the change does not affect (S4) or any other incentive con-
straint (S2) as Vt((θt−1� θt)� θ̂t� b) are unchanged for all t and b. Note that this
result implies that the transfer τT is partially differentiable in θT with deriva-
tive equal to (1 − 1

a
) for all θT−1 and θT < θmax.3 Note that when θmax = ∞, the

function τT is partially differentiable everywhere. Q.E.D.

To complete the induction argument we need the following lemma.

LEMMA 3: If a transfer scheme solving (R′) is such that for all s > t
∂
∂θs

PVTs(θ
s)= 1

a
− 1 for all θs and all (θs+1� � � � � θT ), then ∂

∂θt
PVTt(θ

t)= 1
a
− 1

for all θt and all (θt+1� � � � � θT ).

PROOF: First note that from the incentive constraint, we have for all θ′
t ≤ θ′′

t ,
PVTt(θ

t−1� θ′′
t )− PVTt(θ

t−1� θ′
t)≥ (1 − 1

a
)(θ′

t − θ′′
t ). If this were not true, then

the agent with realization θ′′
t would declare θ′

t and improve welfare. In particu-
lar, let κ= PVTt(θ

t−1� θ′′
t )− PVTt(θ

t−1� θ′
t) and suppose κ < (1 − 1

a
)(θ′

t − θ′′
t ).

Consider an agent with productivity θ′′
t declaring θ′

t . The agent would (have to)
reduce effort so that the argument of the flow utility uin case of zero bond de-
cision would be θ′

t + τ(θt−1� θ′
t) − 1

a
(θ′

t − θ′′
t ) as opposed to θ′′

t + τ(θt−1� θ
′′
t )

when telling the truth. We now show that there is a plan of bonds b̂ such
that telling the truth in the future and choosing the constructed bond plan
improves agents’ welfare. Namely, we show that constraint (S2) is violated
at node θt . The bond plan b̂ is constructed so that the deviating agent gets
exactly the same argument in the flow utility u for all nodes but the last
period one, where in each of the last period nodes, the agent consumes
ĉT (θ

T ) = cT (θ
T ) + (1− 1

a )(θ
′
t−θ′′

t )−κ∏
s qs

. The bond plan b̂ is constructed as follows.
Let θt+s := (θt−1� θ

′′
t � θt+1� � � � � θt+s) be the true history of shocks. Note that the

agent expectations are taken according to the distribution implied by this his-
tory. Moreover, let θ̂t+s := (θt−1� θ′

t � θt+1� � � � � θt+s). To obtain the plan of con-
sumption ĉt+s(θ̂t+s)= ct+s(θt+s)= θt+s + τ(θt+s) for s > 1, the bond plan must
solve for all s > 1:

bt+s(θt+s−1)− qt+sbt+s+1(θ
t+s)= ηt+s(θt+s−1)−ηt+s(θ̂t+s−1)�

3More precisely, for each θT < θmax choose θ′
T > θT . We have just shown that for all θT such

that θT ≤ θ′
T , the transfer scheme has constant slope which equals (1 − 1

a
).
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Moreover, in period t we have

qtbt+1(θ
t)= [θ′′

t + τ(θt−1� θ
′′
t )] −

[
θ′
t + τ(θt−1� θ′

t)− 1
a
(θ′

t − θ′′
t )

]
�

It is east to see—by straightforward calculations—that the plan satisfies two
key properties. First, it delivers the same consumption plan to the agent at all
nodes but the last, as claimed; this is so because of our inductive hypothesis.
Second, the plan is budget feasible if ĉT (θT )= cT (θT )+ (1− 1

a )(θ
′
t−θ′′

t )−κ∏
s qs

> cT (θ
T ),

as claimed.
We now have to show that it cannot be the case that the inequality is strict.

Suppose some range of skills [θ0
t − ε�θ0

t + ε], and consider the modification
to the contract that makes it an equality and delivers the same expected util-
ity to the agent over this range. We now show that this change is incentive
compatible. The argument is a generalization of the last part of the proof of
Lemma 2. Q.E.D.

ASSUMPTION 2: The stochastic process for skills follows θt − θt−1 = β(L)vt�
where β(·) is a polynomial of order p in the lag operator L and the innovation vt
is a white noise (serially uncorrelated) process assumed to be normally distributed
with zero mean and variance σ2

v . The moving average process is invertible, that is,
the roots of the polynomial β(L) lie outside the unit circle (we normalize β0 = 1).4

Moreover, assume that qt = q for all t.

It should be clear from the proof, that the next proposition—with the ap-
propriate adjustments in notation—can be shown with slightly more general
processes for θt , as long as linearity in the law and the assumption of Gaussian
shocks are maintained. Moreover, constant q is assumed only for notational
simplicity. The obtained expressions are those in the main text.

PROPOSITION 3: Admit Assumptions 1 and 2. For all t�T such that T − t−1 ≥
p, the consumption process follows

c∗
t+1 − c∗

t = ln(δ/q)
ρ

+ ρ

2a2
[β(q)]2σ2

v + 1
a
β(q)vt+1�

In particular, if the productivity process follows θt = θt−1 + vt , we have c∗
t+1 − c∗

t =
Γt + 1

a
(y∗
t+1 − y∗

t ) = ln(δ/qt )
ρ

+ ρ

2a2σ
2
v + 1

a
vt+1 no matter what are the time horizon

and the sequence of bond prices.

4Obviously, we assume the following initial conditions θ0 = v0 = v−1 = · · · = v−p = 0 for the
process, where p is the maximum number of lags in the MA component of the process.
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PROOF: First, from ct = yt + τt at all nodes,5 we have that both

Et

T−t−1∑
n=0

qnc∗
t+1+n = Et

T−t−1∑
n=0

qn(y∗
t+1+n + τ∗

t+1+n(y
t+1+n))�(S6)

Et+1

T−t−1∑
n=0

qnc∗
t+1+n = Et+1

T−t−1∑
n=0

qn(y∗
t+1+n + τ∗

t+1+n(y
t+1+n))�

Using the Euler equation

exp{−ρ(c∗
t )} =

(
δ

q

)s

Et

[
exp{−ρ(c∗

t+s)}
]

and the properties of the normal distribution, we have, for s ≥ 1,

Etc
∗
t+s = c∗

t + s
ln
δ

q

ρ
− ρ

2

s∑
n=1

σ2
ct+n�

Et+1c
∗
t+s = c∗

t+1 + (s− 1)
ln
δ

q

ρ
− ρ

2

s−1∑
n=1

σ2
ct+1+n�

where σ2
ct

is the variance of consumption growth in period t. This implies

T−t−1∑
s=1

(Et+1 − Et)q
sc∗
t+s =

1 − qT−t

1 − q

[
c∗
t+1 − c∗

t +
ln
q

δ
ρ

− ρ

2
σ2
ct+1

]

and, using (S6),

c∗
t+1 − c∗

t = Γt + 1 − q
1 − qT−t (Et+1 − Et)

×
[
T−t−1∑
n=0

qn(y∗
t+1+n + τ∗

t+1+n(y
t+1+n))

]
�

with Γt = ln(δ/q)
ρ

+ ρ

2σ
2
ct

.

5One would obtain the same result for any process for bonds using the standard rearrange-
ments in the permanent income literature (e.g., Deaton (1992)).
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Second, if we apply Lemma 3—in particular, see equation (S3)—together
with θt+n = y∗

t+n for all t� n, since (Et+1 − Et)ηt+1(y
t)= 0, we obtain

(Et+1 − Et)

[
T−t−1∑
n=0

qnτ∗
t+1+n(y

t+1+n)

]

=
(

1
a

− 1
)
(Et+1 − Et)

[
T−t−1∑
n=0

qny∗
t+1+n

]
�

If we now combine the two last expressions, we obtain

c∗
t+1 − c∗

t = Γt + 1
a

1 − q
1 − qT−t (Et+1 − Et)

[
T−t−1∑
n=0

qny∗
t+1+n

]
;(S7)

hence Γt = ln δ
q

ρ
+ ρ

2σ
2
ct

.
From Assumption 2, for T − t − 1 ≥ p, equation (S7) becomes6

c∗
t+1 − c∗

t =
ln
δ

q

ρ
+ ρ

2
σ2
ct

+ 1
a

1 − q
1 − qT−t

T−t−1∑
n=0

qnβ(q)vt+1

=
ln
δ

q

ρ
+ ρ

2
σ2
ct

+ 1
a
β(q)vt+1�

Finally, since the above expression implies that σ2
ct

:= vart(�c∗
t+1) = [β(q)]2

a2 σ2
v ,

we obtain the claimed expression for consumption growth.

6Recall that yt follows

y∗
t+1 = y∗

t +β(L)vt+1�

with β(·) of order p. We hence have

(Et+1 − Et )y
∗
t+1 = vt+1�

(Et+1 − Et )qy
∗
t+2 = q(1 +β1)vt+1�

(Et+1 − Et )q
2y∗
t+3 = q2(1 +β1 +β2)vt+1�

���

(Et+1 − Et )q
ny∗
t+1+n = qn(1 +β1 + · · · +βp)vt+1 for n≥ p�

As long as T − t − 1 ≥ p, collecting terms vertically, the expression takes the stable form we
indicate in the main text.



12 O. ATTANASIO AND N. PAVONI

Clearly, the case with purely permanent shocks corresponds to the case
where βi = 0 for i ≥ 1; hence the result is trivial. It is also easy to show that
in this case, b∗

t ≡ 0 is consistent with

∂τt(y
t)

∂yt
= 1
a

− 1 for all t

and

∂τt(y
t)

∂yt−s
= 0 for all t� s > 0�

It is hence easy to see that

�c∗
t+1 = ln δ

q

ρ
+ ρ

2a2
σ2
v + 1

a
(y∗
t+1 − y∗

t )(S8)

for all T <∞ and all {qt}T−1
t=1 . Q.E.D.

We now use the fact that the tax scheme is linear to show the following
lemma that concludes the proof.

PROPOSITION 4: If the agent has CARA preferences, when facing the above tax,
the agent’s problem is concave, so the derived tax scheme is optimal.

PROOF: Note that so far we have shown that the transfer scheme is differ-
entiable. Moreover, the agent’s necessary conditions for e∗

t (θ
t) = 0 to be an

optimal choice is

∂

∂θt

T−t∑
n=0

qnτ(θt+n) ∈
[

1
a

− 1�
1
b

− 1
]
�

Since we have shown that ∂
∂θt

∑T−t
n=0 q

nτ(θt+n)= 1
a
− 1, the condition is met.

Now note that since e∗
t (θ

t) ≡ 0� at all nodes we have yt(θt) = θt . We can
hence invert the identity map and write the transfer scheme as a function of in-
come histories yt . We have to show that, when facing the optimal tax scheme,
the agent’s problem is jointly concave in {et(θt)}Tt=0 and {bt+1(θ

t)}Tt=0. Consider
two contingent plans e1� b1� c1 and e2� b2� c2. Now consider the plan eα�bα� cα,
where for all yt and α ∈ [0�1], we have eαt (θ

t) := αe1
t (θ

t)+ (1 − α)e2
t (θ

t), and
similarly for bαt and cαt . First of all, since assets enter linearly in the agent’s bud-
get constraint and effort enters linearly in the production function, the concav-
ity of the agent’s utility in c− v(e), and the additive separability over time and
states imply that if we show that cαt −v(eαt )≥ α[c1

t −v(e1
t )]+(1−α)[c2

t −v(e2
t )],
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we are done. If we set kt to denote the constant of integration of τt , then an
agent who chooses plan eα of effort at node θt gets

cαt − v(eαt )= yαt +
t−1∑
i=0

τ(t−i)t yαt−i + kt − v(eαt )

= θt + eαt +
t−1∑
i=0

τ(t−i)t [θt−i + eαt−i] + kt − v(eαt )

≥ [α(θt + e1
t )+ (1 − α)(θt + e2

t )]

+
t−1∑
i=0

τ(t−i)t [θt−i + eαt−i]

× [α(θt−i + e1
t−i)+ (1 − α)(θt−i + e2

t−i)]
+ kt − α[v(e1

t )] + (1 − α)[v(e2
t )]

= α[c1
t − v(e1

t )] + (1 − α)[c2
t − v(e2

t )]�
where the inequality in the penultimate row comes from the concavity of v in e.
The last line uses the agent’s budget constraint ct(yt)= yt + τ(yt). Q.E.D.

A final remark: Although the proof of the closed form uses finite time, we
conjecture that by adapting the Proof of Proposition 7 in Cole and Kocher-
lakota (2001), we are able to show that the same closed-form solution for
T = ∞ is unbounded below, despite u.

B.2. Quadratic Utility

We now maintain the same assumptions on the cost function v (or the pro-
duction function f ) as in (S1). Moreover, we keep the linearity assumption for
the process θt , that is, �θt = β(L)vt , but we do not assume any parametric
distribution for the i.i.d. shocks vt (of course, we need to be able to take expec-
tations). In fact, we now need to assume that Θ is bounded above by θmax <∞
and that agent’s preferences are quadratic:

u(c− v(e)) := −1
2
(
B̄− (c − v(e)))2

with B̄	 Tθmax�(S9)

Finally, we are able to derive the closed form only within the class of transfer
schemes that admit symmetric cross-partial derivatives. Making assumptions
on endogenous variables is of course not desirable, but note that the incen-
tive constraint always imposes some degree of monotonicity on the transfer
scheme. Since monotone functions on compact sets are absolutely continuous,
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under a few further regularity conditions, we conjecture that one would be able
to show at least almost everywhere differentiability of the transfer scheme. Of
course, the symmetry of the Hessian is an even stronger condition: we did not
investigate how to show it from primitives.

We have the following proposition.

PROPOSITION 5: If the agent has preferences as in (S9) and θt = θt−1 +β(L)vt ,
within the class of transfer schemes that admit symmetric cross-derivatives, taxes
are linear in income histories. Moreover, if δ= q, the expression of marginal taxes
is exactly as in the CARA case. In particular, for T ≥ t +p+ 1, we have

�c∗
t+1 = 1

a
β(q)vt+1�

PROOF: First of all, from Lemma 1, in equilibrium we get e∗
t ≡ 0; hence the

transfer scheme is invertible and we can write it in terms of income histories yt .
We now need a crucial lemma, which uses differentiability.

LEMMA 4: Within the class of transfer schemes that admit symmetric cross-
derivatives, the discounted value of marginal transfers

∑T−t
n=0 q

n ∂τt+n(yt+n)
∂ys

does not
depend on (yt� � � � � yT ) for all s. They are hence linear functions of ys given yt .

PROOF: Consider the following relaxed problem of the firm: Maximize ex-
pected discounted profits, choosing the transfer scheme subject to the first-
order conditions of the agent, namely for all t ≥ 1 and t ≥ s ≥ 0,

1
b

− 1 ≥ Et−s
T−t∑
n=0

δn
[
∂τt+n(yt+n)

∂yt

u′(ct+n − et+n)
u′(ct − et)

]
(S10)

= Et−sEt

[
T−t∑
n=0

δn
∂τt+n(yt+n)

∂yt

u′(ct+n − et+n)
u′(ct − et)

]
≥ 1
a

− 1�

and the Euler equations corresponding to u as in (S9),

−B̄+ ct(yt)=
(
δ

q

)s

Et[ct+s(yt+s)] −
(
δ

q

)s

B̄�(S11)

The proof is by backward induction. By looking at the last period of the
problem, we have

1
b

≥ 1 + ∂τT (y
T )

∂yT
≥ 1
a
�
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Since the firm aims to insure the agent, the relevant inequality is the second
one. Moreover, given that there is no gain in efficiency in changing the im-
plemented level of effort and that (S11) is not affected as long as the average
value of transfers does not change, the firm will set ∂τT (y

T−1�yT )

∂yT
= 1

a
− 1 for all

yT−1 and yT . This implies a zero cross derivative: ∂τT (y
T−1�yT )

∂yT ∂yt
= 0 for all t. Given

our assumptions on the class of transfer schemes, by symmetry, it must be that
∂τT (y

T )

∂yt
is constant in yT for all t < T .

Now consider τT−1. Since ∂τT (y
T )

∂yT−1
does not depend on yT , the effort incentive

compatibility can be written as

∂τT−1(y
T−1)

∂yT−1
+ δτT (y

T )

∂yT−1
ET−1

[
u′(cT )
u′(cT−1)

]
= 1
a

− 1 for all yT−2 and yT−1�

Since ET−1[ u′(cT )
u′(cT−1)

] = q

δ
, we have that ∂τT−1(y

T−1)

∂yT−1
+ q∂τT (y

T )

∂yT−1
is a constant for all

yT−2 and yT−1. Again, since the transfer scheme is assumed to have symmetric
cross-derivative, this property implies that ∂τT−1(y

T−1)

∂yt
+ q∂τT (yT )

∂yt
is also constant

in yT−1 (and yT ) for all t. Going backward, we have our result:
∑T

n=t q
n ∂τn(y

n)

∂ys
is

constant in yt� � � � � yT for all s. Q.E.D.

Given the above results we can apply the law of iterated expectations and
get, for a generic δ and q,

Et

[
T−t∑
n=0

δn
∂τt+n(yt+n)

∂yt

u′(ct+n − et+n)
u′(ct − et)

]
(S12)

= Et

[
T−t−1∑
n=0

δn
∂τt+n(yt+n)

∂yt

u′(ct+n − et+n)
u′(ct − et)

+ δT−tET−1
∂τT (y

T )

∂yt

u′(cT − eT )
u′(ct − et)

]

= Et

[
T−t−1∑
n=0

δn
∂τt+n(yt+n)

∂yt

u′(ct+n − et+n)
u′(ct − et)

+ δT−t ∂τT (y
T )

∂yt
ET−1

u′(cT − eT )
u′(cT−1 − eT−1)

u′(cT−1 − eT−1)

u′(ct − et)

]
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= Et

[
T−t−1∑
n=0

δn
∂τt+n(yt+n)

∂yt

u′(ct+n − et+n)
u′(ct − et)

+ δT−t−1q
∂τT (y

T )

∂yt

u′(cT−1 − eT−1)

u′(ct − et)

]

= Et

[
T−t−2∑
n=0

δn
∂τt+n(yt+n)

∂yt

u′(ct+n − et+n)
u′(ct − et)

+ δT−t−1ET−2

(
∂τT−1(y

T−1)

∂yt
+ q∂τT (y

T )

∂yt

)
u′(cT−1 − eT−1)

u′(ct − et)

]

= Et

[
T−t−2∑
n=0

δn
∂τt+n(yt+n)

∂yt

u′(ct+n − et+n)
u′(ct − et)

+ δT−t−2q

(
∂τT−1(y

T−1)

∂yt
+ q∂τT (y

T )

∂yt

)
u′(cT−2 − eT−2)

u′(ct − et)

]
���

= Et

[
T−t∑
n=0

qn
∂τt+n(yt+n)

∂yt

]
�

where we repeatedly used the linearity of expectations and the Euler equation.
We are hence done since, given that the obtained taxes are linear, Proposition 4
implies that this transfer scheme is optimal (now within the class of schemes
we consider). Moreover, we are now able to follow the steps for the derivation
of the closed form for CARA utility and obtain a very similar closed form.

Since from the incentive compatibility for effort et , we have Et[∑T−t
n=0 q

n ×
∂τ∗t+n(yt+n)

∂yt
] = 1

a
− 1, by using the law of iterated expectations, we obtain

(Et+1 − Et)

[
T−t−1∑
n=0

qnτ∗
t+1+n(y

t+1+n)

]
(S13)

=
(

1
a

− 1
)
(Et+1 − Et)

[
T−t−1∑
n=0

qny∗
t+1+n

]
�

The expressions for the optimal individual taxes τt can be obtained by work-
ing backward. In Attanasio and Pavoni (2007), we considered generic q and δ.
When q 
= δ, the expressions can get quite complicated even for the purely
temporary shocks. When δ = q, however, from the Euler equation we have
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Etc
∗
t+s = c∗

t for all s. So following exactly the lines of the proof of Proposition 3
above for CARA, namely using the standard rearrangements of the permanent
income literature, we obtain that

c∗
t+1 − c∗

t = 1 − q
1 − qT−t (Et+1 − Et)

[
T−t−1∑
n=0

qn(y∗
t+1+n + τ∗

t+1+n(y
t+1+n))

]

= 1
a

1 − q
1 − qT−t (Et+1 − Et)

[
T−t−1∑
n=0

qny∗
t+1+n

]
�

Again, for T − t − 1 ≥ p, the expression stabilizes to the claimed one:

c∗
t+1 − c∗

t = 1
a
β(q)vt+1� Q.E.D.

B.3. Isoelastic Utility: A Closed Form in Logs

The outcome of this section is an expression for innovation in log consump-
tion of the form analogous to those obtained in Propositions 3 and 4 for the
CARA and quadratic agent’s utilities; that is,

ln c∗
t+1 − ln c∗

t =
ln
δ

q

γ
+ γ

2a2
[β(λq)]2σ2

v + 1
a
β(λq)vt+1�

where vt+1 is the innovation to log of income, 1
γ

is the intertemporal elasticity
of substitution of consumption at two consecutive dates, and λ > 0 is such that
λq≤ δ for γ ≥ 1. We also obtain expressions for tax rates at different dates.

B.3.1. Model and Derivation of the Permanent Income Equation

Assume a production function of the form

ln yt = lnθt + lnet

and the process for skills

lnθt = lnθt−1 +β(L)vt�
As for the CARA case, an additional assumption, which is crucial for us to get
an exact closed form, is that the shocks vt are normally distributed with zero
mean and variance σ2

v (note that we slightly abuse in notation here).
Recall our specification for preferences

(ct · e−φ(et )
t )1−γ

1 − γ = 1
1 − γ exp

{
(1 − γ)(ln ct −φ(et) lnet)

}
�
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where φ(e)= 1
a

for e≤ 1 and φ(e)= 1
b

for e≥ 1. Our aim is to write the prob-
lem in logarithms so as to exploit the analogies to the case in levels. Clearly, the
objective function of the agent is concave in log decisions whenever γ > 1 and
the assumptions are consistent with empirical findings.7 Since in equilibrium
we have e∗

t ≡ 1, the Euler equation is the usual one,

Et

[(
ct+1

ct

)−γ]
= Et

[
exp

(
−γ ln ct+1

ln ct

)]
= exp

(
−γμt + γ2 1

2
σ2
t

)
= q

δ
�(S14)

where we used the fact that in equilibrium ct+1 is log normally distributed,8
with μt and σ2

t being the conditional mean and conditional variance of � ln ct+1,
respectively.

Since we implement b∗
t ≡ 0, the budget constraint in equilibrium implies that

ln c∗
t (y

t)= ln y∗
t + lnτ∗

t (y
t). In what follows, for notational simplicity, we abuse

notation and use yt to denote the history of log incomes. Since the logarithmic
function is strictly monotone (and yt ≥ 0), every function of yt can be written as
a function of ln yt and vice versa. The objective function for effort plans hence
becomes

E0

∑
t=0

δt
1

1 − γ exp
{
(1 − γ)(ln yt + lnτt(yt)− v(lnet))

}
�

Given our specification for v and u, the entire objective function can be ex-
pressed in logarithms. It is now easy to see the strong analogy to the case in
levels considered above. In particular, we follow the main line of proof we
adopted for the quadratic utility with the additional feature of log normality to
obtain the precise expression for (deterministic) consumption growth rates as
in the CARA case. If we assume that the transfer scheme τ is differentiable, the
first-order condition for the log of effort lnet is

Et

T−t∑
n=0

δn
(
ct+n
ct

)1−γ
∂ lnτt+n(yt+n)

∂ ln yt
= 1
a

− 1�(S15)

Once again, if the transfer scheme admits a symmetric cross-derivative, we can
show backward that the conditional expectations can be decomposed since
∂ lnτt+n(yt+n)

∂ ln yt
does not depend on (log) yt+n.

The strong similarity with the model in levels has one last caveat. Since ct is
log normally distributed, we have

Et

[(
ct+n
ct

)1−γ]
= Et

[
exp

(
(1 − γ) ln ct+1

ln ct

)]
7For the United Kingdom, see Attanasio and Weber (1993).
8For a more extensive argument on this, see the very last section in the Appendix of Attanasio

and Pavoni (2006).
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= exp
{
(1 − γ)μt + 1

2
(1 − γ)2σ2

t

}
�

Moreover, from the Euler equation (S14), we obtain

exp
{
(1 − γ)μt + 1

2
(1 − γ)2σ2

t

}
(S16)

= exp
{
−γμt + γ2 1

2
σ2
t

}
exp

{
μt + 1

2
(1 − 2γ)σ2

t

}
= q

δ
exp

{
μt + 1

2
σ2
t − γσ2

t

}
:= q

δ
λt�

where λt := exp(μt + ( 1
2 − γ)σ2

t ) > 0. In the log utility case, when δ= q, then
λt = 1.9 Similarly, by the law of iterated expectations, assuming constant μt and
σ2

2 , we get

Et

[(
ct+n
ct

)−γ]
= Et

[(
ct+1

ct

)−γ
Et+1

(
ct+2

ct+1

)−γ
· · · · · Et+n−1

(
ct+n
ct+n−1

)−γ]
=

(
q

δ

)n

and

Et

[
exp

(
(1 − γ) ln ct+n

ln ct

)]
= Et

[
exp

{
−γ ln ct+1

ln ct

}
λEt+1 exp

{
−γ ln ct+2

ln ct+1

}
λ · · · ·

· Et+n−1 exp
{
−γ ln ct+n

ln ct+n−1

}
λ

]
=

(
qλ

δ

)n

�

9Since μt = lnδ/q
γ

+ γ
2σ

2
t , then λt = exp( lnδ/q

γ
+ 1−γ

2 σ
2
t ), which implies λt ≤ δ

q
since γ ≥ 1. More-

over, when u is logarithmic, we have λ= δ
q

, which is obviously consistent with

lim
γ→1+ Et

[
exp

(
(1 − γ) ln ct+n

ln ct

)]
= 1�
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Again using the law of iterated expectations in the same way we did to derive
equation (S12), the incentive constraint (S15) can be written as

Et

T−t∑
n=0

(qλ)n
∂ lnτt+n(yt+n)

∂ ln yt
= 1
a

− 1�(S17)

Since taxes are linear in the log space and the agent’s objective function is
concave for γ ≥ 1, the so-derived scheme is the optimal one within the class
of differentiable schemes with symmetric cross-derivative as it solves the re-
laxed problem (only subject to the first-order conditions), while being globally
incentive compatible.

We can now follow the same steps as for the model in levels to obtain the
desired permanent income expressions: from ln ct = ln yt + lnτt at all nodes,
we get

Et

T−t−1∑
n=0

(qλ)n ln c∗
t+1+n = Et

T−t−1∑
n=0

(qλ)n(ln y∗
t+1+n + lnτ∗

t+1+n(y
t+1+n))�

Et+1

T−t−1∑
n=0

(qλ)n ln c∗
t+1+n = Et+1

T−t−1∑
n=0

(qλ)n(ln y∗
t+1+n + lnτ∗

t+1+n(y
t+1+n))�

By repeatedly using Euler equation (S14), together with the properties of the
normal distribution, we obtain

ln c∗
t+1 − ln c∗

t

= ln(δ/q)
γ

+ γ

2
σ2 + 1 − qδ

1 − (qδ)T−t

× (Et+1 − Et)

[
T−t−1∑
n=0

(qλ)n(ln y∗
t+1+n + lnτ∗

t+1+n(y
t+1+n))

]
�

Finally, from the expression for marginal log taxes, we obtain

ln c∗
t+1 − ln c∗

t = ln(δ/q)
γ

+ γ

2
σ2

+ 1
a

1 − qδ
1 − (qδ)T−t (Et+1 − Et)

[
T−t−1∑
n=0

(qλ)n(ln y∗
t+1+n)

]
�

It is hence again easy to see that for T ≥ t + 1 +p, using the properties of the
ARIMA(p) process we postulated above, the previous expression stabilizes
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into

� ln c∗
t+1 = ln(δ/q)

γ
+ γ

2
σ2 + 1

a

1 − qδ
1 − (qδ)T−t

T−t−1∑
n=0

(qλ)nβ(qλ)vt+1(S18)

= ln(δ/q)
γ

+ γ

2
σ2 + 1

a
β(qλ)vt+1�

Since the polynomial is invertible and 0< qλ ≤ δ, all expressions are well de-
fined. Moreover, from (S18), we obtain that σ2 := vart(� ln c∗

t+1) =
[∑i((qλ)

iβi)]2
a2 σ2

v = [β(λq)]2
a2 σ2

v , as claimed above.

B.3.2. Expressions for Taxes

The analysis is tedious but straightforward. Taxes are defined by the two in-
centive constraints: the effort incentive constraints and the Euler equations.
Moreover, since taxes take very complicated expressions for the periods close
to T , we derive the expressions only for stable values, hence for sufficiently
large T .

The whole analysis is considerably simplified if we describe the transfer
scheme in terms of the histories of the shocks vt . To simplify the notation, we
keep all symbols as above (although this is an abuse in notation of course). Let
vt = (v1� � � � � vt) be a given history of shocks. By repeatedly applying the law of
motion for lnθt , we have

lnθt = lnθ0 +
t−1∑
s=0

β(L)vt−s�(S19)

We normalized θ0 = 1 and that lagged terms in the MA expressions v−s, s =
0� � � � �p, are set to zero as well by the other initial conditions. It is easy to see
that in the last period, we have

∂ lnτT (vT )
∂vT

= 1
a

− 1;(S20)

this is so since, given vT−1, the agent can lie over vT exactly in the same way as
he would lie over θt , with exactly the same marginal net costs/returns, asβ0 = 1.
As before, it is easy to show that taxes are linear in vt . Note, however, that a lie
over vt today affects future income not only through the transfer scheme, but
also via the persistence pattern of the process for θt . In particular, consider an
agent who lies over vt and then tells the truth over future vt+s. That agent will
have to lie (implicitly) over all future θt+s precisely by the amount of the future
effect of vt over θt+s. Of course, the agent will then be forced to make income
levels appear to be consistent with the lie, namely ŷt+s = θ̂t+s. For t ≤ T −p, we
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hence have (note that we can eliminate the conditional expectation because of
the linearity of taxes)

T−t∑
s=0

(qλ)s
∂ lnτt+s(vt+s)

∂vt
(S21)

=
(

1
a

− 1
)[

1 + (qλ)(1 +β1)+ (qλ)2(1 +β1 +β2)+ · · ·

+ (qλ)p β(1)
1 − qλ

]
�

Consider now the Euler equation between periods t and t + 1 for t ≤ T − p.
For b∗

t ≡ 0 to be incentive compatible at each node, we have

exp
{−ρ(lnθt + lnτt(vt))

} = δ

q
Et

[
exp

{−ρ(lnθt+1 + lnτt+1(v
t+1))

}]
�(S22)

As we saw, the incentive compatibility constraint together with the symmetric
partial derivative assumption implies that there is a function η̂t+1 such that
lnτt+1(v

t+1)= η̂t+1(v
t)+ τ(t+1)

t+1 vt+1. (Note that the functions η̂ are not the same
as the function η in Proposition 3 but very similar in nature, namely for all
s ≥ 0� ∂η̂t+1(v

t )

∂vt−s = ∂ lnτt+1(v
t+1)

∂vt−s .) Since θt+1 is normally distributed, taking the log
operator on both sides and using the properties of the normal distribution,
since Etvt+1 = 0, (S22) becomes

lnθt + lnτt(vt)= Γ t+1
t + Et lnθt+1 + η̂t+1(v

t)(S23)

= Γ t+1
t + lnθt +

p∑
i=1

βivt+1−i + η̂t+1(v
t)�

where we used the projection result Etθt+1 = θt + ∑p

i=1βivt+1−i. We also used
the linearity of the tax on vt+1 together with Etvt+1 = 0. More in general, for all
t� s ≥ 1, we have

lnθt + lnτt(vt)= Γ t+s
t + lnθt +

min{s�p}∑
n=1

p∑
i=n
βivt+n−i + η̂t+s(vt)�(S24)

Now, so that (S23) holds true for all vt given vt−1, it must be that

∂ lnτt(vt)
∂vt

= ∂η̂t+1(v
t)

∂vt
+β1 = ∂ lnτt+1(v

t+1)

∂vt
+β1�
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In general, the Euler equation between periods t and t + s, s ≥ 1, implies

∂ lnτt(vt)
∂vt

= ∂ lnτt+s(vt+s)
∂vt

+
min{s�p}∑
i=1

βi�(S25)

Hence, for s ≥ p, marginal taxes become constant. Now, so that both the Euler
equations and the incentive constraint (S21) hold simultaneously, by repeat-
edly using (S25), we have

T−t∑
s=0

(qλ)s
∂ lnτt+s(vt+s)

∂vt

= ∂ lnτt(vt)
∂vt

[
1 + qλ(1 −β1)+ (qλ)2(1 −β1 −β2)+ · · ·

+ (qλ)p 2 −β(1)
1 − qλ

]
=

(
1
a

− 1
)[

1 + qλ(1 +β1)+ (qλ)2(1 +β1 +β2)+ · · ·

+ (qλ)p β(1)
1 − qλ

]
�

It is hence easy to see that

∂ lnτt(vt)
∂vt

=
(

1
a

− 1
)[

1 + qλ(1 +β1)+ (qλ)2(1 +β1 +β2)+ · · ·

+ (qλ)p β(1)
1 − qλ

]
/[

1 + qλ(1 −β1)+ (qλ)2(1 −β1 −β2)+ · · ·

+ (qλ)p 2 −β(1)
1 − qλ

]
:=

(
1
a

− 1
)
κ

and, of course, all other taxes can be obtained from this expression using (S25).
Note that κ > 0 and, for future reference, that when βi = 0 for all i > 0, κ= 1
so ∂ lnτt (vt )

∂vt
= ∂ lnτt+s(vt+s)

∂vt
= 1

a
− 1.
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Finally, we derive the expression that relates the change in the cross-
sectional variance of consumption with the change in the cross-sectional vari-
ance of income. Again, so as to have stable formulas, we assume t ≥ p and
t ≤ T −p, so that all the above expressions apply fully. We have

ln c∗
t (θ

t)= ln y∗
t + lnτ∗

t (v
t)+ lnθt + lnτ∗

t (v
t)(S26)

= θt + τ(0)t vt + τ(−1)
t vt−1 + · · · + τ(−p)t vt−p

+ τ(−p)t vt−p−1 + · · · + τ(−p)t v1 + τ0 + tΓ�
where the constant of integration τ0 is chosen to satisfy the planner’s budget
constraint and, as we showed above, for all t, τ(−s)t = ( 1

a
− 1)κ−β1 −β2 −· · ·−

βs. Similarly, for t + 1, we have

ln c∗
t+1(θ

t+1)= θt+1 + τ(0)t+1vt+1 + τ(−1)
t+1 vt + · · · + τ(−p)t+1 vt+1−p

+ τ(−p)t vt−p + · · · + τ(−p)t v1 + τ0 + (t + 1)Γ�

where for all n, we have τ(−n)t+1 = τ(−n)t . Recall that we are interested in comput-
ing the unconditional variance of both the above term and that in (S26), and
then taking the difference. This difference in variances can be stated as

� var(ln c∗
t+1) := var(ln c∗

t+1)− var(ln c∗
t )

= var(θt+1)− var(θt)+ var(τ∗
t+1(v

t+1))− var(τ∗
t (v

t))

+ 2
[
cov(θt+1� τ

∗
t+1(v

t+1))− cov(θt� τ∗
t (v

t))
]
�

Now note that

var(lnτ∗
t (v

t))= ([
τ(0)t

]2 + · · · + (1 + t −p)[τ(−p)t

]2)
σ2
v �

while

var(lnτ∗
t+1(v

t+1))= ([
τ(0)t+1

]2 + · · · + (2 + t −p)[τ(−p)t+1

]2)
σ2
v �

Moreover, for t ≥ p�τ(−n)t+1 = τ(−n)t , we have

var(lnτ∗
t+1(v

t+1))− var(τ∗
t (v

t))= [
τ
(−p)
t

]2
σ2
v �

cov
(
θt� τ

(−s)
t vt−s

) = cov
(
θt+1� τ

(−s)
t+1 vt+1−s

)
for s ≤ p�

and

cov
(
θt� τ

(−p)
t vt−s

) = cov
(
θt+1� τ

(−p)
t+1 vt+1−s

) = τ(−p)t+1 β(1)σ
2
v for s ≥ p�
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Given that for t ≥ p, only the correlation with v1 remains in the t+ 1 terms, we
have

cov(θt+1� τ
∗
t+1(v

t+1))− cov(θt� τ∗
t (v

t))= τ(−p)t+1 β(1)σ
2
v �

In summary,

� var(ln c∗
t+1)= � var(θt+1)+ [

τ
(−p)
t

]2
σ2
v + 2τ(−p)t+1 β(1)σ

2
v �

Finally, since from the definition of θt in (S19), for t ≥ p, we have

� var(ln y∗
t+1)= � var(lnθt+1)= [β(1)]2σ2

v > 0�

which implies

� var(ln c∗
t+1)= [

β(1)+ τ(−p)t+1

]2
σ2
v = [β(1)+ τ(−p)t ]2

[β(1)]2
� var(ln y∗

t+1)�

where we recall that

τ
(−p)
t+1 =

(
1
a

− 1
) [1 + qλ(1 +β1)+ (qλ)2(1 +β1 +β2)+ · · ·]

[1 + qλ(1 −β1)+ (qλ)2(1 −β1 −β2)+ · · ·]
−β(1)+ 1;

hence β(1)+ τ(−p)t = 1 + ( 1
a
− 1)κ and

� var(ln c∗
t+1)=

(1 +
(

1
a

− 1
)
κ

β(1)

)2

� var(ln y∗
t+1)�(S27)

Since both β(1) > 0 and κ > 0, the parameter a is identified. Moreover, for
βi = 0 for all i, we have

� var(ln c∗
t+1)= 1

a2
� var(ln y∗

t+1)�(S28)

B.4. An Extended Model With Two Types of Shocks

We now briefly present an extension of our model that allows for two types
of (independent) shocks to income, with different degrees of persistence. Al-
though we develop the model in levels, very similar expressions can be derived
for the log-linear case.

Assume agents have preferences over ct , lt , and et as − 1
ρ

exp{−ρ(ct − et −
lt)}. Moreover, assume that individual income can be decomposed into two
components, that is, yt = xt + ξt , where xt = f (θ

p
t � et) and ξt = g(vTt � lt). In
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this model, xt represents the permanent component of income as θpt = θ
p
t−1 +

v
p
t , with vpt i.i.d., while ξt represents the temporary component, as vTt is i.i.d.

The production function f is as in (13), and a similar functional form for g is
assumed:

ξt = g(vTt � lt)

= vTt + aT min{lt�0} + bT max{lt�0} with aT > 1> bT �

Since effort is again time constant, in equilibrium, the income process dis-
plays the process10

yt = yt−1 + vpt +�vTt �(S29)

We now follow a line of proof very similar to that used for the baseline model
and we show that the reaction of consumption to the different shocks for T →
∞ can be written as11

�c∗
t = ln(δ/q)

ρ
+ ρ

2

[(
1
ap

)2

σ2
vp +

(
1 − q
aT

)2

σ2
vT

]
+ 1
ap
v
p
t + 1 − q

aT
vTt �(S30)

where, for consistency, we denoted by ap the slope of f for et ≤ 0.
The closed form for the version of our model with two types of shocks pro-

vides a structural interpretation of recent empirical evidence. Using the evo-
lution of the cross-sectional variance and covariance of consumption and in-
come, Blundell, Pistaferri, and Preston (2008) estimated two parameters, φ
and ψ, that represent the fraction of permanent and temporary shocks re-
flected in consumption. Within our model, estimates of these parameters can
be interpreted as the severity of informational problems for income shocks of
different persistence.

B.4.1. Proof of the Closed Form Expression (S30)

The analysis is performed separately for the two types of shocks. Obvi-
ously, e∗

t = l∗t = 0 at all nodes. We can hence equivalently describe the transfer
scheme in terms of incomes. In the presence of both permanent and tempo-
rary shocks, the firm should obviously condition its transfers on ξt = g(vTt � lt)
realizations as well. Denote by ht = (xt� ξt) the combined public history. In the
CARA case, by following the same line of proof as for Proposition 3, we can

10We could easily allow the temporary shock vTt to follow a MA(p) process.
11The corresponding expression for the model in logarithms is

�c∗
t+1 = ln(δ/q)

γ
+ γ

2

[(
1
ap

)2

σ2
vp +

(
1 − λq
aT

)2

σ2
vT

]
+ 1
ap
v
p
t+1 + 1 − λq

aT
vTt+1�
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show the differentiability of the scheme and the first-order conditions of the
agent by solving

Et

T−t∑
n=0

δn
[
∂τt+n(ht+n)

∂ξt

u′(ct+n − et+n − lt+n)
u′(ct − et − lt)

]
= 1
aT

− 1

and

Et

T−t∑
n=0

δn
[
∂τt+n(ht+n)

∂xt

u′(ct+n − et+n − lt+n)
u′(ct − et − lt)

]
= 1
ap

− 1�

where, for consistency, we denoted by ap the slope of f for et ≤ 0. By the
same proposition, the slopes ∂τt+n(ht+n)

∂ξt
do not depend on histories before or

after period t, so we can use the Euler equation and apply the law of iterated
expectations to get, for a generic δ and a deterministic sequence of bond prices
(in the notation below ζ stays for x or ξ),

Et

[
T−t∑
n=0

δn
∂τt+n(ht+n)

∂ζt

u′(ct+n − et+n − lt+n)
u′(ct − et − lt)

]

= Et

[
T−t∑
n=0

(
n∏
s=0

qt+s−1

)
∂τt+n(ht+n)

∂ζt

]
�

Of course, in the quadratic utility case, exactly the same expression for
marginal taxes can be obtained by assuming that the transfer scheme admits
symmetric cross-derivatives in all elements of ht . If we write the expressions
for a constant q, we get

Et

T−t∑
n=0

qn
∂τt+n(ht+n)

∂ξt
= 1
aT

− 1�(S31)

Et

T−t∑
n=0

qn
∂τt+n(ht+n)

∂xt
= 1
ap

− 1�

Assuming CARA (or quadratic) preferences, for permanent shocks (i.e., xt fol-
lows an ARIMA(0)), the Euler equation implies that only contemporaneous
marginal taxes are positive and

∂ lnτt(yt)
∂ lnxt

= 1
a

− 1�
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In this case, absent temporary shocks, we have

� ln ct+1 =
ln
δ

q

γ
+ γ

2
σ2
c + 1

a
vt+1�

Since from the above expression, the variance of log consumption is σ2
c =

1
a2σ

2
v �we have

lnτt(yt)=
(

1
a

− 1
)

ln yt + t
[ ln

δ

q

γ
+ γ

2a2
σ2
v

]
+ lnτ0(S32)

if we add temporary shocks. Since the analysis can be done independently, by
comparing Euler equations at different dates, we can easily show that the tax
rates for the purely temporary shock are related as

1 + ∂τt(h
t)

∂ξt
= ∂τt+s(ht+s)

∂ξt
≥ 0 for all t� s > 0�(S33)

It is hence easy to see by direct inspection of (S33) and (S31) that, as T → ∞,
the expressions for transfers become

1 + τx = 1
ap

and 1 + τξ = 1 − q
aT

�

where 1 + τx = 1 + ∂τt (h
t )

∂xt
and 1 + τξ = 1 + ∂τt (h

t )

∂ξt
= ∂τt+k(ht+k)

∂ξt
for k > 0. Hence

tax rates are time-invariant and the agent’s consumption reaction to income
shocks is given by12

�ct+1 = Γ + 1
ap
�xt+1 + 1 − q

aT
�ξt+1 = Γ + 1

ap
v
p
t+1 + 1 − q

aT
vTt+1�

where Γ ≥ 0 and Γ = 0 when u is quadratic and δ= q.
As explained in the proof of Proposition 4, all the above expressions consti-

tute optimal transfer schemes since the agent’s problem is concave because all
taxes are linear in all arguments.

12As should be clear from the analysis for the isoelastic model, the corresponding equation for
the model in logarithms is

� ln ct+1 = Γ + 1
ap
� lnxt+1 + 1 − λq

aT
� lnξt+1 = Γ + 1

ap
v
p
t+1 + 1 − λq

aT
vTt+1�

where λ= exp{ lnδ/q
γ

+ 1−γ
2 σ

2
c }.
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Finally, given the expressions for marginal taxes, we have

c∗
t (h

t)= y∗
t + τ∗

t (h
t)(S34)

= x∗
t + ξ∗

t +
(

1
ap

− 1
)
x∗
t +

(
1 − q
aT

− 1
)
ξ∗
t +

t−1∑
s=1

1 − q
aT

ξ∗
t−s

= 1
ap
x∗
t + 1 − q

aT

t−1∑
s=0

ξ∗
t−s + tΓ + τ0�

Now,

� var(c∗
t (h

t))=
[

var
(

1
ap
x∗
t

)
− var

(
1
ap
x∗
t−1

)]
(S35)

+ var

(
1 − q
aT

t−1∑
s=0

ξ∗
t−s

)
− var

(
1 − q
aT

t−2∑
s=0

ξ∗
t−s

)

=
(

1
ap

)2

σ2
vp +

(
1 − q
aT

)2

σ2
vT

=
(

1
ap

)2

� var(y∗
t )+ψ�

where ψ := ( 1−q
aT
)2σ2

vT
is a constant in the regression and the last lines use the

fact that var(y∗
t ) = var(x∗

t ) + var(ξ∗
t ) + 2 cov(x∗

t � ξ
∗
t ) = var(x∗

t ) + σ2
vT

, hence
� var(y∗

t )= � var(x∗
t ).

APPENDIX C: BIAS CORRECTION FOR THE VARIANCE BASED TEST

Recall that in Section 4.2 we had the following expression for the changes in
the cross-sectional variance:

�Var(ln ct)=
(

1
ap

)2

�Var(lnxt)+
(

1 − λq
aT

)2

Var(ξit)�(S36)

The observable version of equation (S36) is

�Var(cgt)= 1
a2
�Var(ygt)+ 1

a2
�ε

y
gt −�εcgt�(S37)

where εygt = Var(ygt) − Var(ygt) and εcgt = Var(cgt) − Var(cgt). The variance
of the residuals ε go to zero as the size of the cells in each time period in-
creases. Moreover, information on the within-cell variability can be used to
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correct OLS estimates of the coefficients in equation (S37). In particular, a
bias correct estimator is given by the expression

θ̂=A−1[θ̃−B]�(S38)

where θ̃ = (Z′Z)−1Z′w is the OLS estimator, B = (Z′Z)−1{ 1
T−1

∑T

t=2
σcygt

Ngt
+

σcygt−1
Ngt−1

} allows for the possibility of correlation between the εyt and εct , and

A=
[
I − (Z′Z)−1 1

T − 1

T∑
t=2

(
σ2
ygt

Ngt

+ σ2
ygt−1

Ngt−1

)]
�

In computing the variance–covariance matrix of this estimator, it is necessary
to take into account the MA structure of the residuals as well as the possibility
that observations for different groups observed at the same time will be corre-
lated.

REFERENCES

ATTANASIO, O. P., AND N. PAVONI (2007): “Risk Sharing in Private Information Models With
Asset Accumulation: Explaining the Excess Smoothness of Consumption,” Working Pa-
per 112994, NBER. [16]

DEATON, A. (1992): Understanding Consumption. New York: Oxford University Press. [10]

Dept. of Economics, University College London, Gower Street, London
WC1E 6BT, United Kingdom and IFS and NBER; o.attanasio@ucl.ac.uk

and
Bocconi University and IGIER, via Roentgen 1, 20136 Milan, Italy, and Uni-

versity College London, and IFS, and CEPR; nicola.pavoni@unibocconi.it.

Manuscript received March, 2007; final revision received March, 2010.

mailto:o.attanasio@ucl.ac.uk
mailto:nicola.pavoni@unibocconi.it

	Appendix B: Closed Forms
	Closed Form in Levels: CARA Utility
	Model
	The Relaxed Problem

	Quadratic Utility
	Isoelastic Utility: A Closed Form in Logs
	Model and Derivation of the Permanent Income Equation
	Expressions for Taxes

	An Extended Model With Two Types of Shocks
	Proof of the Closed Form Expression (S30)


	Appendix C: Bias Correction for the Variance Based Test
	References
	Author's Addresses

