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DETERMINING THE SMOOTHNESS of the equilibrium strategy is difficult when
the differential equation (2) in the text does not have an explicit solution, which
is the case for general utility functions U(·). This is more so as this differential
equation is known to have a singularity at v(I) when the reserve price is non-
binding. To address these difficulties, we rewrite it as a differential equation in
the bid quantile function b(α� I)= s[v(α� I)], where α ∈ [0�1] and v(α� I) is the
α-quantile of F(·|I). We then view the latter differential equation as a member
of a set (also called flow) of differential equations E(B; t) = 0 parameterized
by t ∈ [0�1] in an unknown function B(·), where E(B;1)= 0 corresponds to the
general utility function U(·), while E(B;0) = 0 corresponds to an appropriate
constant relative risk aversion (CRRA) utility function; see (S.1)–(S.3). Next,
we adopt a functional approach which exploits the existence, uniqueness, and
smoothness of the equilibrium strategy in the CRRA case, where the solution
of the differential equation (2) is known explicitly. In particular, our functional
approach delivers the existence and uniqueness of the equilibrium strategy for
a general utility function U(·) by a continuation argument theorem, thereby
providing an alternative proof to those used in the economics literature. More-
over, our framework establishes the smoothness of the equilibrium strategy by
an implicit functional theorem.

PROOF OF THEOREM 1

As our argument is done for every I ∈ I , hereafter we omit the dependence
on I. Theorem 1 follows from Theorems S1 and S2, where b(α) = s[v(α)] is
the α-bid quantile function with α ∈ [0�1], v(α) is the α-quantile of F(·), and
s(·) is a solution of (2) which must be strictly increasing by Lemma S1 below.
Since F[v(α)] = α implies v′(·) = 1/f [v(·)], we have b′(α) = s′(v(α))/f (v(α)).
Hence, from (2), the bid quantile function b(·) must solve

b′(α)= I − 1
α

λ[v(α)− b(α)] for α ∈ (0�1] with b(0)= v(0)�(S.1)

where λ(·) is R + 1 continuously differentiable with λ′(·) ≥ 1 on [0�∞) and
v(·) is R + 1 continuously differentiable with v′(·) > 0 on [0�1] as U(·) ∈ UR

and F(·) ∈ FR. Note that (S.1) is ill-conditioned at α= 0. As for (2) in the text,
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the solutions of (S.1) are not explicit except for simple utility functions such as
CRRA. Specifically, when U(x) = x1−c/[1 − c] for 0 ≤ c < 1, it is well known
that the equilibrium strategy exists and is unique so that the solution of (S.1)
exists and is unique, namely

b(α)= I − 1
(1 − c)α(I−1)/(1−c)

∫ α

0
r(I−1)/(1−c)−1v(r)dr�(S.2)

Moreover, following the proof of Lemma A2 in Guerre, Perrigne, and
Vuong (2000), the equilibrium strategy in the CRRA case and hence the
bid quantile function b(·) = s[v(·)] are R + 1 continuously differentiable on
[v(0)� v(1)] = [v� v] and [0�1], respectively.

We now define our flow of differential equations {E(B; t)= 0; t ∈ [0�1]}. For
t ∈ (0�1], let

Λ(x; t)=
{ λ(tx)

t
for x ∈ R+,

λ′(0)x for x ∈ R−,

V (α; t)= v(0)+ v(αt)− v(0)
t

for α ∈ [0�1]�

These two functions are extended at t = 0 by considering their limits as t ↓ 0,
namely, Λ(x;0) = λ′(0)x for x ∈ R and V (α;0) = v(0)+ v′(0)α for α ∈ [0�1].
For every t ∈ [0�1], note that Λ(·; t) and V (·; t) correspond to a utility func-
tion U(x; t) = exp(

∫ x

0 [1/Λ(u; t)]du) ∈ UR and a private value distribution
F(·|·; t) ∈ FR, respectively. The flow of differential equations {E(B; t) = 0; t ∈
[0�1]} is then defined by

B′(α; t)= I − 1
α

Λ(V (α; t)−B(α; t); t)(S.3)

for α ∈ (0�1] with B(0; t)= v(0)�

which is analogous to (S.1). Note that E(B;0)= 0 is

B′(α;0)= (I − 1)λ′(0)
α

[v(0)+ v′(0)α−B(α;0)]
for α ∈ (0�1] with B(0;0)= v(0)�

which corresponds to (S.1) for a CRRA utility function with parameter 0 ≤
c = 1 − 1/λ′(0) < 1 as λ′(·) ≥ 1 and with a uniform private value distribution
on [v(0)� v(0)+v′(0)]. In particular, a key property is that E(B;0)= 0 is known
to admit a unique solution, namely

B(α;0)= v(0)+ (I − 1)λ′(0)
(I − 1)λ′(0)+ 1

v′(0)α
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from (S.2). On the other hand, solving E(B;1)= 0 is equivalent to solving (S.1)
since Λ(x;1) = λ(x) and V (α;1) = v(α). Thus, the flow of differential equa-
tions {EI(B; t)= 0; t ∈ [0�1]} is a path between E(B;0)= 0 and E(B;1)= 0.

The existence and uniqueness of the solution to E(B;1)= 0 can be inferred
from the existence and uniqueness of the solution to E(B;0) by a continuation
argument given by Proposition 6.10 in Zeidler (1985) and reproduced below
as Theorem Z1. Roughly this argument says that E(B;1) = 0 admits a unique
solution if E(B;0)= 0 does under some regularity conditions on the functional
operator associated with the differential equation E(B; t) = 0 and a so-called
a priori condition defining the set of functions containing the potential solu-
tions of E(B; t)= 0. This gives us the following theorem.

THEOREM S1: If [U�F] ∈ UR × FR, then for every I ∈ I , statements (i) and (ii)
hold:

(i) The differential equation (S.1) has a unique solution b(·), which is strictly
increasing and continuously differentiable over [0�1] with b(α) < v(α) for all α ∈
(0�1].

(ii) s(·) = b(F(·)) is the unique solution of the differential equation (2) with
initial condition s(v(0)) = v(0). Moreover, this solution is strictly increasing and
continuously differentiable on [v(0)� v(1)] with s(v) < v for all v ∈ (v(0)� v(1)],
s′(v) > 0 for all v ∈ [v(0)� v(1)], and s′(v(0)) = (I − 1)λ′(0)/[(I − 1) ×
λ′(0)+ 1]< 1.

A main advantage of our functional approach is that it also delivers the
smoothness of the equilibrium strategy. As above, we first study the differ-
entiability of the bid quantile function b(·) on [0�1], building on an implicit
functional theorem in Zeidler (1985, Theorem 4.B) and reproduced below
as Theorem Z2. This theorem is applied to the flow of differential equations
{E(B; t)= 0; t ∈ [0�1]}.

THEOREM S2: If [U�F] ∈ UR × FR, then for every I ∈ I , the following state-
ments hold:

(i) The unique solution b(·) of (S.1) admits R+ 1 continuous partial deriva-
tives on [0�1], while b′(α) has R+ 1 continuous partial derivatives on (0�1].

(ii) The unique solution s(·) of the differential equation (2) with initial condi-
tion s(v(0))= v(0) admits R+ 1 continuous partial derivatives on [v(0)� v(1)].

To prove Theorems S1 and S2 requires the establishment of some properties
so as to satisfy the conditions of the continuation argument theorem and the
implicit functional theorem. These properties follow from the next series of
lemmas and corollaries, most of which are used to check the conditions of
either theorem. In what follows, π(k)(α; t), V (k)(α; t), and Λ(k)(x; t) denote
the kth derivatives of π(α; t), V (α; t), and Λ(x; t) with respect to α, α, and x,
respectively.

We first establish some properties that potential solutions to (2) must satisfy.
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LEMMA S1: If [U�F] ∈ UR × FR, then for every I ∈ I , solutions s(·) of (2) with
boundary condition s(v(0))= v(0) (if any), are such that (i) and (ii) hold:

(i) s(·) is continuously differentiable on [v(0)� v(1)].
(ii) s(v) < v for all v ∈ (v(0)� v(1)] and s′(v) > 0 for all v ∈ [v(0)� v(1)] with

s′(v(0))= (I − 1)λ′(0)/[(I − 1)λ′(0)+ 1]< 1.

PROOF: Fix I ∈ I . Let λ̃(x) = λ(x) for x ≥ 0 and let λ̃(x) = λ′(0)x for x < 0.
Note that λ̃(·) is strictly increasing and continuously differentiable over R be-
cause λ′(·) ≥ 1 on R+. We establish (i) and (ii) for the potential solutions of
the “extended” differential equation

s′(v)= (I − 1)
f (v)

F(v)
λ̃(v− s(v))(S.4)

for v ∈ (v(0)� v(1)] with s(v(0))= v(0)�

Since λ(·) and λ̃(·) coincide over R+, a solution of (2) with s(v(0)) = v(0) is
also a solution of (S.4). Conversely, a solution of (S.4) satisfying s(v) < v for all
v ∈ (v(0)� v(1)] is a solution of (2) with s(v(0)) = v(0). In Step 2 we show that
potential solutions of (S.4) must satisfy s(v) < v for all v ∈ (v(0)� v(1)]. Hence,
s(·) is a solution of (2) with s(v(0))= v(0) if and only if it is a solution of (S.4).
The desired result then follows.

STEP 1—Proof of (i) for Solutions of (S.4): Solutions s(·) of (S.4) are con-
tinuous on [v(0)� v(1)] and continuously differentiable on (v(0)� v(1)]. Thus,
it suffices to show the existence of s′(v(0)) with limv↓v(0) s′(v) = s′(v(0)). For
v ∈ (v(0)� v(1)], let

Ψ(v) = (I − 1)
f (v)(v − v(0))

F(v)

λ̃(v − s(v))

v− s(v)
�

r(v) = exp
(

−
∫ v(1)

v

Ψ(u)

u− v(0)
du

)
�

Also, let Ψ(v(0)) = (I − 1)λ′(0) and r(v(0)) = 0. Thus, Ψ(·) is continuous and
strictly positive on [v(0)� v(1)] since [U�F] ∈ UR × FR. Hence, 0 < r(·) < 1 on
(v(0)� v(1)]. Moreover, Ψ(v)

v−v(0) = Ψ(0)+o(1)
v−v(0) when v ↓ v(0). Thus, limv↓v(0) r(v) = 0

and r(·) is continuous on [v(0)� v(1)].
Now, (S.4) can be written as s′(v) = Ψ(v) v−s(v)

v−v(0) for v ∈ (v(0)� v(1)] with
s(v(0))= v(0), that is,

(v− v(0))s′(v)+Ψ(v)(s(v)− v(0))=Ψ(v)(v − v(0))(S.5)

for v ∈ (v(0)� v(1)] with s(v(0))= v(0)�

Letting C(v) = r(v)[s(v) − v(0)] yields, for v ∈ (v(0)� v(1)], C ′(v) = r(v) ×
Ψ(v) s(v)−v(0)

v−v(0) + r(v)s′(v), so that (S.5) gives C ′(v) = r(v)Ψ(v). Thus, C(v) =
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C0 + ∫ v

v(0) r(u)Ψ(u)du, where C0 = 0 because C(v(0)) = 0. Hence, the poten-
tial solutions of (S.4) satisfy

s(v)= v(0)+
∫ v

v(0)

r(u)

r(v)
Ψ(u)du�

But for v(0) < u≤ v ≤ v(1),

r(u)

r(v)
= exp

(
−

∫ v

u

Ψ(v(0))+ o(1)
x− v(0)

dx

)

= exp
(

−[
Ψ(v(0))+ o(1)

]
log

v− v(0)
u− v(0)

)

=
(
u− v(0)
v − v(0)

)[Ψ(v(0))+o(1)]
�

It follows that

s(v)− v(0) =
∫ v

v(0)

(
u− v(0)
v− v(0)

)(Ψ(v(0))+o(1))[
Ψ(v(0))+ o(1)

]
du

= Ψ(v(0))
Ψ(v(0))+ 1

(v− v(0))(1 + o(1))�

showing that s(v(0))= v(0) as desired. Moreover, s(·) is differentiable at v(0)
with s′(v(0)) = (I − 1)λ′(0)/[(I − 1)λ′(0) + 1] using Ψ(v(0)) = (I − 1)λ′(0).
On the other hand, s′(v) =Ψ(v) v−s(v)

v−v(0) for v > v(0) gives

lim
v↓v(0)

s′(v) = lim
v↓v(0)

Ψ(v)

(
1 − s(v)− v(0)

v− v(0)

)

= Ψ(v(0))
(
1 − s′(v(0))

) = s′(v(0))

as desired.

STEP 2—Proof of (ii) for Solutions of (S.4): We first prove that s(v) < v
for v ∈ (v(0)� v(1)] by contradiction. Observe that 0 < s′(v(0)) < 1. It follows
that s(v) < v for v > v(0) close enough to v(0). Suppose that there is a v∗

in (v(0)� v(1)] such that s(v) < v for v ∈ (v(0)� v∗) and s(v∗) = v∗, so that
s′(v∗) = 0 by (S.4). Since R≥ 1, differentiating (S.4) at v∗ yields

s′′(v∗)
I − 1

= ∂

∂v

(
f (v∗)
F(v∗)

)
λ(v∗ − s(v∗))+ f (v∗)

F(v∗)
λ′(v∗ − s(v∗))(1 − s′(v∗))

= f (v∗)
F(v∗)

λ′(0) > 0�
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Hence, a second-order Taylor expansion for ε > 0 small enough yields s(v∗ −
ε) = v∗ + [s′′(v∗) + o(1)]ε2/2. Thus, s(v∗ − ε) > v∗ > v∗ − ε for ε > 0 small
enough, contradicting s(v∗ − ε) < v∗ − ε.

We next show that s′(v) > 0 for v ∈ [v(0)� v(1)]. This follows immediately
from s′(v(0)) = (I − 1)λ′(0)/[(I − 1)λ′(0) + 1] and (S.4) using s(v) < v for
v ∈ (v(0)� v(1)]. Q.E.D.

The next result, which follows from Lemma S1, relates the potential solu-
tions of (2) to those of (S.1). It also provides some properties of the bid quan-
tile function b(·).

COROLLARY S1: If [U�F] ∈ UR × FR, then for every I ∈ I , the following state-
ments hold:

(i) b(·) solves (S.1) if and only if b(α) = s(v(α)), where s(·) is a solution of
(2) with s(v(0)) = v(0). Equivalently, s(·) solves (2) with s(v(0)) = v(0) if and
only if s(v)= b(F(v)), where b(·) is a solution of (S.1).

(ii) Solutions b(·) of (S.1), if any, are continuously differentiable on [0�1], with
b′(v) > 0 for all α ∈ [0�1] and b(α) < v(α) for all α ∈ (0�1].

PROOF: Note that v(α) is continuously differentiable on [0�1] with v′(α) =
1/f (v(α)) > 0 as v(α) = F−1(α). For part (i), setting b(α) = s(v(α)) yields
b′(α) = s′(v(α))/f (v(α)), so if b(·) solves (S.1), then the change of variable
α = F(v) yields that s(·) solves (2) with the desired initial condition. Con-
versely, if s(·) solves (2) with s(v(0)) = v(0), then elementary algebra yields
that b(·) solves (S.1). The second assertion of (i) follows similarly. Part (ii)
follows from Lemma S1 with b(α) = s(v(α)). Q.E.D.

Instead of working with B(·; t), it is more convenient to make the change of
variable π(·; t) = V (·; t) − B(·; t), where V (·; t) is continuously differentiable
on [0�1]. This gives the companion flow of differential equations {Ẽ(π; t) =
0; t ∈ [0�1]} defined by

π ′(α; t)= V ′(α; t)− I − 1
α

Λ(π(α; t); t)(S.6)

for α ∈ (0�1] with π(0; t)= 0�

The next result, which also follows from Lemma S1, provides a set Σ in which
the potential solutions of (S.6) lie. Hereafter, we let C0

1 be the set of functions
π(·) from [0�1] to R that are continuously differentiable on [0�1] and satisfy
π(0)= 0.

COROLLARY S2: Let [U�F] ∈ UR × FR. For every I ∈ I , define v̄′ =
maxα∈[0�1] v′(α), where 0 < v̄′ < ∞, and let Σ = {π(·) ∈ C0

1;0 <π(α) < v̄′ for α ∈
(0�1]�π ′(0) > 0}. Then, for any t in [0�1], solutions π(·; t) of the differential
equation Ẽ(π; t)= 0, if any, are in Σ.
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PROOF: Fix t ∈ [0�1]. For α ∈ [0�1], note that V ′(α; t) = v′(αt) and
V (0� t) = v(0). Hence, 0 ≤ V (α; t) = v(0) + ∫ α

0 v′(ut)du ≤ v(0) +
supx∈[0�1] v

′(x) = v(0) + v̄′. Moreover, V (·; t) is R + 1 continuously differen-
tiable on [0�1], while Λ(·; t) has the same properties as λ(·). Thus, (S.3)
is similar to (S.1), thereby yielding that B(·; t) is continuously differentiable
on [0�1] with v(0) < B(α; t) < V (α; t) for all α ∈ (0�1] by Corollary S1(ii).
Now, π(·; t) = V (·; t) − B(·; t) solves (S.6) if and only if B(·; t) solves (S.3).
Thus, π(·; t) ∈ C0

1 and 0 <π(α; t) = V (α; t)−B(α; t) < V (α; t)−v(0)≤ v̄′ for
α ∈ (0�1]. Moreover, π ′(0; t)= V ′(0; t)−B′(0; t)= v′(0)− s′(v(0); t)v′(0) > 0
since v′(0) > 0 and s′(v(0); t) = (I − 1)Λ′(0; t)/[(I − 1)Λ′(0; t) + 1] < 1 by
Lemma S1(ii), where Λ′(0; t)= λ′(0) > 0. Q.E.D.

Next, we establish the smoothness of the auxiliary functions Λ(x; t) and
V ′(α; t).

LEMMA S2: If [U�F] ∈ UR × FR, then for every I ∈ I , statements (i) and (ii)
are valid:

(i) Λ(x; t) is R continuously differentiable in (x� t) ∈ R+ × [0�1], Moreover,
(1/x)∂rΛ(x; t)/∂tr is continuous in (x� t) ∈ R+ × [0�1] for r = 0� � � � �R.

(ii) V ′(α; t) is R continuously differentiable in (α� t) ∈ [0�1]2.

PROOF: Let 0 < t ≤ 1. For x > 0, the Leibnitz–Newton formula yields

∂rΛ(x; t)
∂tr

= ∂r

∂tr

(
λ(tx)

t

)

=
r∑

j=0

r!
j!(r − j)!

∂jλ(tx)

∂tj
∂r−j

∂tr−j

(
1
t

)

= (−1)rr!
tr+1

r∑
j=0

λ(j)(tx)

j! (−tx)j

for 0 ≤ r ≤ R. On the other hand, a Taylor expansion of λ(0) = λ(tx− tx) = 0
around tx with integral remainder (see, e.g., Zeidler (1985, p. 77)) shows that

0 =
r∑

j=0

λ(j)(tx)

j! (−tx)j

+ (−tx)r+1

r!
∫ 1

0
(1 − u)rλ(r+1)(tx− utx)du�
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Hence, using the change of variable ν = 1 − u, we obtain for (x� t) ∈ (∞) ×
(0�1],

1
x

∂rΛ(x; t)
∂tr

= xr

∫ 1

0
νrλ(r+1)(νtx)dν�

∂r1+r2Λ(x; t)
∂xr1 ∂tr2

= ∂r1

∂xr1

(
xr2+1

∫ 1

0
νr2λ(r2+1)(νtx)dν

)
�

where 0 ≤ r1 + r2 ≤ R. Using the Lebesgue dominated convergence theorem
and the R+ 1 continuous differentiability of λ(·) on R+, it can be checked that
the above two functions are continuous on R+ × [0�1], thereby establishing
part (i). Part (ii) follows from V ′(α; t) = v′(αt) for (α� t) ∈ [0�1]2, where v′(·)
is R continuously differentiable on [0�1] because F(·|·) ∈ FR. Q.E.D.

We now introduce some functional operators associated with the differen-
tial equation (S.6). Let C0 be the set of functions π(·) from [0�1] to R that
are continuous on [0�1]. As is well known, C0 is a Banach space equipped
with the norm ‖π‖0 = supα∈[0�1] |π(α)|. Similarly, C0

1 as defined earlier is
a Banach space equipped with the norm ‖π‖1 = maxr=0�1 supα∈[0�1] |π(r)(α)| =
supα∈[0�1] |π(1)(α)|.1 In particular, Σ is an open subset of C0

1 since the open ball
V(π;ε) = {ζ ∈ C0

1; ‖ζ −π‖1 < ε} ⊂ Σ for any π ∈ Σ and ε = επ small enough.
Moreover, for every t ∈ [0�1], it can be checked that Λ(π(α); t)/α and V ′(α; t)
are continuous in α ∈ [0�1] whenever π(·) ∈ C0

1. Thus, for every t ∈ [0�1], we
can view the solutions of the differential equation (S.6) as the zeros of the
functional operator E(·; t) from C0

1 to C0 (see Lemma S3(i) below), where

E(·; t) :π(·)→ E(π; t)(α) = π(1)(α)+ I − 1
α

Λ(π(α); t)− V ′(α; t)�
α ∈ [0�1]�

In what follows Er1r2(π; t) = ∂r1+r2E(π; t)/∂πr1 ∂tr2 denotes the Fréchet par-
tial derivatives of E(π;α) (see, e.g., Zeidler (1985)), which are linear opera-
tors from (C0

1)
r1 × R

r2 . For a linear operator L : C1 �→ C0 with Banach spaces Ci

equipped with norms Ni, ρ(L) = supx∈C1�N1(x)=1 N0(L(x)) is the operator norm
of L.

LEMMA S3: If [U�F] ∈ UR × FR, then for every I ∈ I , the following statements
hold (i)–(iii):

(i) E(π; t) ∈ C0 for all (π� t) ∈ C0
1 × [0�1].

1To see that ‖π‖1 = ‖π(1)‖0, note that |π(α)| = | ∫ α

0 π(1)(u)du| ≤ supu∈[0�1] |π(1)(u)| for all α ∈
[0�1].
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(ii) E(π; t) is R Fréchet differentiable in (π� t) ∈Σ×[0�1] with Fréchet partial
derivatives Er1r2(π; t), 0 ≤ r1 + r2 ≤ R, that are uniformly continuous over Σ ×
[0�1].

(iii) The Fréchet partial derivative E10(π; t) at (π� t) ∈ Σ× [0�1] maps η ∈ C0
1

to E10(π; t)(η) ∈ C0 defined as E10(π; t)(η)(α) = η(1)(α) + I−1
α
Λ(1)(π(α); t) ×

η(α) for α ∈ [0�1]. Moreover, E10(π; t) is one-to-one (bijective) from C0
1

to C0 with an inverse of bounded operator norm uniformly in (π� t) ∈ Σ ×
[0�1].

PROOF: Throughout, fix I ∈ I .
(i) Fix (π� t) ∈ C0

1 × [0�1]. It is sufficient to study Λ(π(·); t), which is
clearly continuous on (0�1]. As α ↓ 0, π(α) = π ′(0)α + o(α) since π(0) = 0
by definition of C0

1. For t > 0, it follows that Λ(π(α); t)/α = λ(tπ(α))/(αt) =
λ′(0)π ′(0)+ o(1), the last expansion being also true for t = 0. Thus, E(π; t) ∈
C0.

(ii) We first consider the Gâteaux derivatives of E(π; t). From Zeidler
(1985), for example, these are obtained in two steps: In the first step,
∂r1+r2E(π + uη; t)/∂ur1 ∂tr2 is computed, where η ∈ C0

1; in the second step,
the term ηr1 arising in this expression is changed into η1 × · · · ×ηr1 , where the
ηr are in C0

1. For 1 ≤ r1 + r2 ≤ R and η1� � � � �ηR in C0
1, the Gâteaux derivatives

are

E10(π; t)(η1)(α)= η(1)
1 (α)+ (I − 1)Λ(1)(π(α); t)η1(α)

α
�(S.7)

E0r2(π; t)(α) = I − 1
α

∂r2Λ(π(α); t)
∂tr2

− ∂r2V ′(α; t)
∂tr2

for r2 ≥ 1�

Er1r2(π; t)(η1� � � � �ηr1)(α)

= (I − 1)
∂r1+r2Λ(π(α); t)

∂xr1 ∂tr2

η1(α)

α
η2(α)× · · · ×ηr1(α)� otherwise�

Note that η1(α)/α belongs to C0 since η1 ∈ C0
1. It follows that Er1r2(π; t) ×

(η1� � � � �ηr1) ∈ C0 for 1 ≤ r1 + r2 ≤ R by Lemma S2.
We now show that E(π; t) is R Fréchet continuously differentiable over

Σ×[0�1] with Fréchet partial derivatives Er1r2(π; t). Note that E0r2(π; t) is uni-
formly continuous over Σ × [0�1] by Lemma S2. Thus, from Proposition 4.8
in Zeidler (1985), part (ii) is proven if, for r1 ≥ 1, the following conditions
hold:

(ii)(a) The map (η1� � � � �ηr1)→ Er1r2(π; t)(η1� � � � �ηr1) is a continuous mul-
tilinear operator.

(ii)(b) The map (π� t) → Er1r2(π; t) is uniformly continuous over Σ ×
[0�1].
We show these for (r1� r2) = (1�0) only, the other cases being similar.
Recall that if π ∈ Σ, then π(·) takes its values in [0� v̄′], which is com-
pact. For (ii)(a), we have to show that the operator norm ρ1(E10(π; t)) ≡
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supη1∈C0
1�‖η1‖1=1 ‖E10(π; t)(η1)‖0 < ∞ for all (π� t) ∈ Σ × [0�1]. Since ‖η1(α)/

α‖0 ≤ ‖η1‖1, it follows from (S.7) and Taylor inequality that

‖E10(π; t)(η1)‖0 =
∥∥∥∥η(1)

1 (α)+ (I − 1)Λ(1)(π(α); t)η1(α)

α

∥∥∥∥
0

≤ ‖η1‖1

(
1 + (I − 1) sup

(x�t)∈[0�v̄′]×[0�1]

∣∣Λ(1)(x; t)∣∣)�
so that ρ1(E10(π; t)) < ∞ by Lemma S2. For (ii)(b), we have for any (π0� t0)
and (π� t) in Σ× [0�1],

‖E10(π0; t0)(η1)− E10(π; t)(η1)‖0

= (I − 1)
∥∥∥∥(
Λ(1)(π0(α); t0)−Λ(1)(π(α); t))η1(α)

α

∥∥∥∥
0

≤ (I − 1)‖η1‖1

∥∥∥∥Λ(1)(π0(α); t0)−Λ(1)(π(α); t)
∥∥∥∥

0

�

It follows from Lemma S2 that ρ1(E10(π0; t0) − E10(π; t)) can be made arbi-
trarily small by choosing ‖π0 −π‖1 and |t0 − t| small enough.

(iii) Fix (π� t) in Σ × [0�1] and abbreviate E10(π; t) into E1. The first part
of (iii) has been established in (S.7). To show that this operator is one-to-one
from C0

1 to C0, consider ζ in C0. Finding an η ∈ C0
1 with E1(η) = ζ amounts to

solving the linear differential equation

E1
ζ :η(1)(α)+ (I − 1)Λ(1)(π(α); t)η(α)

α
= ζ(α) with η(0) = 0�(S.8)

Proceeding as in Step 1 of the proof of Lemma S1 yields that the unique can-
didate solution is

ηζ(α)=
∫ α

0
ζ(u)

R(u)

R(α)
du where

R(α) = exp
(

−(I − 1)
∫ 1

α

Λ(1)(π(u); t)
u

du

)
�

Note that Λ(1)(x; t) = λ′(tx) ≥ 1 and Λ(1)(π(u); t)/u = λ′(0)/u + O(1) when
u ↓ 0. Thus,

0 ≤ R(u)

R(α)
= exp

(
−(I − 1)

∫ α

u

Λ(1)(π(τ); t)
τ

dτ

)
≤ 1

for 0 ≤ u≤ α and lim
α→0

R(α) = 0�
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It follows that ηζ is defined and continuously differentiable over (0�1]. Ob-
serve now that |ηζ(α)| ≤ α‖ζ‖0 so that setting ηζ(0) = 0 gives a contin-
uous function over [0�1]. For differentiability at 0, note that for 0 ≤ u ≤
α, we have (logα − logu)/(α − u) → +∞ as α ↓ 0. Thus, as α ↓ 0 we
have

R(u)

R(α)
= exp

[
−(I − 1)

∫ α

u

(
λ′(0)
τ

+O(1)
)
dτ

]

= exp
(

−(I − 1)λ′(0) log
α

u
+O(α− u)

)

= exp
(

−(I − 1)λ′(0) log
α

u
+ α− u

logα− logu
O(1)

)

=
(
u

α

)(I−1)λ′(0)
(1 + o(1))�

ηζ(α)=
∫ α

0
(ζ(0)+ o(1))

(
u

α

)(I−1)λ′(0)
(1 + o(1))du

= ζ(0)
(I − 1)λ′(0)+ 1

α+ o(α)�

Hence, ηζ is differentiable at 0 with η(1)
ζ (0)= ζ(0)/[(I−1)λ′(0)+1]. To check

that η(1)
ζ is continuous at 0, observe that (S.8) gives for α ↓ 0,

η(1)
ζ (α) = ζ(0)− (I − 1)(λ′(0)+ o(1))

(
ζ(0)

(I − 1)λ′(0)+ 1
+ o(1)

)

= η(1)
ζ (0)+ o(1)�

Hence, ηζ ∈ C0
1 . Thus, E1 : C0

1 �→ C0 is one-to-one with [E1]−1(ζ) = ηζ for any
ζ ∈ C0.

Last, recall that |ηζ(α)| ≤ α‖ζ‖0 and 0 ≤ π(α) ≤ v̄′ for any π ∈ Σ. This
gives

‖[E1]−1(ζ)‖1 = ∥∥η(1)
ζ

∥∥
0
=

∥∥∥∥ζ(α)− (I − 1)Λ(1)(π(α); t)η(α)
α

∥∥∥∥
0

≤ ∥∥ζ∥∥
0
+ (I − 1) sup

(x�t)∈[0�v̄′]×[0�1]
λ′(tx)‖ζ‖0

=
(

1 + (I − 1) sup
x∈[0�v̄′]

λ′(x)
)
‖ζ‖0�

Hence the operator norm ρ([E1(π; t)]−1) is bounded uniformly in (π� t) ∈
Σ× [0�1]. Q.E.D.
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We now prove Theorems S1 and S2. To prove Theorem S1, we use the fol-
lowing continuation argument from Zeidler (1985, Proposition 6.10).

THEOREM Z1—Continuation Argument: Let C1 and C0 be some Banach
spaces. For π ∈ C1, let V(π;ε) denote the ε-neighborhood of π in C1. Suppose
the following conditions:

(i) The map (π� t) ∈ C1 × [0�1] �→ E(π; t) ∈ C0 is continuous.
(ii) (A priori condition) There exists an open subset S of C1 and a number

ε > 0 such that if (πt� t) verifies E(πt; t)= 0, then V(πt;ε)⊂ S for all t ∈ [0�1].
(iii) For any t ∈ [0�1], the operator E has a Fréchet derivative Eπ with respect

to π ∈ S . The operators (π� t) �→ E(π; t) and (π� t) �→ Eπ(π; t) are uniformly
continuous over S × [0�1].

(iv) The linear operator η ∈ C1 �→ Eπ(π; t)(η) ∈ C0 is one-to-one and for some
constant C , ρ(Eπ(π; t)−1)≤ C for all (π� t) ∈ S × [0�1].
If E(π;0) = 0 has a unique solution π0, then E(π;1) = 0 has a unique solu-
tion π1.

PROOF: Fix I ∈ I . Part (ii) follows from Lemma S1, Corollary S1, and
part (i). Thus, it suffices to show the latter. In view of Corollary S1(ii), it
remains to show the existence and uniqueness of the solution of (S.1), that
is, E(B;1) = 0 or equivalently Ẽ(π;1) = 0. We apply Theorem Z1, where
C1 = C0

1, C0 = C0, and S = Σ. Lemma S3 shows that conditions (i), (iii), and
(iv) of Theorem Z1 hold. Hence, it remains to check condition (ii).

We begin with some inequalities. Let v̄′ be as in Corollary S2 and de-
fine v′ = infα∈[0�1] v′(α), and λ′ = infx∈[0�v̄′]

λ(x)

x
, and λ̄′ = supx∈[0�v̄′]

λ(x)

x
, where

0 < v′ ≤ v̄′ < ∞ and 1 ≤ λ′ ≤ λ̄′ < ∞ because [U�F] ∈ UR × FR. Recall that
V ′(α; t) = v′(αt) for (α� t) ∈ [0�1]2, while π(·) ∈ Σ takes its values in [0� v̄′).
Thus, for any (α� t) ∈ [0�1]2 and π(·) ∈ Σ, we have v′ ≤ V ′(α; t) ≤ v̄′ and
λ′π(α) ≤ Λ(π(α); t) ≤ λ̄′π(α) since Λ(x; t) = λ(xt)/t for (x� t) ∈ R+ × (0�1],
Λ(x;0) = λ′(0)x for x ∈ R+, and λ′ ≤ λ′(0) ≤ λ̄′. For t ∈ [0�1], let π(·; t) be
a solution of Ẽ(π; t) = 0 so that π(·) ∈ Σ by Corollary S2. Since Ẽ(π; t) = 0
writes π ′(α)+ (I − 1)Λ(π(α); t)/α = V ′(α; t), the above inequalities yield, for
all (α� t) ∈ [0�1]2,

v′ ≤ π ′(α; t)+ (I − 1)λ̄′π(α; t)
α

and

π ′(α; t)+ (I − 1)λ′π(α; t)
α

≤ v̄′ with π(0; t)= 0�

Setting C̄(α; t) = π(α; t)α(I−1)λ̄′ so that C̄ ′(α; t) = α(I−1)λ̄′ [π ′(α; t) + (I −
1)λ̄′π(α; t)/α] yields v′α(I−1)λ̄′ ≤ C̄ ′(α; t) from the first differential inequality.
Thus, integrating and using C̄(0; t)= 0 gives v′α/[(I − 1)λ′ + 1] ≤ π(α) for all
(α� t) ∈ [0�1]2. Setting C(α; t) = π(α; t)α(I−1)λ′ , proceeding similarly with the
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second differential inequality, and combining yield

v′α

(I − 1)λ̄′ + 1
≤ π(α; t) ≤ v̄′α

(I − 1)λ′ + 1
< v̄′(S.9)

for all (α� t) ∈ [0�1]2�

We now check condition (ii) of Theorem Z1. We have to show that
V(π(·; t);ε) ⊂ Σ for ε > 0 small enough and all t ∈ [0�1]. Recall that the
neighborhood V(π(·; t);ε) of π(·; t) in C0

1 consists of functions ζ(·) ∈ C0
1

with supα∈[0�1] |ζ ′(α) − π ′(α; t)| < ε. In particular, ζ ′(0) > π ′(0; t) − ε, where
π ′(0; t)= V ′(0; t)−B′(0; t)= v′(0)[1− s′(v(0); t)] = v′(0)/[(I−1)λ′(0)+1]>
0 by Lemma B1. Moreover, integrating and using π(0; t) = ζ(0) = 0 give
π(α; t) − εα < ζ(α) < π(α; t) + εα for all α ∈ [0�1]. Hence, for ε > 0 small
enough, ζ ′(0) > π ′(0; t)− ε > 0, while (S.9) yields

0 <

(
v′

(I − 1)λ̄′ + 1
− ε

)
α< ζ(α) <

(
v̄′

(I − 1)λ′ + 1
+ ε

)
α< v̄′

for all α ∈ (0�1]�
for all t ∈ [0�1]. That is, there exists ε > 0 such that V(π(·; t);ε) is a subset
of Σ for all t ∈ [0�1] and the a priori condition (ii) of Theorem Z1 is proven.

Q.E.D.

To prove Theorem S1, we use the following implicit functional theorem from
Zeidler (1985, Theorem 4.B).

THEOREM Z2—Implicit Functional Theorem: Let (π0� t0) be in C1 × [0�1],
where C1 is a Banach space, and consider an R continuously Fréchet differentiable
operator E(·� ·) defined on a neighborhood of (π0� t0) with values in a Banach
space C0 such that E(π0� t0)= 0. If the Fréchet derivative Eπ(π� t) of E(π� t) with
respect to π is such that Eπ(π0� t0) is one-to-one, then there exists a neighbor-
hood O(t0) of t0 such that, for t ∈ O(t0), the equation E(π� t) = 0 has a unique
solution π(t), which is R continuously differentiable on O(t0).

PROOF: Fix I ∈ I . Part (ii) follows from part (i) since s(v) = b(F(v)) by
Corollary S1(ii) and F ∈ FR. Thus, it suffices to show part (i). Let C1 = C0

1

and C0 = C0. For any t0 ∈ [0�1], note that Ẽ(π; t0) = 0 has a unique solu-
tion π0(·) = π(·; t0) as it suffices to consider the flow of differential equations
{Ẽ0(π;u) = 0;u ∈ [0�1]}, where Ẽ0(π;u) ≡ Ẽ(π;ut0) and to follow the proof
of Theorem S1(i) with S = Σ. As π0 ∈ Σ by Corollary S2, while Σ× [0�1] is a
neighborhood of (π0� t0), Lemma S3 and Theorem Z2 yield that π(t)= π(·; t)
is R continuously differentiable with respect to t in a neighborhood O(t0) of t0,
and hence at t0. As t0 is arbitrary in [0�1], then π(·; t) is R continuously differ-
entiable in t ∈ [0�1].
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For t ∈ (0�1], note that π(α; t) = [v(αt)− b(αt)]/t for α ∈ [0�1], where b(·)
is the solution of (S.1). To see this, it suffices to verify that such a π(·; t) veri-
fies (S.6) using π ′(α; t) = v′(αt) − b′(αt), V ′(α; t) = v′(αt), Λ(x; t) = λ(tx)/t
for x ≥ 0, and (S.1). Similarly, for t = 0, let π(α;0) = [v′(0) − b′(0)]α for
α ∈ [0�1], which can be seen to verify (S.6). In particular, π ′(1; t)= v′(t)−b′(t)
for t ∈ [0�1]. Thus, using v′(t) = V ′(1; t) and (S.6) at α = 1 gives b′(t) =
(I − 1)Λ(π(1; t); t) for t ∈ [0�1], where Λ(·; ·) is R continuously differentiable
on R+ × [0�1] by Lemma S2(i) and π(1; ·) is R continuously differentiable
on [0�1]. Hence, b′(·) is R continuously differentiable on [0�1], implying that
b(·) is R + 1 continuously differentiable on [0�1] as desired. Last, using (S.1)
shows that b′(·) is R+ 1 continuously differentiable on (0�1]. Q.E.D.
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