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This online supplement provides additional material to accompany the printed pa-
per, henceforth denoted ES. In Section S.1, we review some mathematical background
on Fenchel duality used in the proof of the representation and uniqueness results in
ES. In Section S.2, we establish the necessity of the L-continuity axiom for the signed
RFCC representation defined in Appendix C. Section S.3 includes the details of the
proof of Proposition 1, which constructs the function V in a signed RFCC representa-
tion. Finally, in Section S.4, we give a proof of Equation (24), which is used in the proof
of Theorem 6, characterizing constant cost functions in a signed RFCC representation.

S.1. MATHEMATICAL BACKGROUND: FENCHEL DUALITY

IN THIS SECTION we present some general mathematical results that are used
to prove the representation and uniqueness theorems in ES. The results will
center around a classic duality relationship from convex analysis. Throughout
this section, let X be a real Banach space and let X∗ denote the space of all
continuous linear functionals on X .

We now introduce the standard definition of the subdifferential of a func-
tion.

DEFINITION S.1: Suppose C ⊂ X and f :C → R. For x ∈ C, the subdifferen-
tial of f at x is defined to be

∂f (x) = {x∗ ∈ X∗ : 〈y − x�x∗〉 ≤ f (y)− f (x) for all y ∈C}�

The subdifferential is useful for the approximation of convex functions by
affine functions. It is straightforward to show that x∗ ∈ ∂f (x) if and only if the
affine function h :X → R defined by h(y) = f (x) + 〈y − x�x∗〉 satisfies h ≤ f
and h(x) = f (x). It should also be noted that when X is infinite dimensional,
it is possible to have ∂f (x) = ∅ for some x ∈ C, even if f is convex. However,
it is shown in Ergin and Sarver (2010) that if C ⊂ X is convex and f :C → R

is Lipschitz continuous and convex, then ∂f (x) 
= ∅ for all x ∈ C. The formal
definition of Lipschitz continuity follows.

DEFINITION S.2: Suppose C ⊂ X . A function f :C → R is said to be Lip-
schitz continuous if there is some real number K such that for every x� y ∈ C,
|f (x)− f (y)| ≤ K‖x− y‖. The number K is called a Lipschitz constant of f .

We now introduce the definition of the conjugate of a function.
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DEFINITION S.3: Suppose C ⊂ X and f :C → R. The conjugate (or Fenchel
conjugate) of f is the function f ∗ :X∗ → R ∪ {+∞} defined by

f ∗(x∗)= sup
x∈C

[〈x�x∗〉 − f (x)]�

There is an important duality between f and f ∗. Lemma S.1 summarizes
certain properties of f ∗ that are useful in establishing this duality.47

LEMMA S.1: Suppose C ⊂ X and f :C → R. Then the following statements
hold:

(i) f ∗ is lower semicontinuous in the weak* topology.
(ii) f (x) ≥ 〈x�x∗〉 − f ∗(x∗) for all x ∈C and x∗ ∈ X∗.
(iii) f (x) = 〈x�x∗〉 − f ∗(x∗) if and only if x∗ ∈ ∂f (x).

PROOF: (i) For any x ∈C, the mapping x∗ �→ 〈x�x∗〉 − f (x) is continuous in
the weak* topology. Therefore, for all α ∈ R, {x∗ ∈ X∗ : 〈x�x∗〉 − f (x∗) ≤ α} is
weak* closed. Hence,

{x∗ ∈ X∗ : f ∗(x∗)≤ α} =
⋂
x∈C

{x∗ ∈ X∗ : 〈x�x∗〉 − f (x) ≤ α}

is closed for all α ∈ R. Thus f ∗ is lower semicontinuous.
(ii) For any x ∈ C and x∗ ∈ X∗, we have

f ∗(x∗)= sup
x′∈C

[〈x′�x∗〉 − f (x′)] ≥ 〈x�x∗〉 − f (x)

and, therefore, f (x) ≥ 〈x�x∗〉 − f ∗(x∗).
(iii) By the definition of the subdifferential, x∗ ∈ ∂f (x) if and only if

〈y�x∗〉 − f (y)≤ 〈x�x∗〉 − f (x)(S.1)

for all y ∈ C. By the definition of the conjugate, Equation (S.1) holds if
and only if f ∗(x∗) = 〈x�x∗〉 − f (x), which is equivalent to f (x) = 〈x�x∗〉 −
f ∗(x∗). Q.E.D.

Suppose that C ⊂ X is convex and f :C → R is Lipschitz continuous and
convex. As noted above, this implies that ∂f (x) 
= ∅ for all x ∈ C. Therefore, by
parts (ii) and (iii) of Lemma S.1, we have

f (x) = max
x∗∈X∗[〈x�x∗〉 − f ∗(x∗)](S.2)

47For a complete discussion of the relationship between f and f ∗, see Ekeland and Turnbull
(1983) or Holmes (1975). A finite-dimensional treatment can be found in Rockafellar (1970).
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for all x ∈ C.48 To establish the existence of a minimal set of measures in The-
orem 3 in ES, it is useful to establish that under certain assumptions, there is a
minimal compact subset of X∗ for which Equation (S.2) holds. Let Cf denote
the set of all x ∈C for which the subdifferential of f at x is a singleton:

Cf = {x ∈ C :∂f (x) is a singleton}�(S.3)

Let Nf denote the set of functionals contained in the subdifferential of f at
some x ∈ Cf :

Nf = {x∗ ∈X∗ :x∗ ∈ ∂f (x) for some x ∈ Cf }�(S.4)

Finally, let Mf denote the closure of Nf in the weak* topology:

Mf = Nf �(S.5)

THEOREM S.1—Ergin and Sarver (2010): Suppose (i) X is a separable Ba-
nach space, (ii) C is a closed and convex subset of X containing the origin such
that span(C) is dense in X , and (iii) f :C → R is Lipschitz continuous and con-
vex. Then Mf is weak* compact and for any weak* compact M ⊂ X∗,

Mf ⊂ M ⇐⇒ f (x) = max
x∗∈M

[〈x�x∗〉 − f ∗(x∗)] ∀x ∈ C�

The intuition for Theorem S.1 is fairly simple. We already know from
Lemma S.1 that for any x ∈ Cf , f (x) = maxx∗∈Nf

[〈x�x∗〉 − f ∗(x∗)]. Ergin and
Sarver (2010) showed that under the assumptions of Theorem S.1, Cf is dense
in C. Therefore, it can be shown that for any x ∈ C,

f (x) = sup
x∗∈Nf

[〈x�x∗〉 − f ∗(x∗)] = max
x∗∈Mf

[〈x�x∗〉 − f ∗(x∗)]�

In addition, if M is a weak* compact subset of X∗ and Mf is not a subset
of M, then there exists x∗ ∈ Nf such that x∗ /∈ M. That is, there exists x ∈ Cf

such that ∂f (x) = {x∗} and x∗ /∈ M. Therefore, Lemma S.1 implies f (x) >
maxx∗∈M[〈x�x∗〉 − f ∗(x∗)].

In the proof of Theorem 3 in ES, we construct an RFCC representation in
which Mf , for a certain function f , is the set of measures. The ⇒ direction
in Theorem S.1 is used to show that this set is sufficient for representing the
preference. However, the function f is only pinned down up to a positive affine
transformation by the preference. Therefore, to prove that Mf is minimal in

48This is a slight variation of the classic Fenchel–Moreau theorem. The standard version of
this theorem states that if f :X → R ∪ {+∞} is lower semicontinuous and convex, then f (x) =
f ∗∗(x) ≡ supx∗∈X∗ [〈x�x∗〉 − f ∗(x∗)]. See, for example, Proposition 1 in Ekeland and Turnbull
(1983, p. 97).
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the sense of Definition 2, we need a slightly stronger version of the ⇐ direc-
tion in Theorem S.1. The following proposition imposes an additional “consis-
tency” assumption on the functionals in Mf and M that allows us to obtain
the necessary result.

PROPOSITION S.1: Suppose X is a Banach space, C is a convex subset of X ,
and f :C → R. Let M ⊂ X∗ be weak* compact. Assume that there exists x̄ ∈ X
such that 〈x̄� x∗〉 = 〈x̄� y∗〉 
= 0 for any x∗� y∗ ∈ Mf ∪ M. Define g :C → R by

g(x) = max
x∗∈M

[〈x�x∗〉 − f ∗(x∗)]�

Then if there exists α > 0 and β ∈ R such that g = αf +β, it must be that Mf ⊂
M.

PROOF: Note that f ∗ is weak* lower semicontinuous by part (i) of Lem-
ma S.1. Therefore, by part (ii) of Theorem S.3 (below) applied to g, we have
that Mg ⊂ M. It is easy to show that g = αf + β implies Mg = αMf . Thus,
if we take any x∗ ∈ Mf , then αx∗ ∈ αMf = Mg ⊂ M. We therefore have
〈x̄� x∗〉 = 〈x̄�αx∗〉 
= 0, which can be possible only if α = 1. This implies that
Mf = Mg ⊂ M. Q.E.D.

For the next result, assume that X is a Banach lattice.49 Let X+ = {x ∈
X :x ≥ 0} denote the positive cone of X . A function f :C → R on a subset C
of X is monotone if f (x) ≥ f (y) whenever x� y ∈ C are such that x≥ y . A con-
tinuous linear functional x∗ ∈ X∗ is positive if 〈x�x∗〉 ≥ 0 for all x ∈X+. The fol-
lowing proposition establishes that under suitable conditions, if f is monotone,
then the functionals in Mf are all positive. See Section S.1.1 for the proof.

THEOREM S.2: Suppose C is a convex subset of a Banach lattice X, such that
at least one of the following conditions holds:

(i) x∨ x′ ∈ C for any x�x′ ∈ C, or
(ii) x∧ x′ ∈C for any x�x′ ∈ C.
Let f :C → R be Lipschitz continuous, convex, and monotone. Then, the func-

tionals in Mf are positive.

The following result will be used in the proof of Theorem 4 in ES to establish
the uniqueness of the RFCC representation. See Section S.1.2 for the proof.

THEOREM S.3: Suppose X is a Banach space and C is a convex subset of X .
Let M be a weak* compact subset of X∗ and let c : M → R be weak* lower
semicontinuous. Define f :C → R by

f (x) = max
x∗∈M

[〈x�x∗〉 − c(x∗)]�(S.6)

49See Aliprantis and Border (1999, p. 302) for a definition of Banach lattices.
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Then the following statements hold:
(i) The function f is Lipschitz continuous and convex.

(ii) For all x ∈ C, there exists x∗ ∈ ∂f (x) such that x∗ ∈ M and f ∗(x∗) =
c(x∗). In particular, this implies Nf ⊂ M, Mf ⊂ M, and f ∗(x∗) = c(x∗) for all
x∗ ∈ Nf .

(iii) If C is also compact (in the norm topology), then f ∗(x∗) = c(x∗) for all
x∗ ∈ Mf .

S.1.1. Proof of Theorem S.2

We will show that under the conditions stated in the theorem, for every x ∈
C, there exists a positive x∗ ∈ ∂f (x). This will imply in particular that for x ∈Cf ,
we have ∂f (x) = {x∗} for some positive x∗ ∈ X∗. Therefore, the functions in Nf

are positive, and since the set of positive functionals is weak* closed in X∗,
every x∗ ∈ Mf = Nf is also positive.

The remainder of the proof consists of showing that for every x ∈ C, there
exists a positive x∗ ∈ ∂f (x). We begin by introducing the standard definition of
the epigraph of a function f :C → R:

epi(f )= {(x� t) ∈ C × R : t ≥ f (x)}�
Note that epi(f ) ⊂ X × R is a convex set because f is convex with a convex
domain C. Now, for any x ∈C, define

H(x)= {(y� t) ∈ X × R : t < f (x)−K‖y − x‖}�
It is easily seen that H(x) is nonempty and convex. Also, since ‖ · ‖ is
necessarily continuous, H(x) is open (in the product topology). Note that
epi(f ) ∩ H(x) = ∅ for any x ∈ C. To see this, suppose (y� t) ∈ epi(f ), so that
t ≥ f (y). By Lipschitz continuity, we have f (y)≥ f (x)−K‖y −x‖. Therefore,
t ≥ f (x)−K‖y − x‖, which implies (y� t) /∈ H(x).

Define I(x) = H(x) + X+ × {0}. Then I(x) ⊂ X × R is convex as the sum
of two convex sets and it has a nonempty interior since it contains the non-
empty open set H(x). We will show that if either of the conditions stated in the
theorem is satisfied, then epi(f )∩ I(x) = ∅ for any x ∈C.

• Case 1—x ∨ x′ ∈ C for any x′ ∈ C: Suppose for a contradiction that
(x′� t) ∈ epi(f )∩ I(x). Then x′ ∈ C, and there exist y ∈ X and z ∈X+ such that
x′ = y + z and t < f (x) − K‖y − x‖. Let x̄ = x ∨ x′ ∈ C. Note that |x̄ − x′| =
x̄− x′ = (x− x′)+ and x− y = x− x′ + z ≥ x− x′. Hence,

|x− y| ≥ (x− y)+ ≥ (x− x′)+ = |x̄− x′|�
Since X is a Banach lattice, the above inequality implies that ‖x − y‖ ≥ ‖x̄ −
x′‖. Monotonicity of f implies that f (x̄) ≥ f (x). Thus, t < f (x)−K‖y − x‖ ≤
f (x̄) − K‖x′ − x̄‖, which implies that (x′� t) ∈ H(x̄), a contradiction to our
previous observation that epi(f )∩H(x̄)= ∅. Thus, epi(f )∩ I(x) = ∅.
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• Case 2—x ∧ x′ ∈ C for any x′ ∈ C: Suppose again for a contradiction
that (x′� t) ∈ epi(f ) ∩ I(x). Then x′ ∈ C, and there exist y ∈ X and z ∈ X+
such that x′ = y + z and t < f (x) − K‖y − x‖. Let x̄ = x ∧ x′ ∈ C. Note that
|x− x̄| = x− x̄= (x− x′)+ and x− y = x− x′ + z ≥ x− x′. Therefore,

|x− y| ≥ (x− y)+ ≥ (x− x′)+ = |x− x̄|�
which implies ‖x−y‖ ≥ ‖x− x̄‖. Thus, t < f (x)−K‖y−x‖ ≤ f (x)−K‖x̄−x‖,
which implies (x̄� t) ∈ H(x). Monotonicity of f implies that f (x̄) ≤ f (x′) ≤
t, which implies (x̄� t) ∈ epi(f ), a contradiction to epi(f ) ∩ H(x) = ∅. Thus,
epi(f )∩ I(x) = ∅.

Fix any x ∈ C. We have shown that under either condition (i) or (ii), I(x)
and epi(f ) are disjoint sets. Since both sets are convex and I(x) has nonempty
interior, a version of the separating hyperplane theorem (see Theorem 5.50 in
Aliprantis and Border (1999)) implies there exists a nonzero continuous linear
functional (x∗�λ) ∈X∗ ×R that separates I(x) and epi(f ). That is, there exists
a scalar δ such that

〈y�x∗〉 + λt ≤ δ� if (y� t) ∈ epi(f )�(S.7)

〈y�x∗〉 + λt ≥ δ� if (y� t) ∈ I(x)�(S.8)

Clearly, we cannot have λ > 0. Also, if λ = 0, then Equation (S.8) implies
x∗ = 0. This would contradict (x∗�λ) being a nonzero functional. Therefore,
λ < 0. Without loss of generality, we can take λ = −1, for otherwise we could
renormalize (x∗�λ) and δ by dividing by |λ|.

Since (x� f (x)) ∈ epi(f ), we have 〈x�x∗〉 − f (x) ≤ δ. For all ε > 0, we have
(x� f (x)− ε) ∈ H(x) ⊂ I(x), which implies 〈x�x∗〉 − f (x)+ ε ≥ δ. Therefore,
〈x�x∗〉 − f (x) = δ and thus for all y ∈ C, 〈y�x∗〉 − f (y) ≤ δ = 〈x�x∗〉 − f (x).
Equivalently, we can write 〈y − x�x∗〉 ≤ f (y)− f (x). Thus, x∗ ∈ ∂f (x).

It only remains to show that x∗ is positive. Let y ∈ X+. Then, for any ε > 0,
(x+ y� f (x)− ε) ∈ I(x). By Equation (S.8),

〈x+ y�x∗〉 − f (x)+ ε ≥ δ= 〈x�x∗〉 − f (x)

and hence 〈y�x∗〉 ≥ −ε. Since the latter holds for all ε > 0 and y ∈ X+, we have
that 〈y�x∗〉 ≥ 0 for all y ∈ X+. Therefore, x∗ is positive.

S.1.2. Proof of Theorem S.3

(i) First, note that a solution to Equation (S.6) must exist for every x ∈ C
since M is weak* compact, 〈x� ·〉 is weak* continuous, and c is weak* lower
semicontinuous. As the maximum of a collection of affine functions, f is ob-
viously convex. To see that f is Lipschitz continuous, note that by the weak*
compactness of M and Alaoglu’s theorem (see Theorem 6.25 in Aliprantis
and Border (1999)), there exists K ≥ 0 such that ‖x∗‖ ≤ K for all x∗ ∈ M.
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Fix any x� y ∈ C and let x∗ ∈ M be a solution to Equation (S.6) at x. Thus,
f (x) = 〈x�x∗〉 − c(x∗). Since f (y)≥ 〈y�x∗〉 − c(x∗), we have

f (x)− f (y) ≤ 〈x− y�x∗〉 ≤ ‖x− y‖‖x∗‖ ≤ ‖x− y‖K�

A similar argument shows f (y)− f (x) ≤ ‖x− y‖K and hence |f (x)− f (y)| ≤
‖x− y‖K. Thus, f is Lipschitz continuous.

(ii) Fix any x ∈ C. Let x∗ ∈ M be a solution to Equation (S.6), so f (x) =
〈x�x∗〉− c(x∗). For any y ∈C, we have f (y)≥ 〈y�x∗〉− c(x∗) and hence f (y)−
f (x) ≥ 〈y − x�x∗〉. Therefore, x∗ ∈ ∂f (x). By (iii) in Lemma S.1, this implies
that

〈x�x∗〉 − f ∗(x∗)= f (x) = 〈x�x∗〉 − c(x∗)�

so f (x∗) = c(x∗). To see the other claims, take any x∗ ∈ Nf . Then there exists
x ∈ Cf such that ∂f (x) = {x∗}. By the preceding arguments, this implies x∗ ∈
M and f ∗(x∗) = c(x∗). Since this is true for any x∗ ∈ Nf , we have Nf ⊂ M.
Since M is weak* closed, Mf = Nf ⊂ M.

(iii) We first show that c(x∗)≥ f ∗(x∗) for any x∗ ∈ M. Fix any x∗ ∈ M. Then,
by the definition of f ,

f (x) ≥ 〈x�x∗〉 − c(x∗) ∀x ∈ C

�⇒ c(x∗)≥ 〈x�x∗〉 − f (x) ∀x ∈ C

�⇒ c(x∗)≥ sup
x∈C

[〈x�x∗〉 − f (x)] = f ∗(x∗)�

Since Mf ⊂ M by (ii), this implies c(x∗) ≥ f ∗(x∗) for all x∗ ∈ Mf . Therefore,
it remains only to show that c(x∗) ≤ f ∗(x∗) for all x∗ ∈ Mf . Fix any x∗ ∈ Mf .
Since Mf = Nf , there exists a net {x∗

d}d∈D in Nf that converges to x∗ in the
weak* topology. Recall from (ii) that f ∗(x∗)= c(x∗) for all x∗ ∈ Nf . Therefore,

c(x∗)≤ lim inf
d

c(x∗
d)= lim inf

d
f ∗(x∗

d)�

where the inequality follows from lower semicontinuity of c (see Theo-
rem 2.39 in Aliprantis and Border (1999)). The proof is completed by show-
ing that lim infd f ∗(x∗

d) ≤ f ∗(x∗). To see this, first note that by the definition
of the limit inferior, there exists a subnet of {f ∗(x∗

d)}d∈D that converges to
lim infd f ∗(x∗

d). Without loss of generality, assume that the net itself converges
to lim infd f ∗(x∗

d), so limd f
∗(x∗

d) = lim infd f ∗(x∗
d). Since C is compact and f is

continuous (by (1)), for each d ∈D there exists xd ∈C such that

f ∗(x∗
d)= sup

x∈C
[〈x�x∗

d〉 − f (x)] = 〈xd�x
∗
d〉 − f (xd)�
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Since C is compact, the net {xd}d∈D must have a subnet that converges to some
limit x ∈ C. Again, without loss of generality, assume that the net itself con-
verges, so limd xd = x.

As in (i), note that by the compactness of M and Alaoglu’s theorem, there
exists K ≥ 0 such that ‖x∗

d‖ ≤ K for all d ∈ D. Since xd → x, x∗
d

w∗−→ x∗ and
‖x∗

d‖ ≤ K for all d ∈ D, we have

|〈xd�x
∗
d〉 − 〈x�x∗〉| ≤ |〈xd − x�x∗

d〉| + |〈x�x∗
d − x∗〉|

≤ ‖xd − x‖‖x∗
d‖ + |〈x�x∗

d − x∗〉|
≤ ‖xd − x‖K + |〈x�x∗

d − x∗〉| → 0�

so 〈xd�x
∗
d〉 → 〈x�x∗〉. Given this result and the continuity of f , we have

lim inf
d

f ∗(x∗
d) = lim

d
f ∗(x∗

d)= lim
d

[〈xd�x
∗
d〉 − f (xd)]

= 〈x�x∗〉 − f (x) ≤ f ∗(x∗)�

which completes the proof.

S.2. NECESSITY OF L-CONTINUITY

Throughout this section, we will continue to use the notation for support
functions that was introduced in Appendix C.2.

LEMMA S.2: Suppose (M� c) is a signed RFCC representation, and define
V : A → R as in Equation (7) of ES. Then V is Lipschitz continuous and transla-
tion linear.

PROOF: Define W :Σ → R by W (σ) = V (Aσ). Then, for all σ ∈ Σ,

W (σ)= max
μ∈M

[〈σ�μ〉 − c(μ)]�

By part (i) of Theorem S.3, W is Lipschitz continuous. Therefore, the restric-
tion of V to Ac is Lipschitz continuous by parts (i) and (iii) of Lemma 5. Let
K > 0 be any Lipschitz constant of V |Ac . Take any A�B ∈ A. It is easily verified
that V (A) = V (co(A)), V (B) = V (co(B)) and dh(co(A)� co(B)) ≤ dh(A�B).
Hence,

|V (A)− V (B)| = ∣∣V (co(A))− V (co(B))
∣∣

≤ Kdh(co(A)� co(B))≤Kdh(A�B)�

Thus, V is Lipschitz continuous on all of A with the same Lipschitz constant K.
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To see that V is translation linear, note that by consistency, there exists v ∈
RZ such that for all μ ∈ M and for all p ∈ �(Z),∫

U
(u ·p)μ(du)= v ·p�

Thus, for any A ∈ A and θ ∈Θ such that A+ θ ∈ A,

V (A+ θ) = max
μ∈M

(∫
U

max
p∈A+θ

(u ·p)μ(du)− c(μ)

)

= max
μ∈M

(∫
U

max
p∈A

(u ·p)μ(du)+ (v · θ)− c(μ)

)

= V (A)+ v · θ�
so V is translation linear. Q.E.D.

Since the function V given by a signed RFCC representation must satisfy sin-
gleton nontriviality, the following lemma completes the proof of the necessity
of L-continuity.

LEMMA S.3: Suppose V : A → R represents the preference �. If V is Lip-
schitz continuous and translation linear, and there exists p∗�p∗ ∈ �(Z) such that
V ({p∗}) > V ({p∗}), then � satisfies L-continuity.

PROOF: Translation linearity implies there exists v ∈ RZ such that for all A ∈
A and θ ∈ Θ with A + θ ∈ A, we have V (A + θ) = V (A) + v · θ. Let K > 0
be any Lipschitz constant of V , let θ∗ ≡ p∗ − p∗, and let M ≡ K/(v · θ∗) > 0.
Then, for any A�B ∈ A,

V (B)− V (A)≤ Kdh(A�B)=M[v · θ∗]dh(A�B)�

Fix any A�B ∈ A and α ∈ (0�1) with α > Mdh(A�B). Then, since dh((1 −
α)B + α{p∗}� (1 − α)A+ α{p∗}) = (1 − α)dh(A�B), and Mdh(A�B) < α < 1,
we have

V ((1 − α)B + α{p∗})− V ((1 − α)A+ α{p∗})
≤M[v · θ∗](1 − α)dh(A�B)

< α(1 − α)[v · θ∗]<α[v · θ∗]�
This implies

V ((1 − α)B + α{p∗}) < V ((1 − α)A+ α{p∗})+ α[v · θ∗]
= V ((1 − α)A+ α{p∗})

or, equivalently, (1 − α)A+ α{p∗} � (1 − α)B + α{p∗}. Q.E.D.
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S.3. PROOF OF PROPOSITION 1

We start by establishing some preliminary lemmas that will be useful in prov-
ing Proposition 1. We first present one useful consequence of translation in-
variance (TI) defined in Section C.1.

LEMMA S.4: Suppose � satisfies weak order, continuity, and TI. If A ∈ A,
θ ∈ Θ, and α ∈ (0�1) are such that A+ θ ∈ A, then

A� A+ θ ⇐⇒ A� A+ αθ ⇐⇒ A+ αθ � A+ θ�(S.9)

PROOF: We will make a simple induction argument. Suppose

A+ m− 1
n

θ � A+ m

n
θ

for some m�n ∈ N with m< n. Then adding 1
n
θ to each side of the above and

applying TI yields

A+ m

n
θ � A+ m+ 1

n
θ�

Now suppose that A � A+ 1
n
θ. Then, using induction and the transitivity of �,

we obtain

A� A+ 1
n
θ � · · · � A+

(
1 − 1

n

)
θ � A+ θ�(S.10)

A similar line of reasoning shows that if A ≺A+ 1
n
θ, then we obtain

A≺ A+ 1
n
θ ≺ · · · ≺ A+

(
1 − 1

n

)
θ ≺A+ θ�(S.11)

In sum, Equations (S.10) and (S.11) imply that for any m�n ∈ N, 1 ≤ m< n,
we have

A� A+ 1
n
θ ⇐⇒ A � A+ θ ⇐⇒ A � A+ m

n
θ

⇐⇒ A+ m

n
θ � A+ θ�

This establishes Equation (S.9) for α ∈ (0�1)∩ Q. The continuity of � implies
that Equation (S.9) holds for all α ∈ (0�1). Q.E.D.

Although we do not assume that independence holds on A, our other axioms
imply that independence does hold for singleton menus.
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AXIOM S.1—Singleton Independence: For all p�q� r ∈ �(Z) and λ ∈ (0�1),

{p} � {q} ⇐⇒ λ{p} + (1 − λ){r} � λ{q} + (1 − λ){r}�
LEMMA S.5: If � satisfies weak order, continuity, and TI, then it also satisfies

singleton independence.

PROOF: Let θ = q−p and θ′ = (1 − λ)(r −p). Then

{p} � {q} = {p} + θ ⇐⇒ {p} � {p} + λθ = (1 − λ){p} + λ{q}
⇐⇒ λ{p} + (1 − λ){r} � λ{q} + (1 − λ){r}�

where the first equivalence follows from Lemma S.4, and the second equiva-
lence follows from TI, {p}+θ′ = λ{p}+(1−λ){r}, and (1−λ){p}+λ{q}+θ′ =
λ{q} + (1 − λ){r}. Therefore singleton independence is satisfied. Q.E.D.

In the remainder of this section, let θ∗ be as defined in Section C.1, that is,
θ∗ ≡ p∗ −p∗, where p∗ and p∗ come from the L-continuity axiom. We will uti-
lize θ∗ a great deal in the construction of our representation, and the following
lemma is an important property of θ∗.

LEMMA S.6: Suppose � satisfies weak order, strong continuity, and TI, and
take θ∗ = p∗ − p∗. Let A�B ∈ A◦ and α�β ∈ R be such that A ∼ B and A +
αθ∗�B +βθ∗ ∈ Ac . Then

A+ αθ∗ � B +βθ∗ ⇐⇒ α≥ β�(S.12)

PROOF: We will first show that for any A ∈ A◦, there exists γ > 0 such that
A + γθ∗ ∈ Ac and A + γθ∗ � A. To see this, fix any A ∈ A◦. It follows from
part (i) of Lemma 4 that there exist A′ ∈ Ac and γ ∈ (0�1) such that A =
(1 − γ)A′ + γ{p∗}.50 By L-continuity we have

A+ γθ∗ = (1 − γ)A′ + γ{p∗} � (1 − γ)A′ + γ{p∗} = A�

Therefore, for any A ∈ A◦ and α > 0 such that A + αθ∗ ∈ Ac , take γ > 0
such that A+ γθ∗ ∈ Ac and A+ γθ∗ � A. Applying Lemma S.4 to A and θ =
max{γ�α}θ∗, we have A + αθ∗ � A. A similar argument shows that if A ∈ A◦

and α< 0 are such that A+ αθ∗ ∈ Ac , then A �A+ αθ∗.
Now, let A�B ∈ A◦ and α�β ∈ R be such that A∼ B and A+αθ∗�B+βθ∗ ∈

Ac . We prove the equivalence from Equation (S.12) by considering three cases:
If α= β, then αθ∗ = βθ∗. Hence by TI, A+ αθ∗ ∼ B +βθ∗.

50Take ε > 0 as in Lemma 4, and let γ ≡ ε and A′ ≡ {q ∈ RZ :q = 1
1−γ

(p − γp∗) for some p ∈
A}. It follows that A′ ∈ Ac and A= (1 − γ)A′ + γ{p∗}.
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If α > β, there are three subcases to consider. First consider α > β ≥ 0,
which implies 0 < α − β ≤ α and hence A + (α − β)θ∗ ∈ Ac . From the above
arguments, A + (α − β)θ∗ � A ∼ B, so by TI, A + αθ∗ = [A + (α − β)θ∗] +
βθ∗ � B+βθ∗. Similarly, if 0 ≥ α> β, then β≤ β−α < 0 and hence B+ (β−
α)θ∗ ∈ Ac . From the above arguments, A ∼ B � B + (β− α)θ∗, which implies
by TI that A + αθ∗ � [B + (β − α)θ∗] + αθ∗ = B + βθ∗. Finally, α > 0 > β
implies A+ αθ∗ �A ∼ B � B +βθ∗.

If β> α, then by symmetric arguments B +βθ∗ �A+ αθ∗. Q.E.D.

In the remainder of the section, let S , v, A◦, and the sequences A0� A′
0� A1�

A′
1� � � � and V0� V

′
0 � V1� V

′
1 � � � � be as defined in Section C.1. We now present

some important properties of Ai and A′
i that will be used to prove Lemmas S.8

and S.9.

LEMMA S.7: For any i ≥ 0, the following statements hold:
(i) If A ∈ Ai and θ ∈Θ, then there exists ᾱ > 0 such that

A+ αθ ∈ Ai ∀α ∈ [0� ᾱ]�51(S.13)

(ii) For all A�B ∈ A′
i and C ∈ A◦, A � C � B implies C ∈ A′

i.

PROOF: (i) First, it follows immediately from part (i) of Lemma 4 that for
any A ∈ A◦ and θ ∈Θ, there exists ᾱ > 0 such that

A+ αθ ∈ A◦ ∀α ∈ [0� ᾱ]�(S.14)

We now prove by induction. To verify the property on A0 = A◦ ∩ S , take any
A ∈ A0 and recall that A = {p} for some p ∈ �(Z). Then take ᾱ > 0 such that
Equation (S.14) holds. Then for all α ∈ [0� ᾱ], since p + αθ ∈ �(Z), we have
A+ αθ ∈ A0.

We now prove that if the property holds for Ai, then it also holds for Ai+1.
Take any A ∈ Ai+1 and θ ∈ Θ. Then, A = B +βθ∗ for some B ∈ A′

i and β ∈ R,
and hence B ∼ C for some C ∈ Ai. Choose ᾱ > 0 to be the minimum of that
required to satisfy Equation (S.14) for A and B and to satisfy Equation (S.13)
for C. Fix any α ∈ [0� ᾱ]. Then C + αθ ∈ Ai. Since B + αθ ∼ C + αθ by B ∼ C
and TI, this implies B + αθ ∈ A′

i. Thus, B + αθ+βθ∗ =A+ αθ ∈ Ai+1.
(ii) We again prove by induction. To prove the result for A′

0, suppose A�B ∈
A′

0 and A � C � B for some C ∈ A◦. Since A�B ∈ A′
0, there exist {p}� {q} ∈

A0 such that {p} ∼ A � C � B ∼ {q}. Continuity implies there exists a λ ∈
[0�1] such that {λp+ (1 − λ)q} ∼ C. By the convexity of A0 = A◦ ∩ S and the
definition of A′

0, this implies that C ∈ A′
0.

We now show that if A′
i satisfies the desired condition, then A′

i+1 does also.
Suppose A�B ∈ A′

i+1 and A� C � B for some C ∈ A◦. If there exist A′�B′ ∈ A′
i

such that A′ � C � B′, then C ∈ A′
i ⊂ A′

i+1 by the induction assumption. Thus

51As the proof of this lemma will illustrate, the same property holds for A′
i .



CONTEMPLATION REPRESENTATION 13

without loss of generality, suppose C � A′ for all A′ ∈ A′
i. Since A ∈ A′

i+1, there
exists a A′ ∈ Ai+1 such that A′ ∼ A� C. Since A′ ∈ Ai+1, there exists a A′′ ∈ A′

i

and α ∈ R such that A′ =A′′ +αθ∗. Since A′′ ∈ A′
i implies C �A′′, this implies

A′′ + αθ∗ � C � A′′ and, therefore, α > 0 by Lemma S.6. By continuity, there
exists a α′ ∈ [0�α] such that A′′ + α′θ∗ ∼ C. But A′′ +α′θ∗ ∈ Ai+1, so it must be
that C ∈ A′

i+1. Q.E.D.

The following lemmas allow us to prove the desired properties of each Vi

and V ′
i by induction.

LEMMA S.8: For all i ≥ 0, if Vi is well defined, translation linear, and repre-
sents � on Ai, then V ′

i is also well defined, translation linear, and represents �
on A′

i.

PROOF: Well Defined: Suppose A ∈ A′
i and B�B′ ∈ Ai are such that A ∼ B

and A ∼ B′. Since Vi represents � on Ai and � is transitive, Vi(B) = Vi(B
′),

and hence V ′
i (A) is uniquely defined.

Represents �: If A�A′ ∈ A′
i, then there exist B�B′ ∈ Ai such that A ∼ B and

A′ ∼ B′. Therefore, V ′
i (A) = Vi(B) ≥ Vi(B

′) = V ′
i (A

′) if and only if B � B′ if
and only if A� A′, so V ′

i represents � on A′
i.

Translation Linear: Throughout we will use the fact if θ ∈ Θ and A�A+ θ ∈
A′

i, then A + αθ ∈ A′
i for all α ∈ [0�1]. This follows by part (ii) of Lemma S.7

because by Lemma S.4, either A+ θ � A+ αθ � A or A� A+ αθ � A+ θ.
We first show that V ′

i satisfies the following local version of translation lin-
earity: For all A ∈ A′

i and θ ∈ Θ with A + θ ∈ A′
i, there exist ᾱ > 0 such that

for all α ∈ [0� ᾱ],
V ′
i (A+ αθ) = V ′

i (A)+ α(v · θ)�
To see this property holds, suppose θ ∈Θ and A�A+ θ ∈ A′

i. By the definition
of A′

i there exists B ∈ Ai such that A ∼ B. By part (i) of Lemma S.7, there exists
ᾱ ∈ (0�1] such that B+αθ ∈ Ai for all α ∈ [0� ᾱ]. Fix any α ∈ [0� ᾱ], and A ∼ B
implies A+αθ ∼ B+αθ by TI. Therefore, using the translation linearity of Vi

on Ai,

V ′
i (A+ αθ) = Vi(B + αθ) = Vi(B)+ α(v · θ) = V ′

i (A)+ α(v · θ)�
We now show that this local version of translation linearity implies transla-

tion linearity. Fix any A ∈ A′
i and θ ∈ Θ with A+ θ ∈ A′

i, and let

α∗ ≡ sup
{
ᾱ ∈ [0�1] :V ′

i (A+ αθ) = V ′
i (A)+ α(v · θ) ∀α ∈ [0� ᾱ]}�

Note that V ′
i (A+α∗θ) = V ′

i (A)+α∗(v · θ). If α∗ = 0, this is obvious. If α∗ > 0,
then local translation linearity applied to A′ = A + α∗θ ∈ A′

i and θ′ = −α∗θ
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implies there exists ᾱ > 0 such that V ′
i (A+α∗θ− ᾱθ) = V ′

i (A+α∗θ)− ᾱ(v ·θ).
Therefore,

V ′
i (A+ α∗θ) = V ′

i (A+ (α∗ − ᾱ)θ)+ ᾱ(v · θ)
= V ′

i (A)+ (α∗ − ᾱ)(v · θ)+ ᾱ(v · θ)
= V ′

i (A)+ α∗(v · θ)�
where the second equality follows by the definition of α∗ since 0 < α∗ − ᾱ <
α∗. It remains only to show that α∗ = 1. If not, then local translation linearity
applied to A′ =A+α∗θ ∈ A′

i and θ′ = (1−α∗)θ implies there exists ᾱ > 0 such
that for all α ∈ [0� ᾱ],

V ′
i (A+ α∗θ+ αθ) = V ′

i (A+ α∗θ)+ α(v · θ)
= V ′

i (A)+ (α∗ + α)(v · θ)�
This would imply α∗ ≥ α∗ + ᾱ, a contradiction. Thus α∗ = 1. Q.E.D.

LEMMA S.9: For all i ≥ 1, if V ′
i−1 is well defined, translation linear, and repre-

sents � on A′
i−1, then Vi is also well defined, translation linear, and represents �

on Ai.

PROOF: Well Defined: Suppose A ∈ Ai and A = B + αθ∗ = B′ + α′θ∗ for
B�B′ ∈ A′

i−1 and α�α′ ∈ R. Then B = B′ +(α′ −α)θ∗, so the translation linearity
of V ′

i−1 implies V ′
i−1(B) = V ′

i−1(B
′)+ (α′ − α)(v · θ∗). Therefore, V ′

i−1(B)+ α(v ·
θ∗)= V ′

i−1(B
′)+ α′(v · θ∗), and hence Vi(A) is uniquely defined.

Translation Linear: Suppose θ ∈ Θ and A�A + θ ∈ Ai. Then there exist
B�B′ ∈ A′

i−1 and α�α′ ∈ R such that A = B + αθ∗ and A+ θ = B′ + α′θ∗. Then
B′ = B + (α − α′)θ∗ + θ, so the translation linearity of V ′

i−1 implies V ′
i−1(B

′) =
V ′
i−1(B)+ v · [(α− α′)θ∗ + θ]. By the definition of Vi, we therefore have

Vi(A+ θ) = V ′
i−1(B

′)+ α′(v · θ∗)

= V ′
i−1(B)+ α(v · θ∗)+ v · θ = Vi(A)+ v · θ�

Represents �: Suppose A�A′ ∈ Ai, so that A = B+αθ∗ and A′ = B′+α′θ∗ for
some B�B′ ∈ A′

i−1 and α�α′ ∈ R. There are several different cases to consider,
but in the interest of brevity, we only work through one of them here: A�A′ �
B′ � B. Thus B+αθ∗ � B′ � B, which implies α ≥ 0 by Lemma S.6. Continuity
implies there exists α′′ ∈ [0�α] such that B+α′′θ∗ ∼ B′, which therefore implies
B + α′′θ∗ ∈ A′

i−1. Thus by Lemma S.6 and the definition of Vi, we have A � A′

if and only if α− α′′ ≥ α′ if and only if

Vi(A) = V ′
i−1(B + α′′θ∗)+ (α− α′′)(v · θ∗)

= V ′
i−1(B

′)+ (α− α′′)(v · θ∗)

≥ V ′
i−1(B

′)+ α′(v · θ∗) = Vi(A
′)�
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The other cases are similar.52 Q.E.D.

Using induction and the results of Lemmas S.8 and S.9, we have proved that
for all i ≥ 0, Vi : Ai → R is well defined, translation linear, and represents �
on Ai. We now define a function V̂ :

⋃
i Ai → R by V̂ (A) ≡ Vi(A) if A ∈ Ai.

This is well defined because if A ∈ Ai and A ∈ Aj , then without loss of gener-
ality suppose j ≥ i, so Ai ⊂ Aj . Then Vj(B) = Vi(B) for all B ∈ Ai, and hence
Vj(A) = Vi(A). Note that V̂ represents � on

⋃
i Ai and is translation linear.

By the following lemma, we have now established a translation-linear repre-
sentation for � on all of A◦.

LEMMA S.10: A◦ = ⋃
i Ai.

PROOF: The inclusion
⋃

i Ai ⊂ A◦ follows immediately from the definition
of Ai, so it remains only to prove that A◦ ⊂ ⋃

i Ai. Consider any set A ∈ A◦. By
the definition of A◦, there exists some α> 0 such that A+ αθ∗�A− αθ∗ ∈ A◦.
Fix any p ∈A, and we therefore have {p}+αθ∗� {p}−αθ∗ ∈ A0 ⊂ A◦. For every
λ ∈ [0�1], define A(λ) ≡ λA+(1−λ){p}. Note that A(λ)+αθ∗�A(λ)−αθ∗ ∈
A◦, which follows from the convexity of A◦ since

A(λ)+ αθ∗ = λA+ (1 − λ){p} + αθ∗

= λ(A+ αθ∗)+ (1 − λ)({p} + αθ∗)�

and similarly for A(λ) − αθ∗. By Lemma S.6, for all λ ∈ [0�1], A(λ) + αθ∗ �
A(λ) � A(λ)− αθ∗. By continuity, for each λ there exists an open (relative to
[0�1]) interval e(λ) such that λ ∈ e(λ) and for all λ′ ∈ e(λ),

A(λ)+ αθ∗ � A(λ′)�A(λ)− αθ∗�

Thus {e(λ) :λ ∈ [0�1]} is an open cover of [0�1]. Since [0�1] is compact, there
exists a finite subcover, {e(λ1)� � � � � e(λn)}. Assume the λi’s are ordered so that
e(λi)∩ e(λi+1) 
= ∅, 0 ∈ e(λ1), and 1 ∈ e(λn). We can prove that A(λ1) ∈ A1 by
first observing that

A(λ1)+ αθ∗ �A(0)= {p} �A(λ1)− αθ∗�

which by continuity implies there exists α′ ∈ (−α�α) such that A(λ1)+ α′θ∗ ∼
{p}. This implies A(λ1) + α′θ∗ ∈ A′

0, which implies that A(λ1) ∈ A1. We now
show that A(λi) ∈ Ai implies A(λi+1) ∈ Ai+1. If A(λi) ∈ Ai, then we also have

52The only substantively different cases are the variations of B′ � A�A′ � B. However, in this
case we can apply Lemma S.7, which implies A�A′ ∈ A′

i−1, and hence the result is obtained by
assumption.
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A(λi) + α′θ∗ ∈ Ai for all α′ ∈ (−α�α). Since e(λi) ∩ e(λi+1) 
= ∅, choose any
λ ∈ e(λi)∩ e(λi+1). Then

A(λi)+ αθ∗ �A(λ) � A(λi)− αθ∗�

A(λi+1)+ αθ∗ � A(λ) �A(λi+1)− αθ∗�

By continuity, there exist α′�α′′ ∈ (−α�α) such that A(λi) + α′θ∗ ∼ A(λ) ∼
A(λi+1)+ α′′θ∗, which implies A(λi+1)+ α′′θ∗ ∈ A′

i. Hence, A(λi+1) ∈ Ai+1. By
induction, we conclude that A(λi) ∈ Ai for i = 1� � � � � n and also that A ∈ A′

n ⊂
An+1 ⊂ ⋃

i Ai. Q.E.D.

We have now proved that V̂ is translation linear and represents � on A◦.
Before extending V̂ to Ac , we first establish that V̂ is Lipschitz continuous and
convex.

LEMMA S.11: V̂ is Lipschitz continuous.

PROOF: For all δ ∈ (0�1), define

A◦
δ ≡ {A ∈ Ac :∀p ∈ A�∀z ∈ Z :pz ≥ δ}�

We next summarize some straightforward facts about A◦
δ whose proofs we

omit:
(i) A◦

δ is a convex subset of A◦.
(ii) For all A ∈ A◦

δ and α ∈ (0� δ) there exists a unique menu Aα ∈ A◦ such
that A= (1 − α)Aα + α{p∗}.53

(iii) For all A�B ∈ A◦
δ, α ∈ (0� δ): (1 − α)dh(A

α�Bα)= dh(A�B).
(iv) For all A ∈ A◦

δ, α ∈ (0� δ): A+ αθ∗ ∈ A◦.
Let K ≡ 2M(v · θ∗) > 0 and δ ∈ (0�1/2). We first show that

A�B ∈ A◦
δ & dh(A�B) <

δ

2M
�⇒ |V̂ (A)− V̂ (B)| ≤ Kdh(A�B)�(S.15)

Suppose that A�B are as in the left-hand side of Equation (S.15). Let α ∈
(2Mdh(A�B)�δ). Then

dh(A
α�Bα)= 1

1 − α
dh(A�B) ≤ 2dh(A�B) <

α

M
�

where the weak inequality follows from α < δ < 1/2. Applying L-continuity,
we have

A+ αθ∗ = (1 − α)Aα + α{p∗} � (1 − α)Bα + α{p∗} = B�

53The menu Aα is given by Aα = {q ∈ RZ :q = 1
1−α

(p− αp∗) for some p ∈ A}.
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Since V̂ represents � and is translation linear on A◦, we have V̂ (A) + α(v ·
θ∗) > V̂ (B), implying

α(v · θ∗) > V̂ (B)− V̂ (A)�

Since the above inequality holds for any α ∈ (2Mdh(A�B)�δ), we conclude
that

V̂ (B)− V̂ (A)≤ 2Mdh(A�B)(v · θ∗)= Kdh(A�B)�

Interchanging the roles of A and B above, we also have that V̂ (A) − V̂ (B) ≤
Kdh(A�B), proving Equation (S.15).

Next, we use the argument in the proof of Lemma 8 in the Supplemental
Material of Dekel, Lipman, Rustichini, and Sarver (2007) to show that

A�B ∈ A◦
δ �⇒ |V̂ (A)− V̂ (B)| ≤Kdh(A�B)�(S.16)

that is, the requirement dh(A�B) < δ
2M in Equation (S.15) is not necessary.

To see this, take any sequence 0 = λ0 < λ1 < · · · < λn < λn+1 = 1 such that
(λi+1 − λi)dh(A�B) < δ

2M . Let Ai = λiA + (1 − λi)B. It is straightforward to
verify that

dh(Ai+1�Ai)= (λi+1 − λi)dh(A�B) <
δ

2M
�

Combining this with the triangular inequality and Equation (S.15), we obtain

|V̂ (A)− V̂ (B)| ≤
n∑

i=0

|V̂ (Ai+1)− V̂ (Ai)|

≤ K

n∑
i=0

dh(Ai+1�Ai)= K

n∑
i=0

(λi+1 − λi)dh(A�B)

= Kdh(A�B)�

To conclude the proof, note that by part (i) of Lemma 4, for any A�B ∈
A◦, there exists a small enough δ ∈ (0�1/2) such that A�B ∈ A◦

δ. Hence by
Equation (S.16), V̂ is Lipschitz continuous on A◦ with the Lipschitz con-
stant K. Q.E.D.

LEMMA S.12: V̂ is convex.

PROOF: The argument given here is similar to a result contained in a
working-paper version of Maccheroni, Marinacci, and Rustichini (2006). We
will show that every A0 ∈ A◦ has a convex and open neighborhood in A◦ on
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which V̂ is convex. By a standard result from convex analysis, this implies
that V̂ is convex on A◦.

Let A0 ∈ A◦. Define C to be the collection of all closed and bounded non-
empty convex subsets of {p ∈ RZ :

∑
z∈Z pz = 1}, endowed with the Hausdorff

metric topology. It follows from part (i) of Lemma 4 that there exists an ε > 0
such that Bε(A0)⊂ A◦, where we define

Bε(A0)≡ {A ∈ C :dh(A�A0) < ε}�
Note that dh(·� ·) indicates the Hausdorff metric. For any θ ∈ Θ and A ∈ C ,

we have A + θ ∈ C and dh(A�A + θ) = ‖θ‖, where ‖ · ‖ indicates the Euclid-
ean norm. There exists θ ∈ Θ such that ‖θ‖ < ε and v · θ > 0.54 This implies
that A0 + θ ∈ Bε(A0) and A0 + θ � A0. By continuity, there exists ρ ∈ (0� 1

3)

such that for all A ∈ Bρε(A0), |V̂ (A)− V̂ (A0)|< 1
3(v · θ). Therefore, if A�B ∈

Bρε(A0), then

|V̂ (A)− V̂ (B)| ≤ |V̂ (A)− V̂ (A0)| + |V̂ (A0)− V̂ (B)|< 2
3
(v · θ)�

Let α≡ V̂ (A)−V̂ (B)

v·θ , which implies |α|< 2
3 . Then we have

dh(A0�B + αθ) ≤ dh(A0�B)+ dh(B�B + αθ)

< ρε+ ‖αθ‖
<

1
3
ε+ 2

3
ε= ε�

so B + αθ ∈ Bε(A0) ⊂ A◦. Thus V̂ is defined at B + αθ. Note that α(v · θ) =
V̂ (A)− V̂ (B), so that V̂ (B+ αθ) = V̂ (B)+ α(v · θ) = V̂ (A). Since � satisfies
ACP, for any λ ∈ [0�1],

V̂ (A)≥ V̂ (λA+ (1 − λ)(B + αθ))�

Therefore,

V̂ (A) ≥ V̂ (λA+ (1 − λ)B)+ (1 − λ)α(v · θ)
= V̂ (λA+ (1 − λ)B)+ (1 − λ)(V̂ (A)− V̂ (B))�

so we have

λV̂ (A)+ (1 − λ)V̂ (B) ≥ V̂ (λA+ (1 − λ)B)�

54For instance, θ = αθ∗ for any α ∈ (0� ε/‖θ∗‖), where θ∗ = p∗ −p∗.
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Therefore, V̂ is convex on the convex and open neighborhood Bρε(A0) of A0

in A◦. Q.E.D.

Since A◦ is dense in Ac (see Lemma 4), we can extend V̂ to Ac by continuity.
That is, define a function V : Ac → R as follows: For any A ∈ Ac , there exists
a sequence {An}n∈N ⊂ A◦ such that An → A, so define V (A)≡ limn→∞ V̂ (An).
Since V̂ is Lipschitz continuous, the following lemma establishes that V is well
defined and also Lipschitz continuous. Furthermore, this extension V of V̂ rep-
resents � on Ac and preserves the translation linearity and convexity of V̂ .

LEMMA S.13: The function V : Ac → R is well defined and it satisfies properties
(i)–(iii) from Proposition 1.

PROOF: By Lemma 4, A◦ is dense in Ac . Since Ac is a compact metric
space, it is complete. Since V̂ is Lipschitz continuous, it is uniformly contin-
uous (see Aliprantis and Border (1999, p. 76)). Therefore, by Lemma 3.8 in
Aliprantis and Border (1999, p. 77), V is well defined and it is the unique
continuous extension of V̂ to Ac . To see that V is Lipschitz continuous, let
K > 0 be a Lipschitz constant for V̂ on A◦ and let A�B ∈ Ac . Take sequences
{An}n∈N� {Bn}n∈N ⊂ A◦ such that An → A and Bn → B. Then

|V (A)− V (B)| = lim
n→∞

|V̂ (An)− V̂ (Bn)|
≤ lim

n→∞
Kdh(An�Bn)=Kdh(A�B)�

Hence, V is Lipschitz continuous with the same constant K.
To see that V is translation linear, let A�A + θ ∈ Ac for some θ ∈ Θ. Fix

any p ∈ �(Z) such that pz > 0 for all z ∈ Z. For all n ∈ N, define An ≡ (1 −
1/n)A + (1/n){p} and θn ≡ (1 − 1/n)θ. By Lemma 4, for all n ∈ N, An ∈ A◦

and An + θn = (1 − 1/n)(A + θ) + (1/n){p} ∈ A◦. Moreover, An → A and
An + θn → A+ θ as n → ∞. Therefore,

V (A+ θ)− V (A) = lim
n→∞

[V̂ (An + θn)− V̂ (An)]
= lim

n→∞
v · θn = v · θ�

Thus, we see that V is translation linear on all of Ac . The proof that V is convex
is straightforward and follows from a similar line of reasoning; it is therefore
omitted.

To show that V represents � on Ac , we prove A � B ⇐⇒ V (A) > V (B).
Let {An}n∈N� {Bn}n∈N ⊂ A◦ be such that An → A and Bn → B as n → ∞.
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To see the ⇒ direction, suppose A � B. By the continuity of �, {C ∈ Ac :A�
C � B} is nonempty and open.55 Since A◦ is dense in Ac , there exists Ā ∈ A◦

such that A � Ā � B. Repeating the same argument for Ā � B, there exists
B̄ ∈ A◦ such that Ā � B̄ � B. By continuity, {C ∈ Ac :C � Ā} is a neighborhood
of A, so there exists N ∈ N such that An � Ā for all n ≥N . A similar argument
implies there exists N ′ ∈ N such that B̄ � Bn for all n ≥N ′. Therefore,

V (A)= lim
n→∞

V̂ (An) ≥ V̂ (Ā) > V̂ (B̄) ≥ lim
n→∞

V̂ (Bn)= V (B)�

To show the ⇐ direction, we will apply a similar argument using the con-
tinuity of V . Suppose V (A) > V (B). By continuity of V , {C ∈ Ac :V (A) >
V (C) > V (B)} is nonempty and open. Since A◦ is dense in Ac , there exists
Ā ∈ A◦ such that V (A) > V (Ā) > V (B). Repeating the same argument for
V (Ā) > V (B), there exists B̄ ∈ A◦ such that V (Ā) > V (B̄) > V (B). By conti-
nuity, {C ∈ Ac :V (C) > V (Ā)} is a neighborhood of A, so there exists N ∈ N

such that V̂ (An) = V (An) > V (Ā) = V̂ (Ā) for all n ≥ N . A similar argument
implies there exists N ′ ∈ N such that V̂ (B̄) > V̂ (Bn) for all n ≥ N ′. Therefore,
by continuity of �,

A= lim
n→∞

An � Ā � B̄ � lim
n→∞

Bn = B�

Finally, since V represents � on Ac and p∗ � p∗, we also have that
V ({p∗}) > V ({p∗}). Q.E.D.

The following lemma establishes uniqueness of the representation, complet-
ing the proof of Proposition 1.

LEMMA S.14: If V : Ac → R and V ′ : Ac → R are two functions that satisfy
(ii) and (iii) from Proposition 1 and are ordinally equivalent in the sense that for
any A�B ∈ Ac , V (A) ≥ V (B) ⇐⇒ V ′(A) ≥ V ′(B), then there exist α > 0 and
β ∈ R such that V ′ = αV +β.

PROOF: We first extend V and V ′ to A using indifference to randomiza-
tion: Define V̄ : A → R and V̄ ′ : A → R by V̄ (A) = V (co(A)) and V̄ ′(A) =
V ′(co(A)) for A ∈ A. Note that V̄ and V̄ ′ satisfy (ii) and (iii) from Propo-
sition 1. The convexity, translation linearity, and singleton nontriviality of
these functions follow immediately from the properties of V and V ′. The Lip-
schitz continuity of V̄ follows from the Lipschitz continuity of V since for any

55Note that the sets {λ ∈ [0�1] :λA + (1 − λ)B � B} and {λ ∈ [0�1] :A � λA + (1 − λ)B} are
nonempty and open relative to [0,1] (by continuity of � and continuity of convex combinations),
and their union is [0�1]. Since [0�1] is connected, their intersection must be nonempty. Hence
the set {C ∈ Ac :A � C � B} is also nonempty.
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A�B ∈ A,

|V̄ (A)− V̄ (B)| = ∣∣V (co(A))− V (co(B))
∣∣

≤ Kdh(co(A)� co(B))≤Kdh(A�B)�

where K > 0 is any Lipschitz constant of V . Note that the last inequality follows
from the fact that dh(co(A)� co(B))≤ dh(A�B) for any A�B ∈ A. Similarly, V̄ ′

is Lipschitz continuous.
Define a preference �̄ on A by A �̄B ⇐⇒ V̄ (A) ≥ V̄ (B) for A�B ∈ A.

Define the sets Ai and A′
i for i ∈ N as above for this preference �̄. Since V̄ sat-

isfies (ii) and (iii) from Proposition 1, it is easy to see that �̄ satisfies the axioms
of Proposition 1: weak order, strong continuity, ACP, and IDD.56 Therefore, we
can appeal to Lemma S.10 to conclude that A◦ = ⋃

i Ai.
Translation linearity implies that V̄ and V̄ ′ are affine on singletons and,

therefore, the standard von Neumann–Morgenstern uniqueness result implies
V̄ ′|S = αV̄ |S + β for some α > 0, β ∈ R. By translation linearity and that fact
that V̄ ′(A) ≥ V̄ ′(B) ⇐⇒ V̄ (A) ≥ V̄ (B) ⇐⇒ A �̄B, a simple induction ar-
gument shows that V̄ ′|Ai

= αV̄ |Ai
+ β for all i ∈ N. Since A◦ = ⋃

i Ai by our
previous arguments, this implies V̄ ′|A◦ = αV̄ |A◦ + β. Since A◦ is dense in Ac

(see Lemma 4), and the functions V̄ and V̄ ′ are continuous, we conclude that
V ′ = V̄ ′|Ac = αV̄ |Ac +β= αV +β. Q.E.D.

S.4. PROOF OF EQUATION (24)

LEMMA S.15: If � satisfies strong IDD, then for any A ∈ A, p ∈ �(Z) and
α ∈ [0�1],

V (αA+ (1 − α){p})= αV (A)+ (1 − α)V ({p})�(S.17)

PROOF: Take θ∗, Ac , A◦, Ai, and A′
i as defined in Appendix C. It easily

is verified that for any signed RFCC representation, the consistency of the
measures implies that V is affine on singleton menus:

V (α{q} + (1 − α){p})
= αV ({q})+ (1 − α)V ({p}) ∀p�q ∈ �(Z)�

Therefore, Equation (S.17) holds for all A ∈ A0. We prove by induction that
Equation (S.17) holds on Ai for all i ≥ 0.

56The only axiom that is more difficult to verify is L-continuity, but this follows from
Lemma S.3.
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Fix any i ≥ 0. Our first step is to establish that if Equation (S.17) holds for
all A ∈ Ai, then it must also hold for all A ∈ A′

i. For suppose Equation (S.17)
holds on Ai and A ∈ A′

i. Then A ∼ B for some B ∈ Ai and so, by strong IDD,

V (αA+ (1 − α){p})
= V (αB + (1 − α){p}) (by strong IDD)

= αV (B)+ (1 − α)V ({p}) (by induction assumption)

= αV (A)+ (1 − α)V ({p})�
Next, we establish that if Equation (S.17) holds for all A ∈ A′

i, then it must
also hold for all A ∈ Ai+1. Suppose Equation (S.17) holds on A′

i and A ∈ Ai+1.
Then A = B+ ᾱθ∗ for some B ∈ A′

i and ᾱ ∈ R. By Lemma S.2, V is translation
linear (as defined in Section C.1) and thus there exists v ∈ RZ such that

V (αA+ (1 − α){p}) = V (αB + (1 − α){p} + αᾱθ∗)

= V (αB + (1 − α){p})+ αᾱ(v · θ∗)

= αV (B)+ (1 − α)V ({p})+ αᾱ(v · θ∗)

= αV (B + ᾱθ∗)+ (1 − α)V ({p})
= αV (A)+ (1 − α)V ({p})�

By induction, we conclude that Equation (S.17) holds on Ai for all i ≥ 0,
and hence by Lemma S.10, Equation (S.17) holds for all A ∈ A◦. Since A◦ is
dense in Ac by Lemma 4, the continuity of V implies that the desired property
also holds on Ac . Finally, for any A ∈ A, co(A) ∈ Ac and V (A) = V (co(A)).
Therefore, by arguments identical to those used above, it follows that Equa-
tion (S.17) holds for all A ∈ A. Q.E.D.
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