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APPENDIX B

B.1. Overview

THE COVARIATES THAT MAKE UP X (SALEVAL, MFGCOST, HARVCOST, CON-
CENTR, INVENTORY, and APPRICE) are treated here as continuously dis-
tributed. v0 is assumed throughout to be a deterministic function ofX , so when
we condition on X , we condition on the corresponding v0; and when we aver-
age over X , we implicitly also average over v0.

We use kernel-weighted nonparametric estimators, employing a kernel func-
tion K and bandwidth sequence hL with features to be described below. Let
fX(x) denote the density of X , let pN(n|x) = Pr(N = n|X = x), and let
qX�N(x�n) = pN(n|x) · fX(x). B will denote transaction price, which is equal
to Vn−1:n by Assumption 2.42 Let Tn(r|X)=EB|X�N[max{B� r}|X�N = n].

The assumptions in the text are maintained throughout. We will maintain
the following additional assumptions:

ASSUMPTION 4:
(i) The observed data Ui ≡ (Bi�Ni�Xi)

L
i=1 is an i.i.d. sample, Xi ∈ R

z (with
z = 6 in our empirical analysis) is continuously distributed, and Supp(N) is a
compact set of the form {2� � � � � n} (with n= 11 in our empirical analysis).

(ii) There exist q > 0, q <∞, F > 0, and F < 1 such that for every auction
(x�n) and reserve price r that we consider, the following statements hold:

(a) q≤ qX�N(x�n)≤ q and F ≤ Fn−1:n(r|x)≤ F .
(b) In a neighborhood of x, fX(X), pN(n|X), Fn−1:n(r|X), and Tn(r|X) are

twice differentiable with respect to X with bounded derivatives.
(iii) The kernel K : Rz −→ R is a nonnegative function of bounded variation,

satisfies
∫
K(ψ)dψ= 1, has compact support, and is symmetric around zero.

(iv) The bandwidth sequence hL is nonnegative and satisfies hL −→ 0. In ad-
dition, ∃δ > 0 for which L1−δ · hzL −→ ∞ and L1+δ · hz+4

L −→ 0.

The smoothness and regularity restrictions described in Assumption 4 are
fairly standard in nonparametric models. The same is true for the restrictions
imposed on the kernel and bandwidth. Assuming that Fn−1:n(r|x) is bounded

42Everything that follows can be adapted to the incomplete model of Haile and Tamer (2003),
using the bounds presented in Appendix A.1.
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away from 0 and 1 ensures that the mapping φn(·) is smooth and differen-
tiable43 at Fn−1:n(r|x). We maintain that Assumption 4 holds for each (n� r�x)
in the range of values depicted in the figures in the text. The specific kernel
and bandwidth we used are described in Section B.7 below.

B.2. Expected Profits Conditional on N and X

Let Kh(ξ)≡K(ξ/h). For a given (n� r�x), let

T̂n(r|x)=

L∑
i=1

max{r�Bi} ·Kh(Xi − x) · 1{Ni = n}
L∑
i=1

Kh(Xi − x) · 1{Ni = n}
�

F̂n−1:n(r|x)=

L∑
i=1

1{Bi ≤ r} ·Kh(Xi − x) · 1{Ni = n}
L∑
i=1

Kh(Xi − x) · 1{Ni = n}

be kernel-based sample analog estimators of Tn(r|x) and Fn−1:n(r|x), and let

F̂n:n(r|x)=
n̄∑

m=n+1

n

(m− 1)m
F̂m−1:m(r|x)+ n

n̄

(
φn̄

(
F̂n̄−1:n̄(r|x)

))n̄
�

F̂n:n(r|x)=
n̄∑

m=n+1

n

(m− 1)m
F̂m−1:m(r|x)+ n

n̄
F̂n̄−1:n̄(r|x)�

F̂ IPV
n:n (r|x)= (

φn
(
F̂n−1:n(r|x)

))n
be the corresponding estimators for the lower bound, upper bound, and IPV
point estimate of Fn:n(r|x). Our estimators for expected profit given (n� r�x)
are then

π̂n(r|x)= T̂n(r|x)− v0 − (r − v0) · F̂n:n(r|x)�
π̂n(r|x)= T̂n(r|x)− v0 − (r − v0) · F̂n:n(r|x)�
π̂IPV
n (r|x)= T̂n(r|x)− v0 − (r − v0) · F̂ IPV

n:n (r|x)�
43The mapping φn fails to be Lipschitz continuous at 0 and 1, which introduces an irregularity

into the estimation problem at the boundary of the support of valuations. Therefore, we restrict
attention to the interior of the support. This type of boundary issue in the estimation of ascending
auctions is studied in detail in Menzel and Morganti (2012).
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To estimate the standard errors, we first define (for (n� r�x) such that 0 <
Fn−1:n(r|x) < 1)

∇φn(r|x)= φn(Fn−1:n(r|x))
n(n− 1)(1 −φn(Fn−1:n(r|x)))

and let

ψT(r�Ui|x�n)= (max{r�Bi} − Tn(r|x))
qX�N(x�n)

1{Ni = n}�

ψF(r�Ui|x�n)= (1{Bi ≤ r} − Fn−1:n(r|x))
qX�N(x�n)

1{Ni = n}�

ψF(r�Ui|x�n)=
n∑

m=n+1

n

(m− 1)m
ψF(r�Ui|x�m)+ n

n
ψF(r�Ui|x�n)�

ψ
F
(r�Ui|x�n)=

n∑
m=n+1

n

(m− 1)m
ψF(r�Ui|x�m)

+ n · ∇φn(r|x) ·ψF(r�Ui|x�n)�
ψIPV
F (r�Ui|x�n)= n · ∇φn(r|x) ·ψF(r�Ui|x�n)

and

ψ
π
(r�Ui|x�n)=ψT(r�Ui|x�n)− (r − v0) ·ψF(r�Ui|x�n)�(6)

ψπ(r�Ui|x�n)=ψT(r�Ui|x�n)− (r − v0) ·ψ
F
(r�Ui|x�n)�

ψIPV
π (r�Ui|x�n)=ψT(r�Ui|x�n)− (r − v0) ·ψIPV

F (r�Ui|x�n)�

Let F IPV
n:n (r|x) = (φn(Fn−1:n(r|x)))n and πIPV

n (r|x) = Tn(r|x) − v0 − (r − v0) ·
F IPV
n:n (r|x). A second-order Taylor expansion of π̂n(r|x), π̂n(r|x), and π̂IPV

n (r|x)
around the true values πn(r|x), πn(r|x) and πIPV

n (r|x) gives the following re-
sult.44

44A second-order Taylor expansion, along with Assumption 4, yields

π̂n(r|x)= πn(r|x)+ 1
LhzL

L∑
i=1

ψ
π
(r�Ui|x�n) ·K

(
Xi − x
hL

)
+ op

((
LhzL

)−1/2)
�

π̂n(r|x)= πn(r|x)+ 1
LhzL

L∑
i=1

ψπ(r�Ui|x�n) ·K
(
Xi − x
hL

)
+ op

((
LhzL

)−1/2)
�
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RESULT B.1: Under Assumption 4,

√
LhzL · (π̂n(r|x)−πn(r|x)

) d−→ N
(
0�σ2

n(r|x)
)
�√

LhzL · (π̂n(r|x)−πn(r|x)
) d−→ N

(
0�σ2

n(r|x)
)
�√

LhzL · (π̂IPV
n (r|x)−πIPV

n (r|x)) d−→ N
(
0�σ IPV2

n (r|x))�
where, letting μ2

K ≡ ∫
K2(ξ)dξ,

σ2
n(r|x)=EU |X

[
ψ
π
(r�Ui|x�n)2

∣∣Xi = x
]
fX(x)μ

2
K�

σ2
n(r|x)=EU |X

[
ψπ(r�Ui|x�n)2

∣∣Xi = x
]
fX(x)μ

2
K�

σ IPV2

n (r|x)=EU |X
[
ψIPV
π (r�Ui|x�n)2

∣∣Xi = x
]
fX(x)μ

2
K�

This gives us asymptotic properties of the estimators for the bounds, but we
want to do inference on actual profit πn(r|x), which is not point-identified.
Imbens and Manski (2004) and Stoye (2009) developed methods for infer-
ence on partially identified parameters with point-identified bounds; given
the asymptotic normality of our bounds estimators, their approach adapts
readily to our non-parametric setting. Let Λ̂π

n (r|x) = π̂n(r|x) − π̂n(r|x). Let
σ̂n(r|x) and σ̂n(r|x) be sample analog nonparametric estimators of σn(r|x)
and σn(r|x), respectively. To get a confidence interval (CI) for πn(r|x) with
asymptotic coverage probability of at least (1 − α), we use

CI1−α
(
πn(r|x)

) =
[
π̂n(r|x)− cα · σ̂n(r|x)√

LhzL
� π̂n(r|x)+ cα · σ̂n(r|x)√

LhzL

]
�(7)

where cα solves

�

(
cα +

√
LhzL · Λ̂π

n (r|x)
max{σ̂n(r|x)� σ̂n(r|x)}

)
−�(−cα)= 1 − α(8)

(where � is the standard normal cumulative distribution function). If
Λπ
n (r|x) > 0, the first term in the left-hand side of (8) converges to 1 and

the above critical value is asymptotically equivalent to the one given by

π̂IPV
n (r|x)= πIPV

n (r|x)+ 1
LhzL

L∑
i=1

ψIPV
π (r�Ui|x�n) ·K

(
Xi − x
hL

)
+ op

((
LhzL

)−1/2)
�

where ψ
π

, ψπ , and ψIPV
π are described in (6). Result B.1 follows from here through Lyapunov’s

central limit theorem.
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�(−cα) = α. However, if Λπ
n (r|x) is very small, the latter can provide a poor

approximation and lead to under-coverage even in relatively large sample sizes
(see Imbens and Manski (2004) and Stoye (2009)). In contrast, the critical
value described in (8) is designed to retain good coverage probability even if
Λπ
n (r|x) is very close to zero. In such cases, the behavior of

√
LhzL · Λ̂π

n (r|x)
merits further discussion. First, the nonnegativity of the kernel K implies
π̂n(r|x)≥ π̂n(r|x) with probability 1 (w.p.1) and, therefore, Λ̂π

n (r|x)≥ 0 w.p.1.
Combining this with the previous asymptotic normality results, the same ar-
guments in the proof of Lemma 3 of Stoye (2009) can be used to show that√
LhzL · (Λ̂π

n (r|x)−Λπ
n (r|x))= op(1) when Λπ

n (r|x)= 0.45 From here, Proposi-
tion 1 in Stoye (2009) can be used to show that the CI in (7) has good coverage
properties even if Λπ

n (r|x)≈ 0.46

Under IPV, point-identification of πn(r|x) means that we can construct a CI
in a straightforward way. Let (1 − α) denote our target coverage probability
and let κα be the value such that �(κα)−�(−κα)= 1 − α. Under IPV, the CI
can be estimated as

CI1−α
(
πIPV
n (r|x))(9)

=
[
π̂IPV
n (r|x)− κα · σ̂

IPV
n (r|x)√
LhzL

� π̂IPV
n (r|x)+ κα · σ̂

IPV
n (r|x)√
LhzL

]
�

where σ̂ IPV
n (r|x) is a sample analog nonparametric estimator of σ IPV

n (r|x).

B.3. Expected Profits Conditional on X

Next, we consider the confidence interval for expected profit conditional
only on X , that is, in expectation over N . For given (x� r), let

πN(r|x)=EN|X
[
πN(r|x)

∣∣X = x] =
n∑
n=2

pN(n|x) ·πn(r|x)�

(This is the same as π(r|x) in the text.) Using iterated expectations, πN(r|x)
simplifies to

πN(r|x)= T(r|x)− v0 − FN :N(r|x) · (r − v0)�

45This is not hard to show using the influence functions ψ
π

and ψπ described in (6).
46Note that Λπn (r|x)= 0 can occur only if Fn−1:n(r|x) equals either 0 or 1, and both cases are

outside our inferential range of interest. However, using the critical value defined as �(−cα)= α
can lead to undercoverage even in relatively large sample sizes if Λπn (r|x) is close to 0 (see Imbens
and Manski (2004) and Stoye (2009)). For this reason, we use the correction given in (8).



6 A. ARADILLAS-LÓPEZ, A. GANDHI, AND D. QUINT

where T(r|x) = EB|X[max{r�B}|X = x] and FN :N(r|x) = ∑n

n=2pN(n|x) ·
Fn:n(r|x). Let FN:N , FN:N , and F IPV

N:N be the corresponding upper bound, lower
bound, and IPV expressions of FN:N , and let πN , πN , and πIPV

N
the correspond-

ing expressions for πN . The bounds on FN:N(r|x) simplify to

FN:N(r|x)=
n∑

m=3

EN|X[N · 1{N <m}|X = x]
(m− 1)m

· Fm−1:m(r|x)

+ EN|X[N|X = x]
n

· (φn(Fn−1:n(r|x)
))n
�

FN:N(r|x)=
n∑

m=3

EN|X[N · 1{N <m}|X = x]
(m− 1)m

· Fm−1:m(r|x)

+ EN|X[N|X = x]
n

· Fn−1:n(r|x)

and our estimators are, therefore,

π̂N(r|x)= T̂ (r|x)− v0 − F̂N:N(r|x) · (r − v0)�

π̂N(r|x)= T̂ (r|x)− v0 − F̂N:N(r|x) · (r − v0)�

π̂IPV
N
(r|x)= T̂ (r|x)− v0 − F̂ IPV

N :N(r|x) · (r − v0)�

where T̂ (r|x) is a kernel-weighted nonparametric estimator for T(r|x) and

F̂N:N(r|x)=
n∑

m=3

ÊN|X[N · 1{N <m}|X = x]
(m− 1)m

· F̂m−1:m(r|x)

+ ÊN|X[N|X = x]
n

· (φn(F̂n−1:n(r|x)
))n
�

F̂N:N(r|x)=
n∑

m=3

ÊN|X[N · 1{N <m}|X = x]
(m− 1)m

· F̂m−1:m(r|x)

+ ÊN|X[N|X = x]
n

· F̂n−1:n(r|x)�

F̂ IPV
N:N(r|x)=

n∑
n=2

p̂N(n|x) · F̂ IPV
n:n (r|x)�

where ÊN|X[N|X = x], ÊN|X[N · 1{N < m}|X = x], and p̂N(n|x) are kernel-
weighted nonparametric estimators and F̂m−1:m(r|x) is defined above in Sec-
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tion B.2. With ψF defined above, let

ϕT(r�Ui|x)= (max{r�Bi} − T(r|x))
fX(x)

�(10)

ϕQ(r�Ui|x�n)= (Ni · 1{Ni < n} −EN|X[N · 1{N < n}|X = x])
fX(x)

�

ϕF(r�Ui|x)=
n∑

m=3

[
EN|X[N · 1{N <m}|X = x]

(m− 1)m
·ψF(r�Ui|x�m)

+ Fm−1:m(r|x)
(m− 1)m

·ϕQ(r�Ui|x�n)
]

+ EN|X[N|X = x]
n

·ψF(r�Ui|x�n)

+ Fn−1:n(r|x)
n

· (Ni −EN|X[N|X = x])
fX(x)

�

ϕ
F
(r�Ui|x)=

n∑
m=3

[
EN|X[N · 1{N <m}|X = x]

(m− 1)m
·ψF(r�Ui|x�m)

+ Fm−1:m(r|x)
(m− 1)m

·ϕQ(r�Ui|x�n)
]

+ ∇φn(r|x) ·EN|X[N|X = x]ψF(r�Ui|x�n)

+ φn(Fn−1:n(r|x))n
n

· (Ni −EN|X[N|X = x])
fX(x)

�

ϕIPV
F (r�Ui|x)=

n∑
n=2

[
pN(n|x) ·ψIPV

F (r�Ui|x�n)

+ Fn:n(r|x) · (1{Ni = n} −pN(n|x))
fX(x)

]
�

ϕ
π
(r�Ui|x)= ϕT(r�Ui|x)− (r − v0) ·ϕF(r�Ui|x)�

ϕπ(r�Ui|x)= ϕT(r�Ui|x)− (r − v0) ·ϕ
F
(r�Ui|x)�

ϕIPV
π (r�Ui|x)= ϕT(r�Ui|x)− (r − v0) ·ϕIPV

F (r�Ui|x)�

Again, Taylor expansion gives the following result.
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RESULT B.2: Under Assumption 4,

√
LhzL · (π̂N(r|x)−πN(r|x)

) d−→ N
(
0�σ2(r|x))�√

LhzL · (π̂N(r|x)−πN(r|x)
) d−→ N

(
0�σ2(r|x))�√

LhzL · (π̂IPV
N
(r|x)−πIPV

N
(r|x)) d−→ N

(
0�σ2

IPV(r|x)
)
�

where

σ2(r|x)=EU |X
[
ϕπ(r�Ui|x)2

∣∣Xi = x
]
fX(x)μ

2
K�

σ2(r|x)=EU |X
[
ϕ
π
(r�Ui|x)2

∣∣Xi = x
]
fX(x)μ

2
K�

σ2
IPV(r|x)=EU |X

[
ϕIPV
π (r�Ui|x)2

∣∣Xi = x
]
fX(x)μ

2
K�

From here, confidence intervals for πN(r|x) are constructed similarly to (7)
and (9) above. Let σ̂(r|x), σ̂(r|x), and σ̂IPV(r|x) denote sample analog non-
parametric estimators of σ(r|x), σ(r|x), and σIPV(r|x), respectively, and let
Λ̂π(r|x)= π̂N(r|x)− π̂N(r|x). With correlated values, the confidence interval
for πN(r|x) is

CI1−α
(
πN(r|x)

) =
[
π̂N(r|x)− cα · σ̂(r|x)√

LhzL
� π̂N(r|x)+ cα · σ̂(r|x)√

LhzL

]
�

where cα solves �(cα +
√
LhzL·Λ̂π(r|x)

max{σ̂(r|x)�σ̂(r|x)})−�(−cα)= 1 − α; for the IPV case,

CI1−α
(
πIPV
N
(r|x))

=
[
π̂IPV
N
(r|x)− κα · σ̂IPV(r|x)√

LhzL
� π̂IPV

N
(r|x)+ κα · σ̂IPV(r|x)√

LhzL

]
�

where �(κα)−�(−κα)= 1 − α.

B.4. Effects of Reserve Price Policies

In Section 4.4 we study the “portfolio-level” impact of various reserve price
policies. Each policy assigns a reserve price r(X) to a given auction X . (We
treat r(·) as given, i.e., not as an estimated version of a target policy.) We re-
fer to r(X) = v0 as the baseline policy. The effect of each alternative policy is
analyzed via the following measures:

(i) Average profits: Aπ = EX[πN(r(X)|X)|X ∈ X ] (with Aπ0 = EX[πN(v0|
X)|X ∈ X ]).

(ii) Average change in profits: AΔπ = Aπ − Aπ0 .
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(iii) Average no-sale probability: AF =EX[FN:N(r(X)|X)|X ∈ X ].
We similarly let AIPV

π , AIPV
Δπ , and AIPV

F denote the corresponding measures
calculated under the assumption of IPV, that is, based on πIPV

N
and F IPV

N :N .
X ⊂ int(Supp(X)) is a compact set chosen such that qX�N(x�m) > 0 and
0 < Fm−1:m(r(x)|x) < 1 for all x ∈ X and all m ∈ Supp(N); we refer to X as
our inference range. We estimate the aggregate measures described above using
nonparametric sample analogs, which we construct in the manner described
above. However, in their construction we now use a bias-reducing kernel, which
will allow for our estimated measures to be

√
L-consistent. We replace As-

sumption 4 with the following stronger version.

ASSUMPTION 5: The first part of Assumption 4 is maintained and, in addition,
the following statements hold:

(i) X ⊂ int(Supp(X)) is such that ∀x ∈ X and ∀n ∈ Supp(N), ∃f � f : 0 <
f ≤ fX(x) ≤ f <∞, ∃q�q : 0 < q ≤ qX�N(x�n) ≤ q <∞, and ∃F�F : 0 < F ≤
Fn−1:n(r|x)≤ F < 1.

(ii) The reserve price policy r(·) is such that Pr[r(X) = Vn−1:n|X ∈ X ] = 0
for each n ∈ Supp(N). In addition, r(x) is continuous and has bounded deriva-
tives up to order M ≥ z + 1 for almost every x ∈ X . This is also true for fX(x),
T(r(x)|x), E[N|X = x], and for pN(n|x), Fn−1:n(r(x)|x), and EN|X[N · 1{N <
n}|X = x] for each n= 2� � � � � n.

(iii) Let M be the constant mentioned above. The kernel K : Rz −→ R is a
function of bounded variation that satisfies

∫
K(ξ)dξ= 1, has compact support,

and is symmetric around zero. It is also a bias-reducing kernel of order M . That
is, denoting ξ ≡ (ξ1� � � � � ξz), then

∫
(ξ

q1
1 · · · ξqzz )K(ξ)dξ1 · · · dξz = 0 ∀0< q1 +

· · · + qz <M and
∫ ‖ξ‖M |K(ξ)|dξ <∞.

(iv) The bandwidth sequence hL is nonnegative and satisfies hL −→ 0. In ad-
dition, ∃δ > 0 for which L1−δh2z

L −→ ∞ and L1+δhM+z
L −→ 0.

Our choices of X , kernel, and bandwidth are described in Section B.7.

Baseline Policy

Recall that v0 is assumed to be a deterministic function of X , that is, think
of v0 below as implicitly meaning v0(X) or v0(x). Aπ0 = EX[πN(v0|X)|X ∈ X ]
is point-identified under Assumption 2 and is given by

Aπ0 =EX
[
T(v0|X)− v0

∣∣X ∈ X
]
�

where, as before, T(v0|X) = EB|X[max{v0�B}|X]. Let T̂ (r|x) be as defined
above (a kernel-based estimator of T(r|x)), but constructed with a kernel and
bandwidth sequence satisfying Assumption 5. Let

P̂(X ∈ X )= 1
L

L∑
i=1

1{Xi ∈ X }
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and

Âπ0 = 1
L

L∑
i=1

(T̂ (v0�i|Xi)− v0�i) · 1{Xi ∈ X }
P̂(X ∈ X )

�

Using results from empirical process theory (Nolan and Pollard (1987), Pakes
and Pollard (1989), and Sherman (1994a)), under the conditions of Assump-
tion 5 we can show that

sup
x∈X

∣∣T̂ (v0|x)− T(v0|x)
∣∣ = op

(
L−1/4

)
�(11)

Let PX denote Pr(X ∈ X ). With ϕT as in (10), define, for any pair of observa-
tions i� � in 1� � � � �L,

ξπ0(Ui�U�)

= 1
2

×
{

1
hzL

· ϕT(v0�i�U�|Xi)

PX
·K

(
X� −Xi

hL

)

− (T(v0�i|Xi)− v0�i)

P2
X

· (1{X� ∈ X } − PX
)}

· 1{Xi ∈ X }�
From (11) and the conditions in Assumption 5, a second order approximation
can be used to show that

Âπ0
= 1
L

L∑
i=1

(T(v0�i|Xi)− v0�i)

PX
· 1{Xi ∈ X }(12)

+
(
L

2

)−1 ∑
i<�

(
ξπ0(Ui�U�)+ ξπ0(U��Ui)

) + op
(
L−1/2

)
�

That is, we can express Âπ0
as the sum of a sample mean, plus a U-statistic of

order 2 and a negligible op(L−1/2) term. Let

ζπ0(Ui)= P−1
X · {[(T(v0�i|Xi)− v0�i

) − Aπ0

] · 1{Xi ∈ X }
+ϕT(v0�i�Ui|Xi)

}
�

The Hoeffding decomposition or “projection” (see Serfling (1980) and Sher-
man (1994b)) of the U-statistic described above and the conditions of Assump-
tion 5 yield

Âπ0
= Aπ0

+ 1
L

L∑
i=1

ζπ0(Ui)+ op
(
L−1/2

)
�(13)
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A quick inspection reveals that E[ζπ0(Ui)] = 0. Therefore,

√
L(Âπ0 − Aπ0)

d−→ N
(
0�Ω2

π0

)
�(14)

where Ω2
π0

= E[ζ2
π0
(Ui)]. From here, a (1 − α) confidence interval for Aπ0 can

be constructed as

CI1−α(Aπ0)=
[

Âπ0 − κα · Ω̂π0√
L
� Âπ0 + κα · Ω̂π0√

L

]
�

where Ω̂π0 is a sample analog nonparametric estimator of Ωπ0 and �(κα) −
�(−κα)= 1 − α.

Alternative Policies

By definition,

EX
[
πN

(
r(X)|X)∣∣X ∈ X

] = Aπ ≤ Aπ ≤ Aπ

= EX
[
πN

(
r(X)|X)∣∣X ∈ X

]
�

Aπ − Aπ0 = AΔπ ≤ AΔπ ≤ AΔπ = Aπ − Aπ0�

EX
[
FN:N

(
r(X)|X)∣∣X ∈ X

] = AF ≤ AF ≤ AF

=EX
[
FN :N

(
r(X)|X)∣∣X ∈ X

]
�

Let

Âπ = 1
L

L∑
i=1

π̂N(r(Xi)|Xi) · 1{Xi ∈ X }
P̂(X ∈ X )

�(15)

Âπ = 1
L

L∑
i=1

π̂N(r(Xi)|Xi) · 1{Xi ∈ X }
P̂(X ∈ X )

�

ÂF = 1
L

L∑
i=1

F̂N:N(r(Xi)|Xi) · 1{Xi ∈ X }
P̂(X ∈ X )

�

ÂF = 1
L

L∑
i=1

F̂N:N(r(Xi)|Xi) · 1{Xi ∈ X }
P̂(X ∈ X )

�

ÂΔπ = Âπ − Âπ0� ÂΔπ = Âπ − Âπ0 �
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Analogous to (11), empirical process theory can be used to show that, under
Assumption 5,

sup
x∈X

∣∣π̂N(
r(x)|x) −πN

(
r(x)|x)∣∣ = op

(
L−1/4

)
�(16)

sup
x∈X

∣∣π̂N(
r(x)|x) −πN

(
r(x)|x)∣∣ = op

(
L−1/4

)
�

sup
x∈X

∣∣F̂N:N
(
r(x)|x) − FN:N

(
r(x)|x)∣∣ = op

(
L−1/4

)
�

sup
x∈X

∣∣F̂N:N
(
r(x)|x) − FN:N

(
r(x)|x)∣∣ = op

(
L−1/4

)
�

With ϕ
π

, ϕπ , ϕ
F
, ϕF , and ζπ0 defined above, let

ζ
π
(Ui)= P−1

X · {[πN(
r(Xi)|Xi

) − Aπ

] · 1{Xi ∈ X }
+ϕ

π

(
r(Xi)�Ui|Xi

)}
�

ζπ(Ui)= P−1
X · {[πN(

r(Xi)|Xi

) − Aπ

] · 1{Xi ∈ X }
+ϕπ

(
r(Xi)�Ui|Xi

)}
�

ζ
F
(Ui)= P−1

X · {[FN:N
(
r(Xi)|Xi

) − AF

] · 1{Xi ∈ X }
+ϕ

F

(
r(Xi)�Ui|Xi

)}
�

ζF(Ui)= P−1
X · {[FN:N

(
r(Xi)|Xi

) − AF

] · 1{Xi ∈ X }
+ϕF

(
r(Xi)�Ui|Xi

)}
�

ζ
Δπ
(Ui)= ζ

π
(Ui)− ζπ0(Ui)� ζΔπ(Ui)= ζπ(Ui)− ζπ0(Ui)�

For each j ∈ {π�F�Δπ}, the same arguments leading to (12) and (13) apply
for Aj and Aj , with ϕT replaced with ϕ

j
and ϕj , respectively (see (10)). The

equivalent result to (14) now follows.

RESULT B.3: Under Assumption 5, for each j ∈ {π�F�Δπ},
√
L(Âj − Aj)

d−→ N
(
0�Ω2

j

)
and

√
L(Âj − Aj)

d−→ N
(
0�Ω

2

j

)
�

where Ω2
j =E[ζ2

j
(Ui)] and Ω

2

j =E[ζ2
j (Ui)].

Our CIs are obtained analogously to those above, with one difference. Be-
cause we now employ bias-reducing kernels, our estimated lower and upper
bounds for Aπ , AF , and AΔπ can cross with positive probability. For this rea-
son, we follow the prescription in Stoye (2009) and use shrinkage estimators for
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the width of the identified sets in each case. Letting bL denote a nonnegative
sequence bL → 0 such that bL

√
L→ ∞, we employ the following estimators

for the width of the identified intervals:

ϒ̂j = (Âj − Âj) · 1{Âj − Âj > bL}�(17)

Our (1 − α) CIs for Aπ , AF , and AΔπ are given by

CI1−α(Aj)=
[

Âj − cjα · Ω̂j√
L
� Âj + cjα · Ω̂j√

L

]
(18)

for each j ∈ {π�F�Δπ}, where Ω̂j and Ω̂j are sample analog nonparametric

estimators for Ωj and Ωj , and �(cjα +
√
L·ϒ̂j

max{Ω̂j �Ω̂j }
)−�(−cjα)= 1 − α.

Alternative Policies Under IPV

As before, AIPV
π , AIPV

F , and AIPV
Δπ are point-identified, and can be estimated

as

ÂIPV
π = 1

L

L∑
i=1

π̂IPV
N
(r(Xi)|Xi) · 1{Xi ∈ X }

P̂(X ∈ X )
�

ÂIPV
F = 1

L

L∑
i=1

F̂ IPV
N:N(r(Xi)|Xi) · 1{Xi ∈ X }

P̂(X ∈ X )
�

ÂIPV
Δπ = ÂIPV

π − Âπ0 �

Under Assumption 5, we can show that

sup
x∈X

∣∣π̂IPV
N

(
r(x)|x) −πIPV

N

(
r(x)|x)∣∣ = op

(
L−1/4

)
and

sup
x∈X

∣∣F̂ IPV
N :N

(
r(x)|x) − F IPV

N:N
(
r(x)|x)∣∣ = op

(
L−1/4

)
�

With ϕIPV
π and ϕIPV

F defined above, let

ζIPV
π (Ui)= P−1

X · {[πN(
r(Xi)|Xi

) − Aπ

] · 1{Xi ∈ X }
+ϕIPV

π

(
r(Xi)�Ui|Xi

)}
�

ζIPV
F (Ui)= P−1

X · {[FN :N
(
r(Xi)|Xi

) − AF

] · 1{Xi ∈ X }
+ϕIPV

F

(
r(Xi)�Ui|Xi

)}
�

ζIPV
Δπ (Ui)= ζIPV

π (Ui)− ζπ0(Ui)�
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RESULT B.4: Under Assumption 5, for each j ∈ {π�F�Δπ}, √
L(ÂIPV

j −
AIPV
j )

d−→ N (0�ΩIPV2

j ), where ΩIPV2

j =E[ζIPV
j (Ui)

2].
From here, our (1 − α) CIs for Aπ , AF , and AΔπ are given by

CI1−α
(

AIPV
j

) =
[

ÂIPV
j − κα · Ω̂

IPV
j√
L
� ÂIPV

j + κα · Ω̂
IPV
j√
L

]

for each j ∈ {π�F�Δπ}, where �(κα)−�(−κα)= 1 − α and Ω̂IPV
j is a sample

analog nonparametric estimator for ΩIPV
j .

B.5. Expected Bidders’ Surplus Conditional on N and X

For given (n� r�x), integration by parts allows us to write expected bidders’
surplus as BSn(r|x) = ∫ ∞

r
(Fn−1:n(s|x) − Fn:n(s|x))ds, giving the bounds/esti-

mate

BSn(r|x)=
∫ ∞

r

(
Fn−1:n(s|x)− Fn:n(s|x)

)
ds�

BSn(r|x)=
∫ ∞

r

(
Fn−1:n(s|x)− Fn:n(s|x)

)
ds�

BSIPV
n (r|x)=

∫ ∞

r

(
Fn−1:n(s|x)− F IPV

n:n (s|x)
)
ds�

Estimation will be simplified by the following assumption.

ASSUMPTION 6: For each n ∈ Supp(N), Vn−1:n and Vn:n have the same support
conditional on X = x, and this support is bounded above by V <∞.

If we take a new random variable S ∼ Uniform[r� V ], then

BSn(r|x)= (V − r) ·ES
[
Fn−1:n(S|x)− Fn:n(S|x)

]
�

In fact, we estimate a trimmed version of this using sample analogs

B̂S
t

n(r|x)= (t − r) · 1
L

L∑
i=1

[
F̂n−1:n(Si|x)− F̂n:n(Si|x)

]
�

B̂S
t

n(r|x)= (t − r) · 1
L

L∑
i=1

[
F̂n−1:n(Si|x)− F̂n:n(Si|x)

]
�

B̂S
t�IPV
n (r|x)= (t − r) · 1

L

L∑
i=1

[
F̂n−1:n(Si|x)− F̂ IPV

n:n (Si|x)
]
�
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where (Si)Li=1 are i.i.d. ∼ Uniform[r� t], independent of all covariates in the
data, with t chosen such that Fm−1:m(t|x) < 1 for all m ∈ {2� � � � � n}. (These are
estimates of the “trimmed integrals” BStn(r|x)= ∫ t

r
(Fn−1:n(s|x)− Fn:n(s|x))ds

and the analogously defined BS
t

n(r|x) and BSt�IPV
n (r|x).) The trimming prevents

us from reaching the boundary of the support of V |N =m, where ∇φm(·|x) be-
comes unbounded. (While this would not be a problem for estimation, it com-
plicates inference significantly; see footnote 43.) Note that we can make the
trimmed integrals as close as we want to the actual integrals by setting t large
enough. In our empirical application, we set t = 645, which covers the entire
range of observed values for Bi (transaction price) in our data. The validity
of our confidence intervals (described next) depends on the assumption that
Fm−1:m(645|x) < 1 for all m ∈ {2� � � � � n}. With ψF , ψ

F
, ψF , and ψIPV

F defined
above, let

ψ
BS
(Ui|r�x�n)=

∫ t

r

{
ψF(s�Ui|X�n)−ψF(s�Ui|X�n)

}
ds�

ψBS(Ui|r�x�n)=
∫ t

r

{
ψF(s�Ui|X�n)−ψ

F
(s�Ui|X�n)

}
ds�

ψIPV
BS (Ui|r�x�n)=

∫ t

r

{
ψF(s�Ui|X�n)−ψIPV

F (s�Ui|X�n)
}
ds�

RESULT B.5: If Fm−1:m(t|x) < 1 for all m ∈ {2� � � � � n}, and Assumptions 4
and 6 hold, then

√
LhzL · (B̂S

t

n(r|x)− BS
t

n(r|x)
) d−→ N

(
0�σ2

BS�n(r�x)
)
�√

LhzL · (B̂S
t

n(r|x)− BStn(r|x)
) d−→ N

(
0�σ2

BS�n(r�x)
)
�√

LhzL · (B̂S
t�IPV
n (r|x)− BSt�IPV

n (r|x)) d−→ N
(
0�σ IPV2

BS�n (r|x)
)
�

where

σ2
BS�n(r�x)=EU |X

[
ψ2

BS
(Ui|r�x�n)|Xi = x

]
fX(x)μ

2
K�

σ2
BS�n(r�x)=EU |X

[
ψ

2
BS(Ui|r�x�n)|Xi = x

]
fX(x)μ

2
K�

σ IPV2

BS�n (r|x)=EU |X
[
ψIPV

BS (Ui|r�x�n)2|Xi = x
]
fX(x)μ

2
K�

From here, (1 − α) confidence intervals are estimated in the same way as
before: letting σ̂BS�n(r|x), σ̂BS�n(r|x), and σ̂ IPV

BS�n(r|x) denote sample analog non-
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parametric estimators and letting Λ̂BS
n (r|x)= B̂S

t

n(r|x)− B̂S
t

n(r|x), yields

CI1−α
(
BStn(r|x)

)
=

[
B̂S

t

n(r|x)− cα · σ̂BS�n(r|x)√
LhzL

� B̂S
t

n(r|x)+ cα · σ̂BS�n(r|x)√
LhzL

]
�

CI1−α
(
BSt�IPV

n (r|x))
=

[
B̂S

t�IPV
n (r|x)− κα · σ̂

IPV
BS�n(r|x)√
LhzL

� B̂S
t�IPV
n (r|x)+ κα · σ̂

IPV
BS�n(r|x)√
LhzL

]
�

where cα solves �(cα +
√
LhzL·Λ̂BS

n (r|x)
max{σ̂BS�n(r|x)�σ̂BS�n(r|x)}) − �(−cα) = 1 − α and κα solves

�(κα)−�(−κα)= 1 − α.

B.6. Expected Bidders’ Surplus Conditional on X

Let BSN(r|x) = EN|X[BSN(r|x)|X = x] = ∑n

n=2pN(n|x) · BSn(r|x)� Main-
taining Assumption 6, our estimators are

B̂S
t

N(r|x)=
n∑
n=2

p̂N(n|x) · B̂S
t

n(r|x)�

B̂S
t

N(r|x)=
n∑
n=2

p̂N(n|x) · B̂S
t

n(r|x)�

B̂S
t�IPV
N (r|x)=

n∑
n=2

p̂N(n|x) · B̂S
t�IPV
n (r|x)�

With ψ
BS

, ψBS, and ψIPV
BS defined above, let

ϕ
BS
(Ui|r�x)=

n∑
n=2

[
pN(n|x) ·ψ

BS
(Ui|r�x�n)

+ BStn(r|x) · (1{Ni = n} −pN(n|x))
fX(x)

]
�

ϕBS(Ui|r�x)=
n∑
n=2

[
pN(n|x) ·ψBS(Ui|r�x�n)

+ BS
t

n(r|x) · (1{Ni = n} −pN(n|x))
fX(x)

]
�
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ϕIPV
BS (Ui|r�x)=

n∑
n=2

[
pN(n|x) ·ψIPV

BS (Ui|r�x�n)

+ BStn(r|x) · (1{Ni = n} −pN(n|x))
fX(x)

]
�

RESULT B.6: If Fm−1:m(t|x) < 1 for all m ∈ {2� � � � � n} and Assumptions 4
and 6 hold, then

√
LhzL · (B̂S

t

N(r|x)− BS
t

N(r|x)
) d−→ N

(
0�σ2

BS(r�x)
)
�√

LhzL · (B̂S
t

N(r|x)− BStN(r|x)
) d−→ N

(
0�σ2

BS(r�x)
)
�√

LhzL · (B̂S
t�IPV

N (r|x)− BSt�IPV
N

(r|x)) d−→ N
(
0�σ IPV2

BS (r|x))�
where

σ2
BS(r�x)=EU |X

[
ϕ2

BS
(Ui|r�x)

∣∣Xi = x
]
fX(x)μ

2
K�

σ2
BS(r�x)=EU |X

[
ϕ2

BS(Ui|r�x)
∣∣Xi = x

]
fX(x)μ

2
K�

σ IPV2

BS (r|x)=EU |X
[
ϕIPV

BS (Ui|r�x)2
∣∣Xi = x

]
fX(x)μ

2
K�

From there, confidence intervals are estimated as before,

CI1−α
(
BStN(r|x)

)
=

[
B̂S

t

N(r|x)− cα · σ̂BS(r|x)√
LhzL

� B̂S
t

N(r|x)+ cα · σ̂BS(r|x)√
LhzL

]
�

CIIPV
1−α

(
BStN(r|x)

)
=

[
B̂S

t�IPV

N (r|x)− κα · σ̂
IPV
BS (r|x)√
LhzL

� B̂S
t�IPV

N (r|x)+ κα · σ̂
IPV
BS (r|x)√
LhzL

]
�

where σ̂BS(r|x), σ̂BS(r|x), and σ̂ IPV
BS (r|x) are sample analog nonparametric esti-

mators, Λ̂BS(r|x)= B̂S
t

N(r|x)− B̂S
t

N(r|x), cα solves �(cα +
√
LhzL·Λ̂BS(r|x)

max{σ̂BS(r|x)�σ̂BS(r|x)})−
�(−cα)= 1 − α, and �(κα)−�(−κα)= 1 − α.

B.7. Kernels, Bandwidths, and Inference Range Used

Kernels Employed

For a given (r�x), our approach requires that we estimate Fn−1:n(r|x) for
each n = {2� � � � � n}, where n = 11 in our empirical application. While our
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full sample size was L = 1,109, the number of observations corresponding to
each auction size n ∈ {2� � � � �11} was, naturally, much smaller. Since X ∈ R

6,
this could produce nonparametric estimators that are disproportionately influ-
enced by a handful of observations. In an effort to avoid this, we chose a ker-
nel with bounded, but relatively wide support. We used a multiplicative kernel
K(ψ1� � � � �ψ6)= ∏6

�=1 k(ψ�), where each k(·) was a quartic kernel of the form

k(ψ)= b · (s2 −ψ2
)2 · 1{|ψ| ≤ s}�

The support of k(·) is the compact set [−s� s], and the constant b was chosen
so that

∫ s

−s k(ψ)dψ= 1. All individual-auction results are based on s = 20. For
the reserve price policy counterfactuals, we need to estimate Fn−1:n(r(Xi)|Xi)
separately for each Xi in our inference range and for each n= {2� � � � �11}. In
accordance with Assumption 5, we employed a bias-reducing version of the
kernel described in the previous paragraph: specifically, we used a multiplica-
tive kernel of the type K(ψ1� � � � �ψ6)= ∏6

�=1 k(ψ�), where

k(ψ)=
4∑
�=1

b� · (s2 −ψ2
)2� · 1{|ψ| ≤ s}�

As in our graphical analysis, we used s = 20. The coefficients b1� � � � � b4 were
chosen to ensure that k(·) was bias-reducing of order M = 8, which is compat-
ible with Assumption 5. We discuss bandwidth selection below.

Bandwidth Selection

We approach the issue of bandwidth selection along the lines described in
Section 4.2. As our reference model, we focus on a parametric specification
where we assume

log(Vn−1:n)|X ∼ N
(
β′
nX�exp

{
γ′
nX

})
�

By Assumption 2, this implies that

log(B)|X�N = n∼ N
(
β′
nX�exp

{
γ′
nX

})
�

where, as we defined above, B denotes transaction price and X was expanded
to include a constant term, so each γn includes an “intercept” term. Alter-
native specifications were considered and fitted, but the maximum likelihood
estimator (MLE) estimates produced by the above parametrization proved to
be the most robust to alternative starting values and alternative optimization
algorithms. In addition, a likelihood ratio statistic comparing our specification
against a model including only a constant rejected the latter, indicating that our
specification has good explanatory power for the data. Let (β̃n� γ̃n) denote the
MLE estimator of (βn�γn). Figure 11 shows π̃n(·|x; β̃n� γ̃n), π̃n(·|x; β̃n� γ̃n),
and π̃IPV

n (·|x; β̃n� γ̃n) (the resulting estimates for the lower bound, upper
bound, and IPV expected profits) conditional on x =X(0�50) and v0 = 60, and
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FIGURE 11.—Estimated curves for the lower bound, upper bound, and IPV expected prof-
its produced by our parametric reference model, conditional on x = X(0�50), v0 = 60, and
n= 2�3�4�5. The solid line depicts IPV profits; the dotted lines depict our bounds.

for n = 2�3�4�5. These were obtained as described in Section B.2, using our
MLE results in place of T̂n(r|x) and {F̂m−1:m(r|x)}nm=2.

The reference model for profits unconditional on N requires additional
parametric assumptions. We parametrized the distribution of N given X ,
which is used in the estimation of F IPV

N :N and πIPV
N

, as

pN(n|x)= exp{δ′
nX}

n∑
m=2

exp{δ′
mX}

for n= 2� � � � � n�

and parametrized the conditional expectations used in the estimation of FN:N ,
FN:N , πN , and πN as47

EN|X[N|X] =X ′τ and EN|X
[
N · 1{N <m}|X] =X ′ζm�

47Since the reference model is only intended to fit the data, not to structurally estimate model
primitives, there is no inconsistency in parametrizing N separately for the two cases, and this
allows for quicker computation and a better fit to the data.
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In all cases, X was expanded with the inclusion of a constant. Our parametric
reference model is, therefore, fully indexed by θ≡ ({βn�γn�δn}nn=2� {ζn}nn=3� τ).
The parametric versions of the estimators described in Section B.3 were con-
structed as described there, replacing the nonparametric estimators with their
parametric counterparts.

As discussed in the text, the parametric model is used as a reference in our
choice of bandwidth by focusing on “error” measures in estimation with respect
to it. Let B(0�99) denote the 99th percentile of B, which is equal to 385 in our
data. For a given x and n, consider the following integrated mean squared error
measures, all of which are integrated with respect to the empirical distribution
in the data (as opposed to analytically):

Q
π
(x�n)= ÊB

[(
π̃n(B|x; θ̃)− π̂n(B|x))2

· 1{
v0 ≤ B≤ B(0�99)

} · 1{N = n}]�
Qπ(x�n)= ÊB

[(
π̃n(B|x; θ̃)− π̂n(B|x))2

· 1{
v0 ≤ B≤ B(0�99)

} · 1{N = n}]�
QIPV
π (x�n)= ÊB

[(
π̃IPV
n (B|x; θ̃)− π̂IPV

n (B|x))2

· 1{
v0 ≤ B≤ B(0�99)

} · 1{N = n}]�
In each case, v0 is set equal to appraisal value and is fixed at the corresponding
value indicated in x. Next, consider the analogous measures taken uncondi-
tional on N :

Q
π
(x)= ÊB

[(
π̃N(B|x; θ̃)− π̂N(B|x))2 · 1{

v0 ≤ B≤ B(0�99)
}]
�

Qπ(x)= ÊB
[(
π̃N(B|x; θ̃)− π̂N(B|x))2 · 1{

v0 ≤ B≤ B(0�99)
}]
�

QIPV
π (x)= ÊB

[(
π̃IPV
N
(B|x; θ̃)− π̂IPV

N
(B|x))2 · 1{

v0 ≤ B≤ B(0�99)
}]
�

Our bandwidths are of the form hL = c · σ̂(X) · L−α, where σ̂(X) is the es-
timated standard deviation of X and α satisfies the bandwidth convergence
restrictions48 in Assumption 4. This requires 1

z+4 < α<
1
z

or 1
10 < α<

1
6 for our

data. We set α = 2
15 , the midpoint of that range. The choice of value for the

constant c is based on the minimization of the various error measures defined
above, as we now describe.

Consider the first two empirical analyses in the paper, represented in Fig-
ures 3 and 4: expected profits for the “benchmark auction” (X = X(0�50) and

48Bandwidths for the counterfactual reserve policy analysis in Section 4.4 must follow the con-
vergence rate conditions in Assumption 5. We will describe the choice of bandwidth for that case
below.
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FIGURE 12.—Comparison between the estimated profit curves from the parametric refer-
ence model (solid lines) and the nonparametric estimates obtained through our bandwidth se-
lection procedure (dotted lines). Results shown for the benchmark auction, where x = X(0�50)

and v0 = 60.

v0 = 60), both conditional and unconditional on N , at various reserve prices.
First, consider the latter, expected profit in expectation over N . The error
between the nonparametric estimate of πN(x) and the estimate under the
reference model, defined above as Q

π
(x), is minimized at a bandwidth of

hL ≈ 0�22 · σ̂(X). The error in π̂N(x) relative to the reference model, Qπ(x),
is minimized at hL ≈ 0�20 · σ̂(X). The error in π̂IPV

N
, QIPV

π , is minimized at
hL ≈ 0�18 · σ̂(X). Figure 12 shows the estimated profit curves that result from
these bandwidths (the dotted lines), alongside the parametric estimates from
the reference model (the solid lines). The results were very similar at other
values of v0 (the analysis considered in Figure 5). As for expected profit con-
ditional on N (the profit functions illustrated in Figure 3), for n = 2� � � � �9,
the measures Q

π
(x�n), Qπ(x�n), and QIPV

π (x�n) are all minimized at band-
widths between 0�18 · σ̂(X) and 0�26 · σ̂(X). Based on all of this, we chose
to use bandwidths of hL = 0�22 · σ̂(X) throughout the individual auction-level
analysis (Section 4.3).



22 A. ARADILLAS-LÓPEZ, A. GANDHI, AND D. QUINT

Next, we discuss the bandwidths used in the reserve policy counterfac-
tual analysis in Section 4.4. As before, our bandwidth is of the form hL =
c · σ̂(X) ·L−α, where the rate α is now chosen to satisfy Assumption 5, which
requires 1

M+z < α <
1

2z , where M is the order of the kernel used. As we de-
scribed above, we use M = 8, so we need 1

14 < α <
1

12 . We chose α = 13
168 , the

midpoint of this range. Once again, our choice of the constant c was guided
by the minimization of the criteria described above. Since our counterfactual
analysis requires estimation of the economic measures of interest over a range
of x and a range of reserve prices, we focused on the bandwidth that minimized∑

x∈I

[
Q
π
(x)+Qπ(x)+QIPV

π (x)
]
�

where

I = {
X(0�25)�X(0�30)�X(0�35)� � � � �X(0�65)�X(0�70)�X(0�75)

}
�

(Recall that X(τ) represents the τth percentile of those covariates positively
correlated with transaction price and the (1 − τ)th percentile of those nega-
tively correlated with transaction price.) In taking this sum, we divided Q

π
(x),

Qπ(x), andQIPV
π (x) by ÊB[π̃N(B|x; θ̃)], ÊB[π̃N(B|x; θ̃)], and ÊB[π̃IPV

N
(B|x; θ̃)],

respectively, as a scale normalization. The criterion function was minimized
approximately at hL = 0�44 · σ̂(X) (see Figure 13), which is, therefore, the
bandwidth we used throughout our reserve price policy analysis. Note that this

FIGURE 13.—Criterion function for bandwidth selection in reserve policy analysis. Bandwidth
is expressed as hL = c · σ̂(X) ·L−α.
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bound is twice as large as the one used in our auction-level analysis. This result
is not surprising since, for a given bandwidth selection criterion, bias-reducing
kernels typically admit larger bandwidths compared to non-bias-reducing ker-
nels. Finally, the bandwidth bL utilized in (17) was set to equal 10−8 at our
sample size, which made it negligible.
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