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THIS SUPPLEMENT contains the following details omitted from the main paper
due to space constraints: (A) proof of the results in the paper, (B) auxiliary re-
sults and their proof, (C) additional alternative sequential algorithms, (D) the
convergence properties of the NPL algorithm for models with unobserved het-
erogeneity, and (E) additional Monte Carlo results.

Throughout this Supplement, let a.s. abbreviate “almost surely,” and let i.o.
abbreviate “infinitely often.” C denotes a generic positive and finite constant
that may take different values in different places. For matrix and nonnegative
scalar sequences of random variables {XM�M ≥ 1} and {YM�M ≥ 1}, respec-
tively, we write XM = O(YM) (or o(YM)) a.s. if ‖XM‖ ≤AYM for some (or all)
A> 0 a.s. When YM belongs to a family of random variables indexed by τ ∈ T ,
we say XM = (YM(τ)) (or o(YM(τ))) a.s. uniformly in τ if the constant A> 0
can be chosen the same for every τ ∈ T . For instance, in Proposition 7 below,
we take τ = P̃j−1 and YM(τ)= ‖P̃j−1 − P̂NPL‖.

APPENDIX A: PROOFS OF THE RESULTS IN THE MAIN TEXT

Throughout the proofs, the O(·) terms are uniform, but we suppress the
reference to their uniformity for brevity.

PROOF OF PROPOSITION 1: We suppress the subscript NPL from P̂NPL. Let
b > 0 be a constant such that ρ(MΨθ

ΨP) + 2b < 1. From Lemma 5.6.10 of
Horn and Johnson (1985), there is a matrix norm ‖ · ‖α such that ‖MΨθ

ΨP‖α ≤
ρ(MΨθ

ΨP)+b. Define a vector norm ‖·‖β for x ∈ RL as ‖x‖β = ‖ [x 0 · · · 0]‖α;
then a direct calculation gives ‖Ax‖β = ‖A [x 0 · · · 0]‖α ≤ ‖A‖α‖x‖β for
any matrix A. From the equivalence of vector norms in RL (see, e.g., Corol-
lary 5.4.5 of Horn and Johnson (1985)), we can restate Proposition 7 in terms
of ‖ · ‖β as follows: there exists c > 0 such that P̃j − P̂ = MΨθ

ΨP(P̃j−1 − P̂) +
O(M−1/2‖P̃j−1 − P̂‖β + ‖P̃j−1 − P̂‖2

β) a.s. holds uniformly in P̃j−1 ∈ {P :‖P −
P0‖β < c}. We rewrite this statement further so that it is amenable to recursive
substitution. First, note that ‖MΨθ

ΨP(P̃j−1 − P̂)‖β ≤ ‖MΨθ
ΨP‖α‖P̃j−1 − P̂‖β ≤

(ρ(MΨθ
ΨP)+b)‖P̃j−1 − P̂‖β. Second, rewrite the remainder term as O(M−1/2 +

‖P̃j−1 − P̂‖β)‖P̃j−1 − P̂‖β. Set c < b; then this term is smaller than b‖P̃j−1 − P̂‖β

a.s. Third, since P̂ is consistent, {P :‖P − P̂‖β < c/2} ⊂ {P :‖P − P0‖β < c}
a.s. Consequently, ‖P̃j − P̂‖β ≤ (ρ(MΨθ

ΨP)+ 2b)‖P̃j−1 − P̂‖β holds a.s. for all
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P̃j−1 in {P :‖P − P̂‖β < c/2}. Because each NPL updating of (θ�P) uses the
same pseudo likelihood function, we may recursively substitute for the P̃j ’s,
and hence limk→∞ P̃k = P̂ a.s. if ‖P̃0 − P̂‖β < c/2. The stated result follows from
applying the equivalence of vector norms in RL to ‖P̃0 − P̂‖β and ‖P̃0 − P̂‖ and
using the consistency of P̂ . Q.E.D.

PROOF OF PROPOSITION 2: We prove that the stated result holds if P̃j−1 is in
a neighborhood N NPL

c of P̂NPL. The stated result then follows from the strong
consistency of P̂NPL.

Because Proposition 7 holds under the current assumption, we have

P̃j − P̂NPL = MΨθ
Ψ 0

P(P̃j−1 − P̂NPL)+ f (P̃j−1 − P̂NPL)�(5)

where |f (x)| ≤ C(x2 + M−1/2|x|) a.s. Let λ1�λ2� 
 
 
 � λL be the eigenvalues of
MΨθ

Ψ 0
P such that

|λ1| ≥ · · · ≥ |λr |> 1 ≥ |λr+1| ≥ · · · ≥ |λL|
(6)

For any ε 	= 0, we may apply a Jordan decomposition to MΨθ
Ψ 0

P to obtain
H−1MΨθ

Ψ 0
PH = D + εJ, where D = diag(λ1� 
 
 
 � λL), and J is a matrix with

zeros and ones immediately above the main diagonal (on the superdiagonal)
and zeros everywhere else.

Define yj = H−1(P̃j − P̂NPL) and g(y) = H−1f (Hy); then multiplying (5) by
H−1 gives yj = (D+ εJ)yj−1 + g(yj−1), with |g(y)| ≤ C(|y|2 +M−1/2|y|) a.s. Let
y1
j denote the first r elements of y , and rewrite this equation as(

y1
j

y2
j

)
=

(
D1 0
0 D2

)(
y1
j−1

y2
j−1

)
+ ε

(
J1 0
0 J2

)(
y1
j−1

y2
j−1

)
+

(
g1(yj−1)
g2(yj−1)

)
�(7)

where y1
j−1 and g1(yj−1) are r × 1 and D1 and J1 are r × r with D1 =

diag(λ1� 
 
 
 � λr).
We first show that ‖H1(P̃j − P̂NPL)‖ > ‖H1(P̃j−1 − P̂NPL)‖ by proving that

‖y1
j ‖ > ‖y1

j−1‖ under the stated assumptions. Applying the triangle inequality
to the first equation of (7) gives

‖y1
j ‖ ≥ ‖D1y

1
j−1‖ − ‖εJ1y

1
j−1‖ − ‖g1(yj−1)‖
(8)

For the first two terms on the right hand side of (8), we have ‖D1y
1
j−1‖ =

(
∑r

k=1 |λk|2(yj−1�k)
2)1/2 ≥ (1 + 3δ)‖y1

j−1‖ for some δ > 0 from (6) and
‖εJ1y

1
j−1‖ ≤ δ‖y1

j−1‖ by choosing ε sufficiently small. For the last term of (8),
observe that P̃j−1 ∈ V (c) if and only if ‖y1

j−1‖ ≤ c‖y2
j−1‖, and hence

P̃j−1 /∈ V (c) ⇒ ‖yj−1‖2 = ‖y1
j−1‖2 + ‖y2

j−1‖2 < (1 + c−2)‖y1
j−1‖2
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Therefore, ‖g1(yj−1)‖ ≤ δ‖y1
j−1‖ holds when N NPL

c is sufficiently small and M is
sufficiently large. It then follows from (8) that ‖y1

j ‖ ≥ (1 + δ)‖y1
j−1‖ > ‖y1

j−1‖.
It remains to show that P̃j /∈ V (c). Applying the triangle inequality to the

second equation of (7) gives ‖y2
j ‖ ≤ ‖D2y

2
j−1‖ + ‖εJ2y

2
j−1 + g2(yj−1)‖. For the

first term on the right hand side, ‖D2y
2
j−1‖ = (

∑L

k=r+1 |λk|2(yj−1�k)
2)1/2 ≤ ‖y2

j−1‖
from (6). For the second term, similarly to the updating of y1

j , by choosing
ε and N NPL

c sufficiently small, we have ‖εJ2y
2
j−1 + g2(yj−1)‖ ≤ c−1δ‖y1

j−1‖ if
P̃j−1 ∈ N NPL

c \ V (c) and M is sufficiently large. Therefore, ‖y2
j ‖ ≤ ‖y2

j−1‖ +
c−1δ‖y1

j−1‖ < c−1(1 + δ)‖y1
j−1‖ < c−1‖y1

j ‖ a.s., where the last two inequalities
use ‖y2

j−1‖< c−1‖y1
j−1‖ and ‖y1

j−1‖ < ‖y1
j ‖. This proves P̃j /∈ V (c). Q.E.D.

PROOF OF PROPOSITION 3: First, note that P̃j for j ≥ 1 satisfies restriction
(2) because it is generated by Ψ(θ�P). The restrictions (2) and (3) do not
affect the validity of Propositions 1 and 2 because (i) the fixed point constraint
in terms of Ψ(θ�P) and of Ψ+(θ�P+) are equivalent, and (ii) the restrictions
(2) and (3) do not affect the order of magnitude of the derivatives of Ψ(θ�P).

For the equivalence of the eigenvalues, taking the derivative of (3) gives

∇P ′Ψ(θ�P) =
( ∇P+′Ψ+(θ�P+) 0

−E ∇P+′Ψ+(θ�P+) 0

)
= (U∇P+′Ψ+(θ�P+) 0 ) �(9)

and ∇θ′Ψ(θ�P) = U∇θ′Ψ+(θ�P+). Substituting this into MΨθ
Ψ 0

P , using Ψ 0
θ =

UΨ+
θ , and rearranging terms gives MΨθ

Ψ 0
P = [UM+

Ψθ
Ψ+

P+



0]. Therefore, the

updating formula of P+ and P− is given by P̃+
j − P̂+

NPL = M+
Ψθ
Ψ+

P+(P̃
+
j−1 −

P̂+
NPL)+O(M−1/2‖P̃+

j−1 − P̂+
NPL‖+‖P̃+

j−1 − P̂+
NPL‖2) a.s. and P̃−

j − P̂−
NPL = −E(P̃+

j −
P̂+

NPL), respectively. Finally, the equivalence of the eigenvalues follows from
det(MΨθ

Ψ 0
P −λIdim(P))= det(M+

Ψθ
Ψ+

P+ −λIdim(P+))det(−λIdim(P−)) and det(Ψ 0
P −

λIdim(P))= det(Ψ+
P+ − λIdim(P+))det(−λIdim(P−)). Q.E.D.

PROOF OF EQUATION (4): The notation follows page 10 of Aguirregabiria
and Mira (2007; henceforth AM07). Let πP−i

i (ai� x;θ) = ∑
a−i∈A P−i(a−i)Πi(ai�

a−i� x;θ) and e
Pi
i (ai� x;θ) = E[εi(ai)|x�Pi], where E[εi(ai)|x�P] = E[εi(ai)|

x�Pi] holds as discussed on pages 9–10 of AM07. Let Vi(x) denote the solution
of firm i’s integrated Bellman equation:

Vi(x) =
∫

max
ai∈A

{
π

P−i
i (ai� x;θ)+β

∑
x′∈X

Vi(x
′)f P−i

i (x′|x�ai)+ εi(ai)

}
(10)

× g(dεi;θ)�
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where f
P−i
i (x′|x�ai) = ∑

a−i∈A P−i(a−i)f (x
′|x�ai� a−i). Let Πi(ai� a−i;θ),

π
P−i
i (ai;θ), ePii (ai;θ), Pi(ai), and Vi denote the vectors of dimension |X| that

stack the corresponding state-specific elements of Πi(ai� a−i� x;θ), πP−i

i (ai� x;
θ), ePii (ai� x;θ), Pi(ai|x), and Vi(x), respectively. Define the valuation operator
as

Γi(θ�P) ≡ (I −βFP)−1
∑
ai∈A

Pi(ai) ∗ [πP−i
i (ai;θ)+ e

Pi
i (ai;θ)]�

where FP is a matrix with transition probabilities f P(x′|x), and ∗ denotes the
Hadamard product. Γi(θ�P) gives the solution of firm i’s integrated Bellman
equation given θ and P .

Define firm i’s best response mapping given Vi and P−i as (cf. equation (15)
of AM07)

[Υi(θ�Vi�P−i)](ai|x)(11)

≡
∫

I

(
ai = arg max

a∈A

{
π

P−i

i (a�x;θ)

+ εi(a)+β
∑
x′∈X

Vi(x
′)f P−i

i (x′|x�a)
})

g(dεi;θ)�

where f
P−i
i (x′|x�ai) = ∑

a−i∈A P−i(a−i)f (x
′|x�ai� a−i). Then, the mapping Ψ

and its Jacobian matrix evaluated at (θ0�P0) are given by

Ψ(θ�P) =
(
Ψ1(θ�P)
Ψ2(θ�P)

)
=

(
Υ1(θ�Γ1(θ�P)�P2)
Υ2(θ�Γ2(θ�P)�P1)

)
and

Ψ 0
P =

(
0 ∇P ′

2
Ψ1(θ

0�P0)

∇P ′
1
Ψ2(θ

0�P0) 0

)
�

where ∇P ′
i
Ψi(θ

0�P0)= 0 follows from ∇P ′
i
Γi(θ�Pi�P−i)= 0 (Aguirregabiria and

Mira (2002), Proposition 2). Q.E.D.

PROOF OF PROPOSITION 4: For part (a), let V ∗
i denote the solution of

the Bellman equation (10) given P−i, and let P∗
i be the conditional choice

probabilities associated with V ∗
i . Since xt = (St� a1�t−1� a2�t−1) holds and St

follows an exogenous process, we may verify under Assumption 3(c) that
(i) V ∗

i (St� ai�t−1� a
†
−i�t−1) = V ∗

i (St� ai�t−1� a
‡
−i�t−1) for a†

−i�t−1 	= a‡
−i�t−1, (ii) V ∗

i does
not depend on P−i, (iii) Γi(θ

∗�Pi�P
†
−i)= Γi(θ

∗�Pi�P
‡
−i)= V ∗

i , and (iv) Υi(θ
∗� V ∗

i �

P†
−i) = Υi(θ

∗� V ∗
i � P

‡
−i) = P∗

i for any P†
−i and P‡

−i in the space of P−i’s. It fol-
lows from (i)–(iv) that the model becomes a single-agent model for each
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player and that there exists a unique Markov perfect equilibrium character-
ized by a unique fixed point P∗

i = Ψi(θ
∗�P∗

i � P−i) = Υi(θ
∗� Γi(θ

∗�P∗
i � P−i)�P−i)

for i = 1�2, where the fixed point P∗
i does not depend on the value of P−i.

Define F(θ�P) = P − Ψ(θ�P). Since ∇P ′F(θ∗�P∗) = I − ∇P ′Ψ(θ∗�P∗) = I,
we may apply the implicit function theorem to F(θ�P) = P − Ψ(θ�P) at
(θ�P) = (θ∗�P∗) under Assumption 2(b), and there exists an open set Nθ∗ con-
taining θ∗, an open set NP∗ containing P∗, and a unique continuously differen-
tiable function P(θ) : Nθ∗ → NP∗ such that P(θ) =Ψ(θ�P(θ)) for any θ ∈ Nθ∗ .
Therefore, a Markov perfect equilibrium exists in NP∗ when the true parameter
θ0 is in Nθ∗ .

The mapping ρ(MΨθ
∇P ′Ψ(θ�P(θ))) is a continuous function of θ ∈ Nθ∗ be-

cause P(θ) is continuous in θ ∈ Nθ∗ , Ψ(θ�P) is continuously differentiable by
Assumption 2(b), ‖MΨθ

‖ < ∞ by Assumption 2(b), and the spectral radius of
a matrix is a continuous function of the elements of the matrix. The stated re-
sult then follows from ∇P ′Ψ(θ∗�P(θ∗)) = 0 (Remark 1) and the continuity of
ρ(MΨθ

∇P ′Ψ(θ�P(θ))).
For part (b), under Assumption 3(d), θ = θ�, and β= 0, the model becomes

a single-agent model for each player. Therefore, repeating the argument for
part (a) gives the stated result. Q.E.D.

PROOF OF PROPOSITION 5: Let λ = Re(λ) + i Im(λ) = r cosθ + ir sinθ be
an eigenvalue of Ψ 0

P . Then, the corresponding eigenvalue of ΛP is λ(α) =
αr cosθ + iαr sinθ + (1 − α). Let f (α) = |λ(α)|2; then the stated result holds
because f (0)= 1 and ∇αf (0)= 2(r cosθ− 1) < 0 if r cosθ < 1 and ∇αf (0) > 0
if r cosθ > 1. Q.E.D.

APPENDIX B: AUXILIARY RESULTS AND THEIR PROOF

Proposition 6 strengthens the weak consistency result of Proposition 2 of
AM07 to strong consistency. Proposition 7 describes how an NPL step updates
θ and P .

PROPOSITION 6: Suppose that Assumption 1 holds. Then, (θ̂NPL� P̂NPL) →
(θ0�P0) a.s.

PROOF: Proposition 2 of AM07 showed weak consistency of (θ̂NPL� P̂NPL).
Therefore, strong consistency (θ̂NPL� P̂NPL) follows from strengthening “in
probability” and “with probability approaching 1” statements in Steps 2–5 of
the proof of Proposition 2 of AM07 to “almost surely.”

First, observe that AM07 (pp. 44–45) showed that QM(θ�P) converges
to Q0(θ�P) a.s. and uniformly in (θ�P). Thus, the events AM ’s defined
in Steps 2, 3, and 5 of AM07 satisfy Pr(Ac

M i
o
) = 0. In Step 2, we can
strengthen Pr((θ∗

M�P
∗
M) ∈ �)→ 1 of AM07 to (θ∗

M�P
∗
M) ∈ � a.s. because AM07

(pp. 46–47) showed AM ⇒ {(θ∗
M�P

∗
M) ∈ �} and we have Pr(Ac

M i
o
) = 0. In
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Step 3, an analogous argument strengthens Pr(supP∈N(P0) ‖θ̃M(P) − θ̃0(P)‖ <

ε) → 1 in AM07 to supP∈N(P0) ‖θ̃M(P) − θ̃0(P)‖ < ε a.s. Similarly, we can
strengthen “with probability approaching 1” in Steps 4 and 5 to “almost surely,”
and strong consistency of the NPL estimator follows. Q.E.D.

PROPOSITION 7: Suppose that Assumption 2 holds. Then, there exists a neigh-
borhood N1 of P0 such that θ̃j − θ̂NPL = O(‖P̃j−1 − P̂NPL‖) a.s. and P̃j − P̂NPL =
MΨθ

Ψ 0
P(P̃j−1 − P̂NPL) + O(M−1/2‖P̃j−1 − P̂NPL‖ + ‖P̃j−1 − P̂NPL‖2) a.s. uniformly

in P̃j−1 ∈ N1.

PROOF: We suppress the subscript NPL from P̂NPL and θ̂NPL. For ε > 0, de-
fine a neighborhood N (ε) = {(θ�P) :‖θ − θ0‖ + ‖P − P0‖ < ε}. Then, there
exists ε1 > 0 such that N (ε1) ⊂ N and sup(θ�P)∈N (ε1)

‖∇θθ′Q0(θ�P)
−1‖ < ∞ be-

cause ∇θθ′Q0(θ�P) is continuous and ∇θθ′Q0(θ
0�P0) is nonsingular.

First, we assume that (θ̃j� P̃j−1) ∈ N (ε1) and derive the stated representation
of θ̃j − θ̂ and P̃j − P̂ . We later show that (θ̃j� P̃j−1) ∈ N (ε1) a.s. if N1 is suffi-
ciently small. The first-order condition for θ̃j is ∇θQM(θ̃j� P̃j−1)= 0. Expanding
it around (θ̂� P̂) and using ∇θQM(θ̂� P̂) = 0 gives

0 = ∇θθ′QM(θ̄� P̄)(θ̃j − θ̂)+ ∇θP ′QM(θ̄� P̄)(P̃j−1 − P̂)�(12)

where (θ̄� P̄) lie between (θ̃j� P̃j−1) and (θ̂� P̂). Write (12) as θ̃j − θ̂ =
−∇θθ′QM(θ̄� P̄)

−1∇θP ′QM(θ̄� P̄)(P̃j−1 − P̂); then the stated uniform
bound of θ̃j − θ̂ follows because (i) (θ̄� P̄) ∈ N (ε1) a.s. since (θ̃j�

P̃j−1) ∈ N (ε1) and (θ̂� P̂) is strongly consistent from Proposition 6, and
(ii) sup(θ�P)∈N (ε1)

‖∇θθ′QM(θ�P)
−1∇θP ′QM(θ�P)‖ = O(1) a.s. since

sup(θ�P)∈N (ε1)
‖∇θθ′Q0(θ�P)

−1‖ < ∞ and sup(θ�P)∈N ‖∇2QM(θ�P) − ∇2Q0(θ�
P)‖ = o(1) a.s., where the latter follows from Kolmogorov’s strong law of
large numbers and Theorem 2 and Lemma 1 of Andrews (1992).

For the bound of P̃j − P̂ , first we collect the following results, which follow
from the Taylor expansion around (θ0�P0), root-M consistency of (θ̂� P̂), and
the information matrix equality:

∇θθ′QM(θ̂� P̂) = −Ωθθ +O
(
M−1/2

)
a.s.�(13)

∇θP ′QM(θ̂� P̂) = −ΩθP +O
(
M−1/2

)
a.s.�

∇θ′Ψ(θ̂� P̂) = Ψ 0
θ +O

(
M−1/2

)
a.s.�

∇P ′Ψ(θ̂� P̂) =Ψ 0
P +O

(
M−1/2

)
a.s.

Expand the right hand side of P̃j = Ψ(θ̃j� P̃j−1) twice around (θ̂� P̂) and
use Ψ(θ̂� P̂) = P̂ and θ̃j − θ̂ = O(‖P̃j−1 − P̂‖) a.s.; then we obtain P̃j −
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P̂ = ∇θ′Ψ(θ̂� P̂)(θ̃j − θ̂) + ∇P ′Ψ(θ̂� P̂)(P̃j−1 − P̂) + O(‖P̃j−1 − P̂‖2) a.s. since
sup(θ�P)∈N (ε1)

∇3Ψ(θ�P) < ∞. Applying (13) and θ̃j − θ̂ =O(‖P̃j−1 − P̂‖) a.s. to
the right hand side gives

P̃j − P̂ = Ψθ(θ̃j − θ̂)+Ψ 0
P(P̃j−1 − P̂)(14)

+O(‖P̃j−1 − P̂‖2)+O
(
M−1/2‖P̃j−1 − P̂‖) a.s.

We proceed to refine (12) to write θ̃j − θ̂ in terms of P̃j−1 − P̂ and substi-
tute it into (14). Expanding ∇θθ′QM(θ̄� P̄) in (12) around (θ̂� P̂), noting that
‖θ̄− θ̂‖ ≤ ‖θ̃j − θ̂‖ and ‖P̄− P̂‖ ≤ ‖P̃j−1 − P̂‖, and using θ̃j − θ̂ =O(‖P̃j−1 − P̂‖)
a.s., we obtain ∇θθ′QM(θ̄� P̄) = ∇θθ′QM(θ̂� P̂)+O(‖P̃j−1 − P̂‖) a.s. Further, ap-
plying (13) gives ∇θθ′QM(θ̄� P̄) = −Ωθθ +O(M−1/2)+O(‖P̃j−1 − P̂‖) a.s. Simi-
larly, we obtain ∇θP ′QM(θ̄� P̄) = −ΩθP +O(M−1/2)+O(‖P̃j−1 − P̂‖) a.s. Using
these results, refine (12) as θ̃j − θ̂ = −Ω−1

θθΩθP(P̃j−1 − P̂) + O(M−1/2‖P̃j−1 −
P̂‖+‖P̃j−1 − P̂‖2) a.s. Substituting this into (14) in conjunction with Ω−1

θθΩθP =
(Ψ 0′

θ ΔPΨ
0
θ )

−1Ψ 0′
θ ΔPΨ

0
P gives the stated result.

It remains to show (θ̃j� P̃j−1) ∈ N (ε1) a.s. if N1 is sufficiently small. Let Nθ ≡
{θ :‖θ − θ0‖ < ε1/2} and define Δ=Q0(θ

0�P0)− supθ∈N c
θ∩ΘQ0(θ�P

0) > 0,
where the last inequality follows from information inequality, compact-
ness of N c

θ ∩ Θ, and continuity of Q0(θ�P). It follows that {θ̃j /∈ Nθ} ⇒
{Q0(θ

0�P0)−Q0(θ̃j�P
0)≥ Δ}. Further, observe that Q0(θ

0�P0)−Q0(θ̃j�P
0)≤

QM(θ
0� P̃j−1) − QM(θ̃j� P̃j−1) + 2 supθ∈Θ |Q0(θ�P

0) − Q0(θ� P̃j−1)| +
2 sup(θ�P)∈Θ×BP

|QM(θ�P) − Q0(θ�P)| ≤ 2 supθ∈Θ |Q0(θ�P
0) − Q0(θ� P̃j−1)| +

2 sup(θ�P)∈Θ×BP
|QM(θ�P)−Q0(θ�P)|, where the second inequality follows from

the definition of θ̃j . From continuity of Q0(θ�P), there exists εΔ > 0 such that
the first term on the right is smaller than Δ/2 if ‖P0 − P̃j−1‖ ≤ εΔ. The second
term on the right is o(1) a.s. from Kolmogorov’s strong law of large numbers
and Theorem 2 and Lemma 1 of Andrews (1992). Hence, Pr(θ̃j /∈ Nθ i
o
) = 0
if ‖P0 − P̃j−1‖ ≤ εΔ, and setting N1 = {P :‖P − P0‖ ≤ min{ε1/2� εΔ}} gives
(θ̃j� P̃j−1) ∈ N (ε1) a.s. Q.E.D.

APPENDIX C: ADDITIONAL ALTERNATIVE SEQUENTIAL ALGORITHMS

C.1. Recursive Projection Method

In this subsection, we construct a mapping that has a better local contraction
property than Ψ , building upon the Recursive Projection Method (RPM) of
Shroff and Keller (1993; henceforth SK).

First, fix θ. Let Pθ denote an element of Mθ = {P ∈ BP :P =Ψ(θ�P)}, so that
Pθ is one of the fixed points of Ψ(θ�P) when there are multiple fixed points.
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Consider finding Pθ by iterating Pj = Ψ(Pj−1� θ) starting from a neighborhood
of Pθ. If some eigenvalues of ∇P ′Ψ(θ�Pθ) are outside the unit circle, this iter-
ation does not converge to Pθ in general. Suppose that, counting multiplicity,
there are r eigenvalues of ∇P ′Ψ(θ�Pθ) that are larger than δ ∈ (0�1) in modu-
lus:

|λ1| ≥ · · · ≥ |λr |> δ ≥ |λr+1| ≥ · · · ≥ |λL|
(15)

Define P ⊆ RL as the maximum invariant subspace of ∇P ′Ψ(θ�Pθ) belonging
to {λk}rk=1, and let Q ≡ RL − P be the orthogonal complement of P. Let Πθ de-
note the orthogonal projector from RL on P. We may write Πθ = ZθZ

′
θ, where

Zθ ∈ RL×r is an orthonormal basis of P. Then, for each P ∈ RL, we have the
unique decomposition P = u+ v, where u ≡ΠθP ∈ P and v ≡ (I −Πθ)P ∈ Q.

Now apply Πθ and I − Πθ to P = Ψ(θ�P), and decompose the system as
follows:

u= f (u� v�θ)≡ΠθΨ(θ�u+ v)�

v = g(u�v�θ) ≡ (I −Πθ)Ψ(θ�u+ v)


For a given Pj−1, decompose it into uj−1 = ΠθPj−1 and vj−1 = (I − Πθ)Pj−1.
Since g(u�v�θ) is contractive in v (see Lemma 2.10 of SK), we can update
vj−1 by the recursion vj = g(u�vj−1� θ). On the other hand, when the dominant
eigenvalue of Ψ 0

P is outside the unit circle, the recursion uj = f (uj−1� v�θ) can-
not be used to update uj−1 because f (u� v�θ) is not a contraction in u. Instead,
the RPM performs a single Newton step on the system u = f (u� v�θ), leading
to the following updating procedure:

uj = uj−1 + (I −Πθ∇P ′Ψ(θ�Pj−1)Πθ)
−1(f (uj−1� vj−1� θ)− uj−1)(16)

≡ h(uj−1� vj−1� θ)�

vj = g(uj−1� vj−1� θ)


Lemma 3.11 of SK shows that the spectral radius of the Jacobian of the
stabilized iteration (16) is no larger than δ, and thus the iteration Pj =
h(ΠθPj−1� (I − Πθ)Pj−1� θ) + g(ΠθPj−1� (I − Πθ)Pj−1� θ) converges locally. In
the following, we develop a sequential algorithm building upon the updating
procedure (16).

Let Π(θ�P) be the orthogonal projector from RL onto the maximum invari-
ant subspace of ∇P ′Ψ(θ�P) belonging to its r largest (in modulus) eigenvalues,
counting multiplicity. Define u∗, v∗, h∗(u∗� v∗� θ), and g∗(u∗� v∗� θ) by replacing
Πθ in u, v, h(u�v�θ), and g(u�v�θ) with Π(θ�P), and define

Γ (θ�P) ≡ h∗(u∗� v∗� θ)+ g∗(u∗� v∗� θ)(17)

= Ψ(θ�P)+ [
(I −Π(θ�P)∇P ′Ψ(θ�P)Π(θ�P))−1 − I

]
×Π(θ�P)(Ψ(θ�P)− P)
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P0 is a fixed point of Γ (θ0�P), because all the fixed points of Ψ(θ�P) are
also fixed points of Γ (θ�P). The following proposition shows two important
properties of Γ (θ�P): local contraction and the equivalence of fixed points of
Γ (θ�P) and Ψ(θ�P).

PROPOSITION 8: (a) Suppose that I − Π(θ�P)∇P ′Ψ(θ�P)Π(θ�P) is non-
singular and hence Γ (θ�P) is well defined. Then Γ (θ�P) and Ψ(θ�P) have the
same fixed points; that is, Γ (θ�P) = P if and only if Ψ(θ�P) = P .
(b) ρ(∇P ′Γ (θ0�P0)) ≤ δ0, where δ0 is defined by (15) in terms of the eigenval-
ues of ∇P ′Ψ(θ0�P0). Hence, Γ (θ�P) is locally contractive.

Define QΓ
M(θ�P) ≡ M−1

∑M

m=1

∑T

t=1 lnΓ (θ�P)(amt |xmt). Define an RPM
fixed point as a pair (θ̌� P̌) that satisfies θ̌ = arg maxθ∈ΘQ

Γ
M(θ� P̌) and P̌ =

Γ (θ̌� P̌). The RPM estimator, denoted by (θ̂RPM� P̂RPM), is defined as the RPM
fixed point with the highest value of the pseudo likelihood among all the RPM
fixed points. Define the RPM algorithm by the same sequential algorithm as
the NPL algorithm except that it uses Γ (θ�P) in place of Ψ(θ�P).

Proposition 9 shows the asymptotic properties of the RPM estimator and the
convergence properties of the RPM algorithm. Define the RPM counterparts
of θ̃0(P), φ0(P), Ωθθ, and ΩθP as θ̃Γ

0 (P) ≡ arg maxθ∈Θ EQ
Γ
M(θ�P), φ

Γ
0 (P) ≡

Γ (θ̃Γ
0 (P)�P), Ω

Γ
θθ ≡ E(∇θs

Γ
mt∇θ′sΓmt), and ΩΓ

θP ≡ E(∇θs
Γ
mt∇P ′sΓmt), where sΓmt =∑T

t=1 lnΓ (θ0�P0)(amt |xmt). Define Γ 0
P ≡ ∇P ′Γ (θ0�P0) and Γ 0

θ ≡ ∇θ′Γ (θ0�P0).
We outline the assumptions first.

ASSUMPTION 4: (a) Assumption 1 holds. (b) Ψ(θ�P) is four times contin-
uously differentiable in N . (c) I − Π(θ�P)∇P ′Ψ(θ�P)Π(θ�P) is nonsingular.
(d) Γ (θ�P) > 0 for any (a�x) ∈ A × X and (θ�P) ∈ Θ × BP . (e) The operator
φΓ

0 (P)− P has a nonsingular Jacobian matrix at P0.

Assumption 4(c) is required for Γ (θ�P) to be well defined. It would be pos-
sible to drop Assumption 4(d) by considering a trimmed version of Γ (θ�P),
but for brevity we do not pursue it.

PROPOSITION 9: Suppose that Assumption 4 holds. Then (a) P̂RPM − P0 =
O(M−1/2) a.s. and M1/2(θ̂RPM − θ0) →d N(0� VRPM), where VRPM = [ΩΓ

θθ +
ΩΓ

θP(I − Γ 0
P )

−1Γ 0
θ ]−1ΩΓ

θθ{[ΩΓ
θθ + ΩΓ

θP(I − Γ 0
P )

−1Γ 0
θ ]−1}′. (b) Suppose we obtain

(θ̃j� P̃j) from P̃j−1 by the RPM algorithm. Then, there exists a neighborhood N1

of P0 such that θ̃j − θ̂RPM = O(‖P̃j−1 − P̂RPM‖) and P̃j − P̂RPM = MΓθΓ
0
P (P̃j−1 −

P̂RPM) + O(M−1/2‖P̃j−1 − P̂RPM‖ + ‖P̃j−1 − P̂RPM‖2) a.s. uniformly in P̃j−1 ∈ N1,
where MΓθ ≡ I − Γ 0

θ (Γ
0′
θ ΔPΓ

0
θ )

−1Γ 0′
θ ΔP .
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C.2. Approximate RPM Algorithm

Implementing the RPM algorithm is costly because it requires evaluating
Π(θ�P) and ∇P ′Ψ(θ�P) for all the trial values of θ. We reduce the compu-
tational burden by evaluating Π(θ�P) and ∇P ′Ψ(θ�P) outside the optimiza-
tion routine by using a preliminary estimate of θ. This modification has only a
second-order effect on the convergence of the algorithm because the deriva-
tives of Γ (θ�P) with respect to Π(θ�P) and ∇P ′Ψ(θ�P) are zero when eval-
uated at P = Ψ(θ�P); see the second term in (17). Let η be a preliminary
estimate of θ. Replacing θ in Π(θ�P) and ∇P ′Ψ(θ�P) with η, we define the
following mapping:

Γ (θ�P�η) ≡ Ψ(θ�P)+ [
(I −Π(η�P)∇P ′Ψ(η�P)Π(η�P))−1 − I

]
×Π(η�P)(Ψ(θ�P)− P)


Once Π(η�P) and ∇P ′Ψ(η�P) are computed, the computational cost of eval-
uating Γ (θ�P�η) across different values of θ would be similar to that of eval-
uating Ψ(θ�P).

Let (θ̃0� P̃0) be an initial estimator of (θ0�P0). For instance, θ̃0 can be the
PML estimator. The approximate RPM algorithm iterates the following steps
until j = k:

Step 1. Given (θ̃j−1� P̃j−1), update θ by

θ̃j = arg max
θ∈Θ̄j

M−1
M∑

m=1

T∑
t=1

lnΓ (θ� P̃j−1� θ̃j−1)(amt |xmt)�

where Θ̄j ≡ {θ ∈ Θ :Γ (θ� P̃j−1� θ̃j−1)(a|x) ∈ [ξ�1−ξ] for all (a�x) ∈A×X} for
an arbitrary small ξ > 0. We impose this restriction to avoid computing ln(0).1

Step 2. Update P using the obtained estimate θ̃j by P̃j = Γ (θ̃j� P̃j−1� θ̃j−1).
The following proposition shows that the approximate RPM algorithm

achieves the same convergence rate as the original RPM algorithm in the first
order.

PROPOSITION 10: Suppose that Assumption 4 holds and that we obtain
(θ̃j� P̃j) from (θ̃j−1� P̃j−1) by the approximate RPM algorithm. Then, there ex-
ists a neighborhood N2 of (θ0�P0) such that θ̃j − θ̂RPM = O(‖P̃j−1 − P̂RPM‖ +
M−1/2‖θ̃j−1 − θ̂RPM‖ + ‖θ̃j−1 − θ̂RPM‖2) a.s. and P̃j − P̂RPM = MΓθΓ

0
P (P̃j−1 −

P̂RPM)+O(M−1/2‖θ̃j−1 − θ̂RPM‖+‖θ̃j−1 − θ̂RPM‖2 +M−1/2‖P̃j−1 − P̂RPM‖+‖P̃j−1 −
P̂RPM‖2) a.s. uniformly in (θ̃j−1� P̃j−1) ∈ N2.

1In practice, we may consider a penalized objective function by truncating Γ (θ� P̃j−1� θ̃j−1) so
that it takes a value between ξ and 1 − ξ, and adding a penalty term that penalizes θ such that
Γ (θ� P̃j−1� θ̃j−1) /∈ [ξ�1 − ξ].
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By choosing δ sufficiently small, the dominant eigenvalue of MΓθΓP lies in-
side the unit circle, and the approximate RPM algorithm can converge to a
consistent estimator even when the NPL algorithm diverges away from the
true value. The following proposition states the local convergence of the ap-
proximate RPM algorithm when ρ(MΓθΓP) < 1.

PROPOSITION 11: Suppose that Assumption 4 holds, ρ(MΓθΓ
0
P ) < 1, and

{θ̃k� P̃k} is generated by the approximate RPM algorithm starting from (θ̃0� P̃0).
Then, there exists a neighborhood N3 of (θ0�P0) such that, for any initial value
(θ̃0� P̃0) ∈ N3, we have limk→∞(θ̃k� P̃k)= (θ̂RPM� P̂RPM) a.s.

C.3. Numerical Implementation of the Approximate RPM Algorithm

Implementing the approximate RPM algorithm requires evaluating (I −
Π(θ̃j−1� P̃j−1)∇P ′Ψ(θ̃j−1� P̃j−1)Π(θ̃j−1� P̃j−1))

−1 as well as computing an or-
thonormal basis Z(θ̃j−1� P̃j−1) from the eigenvectors of ∇P ′Ψ(θ̃j−1� P̃j−1) for j =
1� 
 
 
 �k. This is potentially costly when the analytical expression of ∇P ′Ψ(θ�P)
is not available.

In this section, we discuss how to reduce the computational cost of imple-
menting the approximate RPM algorithm by updating (I − Π(θ̃j−1� P̃j−1) ×
∇P ′Ψ(θ̃j−1� P̃j−1)Π(θ̃j−1� P̃j−1))

−1 and Z(θ̃j−1� P̃j−1) without explicitly comput-
ing ∇P ′Ψ(θ�P) in each iteration.

First, we provide theoretical underpinning. The following corollary shows
that, if an alternative preliminary consistent estimator (θ∗�P∗) is used in form-
ing Π(θ�P) and ∇P ′Ψ(θ�P), it only affects the remainder terms in Proposi-
tion 10. Therefore, if we use a root-M consistent (θ∗�P∗) to evaluate Π(θ�P)
and ∇P ′Ψ(θ�P) and keep these estimates unchanged throughout iterations,
the resulting sequence of estimators is only O(M−1) away a.s. from the corre-
sponding estimators generated by the approximate RPM algorithm.

COROLLARY 1: Suppose that Assumption 4 holds. Let (θ∗�P∗) be a strongly
consistent estimator of (θ0�P0), and suppose we obtain (θ̃j� P̃j) by the approxi-
mate RPM algorithm with Π(θ∗�P∗) and ∇P ′Ψ(θ∗�P∗) in place of Π(θ̃j−1� P̃j−1)

and ∇P ′Ψ(θ̃j−1� P̃j−1). Then, there exists a neighborhood N4 of (θ0�P0) such
that θ̃j − θ̂RPM = O(‖P̃j−1 − P̂RPM‖ + rMj) a.s. and P̃j − P̂RPM = MΓθΓP(P̃j−1 −
P̂RPM) + O(M−1/2‖P̃j−1 − P̂RPM‖ + ‖P̃j−1 − P̂RPM‖2 + rMj) a.s. uniformly in
(θ̃j−1� P̃j−1) ∈ N4, where rMj =M−1/2‖θ̃j−1 − θ̂RPM‖+‖θ̃j−1 − θ̂RPM‖2 +M−1/2‖θ∗ −
θ̂RPM‖ + ‖θ∗ − θ̂RPM‖2 +M−1/2‖P∗ − P̂RPM‖ + ‖P∗ − P̂RPM‖2.

Using Corollary 1, in the following we discuss how to reduce the compu-
tational cost of implementing the RPM algorithm by updating (I − Π(θ̃j−1�
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P̃j−1)∇P ′Ψ(θ̃j−1� P̃j−1)Π(θ̃j−1� P̃j−1))
−1 and Z(θ̃j−1� P̃j−1) without explicitly com-

puting ∇P ′Ψ(θ�P) in each iteration. Denote Π̃j−1 = Π(θ̃j−1� P̃j−1), Z̃j−1 =
Z(θ̃j−1� P̃j−1), and Ψ̃P�j−1 = ∇P ′Ψ(θ̃j−1� P̃j−1).

First, using Π̃j−1 = Z̃j−1(Z̃j−1)
′ and (Z̃j−1)

′Z̃j−1 = I, we may verify that

(I − Π̃j−1Ψ̃P�j−1Π̃j−1)
−1Π̃j−1 = Z̃j−1(I − (Z̃j−1)

′Ψ̃P�j−1Z̃j−1)
−1(Z̃j−1)

′


Let Z̃j−1 = [z̃1
j−1� 
 
 
 � z̃

r
j−1] and ξ > 0. The ith column of Ψ̃P�j−1Z̃j−1 can be

approximated by Ψ̃P�j−1z̃
i
j−1 ≈ (1/ξ)[Ψ(θ̃j−1� P̃j−1 + ξz̃i

j−1) − Ψ(θ̃j−1� P̃j−1)],
which requires (r + 1) function evaluations of Ψ(θ�P). Further, evaluat-
ing (I − Π̃j−1Ψ̃P�j−1Π̃j−1)

−1 only requires the inversion of the r × r matrix
I − (Z̃j−1)

′Ψ̃P�j−1Z̃j−1 instead of an inversion of an L×L matrix. Thus, when r

is small, numerically evaluating (I − Π̃j−1Ψ̃P�j−1Π̃j−1)
−1 is not computationally

difficult.
Second, it is possible to use Ψ̃P�jZ̃j−1 to update an estimate of the or-

thogonal basis Z. Namely, given a preliminary estimate Z̃j−1, we may ob-
tain Z̃j by performing one step of an orthogonal power iteration (see Shroff
and Keller (1993), p. 1107, Golub and Van Loan (1996)) by computing
Z̃j = orth(Ψ̃P�jZ̃j−1), where “orth(B)” denotes an orthonormal basis for the
columns of B computed by Gram–Schmidt orthogonalization.

Our numerical implementation of the RPM sequential algorithm is summa-
rized as follows.

Step 0—Initialization. (a) Find the eigenvalues of Ψ̃P�0 ≡ ∇P ′Ψ(P̃0� θ̃0) for
which the modulus is larger than δ. Let {λ̃0�1� 
 
 
 � λ̃0�r} denote them.2 (b) Find
the eigenvectors of Ψ̃P�0 associated with λ̃0�1� 
 
 
 � λ̃0�r . (c) Using Gram–Schmidt
orthogonalization, compute an orthonormal basis of the space spanned by
these eigenvectors. Let {z̃1

0� 
 
 
 � z̃
r
0} denote the basis. (d) Compute Z̃0(I −

Z̃′
0Ψ̃P�0Z̃0)

−1Z̃′
0 and Π̃0 = Z̃0Z̃

′
0, where Z̃0 = [z̃1

0� 
 
 
 � z̃
r
0].

Step 1—Update θ. Given Z̃j−1(I − Z̃′
j−1Ψ̃P�j−1Z̃j−1)

−1Z̃′
j−1 and Π̃j−1 = Z̃j−1 ×

(Z̃j−1)
′, update θ by θ̃j = arg maxθ∈Θj

M−1
∑M

m=1

∑T

t=1 lnΓ (θ� P̃j−1� θ̃j−1�

Z̃j−1)(amt |xmt), where Γ (θ� P̃j−1� θ̃j−1� Z̃j−1)= Π̃j−1P̃j−1 + Z̃j−1(I− Z̃′
j−1Ψ̃P�j−1 ×

Z̃j−1)
−1Z̃′

j−1(Ψ(θ� P̃j−1)− P̃j−1)+(I−Π̃j−1)Ψ(θ� P̃j−1) with Ψ̃P�j−1 ≡ ∇P ′Ψ(θ̃j−1�

P̃j−1).
Step 2—Update P . Given (θ̃j� P̃j−1� θ̃j−1� Z̃j−1), update P by P̃j = Γ (θ̃j� P̃j−1�

θ̃j−1� Z̃j−1).

2Computing the r dominant eigenvalues of Ψ̃P�0 is potentially costly. We follow the numerical
procedure based on the power iteration method as discussed in Section 4.1 of SK.
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Step 3—Update Z. (a) Update the orthonormal basis Z by Z̃j =
orth(Ψ̃P�jZ̃j−1), where the ith column of Ψ̃P�jZ̃j−1 is computed by Ψ̃P�jz̃

i
j−1 ≈

(1/ξ)[Ψ(θ̃j� P̃j+ξz̃i
j−1)−Ψ(θ̃j� P̃j)] for small ξ > 0, with Z̃j−1 = [z̃1

j−1� 
 
 
 � z̃
r
j−1].

(b) Compute Π̃j = Z̃j(Z̃j)
′ and Z̃j(I − Z̃′

jΨ̃P�jZ̃j)
−1Z̃′

j , where the ith row of
Ψ̃P�jZ̃j is given by Ψ̃P�j z̃

i
j ≈ (1/ξ)[Ψ(θ̃j� P̃j + ξz̃i

j) − Ψ(θ̃j� P̃j)]. (c) Every J it-
erations, update the orthonormal basis Z using the algorithm of Step 0, where
(θ̃0� P̃0) is replaced with (θ̃j� P̃j).

Step 4. Iterate Steps 1–3 k times.
When an initial estimate is not precise, the dominant eigenspace of Ψ̃P�j will

change as iterations proceed. In Step 3(a), the orthonormal basis is updated to
maintain the accuracy of the basis without changing the size of the orthonormal
basis. If an initial estimate of the size of the orthonormal basis is smaller than
the true size, however, the estimated subspace P̃ = Π̃RL may not contain all
the bases for which eigenvalues are outside the unit circle. In such a case, the
algorithm may not converge. To safeguard against such a possibility, the basis
size is updated every J iterations in Step 3(c). In our Monte Carlo experiments,
we chose J = 10. Corollary 1 implies that this modified algorithm will converge.

C.4. Applying RPM to the Example of Pesendorfer and Schmidt-Dengler (2010)

This subsection illustrates how the RPM algorithm can be applied to
the example of Pesendorfer and Schmidt-Dengler (2010). We first derive
the relation between (Γ +

θ � Γ +
P+) and (Ψ+

θ �Ψ
+
P+). Define Π+(θ�P+) as the

orthogonal projector from Rdim(P+) onto the maximum invariant subspace
of ∇P+′Ψ(θ�P+) belonging to its r largest (in modulus) eigenvalues, and
let Z(θ�P+) be an orthonormal basis of the column space of Π+(θ�P+),
so that Π+(θ�P+) = Z(θ�P+)Z(θ�P+)′. From the proof of Proposition 6,
we have Γ +(θ�P+) − P+ = A(θ�P+)(Ψ+(θ�P+) − P+), where A(θ�P+) =
Z(θ�P+)[I − Z(θ�P+)′∇P+′Ψ(θ�P+)Z(θ�P+)]−1Z(θ�P+)′ + I − Π(θ�P+).
Consequently, Γ +

θ = A(θ0�P0+)Ψ+
θ and Γ +

P+ =A(θ0�P0+)(Ψ+
P+ − I)+ I.

We proceed to derive M+
Γθ
Γ +
P+ . Recall

Ψ+
θ = p012� Ψ+

P+ =
(

0 θ0

θ0 0

)
� M+

Ψθ
= 1

2

(
1 −1

−1 1

)



The eigenvectors and eigenvalues of Ψ+
P+ are given by

z1 = 1√
2

(
1
1

)
� λ1 = θ0� z2 = 1√

2

(
1

−1

)
� λ2 = −θ0


Because the eigenvector z1 is annihilated by M+
Ψθ

, we may take Z(θ0�P0+)= z2.
Suppress (θ0�P0+) from Z(θ0�P0+), Π(θ0�P0+), and A(θ0�P0+). Since Z is the
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eigenvector of Ψ+
P+ with eigenvalue −θ0, we have Z′Ψ+

P+Z = −θ0Z′Z = −θ0

and hence

A = Z(1 −Z′Ψ+
P+Z)−1Z′ + (I −Π)

= (1 + θ0)−1Π + (I −Π) = I − θ0(1 + θ0)−1Π


Because Ψ+
P+ is symmetric, we may apply the eigenvalue decomposition to it

and write Ψ+
P+ = θ0z1z

′
1 −θ0z2z

′
2 = θ0z1z

′
1 −θ0Π. In view of Az1 = z1 and AΠ =

(1 + θ0)−1Π, we have Γ +
P+ = A(Ψ+

P+ − I) + I = θ0z1z
′
1 − θ0(1 + θ0)−1Π − A +

I = θ0z1z
′
1. Further, from Ψ+

θ = p0
√

2z1, we have Γ +
θ = AΨ+

θ = Ψ+
θ and hence

M+
Γθ

= I − z1(z1z
′
1)

−1z′
1. It follows that M+

Γθ
Γ +
P+ = 0, and the local convergence

condition holds.

C.5. q-NPL Algorithm and Approximate q-NPL Algorithm

When the spectral radius of Λ0
P or Ψ 0

P is smaller than but close to 1, the
convergence of the NPL algorithm could be slow and the generated sequence
could behave erratically. Furthermore, in such a case, the efficiency loss from
using the NPL estimator compared to the MLE is substantial. To overcome
these problems, consider a q-fold operator of Λ as

Λq(θ�P) ≡Λ
(
θ�

(
Λ

(
θ� 
 
 
Λ(θ�Λ︸ ︷︷ ︸
q times

(θ�P)) 
 
 

)))




We may define Γ q(θ�P) and Ψq(θ�P) analogously. Define the q-NPL (q-
RPM) algorithm by using a q-fold operator Λq, Γ q, or Ψq in place of Λ, Γ ,
or Ψ in the original NPL (RPM) algorithm. In the following, we focus on Λq,
but the same argument applies to Γ q and Ψq.

If the sequence of estimators generated by the q-NPL algorithm converges,
its limit satisfies θ̌ = arg maxθ∈ΘM

−1
∑M

m=1

∑T

t=1 lnΛq(θ� P̌)(amt |xmt) and θ̌ =
Λq(θ̌� P̌). Among the pairs (θ̂� P̂) that satisfy these two conditions, the one that
maximizes the value of the pseudo likelihood is called the q-NPL estimator and
denoted by (θ̂qNPL� P̂qNPL).

Since the result of Proposition 7 also applies here by replacing Ψ with Λq,
the local convergence property of the q-NPL algorithm is primarily determined
by the spectral radius of Λq

P ≡ ∇P ′Λq(θ0�P0). When ρ(Λ0
P) is less than 1, the

q-NPL algorithm converges faster than the NPL algorithm because ρ(Λ
q
P) =

(ρ(Λ0
P))

q. Moreover, the variance of the q-NPL estimator approaches that of
the MLE as q → ∞.

Applying the q-NPL algorithm, as defined above, is computationally inten-
sive because the q-NPL Step 1 requires evaluating Λq at many different values
of θ. We reduce the computational burden by introducing a linear approxi-
mation of Λq(θ�P) around (η�P), where η is a preliminary estimate of θ:
Λq(θ�P�η) ≡ Λq(η�P)+ ∇θ′Λq(η�P)(θ−η).
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Given an initial estimator (θ̃0� P̃0), the approximate q-NPL algorithm iterates
the following steps until j = k:

Step 1. Given (θ̃j−1� P̃j−1), update θ by

θ̃j = arg max
θ∈Θq

j

M−1
M∑

m=1

T∑
t=1

lnΛq(θ� P̃j−1� θ̃j−1)(amt |xmt)�

where Θ
q
j ≡ {θ ∈ Θ : Λ̃q(θ� P̃j−1� θ̃j−1)(a|x) ∈ [ξ�1 − ξ] for all (a�x) ∈ A × X}

for an arbitrary small ξ > 0.
Step 2. Given (θ̃j� P̃j−1), update P using the obtained estimate θ̃j by P̃j =

Λq(θ̃j� P̃j−1).
Implementing Step 1 requires evaluating Λq(θ̃j−1� P̃j−1) and ∇θ′Λq(θ̃j−1� P̃j−1)

only once outside of the optimization routine for θ and thus involves far fewer
evaluations of Λ(θ�P) across different values of P and θ, compared to the
original q-NPL algorithm.3

Define the q-NPL counterparts of θ̃0(P), φ0(P), and Ωθθ as θ̃
q
0(P) ≡

arg maxθ∈Θ E[∑T

t=1 lnΛq(θ�P)(amt |xmt)], φ
q
0(P) ≡ Λq(θ̃

q
0(P)�P), and Ω

q
θθ ≡

E(∇θs
Λ
mt∇θ′sΛmt) with sΛmt =

∑T

t=1 lnΛq(θ0�P0)(amt |xmt), respectively. Define Ω
q
θP

analogously.

ASSUMPTION 5: (a) Assumption 1 holds. (b) Ψ(θ�P) is four times continu-
ously differentiable in N . (c) There is a unique θ0 such that Λq(θ0�P0) = P0.
(d) I−(αΨ 0

P +(1−α)I)q and I−Ψ 0
P are nonsingular. (e) The operator φq

0(P)−P
has a nonsingular Jacobian matrix at P0.

Assumption 5(c) is necessary for identifying θ0 when the conditional prob-
ability is given by Λq(θ�P). This assumption rules out θ1 	= θ0 that satis-
fies Λq(θ1�P0) = P0 even if Λ(θ1�P0) 	= P0. This occurs, for example, if
Λ(θ1�P0)= P1 and Λ(θ1�P1) = P0 hold for θ1 	= θ0 and P1 	= P0. Assump-
tion 5(d) is necessary for Ωq

θθ to be nonsingular. Since Λ
q
P = (αΨ 0

P + (1 −α)I)q,
the first condition holds if ρ(Λq

P) < 1 from 19.15 of Seber (2007).
The following proposition establishes the asymptotics of the q-NPL estima-

tor and the convergence property of the approximate q-NPL algorithm. Propo-
sition 12(c) implies that, when q is sufficiently large, the q-NPL estimator is
more efficient than the NPL estimator, provided that additional conditions in
Assumption 5 hold. Proposition 12(d) corresponds to Proposition 1.

PROPOSITION 12: Suppose that Assumption 5 holds. Then (a) P̂qNPL −
P0 = O(M−1/2) a.s. and M1/2(θ̂qNPL − θ0) →d N(0� VqNPL), where VqNPL =

3Using one-sided numerical derivatives, evaluating ∇θ′Λq(θ̃j� P̃j) requires (K + 1)q function
evaluations of Ψ(θ�P).
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[Ωq
θθ + Ω

q
θP(I − Λ0

P)
−1Λ

q
θ]−1Ω

q
θθ{[Ωq

θθ + Ω
q
θP(I − Λ0

P)
−1Λ

q
θ]−1}′. (b) Suppose

we obtain (θ̃j� P̃j) from (θ̃j−1� P̃j−1) by the approximate q-NPL algorithm.
Then, there exists a neighborhood N6 of (θ0�P0) such that θ̃j − θ̂qNPL =
O(‖P̃j−1 − P̂qNPL‖ + M−1/2‖θ̃j−1 − θ̂qNPL‖ + ‖θ̃j−1 − θ̂qNPL‖2) a.s. and P̃j −
P̂qNPL = MΛ

q
θ
Λ

q
P(P̃j−1 − P̂qNPL) + O(M−1/2‖θ̃j−1 − θ̂qNPL‖ + ‖θ̃j−1 − θ̂qNPL‖2 +

M−1/2‖P̃j−1 − P̂qNPL‖+‖P̃j−1 − P̂qNPL‖2) a.s. uniformly in (θ̃j−1� P̃j−1) ∈ N6, where
MΛ

q
θ
≡ I−Λ

q
θ(Λ

q′
θ ΔPΛ

q
θ)

−1Λ
q′
θ ΔP with Λ

q
θ ≡ ∇θ′Λq(θ0�P0). (c) If ρ(Λ0

P) < 1, then

VqNPL → VMLE as q → ∞. (d) Suppose {θ̃k� P̃k} is generated by the approximate
q-NPL algorithm starting from (θ̃0� P̃0) and ρ(MΛ

q
θ
Λ

q
P) < 1. Then, there exists a

neighborhood N7 of (θ0�P0) such that, for any starting value (θ̃0� P̃0) ∈ N7, we
have limk→∞(θ̃k� P̃k)= (θ̂qNPL� P̂qNPL) a.s.

C.6. Proof of Propositions in Appendix C

PROOF OF PROPOSITION 8: For part (a), write Γ (θ�P)−P as Γ (θ�P)−P =
A(θ�P)(Ψ(θ�P)−P), where A(θ�P) ≡ (I−Π(θ�P)∇P ′Ψ(θ�P)Π(θ�P))−1 ×
Π(θ�P)+ (I −Π(θ�P)). Let Z(θ�P) denote an orthonormal basis of the col-
umn space of Π(θ�P), so that Z(θ�P)Z(θ�P)′ = Π(θ�P) and Z(θ�P)′Z(θ�
P) = Ir . Suppress (θ�P) from Π(θ�P), Z(θ�P), and ∇P ′Ψ(θ�P). A direct cal-
culation gives (I − Π∇P ′ΨΠ)−1Π = Z(I − Z′∇P ′ΨZ)−1Z′, so we can write
A(θ�P) as A(θ�P) = Z(I − Z′∇P ′ΨZ)−1Z′ + (I − Π). The stated result fol-
lows since A(θ�P) is nonsingular because rank[Z(I − Z′∇P ′ΨZ)−1Z′] = r,
rank(I − Π) = L − r, and Z(I − Z′∇P ′ΨZ)−1Z′ and I − Π are orthogonal
to each other.

For part (b), define Γ 0
P ≡ ∇P ′Γ (θ0�P0) and Π0 ≡ Π(θ0�P0). Define P

with respect to Ψ 0
P ≡ ∇P ′Ψ(θ0�P0). Computing ∇P ′Γ (θ�P) and noting that

Ψ(θ0�P0)= P0, we find Γ 0
P = Π0 + (I −Π0Ψ 0

PΠ
0)−1Π0(Ψ 0

P − I)+ (I −Π0)Ψ 0
P .

Observe that Γ 0
PΠ

0 = (I − Π0)Ψ 0
PΠ

0 = 0, where the last equality follows be-
cause Ψ 0

PΠ
0P ∈ P for any P ∈ RL by the definition of Π0. Hence, Γ 0

P =
Γ 0
P (I−Π0). We also have (I−Π0)Γ 0

P = (I−Π0)Ψ 0
P because a direct calculation

gives (I −Π0Ψ 0
PΠ

0)−1Π0 = Z0(I − (Z0)′Ψ 0
PZ

0)−1(Z0)′, where Z0 = Z(θ0�P0),
and hence (I − Π0)(I − Π0Ψ 0

PΠ
0)−1Π0 = 0. Then, in conjunction with Γ 0

P =
Γ 0
P (I − Π0), we obtain (I − Π0)Γ 0

P = (I − Π0)Ψ 0
P(I − Π0). Since Γ 0

P (I − Π0)
has the same eigenvalues as (I − Π0)Γ 0

P (see Theorem 1.3.20 of Horn and
Johnson (1985)), we have ρ(Γ 0

P ) = ρ(Γ 0
P (I − Π0)) = ρ((I − Π0)Γ 0

P ) = ρ[(I −
Π0)Ψ 0

P(I − Π0)] ≤ δ0, where the last inequality follows from Lemma 2.10 of
SK: P , Q, and F∗

u in SK correspond to our Π0, I −Π0, and Ψ 0
P . Q.E.D.

PROOF OF PROPOSITION 9: The stated results follow from Proposition 2 of
AM07 and our Proposition 7 if Assumptions 1(b), 1(c), 1(e)–1(h), and 2(b)
and 2(c) hold when Ψ(θ�P) is replaced with Γ (θ�P).
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We check Assumptions 2(b) and 2(c) first because they are used in show-
ing the other conditions. First, note that Chu (1990, Section 4.2; in particular,
line 17 on p. 1377) proved the following: if a matrix A(t) is � times continu-
ously differentiable with respect to t, and if X(t) spans the invariant subspace
corresponding to a subset of eigenvalues of A(t), then X(t) is also � times
continuously differentiable with respect to t. Consequently, Π(θ�P) is three
times continuously differentiable in N (we suppress “in N ” henceforth), since
∇P ′Ψ(θ�P) is three times continuously differentiable from Assumption 4(b).
Further, I − Π(θ�P)∇P ′Ψ(θ�P)Π(θ�P) is nonsingular and three times con-
tinuously differentiable from Assumptions 4(b) and 4(c), and hence Assump-
tion 2(b) holds for Γ (θ�P). For Assumption 2(c), a direct calculation gives
ΩΓ

θθ = Ψ 0′
θ A(θ0�P0)′ΔPA(θ0�P0)Ψ 0

θ , where A(θ�P) is defined in the proof of
Proposition 2 and shown to be nonsingular. Since rank(Ψ 0

θ ) = K from nonsin-
gularity of Ωθθ =Ψ 0′

θ ΔPΨ
0
θ , positive definiteness of ΩΓ

θθ follows.
We proceed to confirm that Assumptions 1(b), 1(c), and 1(e)–1(h) hold for

Γ (θ�P). Assumption 1(b) for Γ (θ�P) follows from Assumption 4(d). Assump-
tion 1(c) holds because we have already shown that Γ (θ�P) is three times con-
tinuously differentiable. Assumption 1(e) holds because Ψ(θ�P) and Γ (θ�P)
have the same fixed points by Proposition 8. As discussed on page 21 of AM07,
Assumption 1(f) is implied by Assumption 4(e). Assumption 1(g) for θ̃Γ

0 (P)
follows from the positive definiteness of ΩΓ

θθ and by the implicit function the-
orem applied to the first-order condition for θ. Assumption 1(h) follows from
Assumption 4(e). Q.E.D.

PROOF OF PROPOSITION 10: Write the objective function as QΓ
M(θ�P�η) ≡

M−1
∑M

m=1

∑T

t=1 lnΓ (θ�P�η)(amt |xmt), and define QΓ
0 (θ�P�η) ≡ EQΓ

M(θ�
P�η). For ε > 0, define a neighborhood N3(ε) = {(θ�P�η) : max{‖θ−θ0‖�‖P−
P0‖�‖η − θ0‖} < ε}. Then, there exists ε1 > 0 such that (i) Ψ(θ�P) is four
times continuously differentiable in (θ�P) if (θ�P�η) ∈ N3(ε1),
(ii) sup(θ�P�η)∈N3(ε1)

‖∇θθ′QΓ
0 (θ�P�η)

−1‖ < ∞, and (iii) sup(θ�P�η)∈N3(ε1)
‖∇3QΓ

0 (θ�

P�η)‖ < ∞ because Γ (θ0�P0� θ0)(a|x) = P0(a|x) > 0, Γ (θ�P�η) is three
times continuously differentiable (see the proof of Proposition 9), and
∇θθ′QΓ

0 (θ
0�P0� θ0)= ∇θθ′QΓ

0 (θ
0�P0) is nonsingular.

First, we assume (θ̃j� P̃j−1� θ̃j−1) ∈ N3(ε1) and derive the stated representa-
tion of θ̃j − θ̂ and P̃j − P̂ . We later show that (θ̃j� P̃j−1� θ̃j−1) ∈ N3(ε1) a.s. if N2

is taken sufficiently small. Henceforth, we suppress the subscript RPM from
θ̂RPM and P̂RPM. Expanding the first-order condition ∇θQ

Γ
M(θ̃j� P̃j−1� θ̃j−1) = 0

around (θ̂� P̃j−1� θ̃j−1) gives

0 = ∇θQ
Γ
M(θ̂� P̃j−1� θ̃j−1)+ ∇θθ′QΓ

M(θ̄� P̃j−1� θ̃j−1)(θ̃j − θ̂)�(18)
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where θ̄ ∈ [θ̃j� θ̂]. Writing θ̄ = θ̄(θ̃j), we obtain

sup
(θ̃j �P̃j−1�θ̃j−1)∈N3(ε1)

‖∇θθ′QΓ
M(θ̄(θ̃j)� P̃j−1� θ̃j−1)

−1‖ = O(1)

a.s. because (i) ‖θ̄(θ̃j)−θ0‖ < ε1 a.s. since ‖θ̃j −θ0‖ < ε1 and θ̂ is strongly con-
sistent, and (ii) sup(θ�P�η)∈N3(ε1)

‖∇θθ′QΓ
M(θ�P�η)

−1‖ = O(1) a.s. since
sup(θ�P�η)∈N3(ε1)

‖∇θθ′QΓ
0 (θ�P�η)

−1‖ < ∞ and sup(θ�P�η)∈N3(ε1)
‖∇2QΓ

M(θ�P�η) −
∇2QΓ

0 (θ�P�η)‖ = o(1) a.s. Therefore, the stated representation of θ̃j − θ̂ fol-
lows if we show that

∇θQ
Γ
M(θ̂� P̃j−1� θ̃j−1)= −ΩΓ

θP(P̃j−1 − P̂)+ r∗
Mj�(19)

where r∗
Mj denotes a generic remainder term that is O(M−1/2‖θ̃j−1 − θ̂‖+‖θ̃j−1 −

θ̂‖2 +M−1/2‖P̃j−1 − P̂‖ + ‖P̃j−1 − P̂‖2) a.s. uniformly in (θ̃j−1� P̃j−1) ∈ N2.
We proceed to show (19). Expanding ∇θQ

Γ
M(θ̂� P̃j−1� θ̃j−1) twice around

(θ̂� P̂� θ̂) gives ∇θQ
Γ
M(θ̂� P̃j−1� θ̃j−1) = ∇θQ

Γ
M(θ̂� P̂� θ̂) + ∇θP ′QΓ

M(θ̂� P̂� θ̂)(P̃j−1 −
P̂)+∇θη′QΓ

M(θ̂� P̂� θ̂)(θ̃j−1 − θ̂)+O(‖θ̃j−1 − θ̂‖2 +‖P̃j−1 − P̂‖2) a.s. For the first
term on the right, the RPM estimator satisfies ∇θQ

Γ
M(θ̂� P̂� θ̂) = 0 a.s. because

∇θ′QΓ
M(θ̂� P̂) = 0 from the first-order condition, and Proposition 8(a) implies

Ψ(θ̂� P̂) = P̂ a.s. and hence ∇θ′Γ (θ̂� P̂� θ̂) = ∇θ′Γ (θ̂� P̂) a.s. For the second
and third terms on the right, we have E[∑T

t=1 ∇θP ′ lnΓ (θ0�P0� θ0)(amt |xmt)] =
−ΩΓ

θP and E[∑T

t=1 ∇θη′ lnΓ (θ0�P0� θ0)(amt |xmt)] = 0 by the information matrix
equality because Γ (θ0�P0� θ0) = Γ (θ0�P0), ∇θ′Γ (θ0�P0� θ0) = ∇θ′Γ (θ0�P0),
∇P ′Γ (θ0�P0� θ0) = ∇P ′Γ (θ0�P0), and ∇η′Γ (θ0�P0� θ0) = 0 from P0 =
Ψ(θ0�P0). Therefore, (19) follows from the root-M consistency of (θ̂� P̂).

For the representation of P̃j − P̂ , first we have

P̃j = P̂ + Γ 0
θ (θ̃j − θ̂)+ Γ 0

P (P̃j−1 − P̂)+ r∗
Mj�(20)

by expanding P̃j = Γ (θ̃j� P̃j−1� θ̃j) around (θ̂� P̂� θ̂) and using Γ (θ̂� P̂� θ̂) = P̂ .
Next, refine (18) as 0 = ∇θQ

Γ
M(θ̂� P̃j−1� θ̃j−1) − ΩΓ

θθ(θ̃j − θ̂) + r∗
Mj by expand-

ing ∇θθ′QΓ
M(θ̂� P̃j−1� θ̃j−1) in (18) around (θ̂� P̂� θ̂) to write it as ∇θθ′QΓ

M(θ̂� P̃j−1�

θ̃j−1) = −ΩΓ
θθ +O(M−1/2) +O(‖θ̃j−1 − θ̂‖) +O(‖P̃j−1 − P̂‖) a.s. and using the

bound of θ̃j − θ̂ obtained above. Substituting this into (19) gives

θ̃j − θ̂ = −(ΩΓ
θθ)

−1ΩΓ
θP(P̃j−1 − P̂)+ r∗

Mj
(21)

The stated result follows from substituting this into (20) in conjunction with
(ΩΓ

θθ)
−1ΩΓ

θP = (Γ 0′
θ ΔPΓ

0
θ )

−1Γ 0′
θ ΔPΓ

0
P .
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It remains to show that (θ̃j� P̃j−1� θ̃j−1) ∈ N3(ε1) a.s. if N2 is taken sufficiently
small. We first show that

sup
(θ�η�P)∈Θ̄j×N2

|QΓ
M(θ�P�η)−QΓ

0 (θ�P�η)| = o(1) a.s.�(22)

QΓ
0 (θ�P�η) is continuous in (θ�η�P) ∈ Θ̄j × N2


Take N2 sufficiently small; then it follows from the strong consistency of
(θ̃j−1� P̃j−1) and the continuity of Γ (θ�P�η) that Γ (θ�P�η)(a|x) ∈ [ξ/2�1 −
ξ/2] for all (a�x) ∈ A × X and (θ�P�η) ∈ Θ̄j × N a.s. Observe that (i) Θ̄j ×
N is compact because it is an intersection of the compact set Θ and
|A‖X| closed sets, (ii) lnΓ (θ�P�η) is continuous in (θ�P�η) ∈ Θ̄j × N , and
(iii) E sup(θ�P�η)∈Θ̄j×N | lnΓ (θ�P�η)(ai|xi)| ≤ | ln(ξ/2)| + | ln(1 − ξ/2)|<∞ be-
cause of the way we choose N . Therefore, (22) follows from Kolmogorov’s
strong law of large numbers and Theorem 2 and Lemma 1 of Andrews (1992).

Finally, we show (θ̃j� P̃j−1� θ̃j−1) ∈ N3(ε1) a.s. under (22) by applying the ar-
gument in the proof of Proposition 7. Define Δ = QΓ

0 (θ
0�P0� θ0) −

supθ∈Nθ(ε1)
c∩ΘQ

Γ
0 (θ�P

0� θ0) > 0, where the last inequality follows from the in-
formation inequality because QΓ

0 (θ�P
0� θ0) is uniquely maximized at θ0 and

Nθ(ε1)
c ∩ Θ is compact. It follows that {θ̃j /∈ Nθ(ε1)} ⇒ {QΓ

0 (θ
0�P0� θ0) −

QΓ
0 (θ̃j�P

0� θ0)≥ Δ}. Proceeding as in the proof of Proposition 7, we find that, if
N2 is taken sufficiently small, then QΓ

0 (θ
0�P0� θ0)−QΓ

0 (θ̃j�P
0� θ0)≤ Δ/2+o(1)

a.s. and hence (θ̃j� P̃j−1� θ̃j−1) ∈ N3(ε1) a.s. Q.E.D.

PROOF OF PROPOSITION 11: The proof closely follows the proof of Proposi-
tion 1. We suppress the subscript RPM from θ̂RPM and P̂RPM. Define

D=
(

0 −(ΩΓ
θθ)

−1ΩΓ
θP

0 MΓθΓ
0
P

)

(23)

Note that ρ(D) = ρ(MΓθΓP) and that there exists a matrix norm ‖ · ‖α such that
‖D‖α ≤ ρ(D)+ b = ρ(MΓθΓP)+ b. We define the vector norm for x ∈ Rk+L as
‖x‖β = ‖ [x 0 · · · 0]‖α; then ‖Ax‖β ≤ ‖A‖α‖x‖β for any matrix A.

From the representation of P̃j − P̂ and θ̃j − θ̂ in Proposition 10 and (21),
there exists a neighborhood Nζ of ζ0 such that ζ̃j − ζ̂ = D(ζ̃j−1 − ζ̂) +
O(M−1/2‖ζ̃j−1 − ζ̂‖β +‖ζ̃j−1 − ζ̂‖2

β) holds a.s. uniformly in ζ̃j−1 ∈ Nζ . The stated
result then follows from repeating the proof of Proposition 1. Q.E.D.

PROOF OF COROLLARY 1: The proof closely follows the proof of Propo-
sition 10. Define Γ (θ�P�η�Q) ≡ Ψ(θ�P) + [(I − Π(η�Q)∇P ′Ψ(η�Q)Π(η�
Q))−1 − I]Π(η�Q)(Ψ(θ�P) − P), so that the objective function in Step 1 is
written as QΓ

M(θ� P̃j−1� θ
∗�P∗) = M−1

∑M

m=1

∑T

t=1 lnΓ (θ� P̃j−1� θ
∗�P∗)(amt |xmt).
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For ε1 > 0, define a neighborhood N5(ε1)= {(θ�P�η�Q) : max{‖θ− θ0‖�‖P −
P0‖�‖η−θ0‖�‖Q−P0‖} < ε1}. Then, for any ε1 > 0, we have (θ̃j� P̃j−1� θ

∗�P∗) ∈
N5(ε1) a.s. if N4 is chosen sufficiently small by the same argument as in the
proof of Proposition 10.

Assuming (θ̃j� P̃j−1� θ
∗�P∗) ∈ N5(ε1), the stated result follows from start-

ing from the first order condition ∇θ′QΓ
M(θ̃j� P̃j−1� θ

∗�P∗) = 0, expanding it
around (θ̂� P̃j−1� θ

∗�P∗), and following the proof of Proposition 10 using
∇Q′Γ (θ0�P0� θ0�P0)= 0. Q.E.D.

PROOF OF PROPOSITION 12: Part (a) follows from Proposition 2 of AM07
if Assumptions 1(b), 1(c), 1(e)–1(h), and 2(b) and 2(c) hold when Ψ(θ�P)
is replaced with Λq(θ�P). Similarly to the proof of Proposition 10, we check
Assumptions 2(b) and 2(c) first. Assumption 2(b) holds for Λq(θ�P) be-
cause Ψ(θ�P) is three times continuously differentiable in N from Assump-
tion 5(b). For Assumption 2(c), a direct calculation gives Ω

q
θθ = (∇θ′Λq(θ0�

P0))′ΔP∇θ′Λq(θ0�P0)=Λ0′
θ (I−(Λ0

P)
q)′(I−Λ0′

P )
−1ΔP(I−Λ0

P)
−1(I−(Λ0

P)
q)Λθ =

Ψ 0′
θ (I−(αΨ 0

P +(1−α)I)q)′(I−Ψ 0′
P )

−1ΔP(I−Ψ 0
P)

−1(I−(αΨ 0
P +(1−α)I)q)Ψ 0

θ ,
where the second equality follows from ∇θ′Λq(θ0�P0) = (

∑q−1
j=0 (Λ

0
P)

j)Λ0
θ = (I−

Λ0
P)

−1(I − (Λ0
P)

q)Λ0
θ, and the third equality follows from Λ0

θ = αΨ 0
θ and Λ0

P =
αΨ 0

P + (1 − α)I. Since rank(Ψ 0
θ ) = K from nonsingularity of Ωθθ = Ψ 0′

θ ΔPΨ
0
θ ,

positive definiteness of Ωq
θθ follows from Assumption 5(d).

The proof of part (a) is completed by confirming that Assumptions 1(b), 1(c),
and 1(e)–1(h) hold for Λq(θ�P). Assumptions 1(b) and 1(c) hold for Λq(θ�P)
because Assumptions 1(b) and 1(c) hold for Ψ(θ�P). Assumption 1(e) for
Λq(θ�P) follows from Assumption 5(c). As discussed on page 21 of AM07,
Assumption 1(f) for Λq(θ�P) is implied by Assumption 5(e). Assumption 1(g)
for θ̃q

0(P) follows from the positive definiteness of Ωq
θθ and applying the implicit

function theorem to the first-order condition for θ. Assumption 1(h) follows
from Assumption 5(e). This completes the proof of part (a).

We proceed to prove part (b). Define the objective function and its limit
as Q

q
M(θ�P�η) ≡ M−1

∑M

m=1

∑T

t=1 lnΛq(θ�P�η)(amt |xmt) and Q
q
0(θ�P�η) ≡

EQ
q
M(θ�P�η). For ε > 0, define a neighborhood N3(ε) = {(θ�P�η) : max{‖θ−

θ0‖�‖P − P0‖�‖η − θ0‖} < ε}. Then, there exists ε1 > 0 such that (i) Ψ(θ�P)
is four times continuously differentiable in (θ�P) if (θ�P�η) ∈ N3(ε1),
(ii) sup(θ�P�η)∈N3(ε1)

‖∇θθ′Q
q
0(θ�P�η)

−1‖ < ∞, and (iii) sup(θ�P�η)∈N3(ε1)
‖∇3Q

q
0(θ�

P�η)‖ < ∞ because Λq(θ0�P0� θ0)(a|x) = P0(a|x) > 0, Λq(θ�P�η) is three
times continuously differentiable, and ∇θθ′Q

q
0(θ

0�P0� θ0) = ∇θθ′Q
q
0(θ

0�P0) is
nonsingular.

First, we assume that (θ̃j� P̃j−1� θ̃j−1) ∈ N3(ε1) and derive the stated repre-
sentation of θ̃j − θ̂ and P̃j − P̂ . We later show that (θ̃j� P̃j−1� θ̃j−1) ∈ N3(ε1)
a.s. if N6 is taken sufficiently small. Henceforth, we suppress the subscript
qNPL from θ̂qNPL and P̂qNPL. The proof is similar to the proof of the up-
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dating formula of Proposition 10. For the representation of θ̃j − θ̂, expand-
ing the first-order condition 0 = ∇θQ

q
M(θ̃j� P̃j−1� θ̃j−1) around (θ̂� P̃j−1� θ̃j−1)

gives 0 = ∇θQ
q
M(θ̂� P̃j−1� θ̃j−1) + ∇θθ′Q

q
M(θ̄(θ̃j)� P̃j−1� θ̃j−1)(θ̃j − θ̂), which cor-

responds to (18) in the proof of Proposition 10. Proceeding as in the proof of
Proposition 10, we obtain sup(θ̃j �P̃j−1�θ̃j−1)∈N3(ε1)

‖∇θθ′Q
q
M(θ̄(θ̃j)� P̃j−1� θ̃j−1)

−1‖ =
O(1) a.s. Therefore, the stated representation of θ̃j − θ̂ follows if we show
∇θQ

q
M(θ̂� P̃j−1� θ̃j−1) = −Ω

q
θP(P̃j−1 − P̂) + r∗

Mj , where r∗
Mj denotes a remainder

term of O(M−1/2‖θ̃j−1 − θ̂‖ + ‖θ̃j−1 − θ̂‖2 + M−1/2‖P̃j−1 − P̂‖ + ‖P̃j−1 − P̂‖2)

a.s. uniformly in (θ̃j−1� P̃j−1) ∈ N6. This representation corresponds to (19) in
the proof of Proposition 10 and follows from the same argument. Namely,
expanding ∇θQ

q
M(θ̂� P̃j−1� θ̃j−1) twice around (θ̂� P̂� θ̂), and noting that (i) the

q-NPL estimator satisfies ∇θQ
q
M(θ̂� P̂� θ̂) = 0, (ii) Λq(θ0�P0� θ0) = Λq(θ0�P0),

∇θ′Λq(θ0�P0� θ0) = ∇θ′Λq(θ0�P0), ∇P ′Λq(θ0�P0� θ0) = ∇P ′Λq(θ0�P0), and
∇η′Λq(θ0�P0� θ0) = 0, and using the information matrix equality and the root-
M consistency of (θ̂� P̂), gives the required result.

The proof of the representation of P̃j − P̂ follows from the proof of Proposi-
tion 10, because (i) P̃j = P̂+Λ

q
θ(θ̃j − θ̂)+Λ

q
P(P̃j−1 −P̂)+r∗

Mj , which corresponds
to (20) in the proof of Proposition 10, from expanding Λq(θ̃j� P̃j−1) twice
around (θ̂� P̂) and using P̂ = Λq(θ̂� P̂), (ii) ∇θθ′Q

q
M(θ̂� P̃j−1� θ̃j−1)(θ̃j − θ̂) =

−Ω
q
θθ(θ̃j − θ̂) + r∗

Mj from expanding ∇θθ′Q
q
M(θ̂� P̃j−1� θ̃j−1) around (θ̂� P̂� θ̂)

and using the bound of θ̃j − θ̂ obtained above, and (iii) (Ω
q
θθ)

−1Ω
q
θP =

(Λ
q′
θ ΔPΛ

q
θ)

−1Λ
q′
θ ΔPΛ

q
P .

The proof of part (b) is completed by showing that (θ̃j� P̃j−1� θ̃j−1) ∈ N3(ε1)
a.s. if N6 is taken sufficiently small. First, observe that (22) in the proof of
Proposition 10 holds with QΓ

M(θ�P�η) and QΓ
0 (θ�P�η) replacing Q

q
M(θ�P�η)

and Q
q
0(θ�P�η) if we take N6 sufficiently small. Therefore, (θ̃j� P̃j−1� θ̃j−1) ∈

N3(ε1) a.s. follows from repeating the argument in the last paragraph of the
proof of Proposition 10 if we show that θ0 uniquely maximizes Q

q
0(θ�P

0� θ0).
Note that

Q
q
0(θ�P

0� θ0)−Q
q
0(θ

0�P0� θ0)(24)

= TE ln(∇θ′Λq(θ0�P0)(θ− θ0)+ P0)(amt |xmt)− TE lnP0(amt|xmt)

= TE ln
(∇θ′Λq(θ0�P0)(amt|xmt)(θ− θ0)

P0(amt |xmt)
+ 1

)



Recall that ln(y + 1) ≤ y for all y > −1, where the inequality is strict
if y 	= 0. Since rank(∇θ′Λq(θ0�P0)) = K from the positive definiteness of
Ω

q
θθ, it follows that ∇θ′Λq(θ0�P0)ν 	= 0 for any K-vector ν 	= 0. There-

fore, ∇θ′Λq(θ0�P0)(amt |xmt)(θ − θ0) 	= 0 for at least one (amt� xmt), for all
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θ 	= θ0. Consequently, the right hand side of (24) is strictly smaller than
TE[∇θ′Λq(θ0�P0)(amt |xmt)(θ − θ0)/P0(amt |xmt)] for all θ 	= θ0. Because
E[∇θ′Λq(θ0�P0)(amt |xmt)/P

0(amt |xmt)] = 0, we have Q
q
0(θ�P

0� θ0)−Q
q
0(θ

0�P0�
θ0) < 0 for all θ 	= θ0. Therefore, θ0 uniquely maximizes Qq

0(θ�P
0� θ0), and we

complete the proof of part (b).
We prove part (c). From the proof of part (a) in conjunction with the rela-

tion Λ0
P = αΨ 0

P + (1 − α)I, we may write Ω
q
θθ as Ω

q
θθ = TΨ 0′

θ (I − (Λ0
P)

q)′(I −
Ψ 0′

P )
−1ΔP(I−Ψ 0

P)
−1(I−(Λ0

P)
q)Ψ 0

θ . Similarly, using the relation ∇P ′Λq(θ0�P0)=
(Λ0

P)
q, we obtain Ω

q
θP = TΛ0′

θ (I − (Λ0
P)

q)′(I − Λ0′
P )

−1ΔP(Λ
0
P)

q. Therefore, if
ρ(Λ0

P) < 1, then Ω
q
θθ → TΨ 0′

θ (I − Ψ 0′
P )

−1ΔP(I − Ψ 0
P)

−1Ψ 0
θ and Ω

q
θP → 0 as

q → ∞, and it follows that VqNPL → [TΨ 0′
θ (I − Ψ 0′

P )
−1ΔP(I − Ψ 0

P)
−1Ψ 0

θ ]−1

as q → ∞. This limit is the same as VMLE = (TE[∇θ lnP(θ0)(amt |xmt) ×
∇θ′ lnP(θ0)(amt |xmt)])−1, where P(θ) ≡ arg maxP∈Mθ

E lnP(amt |xmt) with
Mθ ≡ {P ∈ BP :P = Ψ(θ�P)}, because ∇θ′P(θ) = (I − ∇P ′Ψ(θ�P(θ)))−1 ×
∇θ′Ψ(θ�P(θ)) holds in a neighborhood of θ = θ0.

We omit the proof of part (d) because it is identical to the proof of Proposi-
tion 11 except that θ̂RPM, P̂RPM, (ΩΓ

θθ)
−1ΩΓ

θP , and MΓθΓP are replaced with θ̂qNPL,
P̂qNPL, (Ωq

θθ)
−1Ω

q
θP , and MΛ

q
θ
Λ

q
P , respectively. Q.E.D.

APPENDIX D: UNOBSERVED HETEROGENEITY

This section extends our analysis to models with unobserved heterogeneity.
The NPL algorithm has an important advantage over two-step methods in es-
timating models with unobserved heterogeneity because it is difficult to obtain
a reliable initial estimate of P in this context.

Suppose that there are K types of agents, where type k is characterized
by a type-specific parameter θk, and the probability of being type k is πk,
with

∑K

k=1 π
k = 1. These types capture time-invariant state variables that

are unobserved by researchers. With a slight abuse of notation, denote θ =
(θ1� 
 
 
 � θK)′ ∈ ΘK and π = (π1� 
 
 
 �πK)′ ∈ Θπ . Then, ζ = (θ′�π ′)′ is the pa-
rameter to be estimated, and let Θζ = ΘK × Θπ denote the set of possible
values of ζ. The true parameter is denoted by ζ0.

Consider a panel data set {{amt�xmt� xm�t+1}Tt=1}Mm=1 such that wm = {amt�xmt�
xm�t+1}Tt=1 is randomly drawn across m’s from the population. The conditional
probability distribution of amt given xmt for a type k agent is given by a
fixed point of Pθk = Ψ(θk�Pθk). To simplify our analysis, we assume that the
transition probability function of xmt is independent of types and given by
fx(xm�t+1|amt�xmt) and is known to researchers.4

4When the transition probability function is independent of types, it can be directly estimated
from transition data without solving the fixed point problem. Kasahara and Shimotsu (2008) an-
alyzed the case in which the transition probability function is also type-dependent in the context
of a single-agent dynamic programming model with unobserved heterogeneity.
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In this framework, the initial state xm1 is correlated with the unobserved type
(i.e., the initial conditions problem of Heckman (1981)). We assume that xm1

for type k is randomly drawn from the type k stationary distribution character-
ized by a fixed point of the equation p∗(x) = ∑

x′∈X p∗(x′)(
∑

a′∈A Pθk(a
′|x′) ×

fx(x|a′�x′))≡ [T(p∗�Pθk)](x). Since solving the fixed point of T(·�P) for given
P is often less computationally intensive than computing the fixed point of
Ψ(θ� ·), we assume the full solution of the fixed point of T(·�P) is available
given P .

Let Pk denote type k’s conditional choice probabilities, stack the Pk’s
as P = (P1′� 
 
 
 �PK′)′, and let P0 denote its true value. Define Ψ(θ�P) =
(Ψ(θ1�P1)′� 
 
 
 �Ψ(θK�PK)′)′. Then, for a value of θ, the set of possible condi-
tional choice probabilities consistent with the fixed point constraints is given by
M∗

θ = {P ∈ BK
P : P =Ψ(θ�P)}. The maximum likelihood estimator for a model

with unobserved heterogeneity is

ζ̂MLE = arg max
ζ∈Θζ

{
max
P∈M∗

θ

M−1
M∑

m=1

ln
([L(π�P)](wm)

)}
�(25)

where [L(π�P)](wm) = ∑K

k=1 π
kp∗

Pk(xm1)
∏T

t=1 P
k(amt |xmt)fx(xm�t+1|amt�xmt),

and p∗
Pk = T(p∗

Pk�P
k) is the type k stationary distribution of x when the con-

ditional choice probability is Pk. If P0 is the true conditional choice probability
distribution and π0 is the true mixing distribution, then L0 = L(π0�P0) repre-
sents the true probability distribution of w.

We consider a version of the NPL algorithm for models with unobserved
heterogeneity originally developed by AM07 as follows. Assume that an initial
consistent estimator P̃0 = (P̃1

0 � 
 
 
 � P̃
K
0 ) is available. Starting from j = 1, iterate

the following steps until j = �:
Step 1. Given P̃j−1, update ζ = (θ′�π ′)′ by

ζ̃j = arg max
ζ∈Θζ

M−1
M∑

m=1

ln
([
L(π�Ψ(θ� P̃j−1))

]
(wm)

)



Step 2. Update P using the obtained estimate θ̃j by P̃j =Ψ(θ̃j� P̃j−1).
If iterations converge, the limit satisfies ζ̂ = arg maxζ∈Θζ

M−1
∑M

m=1 ln([L(π�
Ψ(θ� P̂))](wm)) and P̂ =Ψ(θ̂� P̂). Among the pairs that satisfy these two condi-
tions, the one that maximizes the pseudo likelihood is called the NPL estimator,
which we denote by (ζ̂NPL� P̂NPL).

Let us introduce the assumptions required for the consistency and asymp-
totic normality of the NPL estimator. They are analogous to the assumptions
used in AM07. Define ζ̃0(P) and φ0(P) similarly to θ̃0(P) and φ0(P) in the
main paper.
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ASSUMPTION 6: (a) wm = {(amt� xmt� xm�t+1) :m= 1� 
 
 
 �M; t = 1� 
 
 
 �T } are
independent across m and stationary over t, and Pr(xmt = x) > 0 for any x ∈ X .
(b) [L(π�P)](w) > 0 for any w and for any (π�P) ∈ Θπ × BK

P . (c) Ψ(θ�P)
is twice continuously differentiable. (d) Θζ is compact and BK

P is a compact
and convex subset of [0�1]LK . (e) There is a unique ζ0 ∈ int(Θζ) such that
[L(π0�P0)](w) = [L(π0�Ψ(θ0�P0))](w). (f) (ζ0�P0) is an isolated population
NPL fixed point. (g) ζ̃0(P) is a single-valued and continuous function of P in
a neighborhood of P0. (h) The operator φ0(P) − P has a nonsingular Jacobian
matrix at P0. (i) For any P ∈ BP , there exists a unique fixed point for T(·�P).

Under Assumption 6, the consistency and asymptotic normality of the NPL
estimator can be shown by following the proof of Proposition 2 of AM07.

We now establish the convergence properties of the NPL algorithm for mod-
els with unobserved heterogeneity. Let l(ζ�P)(w) ≡ ln(L(π�Ψ(θ�P))(w)),
and Ωζζ =E[∇ζl(ζ

0�P0)(wm)∇ζ′ l(ζ0�P0)(wm)].
ASSUMPTION 7: (a) Assumption 6 holds. (b) Ψ(θ�P) is three times continu-

ously differentiable. (c) Ωζζ is nonsingular.

Assumption 7 requires an initial consistent estimator of the type-specific
conditional probabilities. Kasahara and Shimotsu (2006, 2009) derived suffi-
cient conditions for nonparametric identification of a finite mixture model and
suggested a sieve estimator which can be used to obtain an initial consistent
estimate of P. On the other hand, as Aguirregabiria and Mira (2007) argued, if
the NPL algorithm converges, then the limit may provide a consistent estimate
of the parameter ζ even when P̃0 is not consistent.

The following proposition states the convergence properties of the NPL al-
gorithm for models with unobserved heterogeneity.

PROPOSITION 13: Suppose that Assumptions 6 and 7 hold. Then, there exists a
neighborhood NP of P0 such that

ζ̃j − ζ̂NPL =O(‖P̃j−1 − P̂NPL‖)�
P̃j − P̂NPL = [

I −Ψ 0
θDΨ 0′

θ L
′
PΔ

1/2
L MLπΔ

1/2
L LP

]
Ψ 0

P(P̃j−1 − P̂NPL)

+ O
(
M−1/2‖P̃j−1 − P̂NPL‖ + ‖P̃j−1 − P̂NPL‖2

)
�

a.s. uniformly in P̃j−1 ∈ NP, where D = (Ψ 0′
θ L

′
PΔ

1/2
L MLπΔ

1/2
L LPΨ

0
θ )

−1, MLπ = I −
Δ1/2

L Lπ(L
′
πΔLLπ)

−1LπΔ
1/2
L , and Ψ 0

θ ≡ ∇θ′Ψ(θ0�P0), Ψ 0
P ≡ ∇P′Ψ(θ0�P0), ΔL =

diag((L0)−1), LP = ∇P′L(π0�P0), and Lπ = ∇π′L(π0�P0).

Note that I − Ψ 0
θDΨ 0′

θ L
′
PΔ

1/2
L MLπΔ

1/2
L LP is a projection matrix. The conver-

gence rate of the NPL algorithm for models with unobserved heterogeneity is
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primarily determined by the dominant eigenvalue of Ψ 0
P . When the NPL algo-

rithm encounters a convergence problem, replacing Ψ(θ�P) with Λ(θ�P) or
Γ (θ�P) improves the convergence.

REMARK 2: It is possible to relax the stationarity assumption on the ini-
tial states by estimating the type-specific initial distributions of x, denoted by
{p∗k}Kk=1, without imposing a stationarity restriction in Step 1 of the NPL algo-
rithm. In this case, Proposition 13 holds with additional remainder terms.

PROOF OF PROPOSITION 13: We suppress the subscript NPL from ζ̂NPL

and P̂NPL. The proof closely follows the proof of Proposition 7. Define
lζ(ζ�P) = M−1

∑M

m=1 ∇ζl(ζ�P)(wm), lζζ(ζ�P) = M−1
∑M

m=1 ∇ζζ′ l(ζ�P)(wm),
and lζP(ζ�P) =M−1

∑M

m=1 ∇ζP′ l(ζ�P)(wm). Expanding the first-order condition
l̄ζ(ζ̃j� P̃j−1)= l̄ζ(ζ̂� P̂)= 0 gives

0 = lζζ(ζ̄� P̄)(ζ̃j − ζ̂)+ lζP(ζ̄� P̄)(P̃j−1 − P̂)�(26)

where (ζ̄� P̄) is between (ζ̃j� P̃j−1) and (ζ̂� P̂). Then, proceeding as in the proof
of Proposition 7 gives the bound of ζ̃j − ζ̂.

For the bound of P̃j−P̂, expanding the second step equation P̃j = Ψ(ζ̃j� P̃j−1)

twice around (ζ̂� P̂), using P̂ = Ψ(ζ̂� P̂), and proceeding as in the proof of
Proposition 7 gives

P̃j − P̂ = Ψ 0
P(P̃j−1 − P̂)+Ψ 0

ζ (ζ̃j − ζ̂)(27)

+O
(
M−1/2‖P̃j−1 − P̂‖) +O(‖P̃j−1 − P̂‖2)�

a.s., where Ψ 0
ζ ≡ ∇ζ′Ψ(θ0�P0) = [Ψ 0

θ �0]. As in the proof of Proposition 7, refine
(26) further as ζ̃j − ζ̂ = −Ω−1

ζζ ΩζP(P̃j−1 − P̂)+O(M−1/2‖P̃j−1 − P̂‖)+O(‖P̃j−1 −
P̂‖2) a.s., where ΩζP = E[∇ζl(ζ

0�P0)(wm)∇P′ l(ζ0�P0)(wm)]. Substituting this
into (27) gives P̃j − P̂ = [Ψ 0

P −Ψ 0
ζ Ω

−1
ζζ ΩζP](P̃j−1 − P̂)+ O(M−1/2‖P̃j−1 − P̂‖) +

O(‖P̃j−1 − P̂‖2) a.s. Note that Ωζζ and ΩζP are written as

Ωζζ =
[
Ωθθ Ωθπ

Ωπθ Ωππ

]
=

[
Ψ 0′

θ L
′
PΔLLPΨ

0
θ Ψ 0′

θ L
′
PΔLLπ

L′
πΔLLPΨ

0
θ L′

πΔLLπ

]
�

ΩζP =
[
ΩθP

ΩπP

]
=

[
Ψ 0′

θ L
′
PΔLLPΨ

0
P

L′
πΔLLPΨ

0
P

]
�

and

Ω−1
ζζ =

[
D −DΩθπΩ

−1
ππ−Ω−1

ππΩπθD Ω−1
ππ +Ω−1

ππΩπθDΩθπΩ
−1
ππ

]
�
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where D = (Ψ 0′
θ L

′
PΔ

1/2
L MLπΔ

1/2
L LPΨ

0
θ )

−1 with MLπ = I − Δ1/2
L Lπ(L

′
πΔLLπ)

−1 ×
LπΔ

1/2
L . Then, using Ψ 0

ζ = [Ψ 0
θ �0] gives Ψ 0

ζ Ω
−1
ζζ ΩζP = Ψ 0

θDΨ 0′
θ L

′
PΔ

1/2
L MLπ ×

Δ1/2
L LPΨ

0
P , and the stated result follows. Q.E.D.

APPENDIX E: ADDITIONAL MONTE CARLO RESULTS

Table IV reports some additional results of our Monte Carlo experiments.
In particular, Table IV includes two-step (PML) versions of the four estimators
(NPL, NPL-Λ, approximate RPM, approximate q-NPL) discussed in the paper
and Appendix C. These estimators are included for reference; they do not need
iteration but require a root-M consistent initial nonparametric estimate of P .
They are denoted by “PML-Ψ ,” “PML-Λ,” “PML-RPM,” and “PML-Λq,” re-

TABLE IV

BIAS AND RMSEa

n = 500 n = 2000 n= 8000

Estimator Bias RMSE Bias RMSE Bias RMSE

θRN = 2
θ̂RS NPL-Ψ −0
0151 0.1347 −0
0002 0.0660 −0
0023 0.0323

NPL-Λ −0
0151 0.1347 −0
0002 0.0660 −0
0023 0.0323
RPM −0
0174 0.1331 −0
0028 0.0642 −0
0027 0.0320

q-NPL-Λq −0
0117 0.1240 0
0002 0.0606 −0
0018 0.0305

PML-Ψ −0
2215 0.2698 −0
0717 0.1112 −0
0229 0.0474
PML-RPM 0
1353 0.2380 0
0658 0.1072 0
0203 0.0403

PML-Λq −0
0133 0.1475 0
0016 0.0629 −0
0018 0.0307

θ̂RN NPL-Ψ −0
0467 0.4705 −0
0009 0.2339 −0
0095 0.1130
NPL-Λ −0
0467 0.4705 −0
0009 0.2339 −0
0095 0.1130
RPM −0
0544 0.4642 −0
0102 0.2274 −0
0111 0.1116

q-NPL-Λq −0
0358 0.4280 0
0002 0.2131 −0
0079 0.1052

PML-Ψ −0
7895 0.9604 −0
2565 0.3949 −0
0828 0.1687
PML-RPM 0
4523 0.8255 0
2232 0.3754 0
0687 0.1401

PML-Λq −0
0603 0.5177 0
0021 0.2215 −0
0083 0.1061

100 × P̂ Frequency −0
0425 2.1609 0
0203 0.5128 0
0244 0.1550

NPL-Ψ 0
0322 0.1561 0
0229 0.0436 0
0156 0.0256
NPL-Λ 0
0321 0.1560 0
0229 0.0436 0
0156 0.0256
RPM 0
0243 0.1627 0
0228 0.0384 0
0160 0.0291

q-NPL-Λq 0
0249 0.1276 0
0207 0.0380 0
0146 0.0222

PML-Ψ 0
5558 1.9337 0
2180 0.6582 0
0686 0.2039
PML-Λ −0
1169 1.4388 0
1300 0.5271 0
0494 0.1739

PML-RPM −0
6515 1.5933 −0
1964 0.5612 −0
0352 0.1280
PML-Λq 0
3133 0.3525 0
0701 0.0741 0
0253 0.0335

(Continues)
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TABLE IV—Continued

n= 500 n= 2000 n= 8000

Estimator Bias RMSE Bias RMSE Bias RMSE

θRN = 4
θ̂RS NPL-Ψ −0
0095 0.0676 −0
0062 0.0490 −0
0005 0.0408

NPL-Λ 0
0028 0.0575 −0
0006 0.0294 −0
0003 0.0143
RPM 0
0029 0.0576 −0
0012 0.0284 0
0000 0.0136

q-NPL-Λq 0
0015 0.0542 −0
0009 0.0277 0
0000 0.0136

PML-Ψ −0
1280 0.1557 −0
0341 0.0514 −0
0082 0.0207
PML-RPM 0
1166 0.1823 0
0211 0.0457 0
0043 0.0176

PML-Λq 0
0142 0.0783 −0
0035 0.0290 −0
0003 0.0141

θ̂RN NPL-Ψ −0
1417 0.2572 −0
1414 0.2314 −0
0918 0.1612
NPL-Λ 0
0241 0.1424 −0
0001 0.0739 0
0013 0.0352
RPM 0
0249 0.1604 −0
0003 0.0841 0
0014 0.0342

q-NPL-Λq 0
0228 0.1351 0
0000 0.0690 0
0014 0.0328

PML-Ψ −0
7713 0.9094 −0
1964 0.2599 −0
0462 0.0937
PML-RPM 0
6101 0.7821 0
1282 0.1848 0
0335 0.0600

PML-Λq 0
1619 0.2704 0
0044 0.0745 0
0035 0.0366

100 × P̂ Frequency −0
0880 5.8734 −0
0025 1.9222 0
0066 0.4413

NPL-Ψ −0
6258 3.4992 −0
1544 3.1243 0
0052 2.9592
NPL-Λ −0
0318 0.1393 −0
0094 0.0414 −0
0094 0.0113
RPM −0
0498 0.2053 −0
0163 0.0731 −0
0053 0.0085

q-NPL-Λq −0
0487 0.1278 −0
0136 0.0407 −0
0051 0.0081

PML-Ψ 1
0331 3.6736 0
3606 1.3925 0
0682 0.3655
PML-Λ −2
3132 4.3659 −0
5331 1.4651 −0
0564 0.2695

PML-RPM −0
7598 1.9386 −0
2679 0.7829 −0
0523 0.2549
PML-Λq 0
8506 2.1484 0
0919 0.5831 0
0150 0.1161

aBased on 1000 simulated samples. The maximum number of iterations is set to 50.

spectively. We do not report the PML-Λ estimate of θ because it is identical
to PML-Ψ . The PML-RPM and the PML-Λq take one approximate RPM and
approximate q-NPL step, respectively, from the original PML estimator with
Ψ and, thus, they are three-step estimators. Their asymptotic properties can
be easily derived from Proposition 1 of AM07, apart from changes in regu-
larity conditions. The last panel of Table IV reports the bias and the RMSE
of P across different estimators, including those of the frequency estimator
of P .

The PML-RPM and the PML-Λq perform substantially better than the
PML-Ψ , suggesting that our proposed alternative sequential methods are use-
ful even when the researcher wants to make just one NPL iteration rather than
iterate the NPL algorithm until convergence.
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