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S.1. PROOF OF LEMMA 8

LEMMA 8: Let w be a CM mechanism defined on Θ∗. Then,
(a) for every i ∈ I, Ui(θi|w) is a continuous function in θi;
(b) for every ε�ε′ > 0, {μ ∈ P :μi[Ωi(ε|w)]> 1 − ε′�∀i ∈ I} is open.

S.1.1. Proof of Lemma 8(a)

It suffices to prove that Ui(θi|q∗�m∗) is a continuous function in θi, be-
cause the continuity of Ui(θi|q∗�m∗) and wi(v−i(θ−i)) implies the continuity
of Ui(θi|w).

First, we show that ui(θi� θ−i|θi� q
∗�m∗) is continuous in θ for every i ∈ I.

Note that

ui

(
θi� θ−i|θi� q

∗�m∗) =
⎧⎨⎩vi(θi)− max

j �=i
vj(θj) if vi(θi) > max

j �=i
vj(θj);

0� if vi(θi)≤ max
j �=i

vj(θj)�

which implies that

ui

(
θi� θ−i|θi� q

∗�m∗) = max
{

0� vi(θi)− max
j �=i

vj(θj)
}
� ∀θ ∈Θ∗�

Since vj is continuous for every j ∈ I, ui(θi� θ−i|θi� q
∗�m∗) is continuous in θ.

Second, for every (i� θ�θ′) ∈ I ×Θ∗ ×Θ∗, we show that∣∣ui

(
θi� θ−i|θi� q

∗�m∗) − ui

(
θ′
i� θ−i|θ′

i� q
∗�m∗)∣∣ ≤ ∣∣vi(θi)− vi

(
θ′
i

)∣∣�(S.1)

There are three cases to check: (i) Bidder i wins the object under both (θi� θ−i)
and (θ′

i� θ−i), then,

ui

(
θi� θ−i|θi� q

∗�m∗) = vi(θi)− max
j �=i

vj(θj);

ui

(
θ′
i� θ−i|θ′

i� q
∗�m∗) = vi

(
θ′
i

) − max
j �=i

vj(θj)�
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Thus, (S.1) holds. (ii) Bidder i loses the object under both (θi� θ−i) and
(θ′

i� θ−i); then,

ui

(
θi� θ−i|θi� q

∗�m∗) = ui

(
θ′
i� θ−i|θ′

i� q
∗�m∗) = 0�

that is, (S.1) holds. (iii) Bidder i wins the object under (θi� θ−i) and loses the
object under (θ′

i� θ−i) (the case is similar if we switch θ′
i and θi); then,

ui

(
θi� θ−i|θi� q

∗�m∗) = vi(θi)− max
j �=i

vj(θj);

ui

(
θ′
i� θ−i|θ′

i� q
∗�m∗) = 0 and max

j �=i
vj(θj)≥ vi

(
θ′
i

)
�

Thus, ∣∣ui

(
θi� θ−i|θi� q

∗�m∗) − ui

(
θ′
i� θ−i|θ′

i� q
∗�m∗)∣∣ = vi(θi)− max

j �=i
vj(θj)

≤ vi(θi)− vi
(
θ′
i

)
�

that is, (S.1) holds.
Third, we prove that Ui(θi|q∗�m∗) is a continuous function in θi. Note that,

for any θi and θ′
i in Θ∗

i ,∣∣U∗
i

(
θi|q∗�m∗) −U∗

i

(
θ′
i|q∗�m∗)∣∣(S.2)

≤
∣∣∣∣U∗

i

(
θi|q∗�m∗) −

∫
Θ∗−i

ui

(
θi� θ−i|θi� q

∗�m∗)bi

(
θ′
i

)[dθ−i]
∣∣∣∣

+
∣∣∣∣∫

Θ∗−i

ui

(
θi� θ−i|θi� q

∗�m∗)bi

(
θ′
i

)[dθ−i] −U∗
i

(
θ′
i|q∗�m∗)∣∣∣∣�

For any θi, consider the function defined as follows:

Λ :Δ
(
Θ∗

−i

) → R�

Λ(μ−i)=
∫
Θ∗−i

ui

(
θi� θ−i|θi� q

∗�m∗)μ−i[dθ−i]� ∀μ−i ∈ Δ
(
Θ∗

−i

)
�

Since ui(θi� θ−i|θi� q
∗�m∗) is continuous in θ, it is bounded on Θ∗. As a result,

Λ is continuous. Note that bi(θi)� bi(θ
′
i) ∈ Δ(Θ∗

−i), and limθ′
i→θi bi(θ

′
i) = bi(θi).

Consequently,

lim
θ′
i→θi

∣∣∣∣U∗
i

(
θi|q∗�m∗) −

∫
Θ∗−i

ui

(
θi� θ−i|θi� q

∗�m∗)bi

(
θ′
i

)[dθ−i]
∣∣∣∣(S.3)

= lim
θ′
i→θi

∣∣Λ(
bi(θi)

) −Λ
(
bi

(
θ′
i

))∣∣ = 0�
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Furthermore,

lim
θ′
i→θi

∣∣∣∣∫
Θ∗−i

ui

(
θi� θ−i|θi� q

∗�m∗)bi

(
θ′
i

)[dθ−i] −U∗
i

(
θ′
i|q∗�m∗)∣∣∣∣(S.4)

≤ lim
θ′
i→θi

∫
Θ∗−i

∣∣ui

(
θi� θ−i|θi� q

∗�m∗) − ui

(
θ′
i� θ−i|θ′

i� q
∗�m∗)∣∣bi

(
θ′
i

)[dθ−i]

≤ lim
θ′
i→θi

∫
Θ∗−i

∣∣vi(θi)− vi
(
θ′
i

)∣∣bi

(
θ′
i

)[dθ−i] = lim
θ′
i→θi

∣∣vi(θi)− vi
(
θ′
i

)∣∣ = 0�

where the second inequality follows from (S.1) and the last equality follows
from the continuity of vi.

Finally, (S.2)–(S.4) imply that

lim
θ′
i→θi

∣∣U∗
i

(
θi|q∗�m∗) −U∗

i

(
θ′
i|q∗�m∗)∣∣ = 0�

Therefore, Ui(θi|q∗�m∗) is a continuous function in θi.

S.1.2. Proof of Lemma 8(b)

Fix any μ such that μi[Ωi(ε|w)] > 1 − ε′ for every i ∈ I. Since μ is a fi-
nite Borel measure on the compact metric space Θ∗, it is tight (Aliprantis and
Border (2006, 12.7 Theorem)). For every i ∈ I, since μi[Ωi(ε|w)] > 1 − ε′,
there exists a compact set Ei ⊂ Ωi(ε|w) such that μi[Ei] > 1 − ε′. We thus
have mini∈I minθi∈Ei

Ui(θi|w) > 0 and maxi∈I maxθi∈Ei
Ui(θi|q�m) < ε, because

Ei ⊂Ωi(ε|w). Hence, there exists ζ > 0 such that

0 < ζ < min
i∈I

min
θi∈Ei

Ui(θi|q�m) ≤ max
i∈I

max
θi∈Ei

Ui(θi|q�m) < ε− ζ < ε�(S.5)

By Lemma 8(a) and the compactness of Θ∗
i , Ui(θi|w) is uniformly continuous

in θi. As a result, there exists α> 0 such that

di

(
θi� θ

′
i

)
<α ⇒ ∣∣Ui(θi|w)−Ui

(
θ′
i|w

)∣∣< ζ

2
� ∀i ∈ I�(S.6)

Second, define β = min{α�mini∈I μi(Ei)−(1−ε′)}
2 , which implies β < α and

mini∈I μi(Ei) − β > 1 − ε′. We show that every μ′ with dP(μ�μ
′) < β satis-

fies μ′
i[Ωi(ε|w)]> 1 − ε′, which proves Lemma 8(b).

If dP(μ�μ
′) < β, we have

min
i∈I

μ′
i

(
Eβ

i

)
> min

i∈I
μi(Ei)−β> 1 − ε′�(S.7)
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For any i ∈ I and any θ′
i ∈ Eβ

i , there exists some θi ∈ Ei, such that di(θi� θ
′
i) <

β< α. Then, by (S.5) and (S.6), we have

0 <
ζ

2
<Ui

(
θ′
i|w

)
< ε− ζ

2
�

which implies Eβ
i ⊂ Ωi(ε|w). As a result, we have

min
i∈I

μ′
i

(
Ωi(ε|w)

) ≥ min
i∈I

μ′
i

(
Eβ

i

)
> 1 − ε′�

where the first inequality follows from Eβ
i ⊂ Ωi(ε|w); the second inequality

follows from (S.7).

S.2. VIRTUAL BAYESIAN IMPLEMENTATION

We adapt the notation and definitions in Duggan (1997) to the auction setup
in Chen and Xiong (2013). Throughout the section, we fix a prior μ with sup-
port Θμ. For simplicity, we write Θ for Θμ. Recall that V = [0�1]n is the set
of value profiles and the first-order belief of θi is a probability distribution
b1
i (θi) ∈ Δ(V ), defined as

b1
i (θi)(V ) = bi(θi)

{
θ−i ∈Θ−i :

(
vi(θi)� v−i(θ−i)

) ∈ V
}
�

∀Borel set V ⊂ V �

Furthermore, define b1�−i
i ∈ Δ(V−i) as

b1�−i
i (θi)(V −i)≡ bi(θi)

({
θ−i ∈ Θ−i :v−i(θ−i) ∈ V −i

})
�

∀Borel set V −i ⊂ V−i�

Clearly, (vi(θi)� b
1�−i
i (θi))= (vi(θ

′
i)� b

1�−i
i (θ′

i)) implies that b1
i (θi)= b1

i (θ
′
i).

Let X = ({0�1} × R)n be the set of outcomes. For each x = (q�m) =
(qi�mi)i∈I ∈ X , qi = 1 (resp. qi = 0) means “the object is (resp. is not) allocated
to agent i” and mi specifies the payment of agent i. We require

∑
i qi ≤ 1, be-

cause only one object is for sale. Define the ex post utility of agent i at θ ∈ Θ as

ui(x|θ) ≡ vi(θi)qi −mi for each x = (qi�mi)i∈I �

A social choice function f is a measurable function from Θ to Δ(X). Clearly,
each direct mechanism (q�m) defined in Chen and Xiong (2013) identifies a
social choice function f (q�m) such that, for each θ ∈Θ,

f (q�m)(θ)
[((

1�mi(θ)
)
�
(
0�mj(θ)

))
j �=i

] = qi(θ)� ∀i ∈ I;(S.8)

f (q�m)(θ)
[(

0�mj(θ)
)
j∈I

] = 1 −
∑
j∈I

qj(θ)�
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DEFINITION S.1: A social choice function f :Θ → Δ(X) is first-order mea-
surable if, for each θ�θ′ ∈ Θ, b1

i (θi)= b1
i (θ

′
i) for all i implies that f (θ) = f (θ′).

We say f is value-measurable if vi(θi) = vi(θ
′
i) for all i implies that f (θ) =

f (θ′). Clearly, any value-measurable f is first-order measurable. By Duggan
(1997, Proposition 4 and Theorem 2), any value-measurable f that satisfies
IC can be virtually Bayesian implemented. Theorem S.1 below extends this
result: any first-order measurable f that satisfies IC can be virtually Bayesian
implemented.

Formally, let (A = ∏
i∈I Ai� g :A → Δ(X)) be a mechanism where Ai is the

message space for agent i. A pure strategy of player i is a function σi :Θi → Ai.
A strategy profile σ = (σi)i∈I is a BNE in (A�g) if

σi(θi) ∈ arg max
ai∈Ai

∫
Θ−i

∫
X

ui(x|θ)

× g
(
ai�σ−i(θ−i)

)[dx]bi(θi)[dθ−i]� ∀θi ∈Θi�∀i ∈ I�

Each social choice function f identifies a direct mechanism (A = ∏
i∈I Θi� f :∏

i∈I Θi → Δ(X)). We say f is (Bayesian) Incentive Compatible (IC) if truth-
ful reporting (i.e., σi(θi) ≡ θi) is a BNE in the direct mechanism (A =∏

i∈I Θi� f :Θ→ Δ(X)).

DEFINITION S.2—Duggan (1997): A social choice function f is virtually
Bayesian implementable on Θ with prior μ if, for any ε > 0, there are a so-
cial choice function h and a mechanism (A�g) such that

sup
θ∈Θ�Y⊂X is measurable

∣∣h(θ)(Y)− f (θ)(Y)
∣∣ < ε;(1)

(2) for any BNE σ in (A�g), μ({θ ∈ Θ :g ◦ σ(θ)= h(θ)})= 1.

That is, f is virtually Bayesian implementable if, for any ε > 0, there exist
a social choice function h and a mechanism (A�g) such that h is ε-close to
f in the sense of (1) and every BNE in (A�g) induces the outcome of h with
μ-probability 1.

PROPOSITION S.1: There is a mechanism (A�g) on Θ with Ai = Vi × Δ(V−i)
such that the unique BNE in (A�g) on Θ is σi(θi) = (vi(θi)� b

1�−i
i (θi)) for every

(i� θ) ∈ I ×Θ.

Proposition S.1 is a counterpart of Duggan (1997, Proposition 4). As in
Duggan (1997), we construct a scoring-rule game (i.e., (A�g)) such that truth-
fully reporting the first-order beliefs is the unique BNE. The proof is relegated
to Section S.2.1.
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With Proposition S.1, we are ready to present the main result of the sec-
tion, that is, Theorem S.1, which implies that every first-order IC mechanism
employed in Chen and Xiong (2013) is virtually Bayesian implementable.

THEOREM S.1: If a social choice function f :Θ → Δ(X) is IC and first-order
measurable, then it is virtually Bayesian implementable.

PROOF: Fix any ε ∈ (0�1). Let (A�g) be the mechanism given in Propo-
sition S.1. Define a social choice function h(θ) ≡ (1 − ε)f (θ) + εg(v(θ)�
b1�−i(θ)). We show that there exists a mechanism (A∗� g∗) such that μ({θ ∈
Θ :g∗ ◦ σ(θ) = h(θ)})= 1 for every BNE σ in (A∗� g∗).

Define A∗
i = Θi × (Vi × Δ(V−i)) × Z+ and A∗ = ∏

i∈I A
∗
i . Denote the ele-

ments of A∗
i by ai = (θi� vi� b

1�−i
i � zi). For each a ∈A∗, define a set Ψ(a) and an

allocation x(a) as follows:

Ψ(a) =
{
i ∈ I :zi > 0 or

(
vi(θi)� b

1�−i
i (θi)

) �= (
vi� b

1�−i
i

)}
�

x(a)= (qi = 0�mi = −zi × 1(zi=maxj∈I zj))i∈I�

where 1(·) is the indicator function, that is, Ψ(a) is the set of agents who report
zi > 0 or her reported type is inconsistent with her reported first-order belief;
x(a) is the allocation such that no one gets the object and agent i gets paid zi
if it is the highest among all zj and 0 otherwise.

Define the outcome function g∗ as follows. For any a = (θi� vi� b
1�−i
i � zi)i∈I ∈

A∗,

g∗(a)=
{
(1 − ε)f (θ)+ εg

(
v(θ)�b1�−i(θ)

)
� if

∣∣Ψ(a)
∣∣ ≤ 1;

δ{x(a)}� otherwise�

That is, the outcome is determined by (1 − ε)f + εg if 1 or 0 agent reports
a positive integer or an inconsistent profile of type and first-order belief; oth-
erwise, with probability 1 (δ stands for the Dirac measure), no one gets the
object, the person who announces the highest integer gets paid the integer she
announces, and other players have no payment.

First, σ∗ = (σ∗
i )i∈I with σ∗

i (θi)≡ (θi� vi(θi)� b
1�−i
i (θi)�0) is a BNE in (A∗� g∗)

on Θ. This follows from IC of f and Proposition S.1.
Second, we prove μ({θ ∈ Θ :g∗ ◦ σ(θ) = h(θ)})= 1 for any BNE,

σ = (
αi :Θi → Θi�βi :Θi → Vi ×Δ(V−i)� γi :Θi → Z+

)
i∈I�

in (A∗� g∗) in four steps.
Step 1. For every (i� θ) ∈ I ×Θ, bi(θi)(Φ

σ
−i)= 1, where

Φσ
−i =

{
θ−i ∈ Θ−i :

(
vj

(
αj(θj)

)
� b1

j

(
αj(θj)

)) = βj(θj)

and γj(θj)= 0�∀j �= i
}
�
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That is, i believes with probability 1 that all of her opponents report consistent
profile of type and first-order belief and the zero integer. If not, i can deviate
to report a positive integer zi, so that |Ψ((θi� vi� b

1�−i
i � zi)�σ−i(θ−i))| ≥ 2 for any

θ−i ∈ Θ−i \ Φσ
−i. As zi → ∞, the probability of zi being the highest among all

zj (with j ∈ I) goes to 1 on Θ−i \ Φσ
−i. Agent i thus gets paid zi → ∞ with a

probability converging to bi(θi)(Θ−i \Φσ
−i) > 0. Therefore, i finds it profitable

to deviate to report a sufficiently large zi.
Step 2. μ(Φσ)= 1, where

Φσ = {
θ ∈ Θ :vi

(
αi(θi)

)
� b1

i

(
αi(θi)

) = βi(θi) and γi(θi)= 0�∀i ∈ I
}
�

That is, μ assigns probability 1 to the event that all players report consistent
profile of type and first-order belief and the zero integer. This is immediately
implied by step 1 and equation (2) in Chen and Xiong (2013).

Step 3. β(θ)= (v(θ)�b1�−i(θ))�∀θ ∈ Θ.
Suppose to the contrary that there is some θ′

i ∈ Θi with βi(θ
′
i) �= (vi(θ

′
i)�

b1�−i
i (θ′

i)). Then, by Proposition S.1, β is not a BNE in (A�g). Hence, some
θi ∈ Θi can deviate to play some β̃i(θi)and get a strictly higher payoff in (A�g).
That is, ∫

Θ−i

∫
X

ui(x|θ)g(
β̃i(θi)�β−i(θ−i)

)[dx]bi(θi)[dθ−i]

>

∫
Θ−i

∫
X

ui(x|θ)g(
βi(θi)�β−i(θ−i)

)[dx]bi(θi)[dθ−i]�

By step 1, bi(θi)(Φ
σ
−i) = 1. Then, it follows from the definition of g∗ that, by

playing (αi(θi)� β̃i(θi)�γi(θi)) in (A∗� g∗), θi gets the expected payoff

(1 − ε)

∫
Θ−i

∫
X

ui(x|θ)f (
αi(θi)�α−i(θ−i)

)[dx]bi(θi)[dθ−i]

+ ε

∫
Θ−i

∫
X

ui(x|θ)g(
β̃i(θi)�β−i(θ−i)

)[dx]bi(θi)[dθ−i]

> (1 − ε)

∫
Θ−i

∫
X

ui(x|θ)f (
αi(θi)�α−i(θ−i)

)[dx]bi(θi)[dθ−i]

+ ε

∫
Θ−i

∫
X

ui(x|θ)g(
βi(θi)�β−i(θ−i)

)[dx]bi(θi)[dθ−i]�

where the latter is the expected payoff of θi by playing (αi(θi)�βi(θi)�γi(θi)).
Hence, it is profitable for θi to deviate from (αi(θi)�βi(θi)�γi(θi)) to play
(αi(θi)� β̃i(θi)�γi(θi)). This contradicts the assumption that σ is a BNE.
Hence, step 3 follows.



8 Y.-C. CHEN AND S. XIONG

Step 4. μ({θ ∈ Θ : f (θ)= f (α(θ))}) = 1.
Step 2 implies

μ
({
θ ∈Θ :

(
vi

(
αi(θi)

)
� b1

i

(
αi(θi)

)) = βi(θi)�∀i ∈ I
}) = 1�(S.9)

Then, step 3 and (S.9) imply

μ
({
θ ∈Θ :

(
vi

(
αi(θi)

)
� b1

i

(
αi(θi)

)) = (
vi(θi)� b

1
i (θi)

)
�∀i ∈ I

}) = 1�

That is, the first-order beliefs of θ and α(θ) match with probability 1. Since f
is a first-order mechanism, we have

μ
({
θ ∈Θ : f (θ)= f

(
α(θ)

)}) = 1�

Finally,

μ
({
θ ∈Θ :g∗ ◦ σ(θ) = h(θ)

})
= μ

({
θ ∈ Θ :

(1 − ε)f
(
α(θ)

) + εg
(
β(θ)

) = (1 − ε)f (θ)+ εg
(
v(θ)�b1�−i(θ)

)})
≥ μ

({
θ ∈ Θ : f

(
α(θ)

) = f (θ)
}

∩ {
θ ∈Θ :g

(
β(θ)

) = g
(
v(θ)�b1�−i(θ)

)})
= 1�

where the first equality follows from step 2 and the definition of g∗, and the
last equality follows from steps 3 and 4. Q.E.D.

S.2.1. Proof of Proposition S.1

First, fix a player i. Note that the collection of bounded rectangles in V−i =
[0�1]n−1 with rational endpoints

Rn−1
Q =

{∏
j �=i

(aj� bj] :aj� bj ∈ Q� j �= i

}

forms a π-system that generates the Borel σ-algebra on V−i (see Billingsley
(1995, pp. 176–177)). Since Rn−1

Q is countable, we enumerate Rn−1
Q as {V−i�k}∞

k=1

of V−i. By Billingsley (1995, Theorem 10.3), for any measures b1�−i
i � b1�−i′

i ∈
Δ(V−i),

b1�−i
i = b1�−i′

i iff b1�−i
i (V−i�k)= b1�−i′

i (V−i�k) for every k ∈ N�(S.10)
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For any k ∈ N, define Si�k :Δ(V−i)× V−i → R as follows:

Si�k

(
b1�−i
i � v−i

) ≡
{

2b1�−i
i (V−i�k)− b1�−i

i (V−i�k)
2� if v−i ∈ V−i�k�

−b1�−i
i (V−i�k)

2� if v−i /∈ V−i�k�

Observe that Si�k is the quadratic scoring rule (to elicit b1�−i
i (V−i�k)). Then, de-

fine

Si

(
b1�−i
i � v−i

) =
∞∑
k=1

1
2k

Si�k

(
b1�−i
i � v−i

)
�

and we show that Si is the scoring rule to elicit b1�−i
i . Formally, we prove that{

b1�−i′
i

} = arg max
b

1�−i
i ∈Δ(V−i)

∫
V−i

Si

(
b1�−i
i � v−i

)
b1�−i′
i (dv−i)�(S.11)

Suppose that agent i gets Si(b
1�−i
i � v−i) if she reports b1�−i

i and her opponents
truthfully report v−i. Then, (S.11) implies that agent i with b1�−i′

i must truthfully
report b1�−i′

i .
For any b1�−i

i � b1�−i′
i ∈ Δ(V−i),∫

V−i

Si

(
b1�−i
i � v−i

)
b1�−i′
i (dv−i)

=
∞∑
l=1

1
2l

[
2b1�−i

i (V−i�l)b
1�−i′
i (V−i�l)− b1�−i

i (V−i�l)
2
]

=
∞∑
l=1

1
2l

[
b1�−i′
i (V−i�l)

2 − (
b1�−i′
i (V−i�l)− b1�−i

i (V−i�l)
)2]

�

Hence, ∫
V−i

Si

(
b1�−i′
i � v−i

)
b1�−i′
i (dv−i)−

∫
V−i

Si

(
b1�−i
i � v−i

)
b1�−i′
i (dv−i)

=
∞∑
l=1

1
2l

(
b1�−i′
i (V−i�l)− b1�−i

i (V−i�l)
)2 ≥ 0� ∀b1�−i

i ∈ Δ(V−i)�

which implies b1�−i′
i ∈ arg max

b
1�−i
i ∈Δ(V−i)

∫
V−i

Si(b
1�−i
i � v−i)b

1�−i′
i (dv−i). Further-

more, (S.10) implies b1�−i′
i is the unique maximizer, that is, (S.11) holds.

We are ready to define the mechanism (A�g :A→ Δ(X)) in Proposition S.1.
Define Ai = Vi × Δ(V−i) and A = ∏

i∈I Ai. Let a = (vi� b
1�−i
i )i∈I be a message

profile. We specify the distribution g(a) (on X) as follows: with probability
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vi/|I|, player i gets the object and pays vi/2 − Si(b
1�−i
i � v−i), and every player

j �= i pays −Sj(b
1�−j
j � v−j); with probability 1 − ∑

j∈I vj/|I|, no player gets the
object, and every player j pays −Sj(b

1�−j
j � v−j). Formally, for each i ∈ I, define

(qj(i)�mj(i))
n
j=1 as follows:

qj(i)=
{

1� if j = i;
0� if j �= i;

mj(i)=
{ vj

2
− Sj

(
b

1�−j
j � v−j

)
� if j = i;

−Sj

(
b

1�−j
j � v−j

)
� if j �= i�

Then, define

g(a)
[(
qj(i)�mj(i)

)n
j=1

] = vi/|I|� ∀i ∈ I;
g(a)

[(
0�−Sj

(
b

1�−j
j � v−j

))n
j=1

] = 1 −
∑
j∈I

vj/|I|�

We now show that σ = (σi)i∈I is a BNE in (A�g) on Θ iff, for any i, σi(θi) =
(vi(θi)� b

1�−j
i (θi)) for all θi.

For any (i� θ) ∈ I×Θ, let σi(θi) = (σv
i (θi)�σ

b
i (θi)) ∈ Vi ×Δ(V−i) be the strat-

egy of type θi. Given σ , the expected payoff of θi is

σv
i (θi)

|I|
(
vi(θi)− σv

i (θi)

2

)
+

∫
Θ−i

Si

(
σb

i (θi)�σ
v
−i(θ−i)

)
bi(θi)(dθ−i)�(S.12)

FOC implies that σv
i (θi) = vi(θi) in any BNE. That is, every type must truth-

fully reports her true value. Given this, the expected payoff of θi is

[vi(θi)]2

2|I| +
∫
Θ−i

Si

(
σb

i (θi)� v−i(θ−i)
)
bi(θi)(dθ−i)(S.13)

= [vi(θi)]2

2|I| +
∫
V−i

Si

(
σb

i (θi)� v−i

)
b1�−i
i (θi)(dv−i)�

which implies σb
i (θi) = b1�−i

i (θi) in any BNE, by (S.11).
Finally, σi(θi) = (vi(θi)� b

1�−i
i (θi)) for all θi and i ∈ I is indeed a BNE in

(A�g). Note that if σj(θj) = (vj(θj)� b
1�−j
j (θj)) for all θj and j �= i, then by

(S.12) and (S.13), the type θi’s expected payoff is

σv
i (θi)

|I|
(
vi(θi)− σv

i (θi)

2

)
+

∫
V−i

Si

(
σb

i (θi)� v−i

)
b1�−i
i (θi)(dv−i)�

Hence, σv
i (θi) = vi(θi) and σb

i (θi) = b1�−i
i (θi) maximize the payoff of θi. This

completes the proof of Proposition S.1. Q.E.D.
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S.3. FINER TOPOLOGIES

We first provide a sufficient condition for the genericity of FSE under a finer
topology than the weak∗ topology. Recall that

F cm ≡ {μ ∈ P :μ admits FSE in a CM mechanism}�
P f

n ≡ {
μ ∈ P f :

∣∣Θμ
i

∣∣ = n�∀i ∈ I
}
�

F ∗ ≡
{
μ ∈

∞⋃
n=1

P f
n :μ has full rank, full support, and distinct values

}
�

LEMMA S.1: F ∗ ⊂ F cm ∩ M.

F ∗, F cm, and M are defined independent of the topology on priors. The
proof of Lemma S.1 can be found in Chen and Xiong (2013).

THEOREM S.2: Given a topology on P which is finer than the weak∗ topology,
if F ∗ is dense in P , then F is generic in P .

The proof of Theorem S.2 is the same as the proofs of Theorem 1 in Chen
and Xiong (2013).

S.3.1. Weak∗-Hausdorff Topology

Recall that the Prohorov metric dP is defined as

dP
(
μ�μ′) = inf

{
ε > 0 :μ(E)≤ μ′(Eε

) + ε�∀Borel set E ⊂ Θ∗}�
∀μ�μ′ ∈ Δ

(
Θ∗)�

where Eε ≡ {θ′ : infθ∈E d(θ′� θ) < ε}.
Consider the Hausdorff metric dH

P defined as

dH
P

(
μ�μ′) = max

{
sup
θ∈Θμ

inf
θ′∈Θμ′ d

(
θ�θ′)� sup

θ′∈Θμ′
inf
θ∈Θμ

d
(
θ�θ′)}�

∀μ�μ′ ∈ Δ
(
Θ∗)�

where d is the metric on Θ∗, and Θμ and Θμ′ denote the supports of μ and μ′,
respectively.

Define a new metric on priors as

dWH
P

(
μ�μ′) = max

{
dP

(
μ�μ′)� dH

P

(
μ�μ′)}� ∀μ�μ′ ∈ Δ

(
Θ∗)�

that is, the topology induced by dWH
P is the weakest topology which is finer than

both the weak∗ topology and the Hausdorff topology.
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LEMMA S.2: P f is dense in P under the topology induced by dWH
P .

LEMMA S.3: F ∗ is dense in P under the topology induced by dWH
P .

As in Chen and Xiong (2013), Lemma S.3 is an immediate consequence of
two facts: (i) F ∗ is dense in P f (see footnote 14 in Chen and Xiong (2013));
(ii) P f is dense in P (Lemma S.2). We prove Lemma S.2 below.

Before proving Lemma S.2, we review the definition of d on Θ∗ (i.e., the
product topology) as follows.

Let d0
i (θi� θ

′
i) = |vi(θi) − vi(θ

′
i)|. Recursively, for any integer k ≥ 1, and

θi� θ
′
i ∈Θ∗

i , let

dk
i

(
θi� θ

′
i

) = max
k′≤k−1

{
dk′
i

(
θi� θ

′
i

)
�ρk

i

(
bi(θi)� bi

(
θ′
i

))}
�

where ρk
i is the Prohorov distance on Δ(Θ∗

−i) when Θ∗
−i is endowed with the

metric dk−1
−i , that is,

ρk
i

(
bi(θi)� bi

(
θ′
i

)) ≡ inf
{
ε > 0 :bi(θi)(E−i)≤ bi

(
θ′
i

)(
Ek−1�ε

−i

) + ε�

∀Borel set E−i ⊂Θ∗
−i

}
�

where Ek−1�ε
−i ≡ {θ′

−i : infθ−i∈E−i
dk−1

−i (θ′
−i� θ−i) < ε}. Note that dk

i is also a metric
on Θ∗

i and

dk′
i

(
θi� θ

′
i

) ≤ dk
i

(
θi� θ

′
i

) ≤ 1� ∀k′ ≤ k�(S.14)

Then,

di

(
θi� θ

′
i

) ≡
∞∑
k=1

2−kdk
i

(
θi� θ

′
i

);(S.15)

d
(
θ�θ′) ≡ max

i∈I
di

(
θi� θ

′
i

)
�

PROOF OF LEMMA S.2: Fix any μ ∈ P , k ∈ N, and ε > 0. Since Θμ

is compact, we can partition Θμ
i (i.e., the projection of Θμ on Θ∗

i ) as
{Θi�1�Θi�2� � � � �Θi�N} for some N ∈ N such that (A) each Θi�ni has nonempty
interior; (B) the diameter (measured by dk

i ) of Θi�ni is strictly less than ε. Note
that (A) implies that

μi[Θi�ni ]> 0;(S.16)

(B) implies that

sup
θi�θ

′
i∈Θi�ni

dk
i

(
θi� θ

′
i

)
< ε�(S.17)
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By (S.14) and (S.17), it follows that

sup
θi�θ

′
i∈Θi�ni

dk′
i

(
θi� θ

′
i

)
< ε� ∀k′ ≤ k�(S.18)

Now consider an (abstract) finite type space (Θ̂i� v̂i� b̂i)i∈I defined as follows
(see Section 4.4 in Chen and Xiong (2013)):

Θ̂i = {Θ̂i�1� Θ̂i�2� � � � � Θ̂i�N}�
That is, each type in the finite type space corresponds to an element in the
partition {Θi�1�Θi�2� � � � �Θi�N}. To make a distinction, we use Θi�ni to denote a
partition element and use Θ̂i�ni to denote the corresponding finite type in the
finite type space.

First, μ naturally induces a probability measure μ̂ ∈ Δ(
∏

i∈I Θ̂i) such that

μ̂
[
(Θ̂i�ni )i∈I

] ≡ μ

[∏
i∈I

Θi�ni

]
for any ni ∈ {1�2� � � � �N}�(S.19)

Similarly, we can define the marginal distribution μ̂i of μ̂ accordingly:
μ̂i[Θ̂i�ni] ≡ μi[Θi�ni ] for any i ∈ I and any ni ∈ {1�2� � � � �N}.

Then, we define

vi(Θ̂i�ni )=

∫
Θi�ni

vi(θi)μi[dθi]

μ̂i[Θ̂i�ni]
;(S.20)

bi(Θ̂i�ni )[Θ̂−i�n−i
] = μ̂[(Θ̂i�ni � Θ̂−i�n−i

)]
μ̂i[Θ̂i�ni ]

�(S.21)

Note that (S.20) and (S.21) are well defined because μ̂i[Θ̂i�ni ] ≡ μi[Θi�ni ] > 0
by (S.16). That is, μ̂ is a prior of the finite type space since bi(Θ̂i�ni ) is induced
from μ̂ by Bayes’ rule. We identify Θ̂ with its corresponding belief subspace
η(Θ̂) ⊂ Θ∗ and μ̂ with the induced finite prior on η(Θ̂) (see Section 4.4 in
Chen and Xiong (2013)). Finally, we show that

dk′
i (θi� Θ̂i�ni )≤ (

k′ + 1
)
ε� ∀θi ∈ Θi�ni �∀k′ ≤ k�∀i ∈ I�(�)

Note that (�) and (S.15) imply that

di(θi� Θ̂i�ni ) ≤ (k+ 1)ε+
(

1
2

)k

� ∀i ∈ I�∀θi ∈Θi�ni �
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which further implies that

dP(μ� μ̂)≤ (k+ 1)ε+
(

1
2

)k

and

dH
P(μ� μ̂)≤ (k+ 1)ε+

(
1
2

)k

�

that is, dWH
P (μ� μ̂) ≤ (k + 1)ε + ( 1

2)
k. Since ε is arbitrary, take ε = 1

k2 and we
obtain

dWH
P (μ� μ̂)≤ (k+ 1)

k2
ε+

(
1
2

)k

�

Since k is arbitrary, it follows that dWH
P (μ� μ̂)→ 0 as we choose k→ ∞. There-

fore, P f is dense in P under the topology induced by dWH
P .

We now prove (�) by induction on k′ (≤ k). The case of k′ = 0 follows
directly from (S.18) and (S.20). For the induction step, we assume that (�)
holds for k′ − 1 and prove that (�) holds for k′ in the following three steps.

Step 1. For any Θ̂i�ni and Θ̂−i�n−i
, we have

bi(Θ̂i�ni )[Θ̂−i�n−i
] = 1

μi[Θi�ni ]
∫
Θi�ni

bi(θi)[Θ−i�n−i
]μi[dθi]�(S.22)

It follows from (S.19) and (S.21) that

bi(Θ̂i�ni )[Θ̂−i�n−i
] = μ̂[(Θ̂i�ni � Θ̂−i�n−i

)]
μ̂i[Θ̂i�ni ]

= μ[(Θi�ni �Θ−i�n−i
)]

μi[Θi�ni ]
�(S.23)

Moreover, by (2) in Chen and Xiong (2013),

μ[Θi�ni ×Θ−i�n−i
] =

∫
Θi�ni

bi(θi)[Θ−i�n−i
]μi[dθi]�(S.24)

Then, (S.22) follows from (S.23) and (S.24).
Step 2. For any Θ̂i�ni and Θ̂−i�n−i

, we have bi(Θ̂i�ni )[Θ̂−i�n−i
] ≤ bi(θi)[Θk′−1�ε

−i�n−i
] +

ε�∀θi ∈ Θi�ni .
By (S.18), dk′

i (θi� θ
′
i) ≤ ε, which implies that

bi

(
θ′
i

)[Θ−i�n−i
] ≤ bi(θi)

[
Θk′−1�ε

−i�n−i

] + ε�(S.25)
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Thus, given any θi ∈Θi�n,

bi(Θ̂i�ni )[Θ̂−i�n−i
] = 1

μi[Θi�ni]
∫
Θi�ni

bi

(
θ′
i

)[Θ−i�n−i
]μi

[
dθ′

i

]
(S.26)

≤ 1
μi[Θi�ni]

∫
Θi�ni

(
bi(θi)

[
Θk′−1�ε

−i�n−i

] + ε
)
μi

[
dθ′

i

]
= bi(θi)

[
Θk′−1�ε

−i�n−i

] + ε�

where the first equality follows from (S.22) and the inequality follows from
(S.25).

Step 3. For any Θ̂i�ni , we have dk′
i (θi� Θ̂i�ni )≤ (k′ + 1)ε for any θi ∈Θi�ni .

By the induction hypothesis, dk′−1
j (θj� Θ̂j�nj )≤ k′ε for any θj ∈ Θj�nj . Thus,

Θk′−1�ε
−i�n−i

⊂ {
Θ̂k′−1

−i�n−i

}(k′+1)ε
�(S.27)

Hence, for any θi ∈Θi�n, (S.26) and (S.27) imply that

bi(Θ̂i�ni )[Θ̂−i�n−i
] ≤ bi(θi)

[
Θk′−1�ε

−i�n−i

] + ε

≤ bi(θi)
[{
Θ̂k′−1

−i�n−i

}(k′+1)ε] + (
k′ + 1

)
ε�

Therefore, dk′
i (θi� Θ̂i�ni ) ≤ (k′ + 1)ε for any θi ∈ Θi�ni . This completes the in-

duction step. Q.E.D.

S.3.2. The Topology Induced by the Total Variation Norm

Consider the total variation norm ρT defined as

ρT
(
μ�μ′) = sup

{∣∣μ(E)−μ′(E)
∣∣ :E ⊂Θ∗}� ∀μ�μ′ ∈ Δ

(
Θ∗)�

We show below that (i) F is nongeneric in P under ρT ; (ii) ρT induces the
discrete topology on Mf ≡ M ∩ Pf .

PROPOSITION S.2: F is nongeneric in P under ρT .

PROOF: Consider μ̂ as follows:

μ̂ θ̂2 with v2(θ̂2)= 0

θ̂1 with v1(θ̂1)= 1 1
2

η̂1 with v1(η̂1)= 1/2 1
2

�
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Consider

P̂ = {
μ ∈ P :μ

(
Θμ̂

)
> 0

}
�

Clearly, P̂ is open in P under ρT . P̂ is also dense in P under ρT . Take any
μ ∈ P . Define, for any n, μn ≡ (1− 1

n
)μ+ 1

n
μ̂. Then, μn ∈ P̂ and ρT(μn�μ)→ 0

as n → ∞. Hence, P̂ is open and dense and hence generic.
We show that

P̂ ∩ F = ∅�(S.28)

Since θ̂1 and η̂1 have the same interim beliefs but different values, for any
mechanism (q�m) that is IR and IC and achieves ε-SE on Θμ̂ with ε ∈ (0�1/8),
we derive a contradiction by showing that U1(θ̂1|q�m) > 1

4 . To see this, note
that since bidder 1 has a strictly higher value, in any mechanism that achieves ε-
SE on Θμ̂ with ε ∈ (0�1/8), q1(θ̂1� θ̂2)≥ 1 − 2ε and q1(η̂1� θ̂2)≥ 1 − 4ε. Hence,
by IC,

U1(θ̂1|q�m)− 1
4

≥ U1(η̂1|θ̂1� q�m)− 1
4

= (1 − 2ε)−m1(η̂1� θ̂2)− 1
4

>
1
2

−m1(η̂1� θ̂2)

≥ U1(θ̂1|q�m) ≥ 0�

where the first inequality follows from IC and the last inequality follows from
IR. Hence, FSE is impossible on Θμ. Thus, (S.28) holds. As a result, F is non-
generic in P . Q.E.D.

PROPOSITION S.3: ρT induces the discrete topology on Mf .

PROOF: We prove that, for any μ ∈ Mf , there is some εμ > 0 such that, for
any μ′ ∈ Mf , ρT(μ′�μ) < εμ only if μ′ = μ, which implies that {μ} is open.
Define εμ = min{μ[{θ}]:θ∈Θμ}

2 > 0. If ρT(μ′�μ) < εμ, then μ′[{θ}] > 0 for all θ ∈
Θμ. That is, Θμ′ ⊇ Θμ. Since Θμ is a belief subspace, and μ′ is a model with
μ′(Θμ) > 0, by M2 in Proposition S.4 below, Θμ′ = Θμ. By Lemma 2.9.2 in
Mertens, Sorin, and Zamir (1994), we know that μ′ = μ. Q.E.D.

S.4. MODEL AND MINIMAL BELIEF SUBSPACE

In this section, we provide two alternative definitions of models (i.e., (M2)
and (M3) in Proposition S.4) and prove that they are equivalent to the one
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we adopted in Chen and Xiong (2013) (recall that a model is a prior μ such
that there exist no priors π and v and α ∈ (0�1) such that Θπ �= Θv and μ =
απ + (1 −α)v). We then construct a model μ whose support properly contains
a belief subspace and hence is not a minimal belief subspace. We argue that it
is reasonable to regard such μ as a model that confronts a mechanism designer
following our argument in Chen and Xiong (2013, Section 3.4).

PROPOSITION S.4: The following three statements for a prior μ are equivalent:
(M1) μ is a model.
(M2) There exists no belief subspace Θ such that Θ � Θμ and μ(Θ) > 0.
(M3) For μ-almost all θ, Θμ is the minimal belief subspace containing θi for

all i ∈ I.

PROOF: (M2) ⇒ (M1): Suppose that μ is not a model, that is, there exist two
priors π and v and α ∈ (0�1) such that Θπ �= Θv and μ= απ+(1−α)v. Hence,
(Θπ \Θv)∪(Θv \Θπ) �= ∅. Without loss of generality, suppose that Θv \Θπ �= ∅,
that is, Θπ � Θμ. Then, Θπ is a belief subspace, and moreover,

μ
(
Θπ

) = απ
(
Θπ

) + (1 − α)v
(
Θπ

) ≥ απ
(
Θπ

) = α> 0�

Since Θπ � Θμ, μ does not satisfy (M2). Hence, (M2) ⇒ (M1).
(M3) ⇒ (M2): Suppose that (M2) does not hold for μ, that is, there exists

a belief subspace Θ such that Θ � Θμ and μ(Θ) > 0. Since Θ � Θμ, for each
θ ∈ Θ, Θμ is not the minimal belief subspace containing θi for all i ∈ I. Since
μ(Θ) > 0, μ does not satisfy (M3).

(M1) ⇒ (M3): Suppose that (M3) does not hold for μ, that is, there is some
Θ′ ⊂ Θμ with μ(Θ′) > 0 such that, for every θ ∈ Θ′, Θμ is not the minimal
belief subspace containing θi for some i. We make the following four claims
which will be proved in Sections S.4.1–S.4.4.

CLAIM 1: There exists a belief subspace Θ � Θμ such that μ(Θ) ∈ (0�1).

CLAIM 2: μ(
∏

i Θ
c
i ) = 1 −μ(Θ), where Θc

i ≡Θμ
i \Θi for every i ∈ I.

CLAIM 3: μ(·|Θ) is a prior.

CLAIM 4: μ(·|∏i Θ
c
i ) is a prior.

By Claims 1–4, we show that μ is not a model. For notational ease, define

π(·)≡ μ(·|Θ) and v(·)≡ μ

(
·∣∣∏

i

Θc
i

)
�
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First, since (
∏

i Θ
c
i )∩Θ= ∅, Claim 2 implies that

μ

(
Θμ

∖ (
Θ∪

(∏
i

Θc
i

)))
= 0�(S.29)

Thus, for every E ⊂ Θ∗,

μ(E) = μ(Θ∩E)+μ

((∏
i

Θc
i

)
∩E

)
(S.30)

= μ(Θ)× μ(Θ∩E)

μ(Θ)
+μ

(∏
i

Θc
i

)
×

μ

((∏
i

Θc
i

)
∩E

)
μ

(∏
i

Θc
i

)

= μ(Θ)× μ(Θ∩E)

μ(Θ)
+ [

1 −μ(Θ)
] ×

μ

((∏
i

Θc
i

)
∩E

)
μ

(∏
i

Θc
i

)
= μ(Θ)×π(E)+ [

1 −μ(Θ)
] × ν(E)�

where the first equality follows because (
∏

i Θ
c
i ) ∩Θ = ∅ and (S.29) holds; the

third follows from Claim 2. Then, (S.30), together with Claims 3 and 4, implies
that μ is not a model if Θπ �= Θν . Suppose to the contrary that Θπ = Θν . Since
Θ is a belief subspace, it is closed. Furthermore, π(Θ) = 1. Hence,

Θπ ⊂Θ�(S.31)

Since Θπ = Θν , it follows from (S.30) that

μ
(
Θπ

) = μ(Θ)×π
[
Θπ

] + [
1 −μ(Θ)

] × ν
(
Θν

)
= μ(Θ)+ [

1 −μ(Θ)
] = 1�

As a result,

Θμ ⊂Θπ�(S.32)

Finally, (S.31) and (S.32) imply Θμ ⊂ Θ, contradicting Θ � Θμ. Therefore,
Θπ �=Θν and hence μ is not a model. Thus, (M1) ⇒ (M3). Q.E.D.

S.4.1. Proof of Claim 1

Since Θμ ⊂ Θ∗ is a compact metric space, pick a countable dense set
{θn}∞

n=1 ⊂ Θμ. For every θi ∈ Θμ
i , let Θθi denote the minimal belief subspace
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containing θi. Since Θμ is a belief subspace containing θ for every θ ∈ Θμ, we
have Θθi ⊂Θμ for every θi ∈Θμ

i .
Recall that μ(Θ′) > 0 and, for every θ ∈ Θ′, Θμ is not the minimal belief

subspace containing θi for some i. Since μ is a prior, it follows from (2) in Chen
and Xiong (2013) that μ({θ :θ−i ∈ suppbi(θi)}) = 1. Hence, there is Θ′′ ⊂ Θ′

such that μ(Θ′′) > 0 and θ−i ∈ suppbi(θi) for all θ ∈Θ′′.
We thus have

Θ′′ ⊂
⋃
i∈I

∞⋃
n=1

∞⋃
m=1

Θi�n�m� where(S.33)

Θi�n�m ≡
⋃

θi∈Θμ
i andd(θ�θn)≥1/m�∀θ∈Θθi

Θθi �

where Θi�n�m is the union of all minimal belief subspaces Θθi such that θi ∈ Θμ
i

and the Hausdorff metric between Θθi and {θn} is greater than 1/m. Equa-
tion (S.33) holds because, for every θ ∈ Θ′′, Θμ is not the minimal belief sub-
space containing θi for some i, that is, Θθi � Θμ and hence the Hausdorff met-
ric between Θθi and {θn} is greater than 1/m for some integers m�n due to the
denseness of {θn}∞

n=1 ⊂ Θμ; moreover, θ ∈ Θθi since θ−i ∈ suppbi(θi) (and thus
θ ∈ {θi} × Suppbi(θ) ⊂ Θθi).

Since μ(Θ′′) > 0, (S.33) implies that μ(Θi�n�m) > 0 for some (i�m�n). Clearly,
Θi�n�m (the closure of Θi�n�m) is a belief subspace and μ(Θi�n�m) > 0. Moreover,
since d(θ�θn) ≥ 1/m for all θ ∈ Θi�n�m, we thus have Θi�n�m � Θμ. This further
implies that μ(Θi�n�m) < 1. Therefore, we find a belief subspace Θi�n�m such that
μ(Θi�n�m) ∈ (0�1).

S.4.2. Proof of Claim 2

First, since μ is a prior,

μ(Θ) =
∫
Θ∗
i

(∫
Θ∗−i

1Θ(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi]

=
∫
Θi

(∫
Θ∗−i

1Θ(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi]

=
∫
Θi

(∫
Θ∗−i

bi(θi)
[
θ−i ∈ Θ∗

−i : (θi� θ−i) ∈ Θ
])

μi[dθi]

= μi(Θi)�
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where the second equality holds because 1Θ(θi� θ−i) = 0 for all θ−i if θi /∈ Θi;
the last equality holds because Θ is a belief subspace. It then follows that

μ(Θ) = μi(Θi)≥ μ

(∏
i

Θi

)
≥ μ(Θ)�

Thus,

μ(Θ) = μ

(∏
i

Θi

)
�(S.34)

Second, observe that the collection X = {∏i Xi :Xi ∈ {Θi�Θ
c
i }} is a partition

of Θμ. First, for any X ∈ X , μ(X) = 0 if Xi = Θi and Xi′ = Θc
i′ for some i �= i′.

Indeed, since μ is a prior,

μ(X)=
∫
Θi

bi(θi)

[∏
j �=i

Xj

]
μi[dθi] = 0�(S.35)

where the second equality follows because Θi′ ∩Xi′ = ∅ and bi(θi)[Θ−i] = 1 for
every θi ∈ Θi. Hence, μ(X) > 0 only if X = ∏

i Θi or X = ∏
i Θ

c
i . It follows that

μ

(∏
i

Θc
i

)
= 1 −μ

(∏
i

Θi

)
�(S.36)

By (S.34) and (S.36), we obtain Claim 2.

S.4.3. Proof of Claim 3

Observe that for any Ei ⊂ Θi,

πi(Ei)= μ(Ei ×Θ−i)

μ(Θ)
=

∫
Ei

bi(θi)[Θ−i]μi[dθi]
μ(Θ)

= μi(Ei)

μ(Θ)
�(S.37)

where the first equality follows from (S.34); the second equality follows from
the fact that μ is a prior; the last equality follows because bi(θi)[Θ−i] = 1, for
all θi ∈ Ei ⊂Θi.

We show that, for any bounded measurable function ϕ :Θ∗ → R,∫
Θ∗
i

(∫
Θ∗−i

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
πi[dθi] =

∫
Θ∗
ϕ(θ)π[dθ]� ∀i�(S.38)
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Define ϕ′ :Θ∗ → R such that ϕ′(θ) = 1∏
i Θi

(θ)ϕ(θ).
First, consider the left-hand side of (S.38). We have∫

Θ∗
i

(∫
Θ∗−i

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
πi[dθi](S.39)

=
∫
Θi

(∫
Θ∗−i

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
πi[dθi]

=
∫
Θi

(∫
Θ−i

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
πi[dθi]

= 1
μ(Θ)

∫
Θi

(∫
Θ−i

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi]

= 1
μ(Θ)

∫
Θi

(∫
∏

j �=i Θj

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi]

= 1
μ(Θ)

∫
Θ∗
i

(∫
Θ∗−i

ϕ′(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi]�

where the first equality follows because πi(Θi) = 1; the second equality holds
because bi(θi)[Θ−i] = 1 for every θi ∈Θi; the third equality follows from (S.37);
the fourth equality follows because bi(θi)[Θ−i] = 1 = bi(θi)[∏j �=i Θj] for all θi ∈
Θi.

Second, consider the right-hand side of (S.38). We have∫
Θ∗
ϕ(θ)π[dθ] = 1

μ(Θ)

∫
Θ

ϕ(θ)μ[dθ] = 1
μ(Θ)

∫
Θ∗
ϕ′(θ)μ[dθ]�(S.40)

where the second equality follows because μ((
∏

i Θi)\Θ)= 0 by (S.34). Third,
since ϕ′ is a measurable function and μ is a prior,∫

Θ∗
i

(∫
Θ∗−i

ϕ′(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi] =

∫
Θ∗
ϕ′(θ)μ[dθ]�(S.41)

Finally, (S.38) follows from (S.39), (S.40), and (S.41). Consequently, π is a
prior.

S.4.4. Proof of Claim 4

We divide the proof into three steps:
Step 1. For any i ∈ I, μi(Θ

c�∗
i )= μi(Θ

c
i ), where

Θc�∗
i ≡

{
θi ∈ Θc

i :bi(θi)

[∏
j �=i

Θc
j

]
= 1

}
�
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Suppose otherwise, that is, μi(Θ
c
i \ Θc�∗

i ) > 0 for some i. Consider the finite
partition X−i = {∏j �=i Xj :Xj ∈ {Θj�Θ

c
j }} of Θμ

−i. For each X−i ∈ X−i, let

Θ
c�X−i

i ≡ {
θi ∈Θc

i :bi(θi)[X−i]> 0
}
�

By the definition of Θc�∗
i , for any θi ∈ Θc

i \ Θc�∗
i , we have θi ∈ Θ

c�X−i
i for some

X−i ∈ X−i \ {∏j �=i Θ
c
j }, that is,

Θc
i \Θc�∗

i ⊂
⋃

X−i∈X−i\{
∏

j �=i Θ
c
j }
Θ

c�X−i
i �

Furthermore, since X−i is finite and μi(Θ
c
i \ Θc�∗

i ) > 0, it follows that
μi(Θ

c�X−i
i ) > 0 for some X−i ∈ X−i \ {∏j �=i Θ

c
j }. Hence,

μ
(
Θ

c�X−i
i ×X−i

) =
∫
Θ
c�X−i
i

bi(θi)[X−i]μi[dθi]> 0�

which implies

μ
(
Θc

i ×X−i

) ≥ μ
(
Θ

c�X−i
i ×X−i

)
> 0� where X−i ∈ X−i

∖ {∏
j �=i

Θc
j

}
�(S.42)

Clearly, Θc
i ×X−i ∈ X \ {∏j Θj�

∏
j Θ

c
j }, and we thus have

μ
(
Θc

i ×X−i

) = 0� by (S.35).(S.43)

Equation (S.42) contradicts (S.43). Therefore, μi(Θ
c�∗
i )= μi(Θ

c
i ) for every i.

Step 2. νi(Ei)= μi(Ei)

μ(
∏

i Θ
c
i )

for any Ei ⊂Θc�∗
i .

Observe that

νi(Ei) =
μ

(
Ei ×

(∏
j �=i

Θc
j

))
μ

(∏
i

Θc
i

)(S.44)

=

∫
Ei

bi(θi)

[∏
j �=i

Θc
j

]
μi[dθi]

μ

(∏
i

Θc
i

) = μi(Ei)

μ

(∏
i

Θc
i

) �

where the second equality follows from the fact that μ is a prior; the last equal-
ity follows because bi(θi)[∏j �=i Θ

c
j ] = 1 for all θi ∈ Ei ⊂ Θc�∗

i (see the definition
of Θc�∗

i in step 1).
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Step 3. ν is a prior.
We now show that, for any bounded measurable function ϕ :Θ∗ → R,∫

Θ∗
i

(∫
Θ∗−i

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
vi[dθi] =

∫
Θ∗
ϕ(θ)v[dθ]� ∀i�(S.45)

Define ϕ′ :Θ∗ → R such that ϕ′(θ) = 1∏
i Θ

c
i
(θ)ϕ(θ).

First, consider the left-hand side of (S.45). We have∫
Θ∗
i

(∫
Θ∗−i

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
vi[dθi](S.46)

=
∫
Θ
c�∗
i

(∫
Θ∗−i

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
vi[dθi]

=
∫
Θ
c�∗
i

(∫
∏

j �=i Θ
c
j

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
vi[dθi]

= 1

μ

(∏
i

Θc
i

) ∫
Θ
c�∗
i

(∫
∏

j �=i Θ
c
j

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi]

= 1

μ

(∏
i

Θc
i

) ∫
Θc
i

(∫
∏

j �=i Θ
c
j

ϕ(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi]

= 1

μ

(∏
i

Θc
i

) ∫
Θ∗
i

(∫
Θ∗−i

ϕ′(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi]�

where the first equality follows because vi(Θ
c�∗
i ) = vi(Θ

c
i ) = 1 by steps 1 and 2;

the second equality holds because bi(θi)[∏j �=i Θ
c
j ] = 1 for every θi ∈ Θc�∗

i by
step 1; the third equality follows from step 2; the fourth equality follows from
step 1.

Second, consider the right-hand side of (S.45). We have∫
Θ∗
ϕ(θ)v[dθ] = 1

μ

(∏
i

Θc
i

) ∫
∏

i Θ
c
i

ϕ(θ)μ[dθ](S.47)

= 1

μ

(∏
i

Θc
i

) ∫
Θ∗
ϕ′(θ)μ[dθ]�
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Third, since ϕ′ is a measure function and μ is a prior,∫
Θ∗
i

(∫
Θ∗−i

ϕ′(θi� θ−i)bi(θi)[dθ−i]
)
μi[dθi] =

∫
Θ∗
ϕ′(θ)μ[dθ]�(S.48)

Finally, (S.45) follows from (S.46), (S.47), and (S.48). Consequently, v is a
prior.

S.4.5. A Model Whose Support Is Not Minimal

We now present an example of a model whose support is not a mini-
mal belief subspace. Consider a two-bidder common-prior type space Θ1 =
{θ1�1� θ1�2� � � � �} and Θ2 = {θ2�1� θ2�2� � � �}. Define

v1(θ1�n)= v2(θ2�n)= 1
n
� ∀n�

The prior μ on this type space is defined as

μ
[
(θ1�n� θ2�n)

] = μ
[
(θ1�n� θ2�n+1)

] = 1
2n+1

� ∀n�

That is,

μ θ2�1 θ2�2 θ2�3 θ2�4 · · ·
θ1�1

1
4

1
4 0 0 · · ·

θ1�2 0 1
8

1
8 0 · · ·

θ1�3 0 0 1
16

1
16 · · ·

θ1�4 0 0 0 1
32

� � �

���
���

���
���

���
� � �

�

Note that μ is not a convex combination of two other priors, that is, μ is in-
deed an extreme point in P .1 However, Θμ is not a minimal belief subspace.
Observe that (θ1�n� θ2�n) → (θ1�0� θ2�0), where (θ1�0� θ2�0) is the type profile with
common knowledge of the value being 0. Then, (θ1�0� θ2�0) is a belief subspace
and (θ1�0� θ2�0)⊂Θμ.

1To see this, suppose that μ = απ + (1 − α)ν for some π�ν ∈ P and α ∈ (0�1). Since μ
is a model, it follows that Θπ = Θν = Θμ. Since Θπ = Θμ, x ≡ π({(θ1�1� θ2�1)}) > 0. Then,
π({(θ1�1� θ2�2)}) = x, π({(θ1�2� θ2�2)}) = π({(θ1�1� θ2�3)}) = x/2, and so on. Moreover, since α ∈
(0�1) and μ({(θ1�0� θ2�0)}) = 0, π({(θ1�0� θ2�0)}) = 0. It follows that 2x(1 + 1/2 + 1/4 + · · ·) = 1.
Hence, x= 1/4 and we conclude that π = μ. Similarly, ν = μ. That is, μ is an extreme point.
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Note that while Θμ is not a minimal belief subspace, for μ-almost all θ, Θμ

is the minimal belief subspace that contains θi for every i. Hence, μ is a model
by Proposition S.4. Thus, if we ask the agents to report the minimal belief
subspace containing their actual types, under truthtelling Θμ will be reported
with μ-probability 1.
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