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THIS SUPPLEMENT INCLUDES two appendices. Appendix S.A gives the proofs
of the results in the main text. Appendix S.B provides simulation results in
support of the theory in the main text.

APPENDIX S.A: PROOFS

In this appendix, we prove the results in the main text. The appendix is
organized as follows. Section S.A.1 introduces some notation and decom-
positions. Section S.A.2 provides some estimates. These preliminary results
are repeatedly used throughout the proofs. Section S.A.3 proves Theorem 1
and Corollary 1. Theorems 2–5 are respectively proved in Sections S.A.4–
S.A.7.

S.A.1. Notations

As in the main text, we denote the paper of Jacod, Podolskij, and Vet-
ter (2010) by JPV, and the paper of Aït-Sahalia, Jacod, and Li (2012) by
AJL.

We use the same notations as in the main text. We sometimes write Zη
t in

place of Zt (so Zη
t =Xη

t + χt) so as to emphasize the dependence of the ob-
served price on η. We also need some new notation. We denote the continuous
part of the efficient price by

X∗
t =X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs�

With any predictable function δ̃, we associate two processes δ̃ � (μ − ν) and
δ̃ � μ as

δ̃ � (μ− ν)t =
∫ t

0

∫
E

δ̃(s	 z)(μ− ν)(ds	dz)	

δ̃ � μt =
∫ t

0

∫
E

δ̃(s	 z)μ(ds	dz)	
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provided that they are well defined. Then we can write the efficient price Xη
t ,

for η ∈ [0	1], as

Xη
t =X∗

t + Jt
=X∗

t +ηδ1{|δ|≤1} � (μ− ν)t +ηδ1{|δ|>1} � μt�

We also denote the continuous part of the noisy price as

Z∗
t =X∗

t +χt�
Below, we introduce two decompositions of Xη

t . For each q≥ 1, we define

B
q
t =
∫ t

0
bqs ds	 with bqs = −

∫
{γ(z)>1/q	|δ(s	z)|≤1}

δ(s	 z)λ(dz)	(S.A.1)

M
q
t = δ1{γ≤1/q} � (μ− ν)t	

J
′q
t = Bqt +Mq

t 	

J
q
t = δ1{γ>1/q} � μt�

We can then decompose Xη
t as

Xη
t =X∗

t +ηJ ′q
t +ηJqt �(S.A.2)

Under Assumption H-1, the jumps of Xη
t have finite variation. We extend

the notations above by setting

B∞
t =
∫ t

0
b∞
s ds	 with b∞

t = −
∫
δ(t	 z)1{|δ(t	z)|≤1}λ(dz)	

J∞
t = δ � μt�

In this case, we sometimes use an alternative decomposition:

Xη
t =X∗

t +ηB∞
t +ηJ∞

t �(S.A.3)

Recall from the main text that for any process Y and weight function g, we
define

Ȳ (g)ni =
kn−1∑
j=1

gnj �
n
i+jY = −

kn∑
j=1

g′n
j Y(i+j−1)Δn	

Ŷ (g)ni =
kn∑
j=1

(
g′n
j �

n
i+jY
)2
�
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We often use the following property without further mention: if Y is a semi-
martingale, Ȳ (g)ni can be represented in integral form as (see (5.4) in JPV)

Ȳ (g)ni =
∫ iΔn+knΔn

iΔn

gn(s− iΔn)dYs	

where

gn(s)=
kn−1∑
j=1

gnj 1((j−1)Δn	jΔn](s)�

For the sake of notational simplicity, we write Ȳ n
i and Ŷ n

i in place of Ȳ (g)ni and
Ŷ (g)ni whenever there is no ambiguity about the weight function involved in
these definitions. For example, we write X̄∗n

i , B̄q	ni , M̄q	n
i , J̄ ′q	n

i , and J̄q	ni for Ȳ (g)ni
when Yt =X∗

t , Bqt , M
q
t , J ′q

t , and Jqt , respectively. Moreover, when Yt =Xηn
t or

Zηn
t , we further simplify our notations by writing X̄n

i , X̂n
i , Z̄n

i , and Ẑn
i in place

of X̄ηn(g)ni , X̂
ηn(g)ni , Z̄

ηn(g)ni , and Ẑηn(g)ni respectively; because the sequence
ηn is always fixed in our proofs, this shorthand notation should not raise any
ambiguity.

Throughout the proof, K denotes a constant that may change from line to
line; the constant does not depend on the asymptotic stage n or the summa-
tion index i. We sometimes emphasize its dependence on some parameter q
by writing Kq. As in the main text, we use

P	ηn−→ to indicate the convergence in

probability and use
L-s	ηn−→ to indicate the stable convergence in law under a drift-

ing sequence ηn. For any nonrandom sequence bn > 0, we denote by op	ηn(bn)

a generic sequence of variables ξn that satisfies ξn/bn
P	ηn−→ 0, and we denote

by Op	ηn(bn) a generic sequence of variables ξn such that ξn/bn is stochasti-
cally bounded. For notational simplicity, we suppress the dependence of these
stochastic symbols on ηn whenever the distribution of the relevant random
variables does not depend on ηn.

S.A.2. Some Useful Estimate

We first recall some standard estimates for jump increments from Lem-
mas 2.1.5 and 2.1.7 of Jacod and Protter (2012).

LEMMA 1—Jacod and Protter: Let (ω	 t	 z) 	→ δ̃(ω	 t	 z) be a predictable
function on Ω× R+ ×E.

(a) Suppose that
∫ t

0 ds
∫
δ̃(s	 z)2λ(dz) < ∞ for all t. Then the process Y =

δ̃ � (μ − ν) is a locally square integrable martingale, and for all finite stopping
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times τ, for s > 0 and k≥ 2, we have

E

[
sup
u∈[0	s]

|Yτ+u −Yτ|k
∣∣Fτ

]
≤KsE

[
1
s

∫ τ+s

τ

du

∫ ∣∣δ̃(u	 z)∣∣kλ(dz)∣∣∣Fτ

]

+Ksk/2E
[(

1
s

∫ τ+s

τ

du

∫
δ̃(u	 z)2λ(dz)

)k/2∣∣∣Fτ

]
�

(b) Suppose that
∫ t

0 ds
∫ |δ̃(s	 z)|λ(dz) <∞ for all t. Then the process Y =

δ̃ � μ is of locally integrable variation, and for all finite stopping times τ, for s > 0
and k≥ 1, we have

E

[
sup
u∈[0	s]

|Yτ+u −Yτ|k
∣∣Fτ

]
≤KsE

[
1
s

∫ τ+s

τ

du

∫ ∣∣δ̃(u	 z)∣∣kλ(dz)∣∣∣Fτ

]

+KskE
[(

1
s

∫ τ+s

τ

du

∫ ∣∣δ̃(u	 z)∣∣λ(dz))k∣∣∣Fτ

]
�

As is often the case in this kind of problem, with the help of a standard
localization argument (Jacod (2008)), we can strengthen Assumptions H-r, K,
and N as follows without loss of generality:

ASSUNMPTION S.H-r: We have Assumption H-r, supω(0)	t |δ(ω(0)	 t	 z)| ≤
γ(z), and the processes bt , σt , and Xt are bounded.

ASSUNMPTION S.K: We have Assumption K, and further the processes b̃t , at ,
a′
t , and σ̃t are bounded.

ASSUNMPTION S.N: We have Assumption N and, for any q > 0, the process∫
Qt(ω

(0)	 dz)|z|q is bounded.

We now collect some estimates that are used repeatedly throughout the
proofs.

LEMMA 2: Suppose that Assumptions S.H-2 and S.N hold. For any u≥ 0, there
exists K > 0 such that

E
[∣∣Z̄∗n

i

∣∣u|FiΔn

]≤KΔu/4n 	(S.A.4)

E
[∣∣χ̂ni ∣∣u|FiΔn

]≤KΔu/2n 	(S.A.5)

E
[∣∣Ẑ∗n

i − χ̂ni
∣∣u|FiΔn

]≤KΔun�(S.A.6)
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PROOF: Inequalities (S.A.4) and (S.A.5) follow from (5.39) and (5.3) in JPV;
(S.A.6) follows from (5.43) of that paper and Jensen’s inequality. Q.E.D.

LEMMA 3: Suppose that Assumptions S.H-2 and S.N hold. Let ηn be a se-
quence in [0	1] and let u ≥ 0, v ≥ 1, and w ≥ 2 be real numbers. For any q ≥ 1,
we have

E
[∣∣B̄q	ni ∣∣u|FiΔn

]≤KqΔ
u/2
n 	(S.A.7)

E
[∣∣M̄q	n

i

∣∣w|FiΔn

]≤KΔ1/2
n

∫
γ(z)21{γ(z)≤1/q}λ(dz)	(S.A.8)

E
[∣∣J̄ ′q	n

i

∣∣w|FiΔn

]≤KqΔ
w/2
n +KΔ1/2

n

∫
γ(z)21{γ(z)≤1/q}λ(dz)	(S.A.9)

E
[∣∣J̄q	ni ∣∣v|FiΔn

]≤KqΔ
1/2
n 	(S.A.10)

E
[∣∣Z̄n

i − Z̄∗n
i

∣∣w|FiΔn

]≤KηwnΔ1/2
n 	(S.A.11)

E
[∣∣Z̄n

i

∣∣w|FiΔn

]≤KΔw/4n +KηwnΔ1/2
n 	(S.A.12)

E
[∣∣Ẑn

i − Ẑ∗n
i

∣∣v|FiΔn

]≤KηvnΔ1/2+v/2
n 	(S.A.13)

E
[∣∣Ẑn

i − χ̂ni
∣∣v|FiΔn

]≤KΔvn +KηvnΔ1/2+v/2
n �(S.A.14)

PROOF: Note that B̄q	ni = ∫ iΔn+knΔn
iΔn

gn(s − iΔn)bqs ds. Since gn(·) is bounded,

we have |B̄q	ni | ≤ K
∫ iΔn+knΔn
iΔn

|bqs |ds. By (S.A.1), |bqs | is bounded by∫
{γ(z)>1/q} λ(dz), which is finite under Assumption H-2. Hence |B̄q	ni | ≤KqknΔn,

which implies (S.A.7).
Note that

M̄
q	n
i =

∫ iΔn+knΔn

iΔn

gn(s− iΔn)dMq
s

=
∫ iΔn+knΔn

iΔn

∫
E

gn(s− iΔn)δ(s	 z)1{γ(z)≤1/q}(μ− v)(ds	dz)�

Since gn(·) is bounded, |δ(s	 z)| ≤ γ(z), and w≥ 2, we can use Lemma 1(a) to
derive

E
[∣∣M̄q	n

i

∣∣w|FiΔn

] ≤KknΔn ∫
E

γ(z)w1{γ(z)≤1/q}λ(dz)

+K(knΔn)w/2
(∫

E

γ(z)21{γ(z)≤1/q}λ(dz)
)w/2

�

Because
∫
E
γ(z)2λ(dz) <∞, the above display implies (S.A.8).
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Recall that J ′q
t = B

q
t + M

q
t . We derive (S.A.9) by combining (S.A.7) and

(S.A.8).
To see (S.A.10), note that

J̄
q	n
i =

∫ iΔn+knΔn

iΔn

gn(s− iΔn)dJqs

=
∫ iΔn+knΔn

iΔn

∫
E

gn(s− iΔn)δ(s	 z)1{γ(z)>1/q}μ(ds	dz)�

Hence, by Lemma 1(b),

E
[∣∣J̄q	ni ∣∣v|FiΔn

] ≤KknΔn ∫
E

γ(z)v1{γ(z)>1/q}λ(dz)

+K(knΔn)v
(∫

E

γ(z)1{γ(z)>1/q}λ(dz)
)v

≤KqΔ
1/2
n �

By (S.A.2), Z̄n
i − Z̄∗n

i = ηn(J̄
′q	n
i + J̄

q	n
i ). Taking q = 1, we derive (S.A.11)

by combining (S.A.9) and (S.A.10). We then combine (S.A.11) and (S.A.4) to
derive (S.A.12).

We now consider (S.A.13). Denote X ′
t = δ1{|δ|≤1} � (μ− ν)t + δ1{|δ|>1} �μt . By

Lemma 1, we have E[(�ni X ′)2v|FiΔn] ≤KΔn. Hence,

E
[(
X̂ ′n
i

)v|FiΔn

]= E

[(
kn∑
j=1

(
g′n
j �

n
i+jX

′)2)v∣∣∣FiΔn

]
(S.A.15)

≤ Kkv−1
n E

[
kn∑
j=1

(
g′n
j �

n
i+jX

′)2v∣∣∣FiΔn

]

≤ KΔ1+v/2
n 	

where the first inequality follows from Hölder’s inequality; the second inequal-
ity holds because |g′n

j | ≤K/kn and E[(�ni X ′)2v|FiΔn] ≤KΔn.
Now note that Zηn

t = Z∗
t + ηnX

′
t . By the cr-inequality and the Cauchy–

Schwarz inequality, we have∣∣Ẑn
i − Ẑ∗n

i

∣∣v
=
∣∣∣∣∣
kn∑
j=1

(
g′n
j

)2[(
�ni+jZ

∗ +ηn�ni+jX ′)2 − (�ni+jZ∗)2]∣∣∣∣∣
v



JUMPS IN NOISY HIGH FREQUENCY DATA 7

=
∣∣∣∣∣η2

n

kn∑
j=1

(
g′n
j

)2(
�ni+jX

′)2 + 2
kn∑
j=1

(
g′n
j

)2(
�ni+jZ

∗)(ηn�ni+jX ′)∣∣∣∣∣
v

≤K
(
η2
n

kn∑
j=1

(
g′n
j

)2(
�ni+jX

′)2)v

+K
((

kn∑
j=1

(
g′n
j

)2(
�ni+jZ

∗)2)1/2( kn∑
j=1

(
g′n
j

)2(
ηn�

n
i+jX

′)2)1/2)v

=Kη2v
n

(
X̂ ′n
i

)v +Kηvn
(
Ẑ∗n
i

)v/2(
X̂ ′n
i

)v/2
�

Hence,

E
[∣∣Ẑn

i − Ẑ∗n
i

∣∣v|FiΔn

] ≤Kη2v
n E
[(
X̂ ′n
i

)v|FiΔn

]
+KηvnE

[(
Ẑ∗n
i

)v|FiΔn

]1/2
E
[(
X̂ ′n
i

)v|FiΔn

]1/2
≤Kη2v

n Δ
1+v/2
n +KηvnΔv/4n Δ1/2+v/4

n

≤KηvnΔ1/2+v/2
n 	

where the first inequality follows from the Cauchy–Schwarz inequality; the sec-
ond inequality is due to (S.A.15) and E[(Ẑ∗n

i )
v|FiΔn] ≤KΔv/2n , which in turn fol-

lows from (S.A.5) and (S.A.6); the last inequality holds because ηn is bounded.
This finishes the proof of (S.A.13).

Combining (S.A.13) with (S.A.6), we get (S.A.14). Q.E.D.

LEMMA 4: Suppose that Assumptions S.H-1 and S.N hold. Let ηn be a se-
quence in [0	1]. For any u≥ 0 and v≥ 1, there exists K > 0 such that

E
[∣∣Z̄n

i − Z̄∗n
i

∣∣v|FiΔn

]≤KηvnΔ1/2
n 	(S.A.16)

E
[∣∣Z̄n

i

∣∣v|FiΔn

]≤KΔv/4n +KηvnΔ1/2
n 	(S.A.17)

E
[∣∣J̄ ′q	n

i

∣∣v|FiΔn

]≤KΔv/2n +KΔ1/2
n

∫
E

γ(z)1{γ(z)≤1/q}λ(dz)�(S.A.18)

PROOF: By (S.A.3), we have Z̄n
i = Z̄∗n

i +ηnB̄∞	n
i +ηnJ̄∞	n

i , so

E
[∣∣Z̄n

i − Z̄∗n
i

∣∣v|FiΔn

]≤KηvnE[∣∣B̄∞	n
i

∣∣v|FiΔn

]+KηvnE[∣∣J̄∞	n
i

∣∣v|FiΔn

]
�

Since gn(·) and b∞ are bounded, we have

E
[∣∣B̄∞	n

i

∣∣v|FiΔn

]= E

[∣∣∣∣∫ iΔn+knΔn

iΔn

gn(s− iΔn)b∞
s ds

∣∣∣∣v∣∣∣FiΔn

]
≤KΔv/2n �(S.A.19)
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Moreover, using a similar argument as in the proof of (S.A.10), we have

E
[∣∣J̄∞	n

i

∣∣v|FiΔn

]
(S.A.20)

= E

[∣∣∣∣∫ iΔn+knΔn

iΔn

∫
E

gn(s− iΔn)δ(s	 z)μ(ds	dz)
∣∣∣∣v∣∣∣FiΔn

]
≤KknΔn

∫
γ(z)vλ(dz)+K(knΔn)v

(∫
γ(z)λ(dz)

)v
≤KΔ1/2

n 	

where the first inequality is obtained by applying Lemma 1(b); the second in-
equality holds because v ≥ 1, and γ(·) is bounded and integrable with respect
to λ(dz).

Combining (S.A.19) and (S.A.20), we readily have (S.A.16). By (S.A.16) and
(S.A.4), we have (S.A.17).

To see (S.A.18), first note that under Assumption S.H-1, J ′q
t = B∞

t +δ1{γ≤1/q}�
μt . Hence,

J̄
′q	n
i = B̄∞	n

i +
∫ iΔn+knΔn

iΔn

∫
E

gn(s− iΔn)δ(s	 z)1{γ(z)≤1/q}μ(ds	dz)�

By Lemma 1(b),

E
[∣∣J̄ ′q	n

i − B̄∞	n
i

∣∣v|FiΔn

]≤KΔ1/2
n

∫
E

γ(z)1{γ(z)≤1/q}λ(dz)�

Using the cr-inequality, we combine this estimate with (S.A.19) to derive
(S.A.18). Q.E.D.

The following estimates are elementary consequences of the definitions of
dn and an; recall that these are the normalizing factors in the LLN and CLT,
respectively. If ηn satisfies Δ−r∗

n ηn → h ∈ [0	∞], we have

u ∈ [0	p] ⇒ dnη
u
n =O(Δ1−p/4+r∗u

n

);(S.A.21)

if ηn satisfies Δ−r̄
n ηn → h ∈ [0	∞], we have

u ∈ [0	p− 1] ⇒ anη
u
n =O(Δ3/4−p/4+r̄u

n

)
�(S.A.22)

S.A.3. Proofs of Theorem 1 and Corollary 1

LEMMA 5: Suppose that Assumptions S.H-2 and S.N hold. Let (ηn)n≥1 ⊂ [0	1]
be a sequence that satisfies Δ−r∗

n ηn → h for some h ∈ [0	∞]. Then, for any ε > 0,

lim
q→∞

lim sup
n→∞

P
(
dnV
(
ηnJ

′q	 g	p	0
)n
t
> ε
)= 0�
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PROOF: Note that

E
[
dnV
(
ηnJ

′q	 g	p	0
)n
t

]
= dnηpnE

[�t/Δn
−kn∑
i=1

∣∣J̄ ′q	n
i

∣∣p]

≤ dnηpnΔ−1
n

(
KqΔ

p/2
n +KΔ1/2

n

∫
γ(z)21{γ(z)≤1/q}λ(dz)

)
≤KqΔ

(p−1)/2
n +K

∫
γ2(z)1{γ(z)≤1/q}λ(dz)	

where the first inequality follows from (S.A.9) and the second inequality fol-
lows from (S.A.21). Note that p ≥ 2 and limq→∞

∫
γ(z)21{γ(z)≤1/q}λ(dz) = 0.

Hence,

lim
q→∞

lim sup
n→∞

E
∣∣dnV (ηnJ ′q	 g	p	0

)n
t

∣∣= 0�

The claim then follows from Markov’s inequality. Q.E.D.

We specify an exhausting sequence (Tm) for the jumps of Xη
t as follows. For

q≥ 1, let (T(q	m) :m≥ 1) be the successive jump times of the Poisson process
1{1/q<γ≤1/(q−1)} � μt , where γ(·) is the function that occurs in Assumption S.H-2.
These stopping times have pairwise disjoint graphs as m and q vary, and
(Tm)m≥1 denotes any reordering of the double sequence (T(q	m) : q	m ≥ 1).
We denote by Pq the collection of m such that Tm = T(q′	m′) for some q′ ≤ q
and m′ ≥ 1. Note that {Tm :m ∈ Pq} exhausts the jumps of the pure jump pro-
cess Jq.

For a weight function g and an even integer p≥ 2, we define, for q≥ 1,

U(g	p	q)t = θḡ(p)
∑

m∈Pq :Tm≤t
|�XTm |p	

and for l ∈ {0	 � � � 	p/2},

V (g	p	 l)t = θ−p/2
∫ t

0

(
2α2

s ḡ
′(2)
)l
mp−2l(g;θσs	αs)ds�(S.A.23)

LEMMA 6: Suppose that Assumptions S.H-2 and S.N hold. Let (ηn) ⊂ [0	1]
be a sequence that satisfies Δ−r∗

n ηn → h for some h ∈ [0	∞]. Then for each q≥ 1,

dnV
(
Z∗ +ηnJq	g	p	0

)n
t

P	ηn−→ 1
1 + hpV (g	p	0)t + hp

1 + hpU(g	p	q)t�
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PROOF: LetΩn(t	q) be the collection of sample paths on which |Tm−Tm′ |>
2knΔn, 2knΔn < Tm < t − 2knΔn, and Tm is not a multiple of Δn whenever
Tm	Tm′ ≤ t for some m	m′ ∈ Pq. Since X is càdlàg with no fixed time of dis-
continuity, Ωn(t	q)→Ω almost surely as n→ ∞. Therefore, for the purpose
of proving the claim of this lemma, we can and will restrict our calculation on
the set Ωn(t	q) without loss of generality. We denote Inm = �Tm/Δn
.

On Ωn(t	q), we have the decomposition

dnV
(
Z∗ +ηnJq	g	p	0

)n
t

(S.A.24)

= dnV
(
Z∗	 g	p	0

)n
t
+ dn

∑
m∈Pq :Tm≤t

Inm∑
i=Inm−kn+2

∣∣ηnJ̄q	ni ∣∣p

+ dn
∑

m∈Pq :Tm≤t

[
Inm∑

i=Inm−kn+2

(∣∣Z̄∗n
i +ηnJ̄q	ni

∣∣p − ∣∣Z̄∗n
i

∣∣p − ∣∣ηnJ̄q	ni ∣∣p)
]
�

Note that

dn
∑

m∈Pq :Tm≤t

Inm∑
i=Inm−kn+2

∣∣ηnJ̄q	ni ∣∣p(S.A.25)

= dnηpnkn
(

1
kn

kn∑
j=1

(
gnj
)p) ∑

m∈Pq :Tm≤t
|�XTm |p

→ hp

1 + hpU(g	p	q)t	

where the equality holds because, in the restriction toΩn(t	q), the sample path
of Jq is a step function with at most one jump on any interval with length 2knΔn;
the convergence holds because dnηpnkn → θhp/(1 + hp) and k−1

n

∑kn
j=0(g

n
j )
p →

ḡ(p).
In the proof of Lemma 2 of AJL, it is shown (by a straightforward extension

of Theorem 3.3 in JPV) that

l ∈ {0	 � � � 	p/2} ⇒ Δ1−p/4
n V

(
Z∗	 g	p− 2l	 l

)n
t

P→ V (g	p	 l)t�(S.A.26)

In particular, by taking l= 0, we derive

dnV
(
Z∗	 g	p	0

)n
t

P→ 1
1 + hpV (g	p	0)t�(S.A.27)

Let Ht = Ft ∨ σ{Tm :m ∈ Pq}. Note that the Wiener process W is also
a Wiener process relative to the filtration (Ht)t≥0, because stopping times
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{Tm :m ∈ Pq} are independent of W . Then a mild extension of (S.A.4) yields
E[|Z̄∗n

i |p|H0] ≤KΔp/4n . Since Inm is H0-measurable, we use repeated condition-
ing to get

E

[
dn
∑

m∈Pq :Tm≤t

Inm∑
i=Inm−kn+2

∣∣Z̄∗n
i

∣∣p]≤KdnknΔp/4n ≤KΔ1/2
n 	

which implies

dn
∑

m∈Pq :Tm≤t

Inm∑
i=Inm−kn+2

∣∣Z̄∗n
i

∣∣p = op(1)�(S.A.28)

Note that for any β> 0, there exists someKβ > 0 such that ||x+y|p−|x|p| ≤
Kβ|y|p+β|x|p for all x	 y ∈ R. For such β andKβ, we can bound the third term
on the right-hand side of (S.A.24) by

(Kβ + 1)dn
∑

m∈Pq :Tm≤t

Inm∑
i=Inm−kn+2

∣∣Z̄∗n
i

∣∣p +βdn
∑

m∈Pq :Tm≤t

Inm∑
i=Inm−kn+2

∣∣ηnJ̄q	ni ∣∣p�
Since β can be arbitrarily chosen, (S.A.25) and (S.A.28) imply that the third
term on the right-hand side of (S.A.24) is op	ηn(1). The claim then follows
from (S.A.24), (S.A.25), and (S.A.27). Q.E.D.

LEMMA 7: Suppose that Assumptions S.H-2 and S.N hold. Let (ηn)n≥1 ⊂
[0	1] be a sequence satisfying Δ−r∗

n ηn → h for some h ∈ [0	∞]. For each l ∈
{1	 � � � 	p/2}, we have

dn

�t/Δn
−kn∑
i=0

(∣∣Z̄n
i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l)(
χ̂ni
)l = op	ηn(1)�(S.A.29)

PROOF: When l = p/2, the claim holds trivially, because the left-hand side
of (S.A.29) is zero. We hence fix some p≥ 4 and l ∈ {1	 � � � 	p/2−1}. By apply-
ing Hölder’s inequality with index m ∈ (1	p/(p− 2)) and then using (S.A.5),
we have

E
∣∣(∣∣Z̄n

i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l)(
χ̂ni
)l∣∣≤KΔl/2n {E[∣∣∣∣Z̄n

i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l∣∣m]}1/m
�(S.A.30)

It is easy to see that, for any k≥ 1, there exists K > 0 such that for all x	 y ∈ R,∣∣|x+ y|k − |x|k∣∣≤K|y|k +K|x|k−1|y|�(S.A.31)
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Hence, {
E
[∣∣∣∣Z̄n

i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l∣∣m]}1/m
(S.A.32)

≤K{E[∣∣Z̄n
i − Z̄∗n

i

∣∣(p−2l)m]}1/m

+K{E[∣∣Z̄∗n
i

∣∣(p−2l−1)m∣∣Z̄n
i − Z̄∗n

i

∣∣m]}1/m

≤Kηp−2l
n Δ1/(2m)

n +KΔ(p−2l−1)/4
n

{
E
[∣∣Z̄n

i − Z̄∗n
i

∣∣2]}1/2

≤Kηp−2l
n Δ1/(2m)

n +KηnΔ(p−2l)/4
n 	

where the first inequality is obtained by using (S.A.31) with k = p − 2l and
then the cr-inequality; the second inequality follows from (S.A.11), Hölder’s in-
equality with index 2/m, and (S.A.4); the third inequality follows from (S.A.11)
with w= 2.

Therefore,

dnE

∣∣∣∣∣
�t/Δn
−kn∑

i=0

(∣∣Z̄n
i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l)(
χ̂ni
)l∣∣∣∣∣

≤KdnΔ−1
n η

p−2l
n Δ1/(2m)

n Δl/2n +KdnΔ−1
n ηnΔ

(p−2l)/4
n Δl/2n

≤KΔ(1/2)(1/m−(p−2)/p)
n +KΔ(p−2)/(4p)

n → 0	

where the first inequality follows from (S.A.30) and (S.A.32); the second in-
equality follows (S.A.21); the convergence is due to our choice ofm. The claim
(S.A.29) readily follows. Q.E.D.

LEMMA 8: Suppose that Assumptions S.H-2 and S.N hold. Let ηn be a se-
quence in [0	1] and l ∈ {1	 � � � 	p/2}.

(a) If Δ−r̄
n ηn → h for some h ∈ [0	∞], then

an

�t/Δn
−kn∑
i=0

E
[∣∣Z̄n

i

∣∣p−2l∣∣(Ẑn
i

)l − (χ̂ni )l∣∣]→ 0�(S.A.33)

(b) If Δ−r∗
n ηn → h for some h ∈ [0	∞], then (S.A.33) holds with an replaced

by dn.

PROOF: Step 1. We prove part (a) in this step. Fix l ∈ {1	 � � � 	p/2}. By
Hölder’s inequality,

E
[∣∣Z̄n

i

∣∣p−2l∣∣(Ẑn
i

)l − (χ̂ni )l∣∣](S.A.34)

≤ {E[∣∣Z̄n
i

∣∣p]}(p−2l)/p{
E
[∣∣(Ẑn

i

)l − (χ̂ni )l∣∣p/(2l)]}2l/p
�
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Moreover,

E
[∣∣(Ẑn

i

)l − (χ̂ni )l∣∣p/(2l)](S.A.35)

≤KE
[∣∣Ẑn

i − χ̂ni
∣∣p/2]+KE

[∣∣χ̂ni ∣∣(l−1)p/(2l)∣∣Ẑn
i − χ̂ni

∣∣p/(2l)]
≤KE

[∣∣Ẑn
i − χ̂ni

∣∣p/2]+KΔ(l−1)p/(4l)
n

{
E
[∣∣Ẑn

i − χ̂ni
∣∣p/2]}1/l

≤KΔp/2n +Kηp/2n Δ1/2+p/4
n +KΔ(l−1)p/(4l)

n

(
Δp/2n +ηp/2n Δ1/2+p/4

n

)1/l
≤KΔp/2n +Kηp/2n Δ1/2+p/4

n +KΔp/4+p/(4l)
n +Kηp/(2l)n Δp/4+1/(2l)

n

≤KΔp/4+p/(4l)
n +Kηp/(2l)n Δp/4+1/(2l)

n 	

where the first inequality follows from Taylor’s theorem and the cr-inequality;
the second inequality is obtained by using Hölder’s inequality and (S.A.5); the
third inequality is obtained by applying (S.A.14) with v = p/2; the fourth in-
equality follows the cr-inequality; the last inequality holds because l ≥ 1 and
ηn is bounded.

Using (S.A.12) with w= p, we have E[|Z̄n
i |p] ≤KΔp/4n +KηpnΔ1/2

n . This esti-
mate, together with (S.A.34) and (S.A.35), implies that

an

�t/Δn
−kn∑
i=0

E
[∣∣Z̄n

i

∣∣p−2l∣∣(Ẑn
i

)l − (χ̂ni )l∣∣](S.A.36)

≤KanΔ−1
n

(
Δp/4n +ηpnΔ1/2

n

)(p−2l)/p(
Δp/4+p/(4l)
n +ηp/(2l)n Δp/4+1/(2l)

n

)2l/p
≤KanΔ−1

n

(
Δ(p−2l)/4
n +ηp−2l

n Δ(p−2l)/(2p)
n

)(
Δl/2+1/2
n +ηnΔl/2+1/p

n

)
≤KanΔ−1

n

(
Δp/4+1/2
n +ηp−2l

n Δ1−l/p+l/2
n +ηnΔp/4+1/p

n

+ηp−2l+1
n Δ1/2−l/p+l/2+1/p

n

)
≤KΔ1/4

n +KΔ(3p−4)/(4p2−4p)
n → 0	

where the first three inequalities are obvious, and the last inequality holds be-
cause of (S.A.22) and the fact that the terms vanish to zero at the slowest rate
when l= p/2. This finishes the proof of (S.A.33).

Step 2. We now prove part (b). Under the condition Δ−r∗
n ηn → h, by (S.A.21),

we have dnηun = O(Δ1−p/4+r∗u
n ) for each u ∈ [0	p − 1]. Since r∗u + 1/4 ≥ r̄u

for all u ∈ [0	p− 1], we also have dnηun = O(Δ3/4−p/4+r̄u
n ). By exactly the same

calculation as in (S.A.36),

dn

�t/Δn
−kn∑
i=0

E
[∣∣Z̄n

i

∣∣p−2l∣∣(Ẑn
i

)l − (χ̂ni )l∣∣]≤KΔ1/4
n +KΔ(3p−4)/(4p(p−1))

n → 0	

which implies the claim in part (b). Q.E.D.
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PROOF OF THEOREM 1: By localization, we can and will suppose that As-
sumptions S.H-2 and S.N hold. To simplify notation, we set

At = 1
1 + hpV (g	p	0)t + hp

1 + hpU(g	p)t	

A(q)t = 1
1 + hpV (g	p	0)t + hp

1 + hpU(g	p	q)t	 q≥ 1�

By dominated convergence, we have

A(q)t
P→At as q→ ∞�(S.A.37)

Fix any ε > 0. For each q≥ 1, we use the triangle inequality to derive

lim sup
n→∞

P
(∣∣dnV (Zηn	g	p	0

)n
t
−At

∣∣> ε)(S.A.38)

≤ lim sup
n→∞

P
(
dn
∣∣V (Zηn	g	p	0

)n
t
− V (Z∗ +ηnJq	g	p	0

)n
t

∣∣> ε/3)
+ lim sup

n→∞
P
(∣∣dnV (Z∗ +ηnJq	g	p	0

)n
t
−A(q)t

∣∣> ε/3)
+ P
(∣∣A(q)t −At

∣∣> ε/3)�
For any ε′ > 0, there exists K′ > 0 such that P(At > K

′) ≤ ε′. Let β = ε
12K′ .

There existsKβ > 0 such that ||x+y|p−|x|p| ≤Kβ|y|p+β|x|p for any x	 y ∈ R.
Hence, ∣∣V (Zηn	g	p	0

)n
t
− V (Z∗ +ηnJq	g	p	0

)n
t

∣∣
≤KβV

(
ηnJ

′q	 g	p	0
)n
t
+βV (Z∗ +ηnJq	g	p	0

)n
t
�

Therefore,

lim sup
n→∞

P
(
dn
∣∣V (Zηn	g	p	0

)n
t
− V (Z∗ +ηnJq	g	p	0

)n
t

∣∣> ε/3)
≤ lim sup

n→∞
P
(
KβdnV

(
ηnJ

′q	 g	p	0
)n
t
> ε/12

)
+ lim sup

n→∞
P
(
β
∣∣dnV (Z∗ +ηnJq	g	p	0

)n
t
−A(q)t

∣∣> ε/12
)

+ P
(
β
∣∣At −A(q)t

∣∣> ε/12
)+ P(βAt > ε/12)

≤ lim sup
n→∞

P
(
KβdnV

(
ηnJ

′q	 g	p	0
)n
t
> ε/12

)
+ P
(
β
∣∣At −A(q)t

∣∣> ε/12
)+ ε′	
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where the first inequality follows from the triangle inequality, and the second
inequality follows from Lemma 6 and our choice of K′ and β. Because ε′ is
arbitrary, we use Lemma 5 and (S.A.37) to derive

lim
q→∞

lim sup
n→∞

P
(
dn
∣∣V (Zηn	g	p	0

)n
t

(S.A.39)

− V (Z∗ +ηnJq	g	p	0
)n
t

∣∣> ε/3)= 0�

Note that Lemma 6 implies that the second term on the right-hand side of
(S.A.38) is zero. Sending q → ∞ on both sides of (S.A.38), (S.A.37), and
(S.A.39) implies

dnV
(
Zηn	g	p	0

)n
t

P	ηn−→At�(S.A.40)

We now turn to the behavior of V (Zηn	 g	p− 2l	 l)nt for l ∈ {1	 � � � 	p/2}. By
the triangle inequality, we have

dn
∣∣V (Zηn	g	p− 2l	 l

)n
t
− V (Z∗	 g	p− 2l	 l

)n
t

∣∣≤ 3∑
j=1

ζ(j)n	(S.A.41)

where

ζ(1)n = dn
�t/Δn
−kn∑

i=0

∣∣Z̄n
i

∣∣p−2l∣∣(Ẑn
i

)l − (χ̂ni )l∣∣	
ζ(2)n = dn

�t/Δn
−kn∑
i=0

∣∣Z̄∗n
i

∣∣p−2l∣∣(Ẑ∗n
i

)l − (χ̂ni )l∣∣	
ζ(3)n = dn

�t/Δn
−kn∑
i=0

(∣∣Z̄n
i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l)(
χ̂ni
)l
�

We use Lemma 8(b) to get ζ(1)n = op	ηn(1). By taking the sequence ηn in
Lemma 8(b) to be identically zero, we can use that lemma to derive ζ(2)n =
op(1). By Lemma 7, we also have ζ(3)n = op	ηn(1). Therefore, both sides of
(S.A.41) are op	ηn(1). Combining this with (S.A.26), we derive

dnV
(
Zηn	g	p− 2l	 l

)n
t

P	ηn−→ 1
1 + hpV (g	p	 l)t�(S.A.42)

Finally, note that ρ(p)0 = 1 and
∑p/2

l=0 ρ(p)lV (g	p	 l)t = V (g	p)t . The claim
then follows from (S.A.40) and (S.A.42). Q.E.D.
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PROOF OF COROLLARY 1: Recall that for two sequences of strictly positive
numbers xn and yn, we denote xn ∼ yn if and only if limn→∞ xn/yn = 1. Theo-
rem 1 implies that for any weight function g,

1 + hp
hp

dnη
p
n V̄
(
Zηn	g	p

)n
t

= ηpnV (g	p)t

hp
+ θḡ(p)

∑
s≤t

|ηn�Xs|p + op	ηn
(
ηpn
)
�

Observe (1 + hp)dnηpn/hp ∼ Δ1/2
n and �J = ηn�X . Hence,

Δ1/2
n V̄
(
Zηn	g	p

)n
t
= ηpnV (g	p)t

hp
+ θḡ(p)

∑
s≤t

|�Js|p + op	ηn
(
ηpn
)
�

The second assertion readily follows. By the definition of V (gi	p)t and κi,
we have

∑d

i=1 κiV (gi	p)t = 0 and θ
∑d

i=1 κiḡi(p) = 1. The first assertion then
follows from the above display and the definition of Ĥn

t . The claim in Com-
ment (ii) can be proved similarly. Q.E.D.

S.A.4. Proof of Theorem 2

Throughout the proof, let g(·) be a generic weight function and let ηn be a
sequence in [0	1] that satisfies Δ−r̄

n ηn → h for some h ∈ [0	∞]. Recall that

Ṽ (g	p)nt = an
(
V̄
(
Zηn	g	p

)n
t
−Δp/4−1

n V (g	p)t −ηpnΔ−1/2
n U(g	p)t

)
�

The key to the proof is the decomposition

Ṽ (g	p)nt = VC(g	p)nt + VJ(g	p	q)nt + VJ ′(g	p	q)nt

+
p/2∑
l=1

ρ(p)lD(g	p	 l)
n
t 	

where

VC(g	p)nt = an
(
V̄
(
Z∗	 g	p

)n
t
−Δp/4−1

n V (g	p)t
)
	

VJ(g	p	q)nt = an
(
V
(
Zηn	g	p	0

)n
t
− V (Z∗ +ηnJ ′q	 g	p	0

)n
t

−Δ−1/2
n ηpnU(g	p	q)t

)
	

VJ ′(g	p	q)nt = an
(
V
(
Z∗ +ηnJ ′q	 g	p	0

)n
t
− V (Z∗	 g	p	0

)n
t

−Δ−1/2
n θḡ(p)ηpn

∑
s≤t

∣∣�J ′q
s

∣∣p)	
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and, for l= 1	 � � � 	p/2,

D(g	p	 l)nt = an
(
V
(
Zηn	g	p− 2l	 l

)n
t
− V (Z∗	 g	p− 2l	 l

)n
t

)
�

The terms VJ(g	p	q)nt and VC(g	p)nt serve as the leading terms in the cen-
tral limit theorem, contributed respectively by “big jumps” and the continuous
part. The terms D(g	p	 l)nt , l = 1	 � � � 	p/2, are asymptotically negligible; so is
the term VJ ′(g	p	q)nt when q is large.

We consider d weight functions (gi)1≤i≤d as in the main text. So as to describe
the convergence of (VJ(gi	p	q)nt +VC(gi	p)nt )1≤i≤d for fixed q, we set up some
notation. Since Ψ± and Ψ ′

± defined in the main text are positive semidefinite,
we can consider four independent sequences of independent and identically
distributed (i.i.d.) d-dimensional variables (Um−)m≥1, (Um+)m≥1, (U ′

m−)m≥1, and
(U ′

m+)m≥1 that are defined on an extension of the original probability space, in-
dependently of F , such that for eachm, the d-dimensional variablesUm−,Um+,
U ′
m−, and U ′

m+ are centered Gaussian vectors with respective covariances Ψ−,
Ψ+, Ψ ′

−, and Ψ ′
+. Let (Tm)m≥1 be the exhausting sequence of stopping times de-

scribed in Section S.A.3. The following d-dimensional process is well defined:

Ū(p)t = θp
∑

m≥1:Tm≤t
(�XTm)

p−1

×
(√

θσTm−Um− + √
θσTmUm+ + αTm−√

θ
U ′
m− + αTm√

θ
U ′
m+

)
�

For each q≥ 1, we associate Pq with the variable

Ū(p	q)t = θp
∑

m∈Pq :Tm≤t
(�XTm)

p−1

×
(√

θσTm−Um− + √
θσTmUm+ + αTm−√

θ
U ′
m− + αTm√

θ
U ′
m+

)
�

We also construct a d-dimensional variable V̄ (p)t on the same extension that,
conditional on F , is independent of (Um±)m≥1 and (U ′

m±)m≥1, and is a centered
Gaussian variable with covariance matrix ΣC .

The asymptotic distribution of (VC(gi	p)nt + VJ(gi	p	q)nt )1≤i≤d is described
by the following lemma.

LEMMA 9: Suppose that Assumptions S.H-1, S.K, and S.N hold. Then(
VC(gi	p)nt + VJ(gi	p	q)nt

)
1≤i≤d

L-s	ηn−→ 1
1 + hp−1

V̄ (p)t + hp−1

1 + hp−1
Ū(p	q)t�
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The asymptotic behaviors of VJ ′(g	p	q)nt and D(g	p	 l)nt are given by the
following two lemmas. The notation Pηn emphasizes the dependence of the
data generating process on ηn.

LEMMA 10: Suppose that Assumptions S.H-1 and S.N hold. For any ε > 0,

lim
q→∞

lim sup
n→∞

Pηn

(|VJ ′(g	p	q)nt |> ε
)= 0�

LEMMA 11: Suppose that Assumptions S.H-1 and S.N hold. For each l ∈
{1	 � � � 	p/2},

D(g	p	 l)nt = op	ηn(1)�
PROOF OF THEOREM 2: By localization, we can suppose that Assumptions

S.H-1, S.K, and S.N hold without loss of generality. Note that Ū(p	q)t con-
verges in probability to Ū(p)t as q → ∞. Combining this with Lemmas 9
and 10, we derive (note that the first line below does not depend on q)(

VC(gi	p)nt + VJ(gi	p	q)nt + VJ ′(gi	p	q)nt
)

1≤i≤d(S.A.43)

L-s	ηn−→ 1
1 + hp−1

V̄ (p)t + hp−1

1 + hp−1
Ū(p)t�

By Lemma 11, the difference between (Ṽ (gi	p)nt )1≤i≤d and the first line of
(S.A.43) is op	ηn(1). The claim readily follows. Q.E.D.

We now prove Lemmas 9, 10, and 11. To simplify notation, let f (x) = |x|p
and

F(x	 y)= f (x+ y)− f (x)− f ′(x)y	(S.A.44)

G(x	y)= f (x+ y)− f (x)− f (y)	
H(x	 y)= f (x	 y)− f (x)− f (y)− f ′(x)y�

The following inequalities are elementary consequences of the Taylor expan-
sion: for even p≥ 2,∣∣F(x	 y)∣∣≤K(|y|p + y2|x|p−2

)
	∣∣F(x+ x′	 y

)− F(x	 y)∣∣
≤K(|x|p−3

∣∣x′∣∣|y|2 + ∣∣x′∣∣|y|p−1 + ∣∣x′∣∣p−2|y|2
)
	∣∣G(x	y)∣∣≤K(|x||y|p−1 + |y||x|p−1

)
	∣∣H(x	y)∣∣≤K(|x||y|p−1 + y2|x|p−2
)
	

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(S.A.45)

where the second inequality requires p≥ 4.
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PROOF OF LEMMA 9: By Theorem 4.1 of JPV,

Δ3/4−p/4
n

(
V̄
(
Z∗	 gi	p

)n
t
−Δp/4−1

n V (gi	p)t
)

1≤i≤d
L-s−→ V̄ (p)t�(S.A.46)

Hence, (
VC(gi	p)nt

)
1≤i≤d

L-s−→ 1
1 + hp−1

V̄ (p)t�(S.A.47)

Let Ωn(t	q) and Inm be defined in the same way as in the proof of Lemma 6.
SinceΩn(t	q)→Ω almost surely as n→ ∞, we can and will restrict our calcu-
lation below on Ωn(t	q) without loss of generality. For a generic weight func-
tion g(·), we have the decomposition

VJ(g	p	q)nt = anΔ
−1/4
n ηp−1

n

∑
m∈Pq :Tm≤t

f ′(�XTm)ζ(g)
n
m(S.A.48)

+ an
∑

m∈Pq :Tm≤t

kn−1∑
j=1

H
(
gnj ηn�XTm	 Z̄

∗n
Inm+1−j +ηnJ̄ ′q	n

Inm+1−j
)

+Rnt 	
where

ζ(g)nm = Δ1/4
n

kn−1∑
j=1

(
gnj
)p−1(

Z̄∗n
Inm+1−j +ηnJ̄ ′q	n

Inm+1−j
)
	 m≥ 1	

Rnt = anηpnΔ−1/2
n

(
Δ1/2
n

kn−1∑
j=1

(
gnj
)p − θḡ(p)

) ∑
m∈Pq :Tm≤t

|�XTm |p�

Note that k−1
n

∑kn
j=1(g

n
j )
p = ḡ(p)+O(k−1

n ). Because knΔ1/2
n = θ+ o(Δ1/4

n ) by
assumption, we haveΔ1/2

n

∑kn
j=1(g

n
j )
p−θḡ(p)= o(Δ1/4

n ). Since anηp−1
n =O(Δ1/4

n )
and ηn is bounded, we have

Rnt = op	ηn(ηn)= op	ηn(1)�(S.A.49)

Next, we show the negligibility of the second term on the right-hand side of
equation (S.A.48). SinceH(·	 ·)≡ 0 when p= 2, we can suppose p≥ 4 without
loss. Let H0 = F0 ∨ σ{Tm :m ∈ Pq}. Because the stopping times {Tm :m ∈ Pq}
are independent of the Wiener process W and the Poisson measure μ re-
stricted on R+ × {z :γ(z) ≤ 1/q}, the same argument that leads to (S.A.18)
yields E[|J̄ ′q	n

Inm+1−j|v|H0] ≤KΔ1/2
n for every v≥ 1. Hence,

v≥ 1 ⇒ E
[∣∣Z̄∗n

Inm+1−j +ηnJ̄ ′q	n
Inm+1−j

∣∣v|H0

]≤KΔv/4n +KηvnΔ1/2
n �(S.A.50)
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Hence,

E

[
an
∑

m∈Pq :Tm≤t

kn−1∑
j=1

∣∣H(gnj ηn�XTm	 Z̄
∗n
Inm+1−j +ηnJ̄ ′q	n

Inm+1−j
)∣∣]

≤KE

[
an
∑

m∈Pq :Tm≤t

kn−1∑
j=1

∣∣gnj ηn�XTm

∣∣∣∣Z̄∗n
Inm+1−j +ηnJ̄ ′q	n

Inm+1−j
∣∣p−1

]

+KE

[
an
∑

m∈Pq :Tm≤t

kn−1∑
j=1

∣∣gnj ηn�XTm

∣∣p−2∣∣Z̄∗n
Inm+1−j +ηnJ̄ ′q	n

Inm+1−j
∣∣2]

≤Kanknηn
(
Δ(p−1)/4
n +ηp−1

n Δ1/2
n

)+Kanknηp−2
n

(
Δ1/2
n +η2

nΔ
1/2
n

)
≤KanknηnΔ(p−1)/4

n +Kanknηp−2
n Δ1/2

n

≤KΔ(p−2)/(4(p−1))
n +KΔ1/(4(p−1))

n → 0	

where the first inequality follows from (S.A.45); the second inequality is ob-
tained by noting that jumps are bounded under Assumption S.H-1 and using
(S.A.50) with v = p − 1 and v = 2, and the law of iterated expectations; the
third inequality holds because ηn is bounded; we obtain the last inequality by
using (S.A.22). Therefore, we have

an
∑

m∈Pq :Tm≤t

kn−1∑
j=1

H
(
gnj ηn�XTm	 Z̄

∗n
Inm+1−j +ηnJ̄ ′q	n

Inm+1−j
)= op	ηn(1)�(S.A.51)

For each m≥ 1, define

ζm = √
θσTm−Um− + √

θσTmUm+ + αTm−√
θ
U ′
m− + αTm√

θ
U ′
m+�

A straightforward adaptation of Lemma 5.13 in JPV shows that(
ζ(gi)

n
m

)
1≤i≤d	m∈Pq

L-s−→ (θζm)m∈Pq �(S.A.52)

(To be exact, we make the following modifications. First, replaceZ′ in JPV with
Z∗ +ηnJ ′q, replaceX ′′ withX∗, replaceM with ηnJ ′q, and replaceX ′ withX∗ +
ηnJ

′q. Second, An defined in JPV (p. 1592) still satisfies An/
√
knΔn

P→ 0 after
these modifications because ηn considered in the present paper is bounded.
Third, other calculations in JPV are valid without change and, in particular,
(5.89) in JPV is still valid. Finally, note that ζ(g)nm defined here is knΔ1/2

n times
η(q	g)nm in JPV and knΔ1/2

n → θ by assumption.)
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Since anΔ
−1/4
n ηp−1

n → hp−1

1+hp−1 , by the properties of stable convergence,
(S.A.52) implies that(

anΔ
−1/4
n ηp−1

n

∑
m∈Pq :Tm≤t

f ′(�XTm)ζ(gi)
n
m

)
1≤i≤d

L-s	ηn−→ hp−1

1 + hp−1
Ū(p	q)t�(S.A.53)

Combining (S.A.48), (S.A.49), (S.A.51), and (S.A.53), we get

(
VJ(gi	p	q)nt

)
1≤i≤d

L-s	ηn−→ hp−1

1 + hp−1
Ū(p	q)t�(S.A.54)

By using the same argument as in the proof of Lemma 5.8 in Jacod (2008),
we can show that the marginal convergences in (S.A.46) and (S.A.52) also hold
jointly; hence (S.A.47) and (S.A.54) also hold jointly. The claim then readily
follows. Q.E.D.

We now turn to the proof of Lemma 10. For each q≥ 1, we denote by Σqt the
pth power variation process of the process J ′q, that is, Σqt =∑s≤t |�J ′q

s |p. The
proof relies on the decomposition

VJ ′(g	p	q)nt =
�t/Δn
−kn∑

i=0

Γ (q)ni +R(q)nt 	(S.A.55)

where

Γ (q)ni = an
(∣∣Z̄∗n

i +ηnJ̄ ′q	n
i

∣∣p − ∣∣Z̄∗n
i

∣∣p −ηpn
kn−1∑
j=1

(
gnj
)p
�ni+jΣ

q

)
	

R(q)nt = anηpn
((�t/Δn
−kn∑

i=0

kn−1∑
j=1

(
gnj
)p
�ni+jΣ

q

)
−Δ−1/2

n θḡ(p)Σ
q
t

)
�

We first prove a lemma that describes the behavior of Γ (q)ni .

LEMMA 12: Suppose that Assumptions S.H-1, S.K, and S.N hold. Let ηn be
any sequence in [0	1] such that Δ−r̄

n ηn → h for some h ∈ [0	∞]. Then we can
find a sequence ϕ(q) going to 0 as q→ ∞, r1 > 1 and r2 > 3/2, with the following
property: for any q ≥ 1 and i ≥ 1, we have a decomposition Γ (q)ni = Γ ′(q)ni +
Γ ′′(q)ni , where Γ ′(q)ni and Γ ′′(q)ni are F(i+kn)Δn -measurable, E[Γ ′′(q)ni |FiΔn] = 0,
and

E
∣∣Γ ′(q)ni

∣∣≤KΔr1n +Kϕ(q)Δn	
E
[∣∣Γ ′′(q)ni

∣∣2]≤KΔr2n +Kϕ(q)Δ3/2
n �
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PROOF: Step 1. In this step, we provide a decomposition of Γ (q)ni via Itô’s
lemma. Denote f (x) = |x|p and recall the notation in (S.A.44). We define
b′
s = bs+iΔn , σ ′

s = σs+iΔn , δ′(s	 z) = δ(s + iΔn	 z), W ′
s = Ws+iΔn , μ′([0	 s] × B) =

μ([iΔn	 iΔn + s] × B) for each s ≥ 0 and B ∈ E , and b′′
s = − ∫ δ′(s	 z) ×

1{|δ′(s	z)|≤1}λ(dz).
To simplify notation, we define two processes, Y ∗ and Y , as

Y ∗
t =
∫ t

0
gn(s)b

′
s ds+

∫ t

0
gn(s)σ

′
s dW

′
s −

�t/Δn
∑
j=1

g′n
j χ(i+j−1)Δn	(S.A.56)

Yt = Y ∗
t +ηn

∫ t

0
gn(s)b

′′
s ds

+ηn
∫ t

0

∫
gn(s)δ

′(s	 z)1{γ(z)≤1/q}μ′(ds	dz)�

We then have Z̄∗n
i = Y ∗

knΔn
and Z̄∗n

i +ηnJ̄ ′q	n
i = YknΔn . Also observe that

ηpn

kn−1∑
j=1

(
gnj
)p
�ni+jΣ

q =
∫ knΔn

0

∫
E

f
(
ηngn(s)δ

′(s	 z)
)
1{γ(z)≤1/q}μ′(ds	dz)�

Hence, we can rewrite Γ (q)ni as

Γ (q)ni = an
(
f (YknΔn)− f (Y ∗

knΔn

))
(S.A.57)

− an
∫ knΔn

0

∫
E

f
(
ηngn(s)δ

′(s	 z)
)
1{γ(z)≤1/q}μ′(ds	dz)�

Recall that under Assumption S.H-1, jumps have finite variation. Applying
Itô’s formula to f (Yt) and f (Y ∗

t ), we have

f (Yt)=
∫ t

0
f ′(Ys)gn(s)b′

s ds(S.A.58)

+ 1
2

∫ t

0
f ′′(Ys)gn(s)2

(
σ ′
s

)2
ds

+ηn
∫ t

0
f ′(Ys)gn(s)b′′

s ds

+
∫ t

0
f ′(Ys)gn(s)σ ′

s dW
′
s

+
�t/Δn
∑
j=1

[
f
(
YjΔn− − g′n

j χ(i+j−1)Δn

)− f (YjΔn−)]
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+
∫ t

0

∫ [
f
(
Ys− +ηngn(s)δ′(s	 z)

)− f (Ys−)]
× 1{γ(z)≤1/q}μ′(ds	dz)

and

f
(
Y ∗
t

)= ∫ t

0
f ′(Y ∗

s

)
gn(s)b

′
s ds(S.A.59)

+ 1
2

∫ t

0
f ′′(Y ∗

s

)
gn(s)

2
(
σ ′
s

)2
ds

+
∫ t

0
f ′(Y ∗

s

)
gn(s)σ

′
s dW

′
s

+
�t/Δn
∑
j=1

[
f
(
Y ∗
jΔn− − g′n

j χ(i+j−1)Δn

)− f (Y ∗
jΔn−
)]
�

Plug (S.A.58) and (S.A.59) into (S.A.57). After some algebra, we can de-
compose Γ (q)ni as

Γ (q)ni =
9∑
k=1

ζ(q	k)ni 	(S.A.60)

where

ζ(q	1)ni = an
∫ knΔn

0

[
f ′(Ys)− f ′(Y ∗

s

)]
gn(s)

(
b′
s +ηnb′′

s

)
ds	

ζ(q	2)ni = anηn
∫ knΔn

0
f ′
(∫ s

0
gn(u)b

′
u du

)
gn(s)b

′′
s ds	

ζ(q	3)ni = 1
2
an

∫ knΔn

0

[
f ′′(Ys)− f ′′(Y ∗

s

)]
gn(s)

2
(
σ ′
s

)2
ds	

ζ(q	4)ni = an
∫ knΔn

0

∫
E

G
(
Ys	ηngn(s)δ

′(s	 z)
)
1{γ(z)≤1/q}ν(ds	dz)	

ζ(q	5)ni = an
kn∑
j=1

[
F
(
YjΔn−	−g′n

j χ(i+j−1)Δn

)− F(Y ∗
jΔn−	−g′n

j χ(i+j−1)Δn

)]
	

ζ(q	6)ni = anηn
∫ knΔn

0

[
f ′(Y ∗

s

)− f ′
(∫ s

0
gn(u)b

′
u du

)]
gn(s)b

′′
s ds	

ζ(q	7)ni = an
∫ knΔn

0

[
f ′(Ys)− f ′(Y ∗

s

)]
gn(s)σ

′
s dW

′
s 	



24 JIA LI

ζ(q	8)ni = an
∫ knΔn

0

∫
E

G
(
Ys−	ηngn(s)δ′(s	 z)

)
× 1{γ(z)≤1/q}

(
μ′ − ν)(ds	dz)	

ζ(q	9)ni = −an
kn∑
j=1

[
f ′(YjΔn−)− f ′(Y ∗

jΔn−
)]
g′n
j χ(i+j−1)Δn �

Step 2. In this step, we collect some preliminary estimates. We set

ϕ̃(q)=
∫
γ(z)1{γ(z)≤1/q}λ(dz)

and ϕ(q) = ϕ̃(q)1/2. Since
∫
E
γ(z)λ(dz) < ∞ under Assumption S.H-1,

ϕ(q)→ 0 as q→ ∞ by dominated convergence. Since γ(·) is bounded,

u≥ 1	 v≥ 1/2

⇒
(∫

γ(z)u1{γ(z)≤1/q}λ(dz)
)v

≤Kϕ̃(q)v ≤Kϕ(q);

we will use this simple result repeatedly without further mention.
Letw≥ 1. With a straightforward extension of (S.A.18) and (S.A.4), we have

for any s ∈ [0	knΔn],
E
∣∣Ys −Y ∗

s

∣∣w ≤KηwnΔw/2n +KηwnΔ1/2
n ϕ̃(q)	(S.A.61)

E
∣∣Y ∗

s

∣∣w ≤KΔw/4n 	(S.A.62)

whereK > 0 does not depend on s. By the cr-inequality, these estimates further
imply

E|Ys|w ≤KΔw/4n +KηwnΔ1/2
n ϕ̃(q)�(S.A.63)

Moreover, if w≥ 1 is also an integer, then for every v≥ 1 and m> 1,

E
[∣∣(Ys)w − (Y ∗

s

)w∣∣v] ≤Kηwvn Δwv/2n +Kηwvn Δ1/2
n ϕ̃(q)(S.A.64)

+KηvnΔ(w+1)v/4
n +KηvnΔ(w−1)v/4+1/(2m)

n ϕ̃(q)1/m�

This estimate is derived as

E
[∣∣(Ys)w − (Y ∗

s

)w∣∣v]
≤KE

∣∣Ys −Y ∗
s

∣∣wv +KE
[∣∣Y ∗

s

∣∣(w−1)v∣∣Ys −Y ∗
s

∣∣v]
≤KE

∣∣Ys −Y ∗
s

∣∣wv +KΔ(w−1)v/4
n

(
E
∣∣Ys −Y ∗

s

∣∣mv)1/m
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≤Kηwvn Δwv/2n +Kηwvn Δ1/2
n ϕ̃(q)

+KηvnΔ(w−1)v/4
n

(
Δmv/2n +Δ1/2

n ϕ̃(q)
)1/m

	

where the first inequality holds because, by Taylor’s expansion, for each integer
q≥ 1, |(x+ y)q −xq| ≤K|y|q +K|x|q−1|y| for any x	 y ∈ R; the second inequal-
ity is obtained by applying Hölder’s inequality with index m and then using
(S.A.62); the third inequality is obtained by applying (S.A.61) with indices wv
and mv; (S.A.64) then follows the cr-inequality.

Step 3. This step consists of 9 substeps. We show the following relationships:
if k ∈ {1	 � � � 	5} or k= 6 and p≥ 4, then

E
∣∣ζ(q	k)ni ∣∣≤KΔ7/6

n +KΔnϕ(q);(S.A.65)

if k ∈ {7	8	9} or k= 6 and p= 2, then

E
[
ζ(q	k)ni |FiΔn

]= 0	(S.A.66)

E
[(
ζ(q	k)ni

)2]≤KΔ2
n +KΔ3/2

n ϕ(q)�

Below, we prove (S.A.65) and (S.A.66) for each k.
Step 3(i). We observe

E
∣∣ζ(q	1)ni

∣∣ ≤Kan ∫ knΔn

0
E
∣∣f ′(Ys)− f ′(Y ∗

s

)∣∣ds
≤KanΔ1/2

n

(
ηp−1
n Δ(p−1)/2

n +ηp−1
n Δ1/2

n ϕ̃(q)

+ηnΔp/4n +ηnΔ(p−1)/4
n ϕ̃(q)1/2

)
≤KΔ(2p+1)/4

n +KΔ5/4
n ϕ̃(q)+KΔ(6p−7)/(4p−4)

n

+KΔ(5p−6)/(4p−4)
n ϕ̃(q)1/2

≤KΔ5/4
n +KΔnϕ(q)	

where the first inequality holds because gn(·) and b′ + ηnb′′ are bounded; the
second inequality is obtained by using (S.A.64) with w = p − 1, v = 1, and
m= 2; the third inequality follows from (S.A.22); the last inequality holds
because when p ≥ 2, min{ 2p+1

4 	 6p−7
4p−4 } ≥ 5/4 and 5p−6

4p−4 ≥ 1. We hence verify
(S.A.65) for k= 1.
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Step 3(ii). Since |f ′(x)| = O(|x|p−1), and gn, b′, and b′′ are bounded,
E|ζ(q	2)ni | ≤ KanηnΔ

p/2
n . Observe that an = O(Δ3/4−p/4

n ) and ηn = O(1).
Hence, when p ≥ 2, E|ζ(q	2)ni | ≤ KΔ3/4+p/4

n ≤ KΔ5/4
n . We thus have (S.A.65)

for k= 2.
Step 3(iii). Note that when p = 2, f ′′(·) ≡ 2 and ζ(q	3)ni is identically zero,

which trivially implies (S.A.65). When p≥ 4,

E
∣∣ζ(q	3)ni

∣∣
≤Kan

∫ knΔn

0
E
∣∣f ′′(Ys)− f ′′(Y ∗

s

)∣∣ds
≤KanΔ1/2

n

(
ηp−2
n Δ(p−2)/2

n +ηp−2
n Δ1/2

n ϕ̃(q)

+ηnΔ(p−1)/4
n +ηnΔ(p−3)/4+1/3

n ϕ̃(q)2/3
)

≤KΔ(2p2−4p+3)/(4p−4)
n +KΔ(4p−3)/(4p−4)

n ϕ(q)

+KΔ(5p−6)/(4p−4)
n +KΔ(13p−16)/(12p−12)

n ϕ(q)

≤KΔ7/6
n +KΔnϕ(q)	

where the first inequality holds because gn(·) and σ ′ are bounded; the second
inequality is obtained by applying (S.A.64) with w= p−2, v= 1, andm= 3/2;
the third inequality follows from (S.A.22); the last inequality holds because
when p ≥ 4, we have 2p2−4p+3

4p−4 ≥ 19/12, 5p−6
4p−4 ≥ 7/6, and 13p−16

12p−12 ≥ 1. We hence
have (S.A.65) for k= 3.

Step 3(iv). Observe

E
∣∣ζ(q	4)ni

∣∣ ≤Kanηnϕ(q)∫ knΔn

0
E
[|Ys|p−1

]
ds

+Kanηp−1
n ϕ(q)

∫ knΔn

0
E
[|Ys|]ds

≤Kanηnϕ(q)Δp/4+1/4
n +Kanηp−1

n ϕ(q)Δ3/4
n

≤KΔ(5p−6)/(4p−4)
n ϕ(q)+KΔnϕ(q)

≤KΔnϕ(q)	

where the first inequality follows from (S.A.45) and the fact that gn(·) is
bounded and δ′(s	 z) is bounded by γ(z); the second inequality is obtained by
applying (S.A.63) with w= p− 1 and w= 1; the third inequality follows from
(S.A.22); the last inequality holds because 5p−6

4p−4 ≥ 1 when p≥ 2. We hence ver-
ify (S.A.65) for k= 4.
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Step 3(v). When p = 2, ζ(q	5)ni is identically zero and (S.A.65) is trivially
true. Now suppose p≥ 4. By the second inequality of (S.A.45),

E
∣∣ζ(q	5)ni

∣∣≤K 3∑
l=1

E
[
ζ(q	5	 l)ni

]
	(S.A.67)

where

ζ(q	5	1)ni = an
kn∑
j=1

∣∣YjΔn− −Y ∗
jΔn−
∣∣∣∣g′n

j χ(i+j−1)Δn

∣∣p−1
	

ζ(q	5	2)ni = an
kn∑
j=1

∣∣YjΔn− −Y ∗
jΔn−
∣∣p−2∣∣g′n

j χ(i+j−1)Δn

∣∣2	
ζ(q	5	3)ni = an

kn∑
j=1

∣∣Y ∗
jΔn−
∣∣p−3∣∣YjΔn− −Y ∗

jΔn−
∣∣∣∣g′n

j χ(i+j−1)Δn

∣∣2�
By Fatou’s lemma, (S.A.61)–(S.A.64) still hold if we replace Ys and Y ∗

s there
with Ys− and Y ∗

s−; this will be used below without further mention.
We bound E[ζ(q	5	1)ni ] as

E
[
ζ(q	5	1)ni

] ≤Kank−(p−1)
n

kn∑
j=1

E
[∣∣YjΔn− −Y ∗

jΔn−
∣∣](S.A.68)

≤KanΔ(p−2)/2
n ηnΔ

1/2
n

≤KΔ(p2+p−3)/(4(p−1))
n

≤KΔ17/12
n 	

where the first inequality follows from |g′n
j | ≤ K/kn and the law of iterated

expectations; the second inequality follows from (S.A.61); the third inequality
follows (S.A.22); the last inequality holds because p2+p−3

4(p−1) ≥ 17
12 when p≥ 4.

For E[ζ(q	5	2)ni ], we have

E
[
ζ(q	5	2)ni

] ≤Kank−2
n

kn∑
j=1

E
[∣∣YjΔn− −Y ∗

jΔn−
∣∣p−2]

(S.A.69)

≤KanΔ1/2
n η

p−2
n

(
Δ(p−2)/2
n +Δ1/2

n ϕ̃(q)
)

≤KΔ(2p2−4p+3)/(4(p−1))
n +KΔ(4p−3)/(4p−4)

n ϕ̃(q)

≤KΔ19/12
n +KΔnϕ(q)	
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where the first inequality follows from |g′n
j | ≤ K/kn and the law of iterated

expectations; the second inequality follows from (S.A.61) with w = p − 2;
the third inequality is due to (S.A.22); the last inequality holds because when
p≥ 4	 2p2−4p+3

4(p−1) ≥ 19/12.
For E[ζ(q	5	3)ni ], we have

E
[
ζ(q	5	3)ni

] ≤Kank−2
n

kn∑
j=1

E
[∣∣Y ∗

jΔn−
∣∣p−3∣∣YjΔn− −Y ∗

jΔn−
∣∣](S.A.70)

≤KanΔ1/2
n Δ

(p−3)/4
n

{
E
[∣∣YjΔn− −Y ∗

jΔn−
∣∣3/2]}2/3

≤KanΔp/4−1/4
n ηn

(
Δ1/2
n +Δ1/3

n ϕ̃(q)
2/3
)

≤KΔ(5p−6)/(4p−4)
n +KΔ(13p−16)/(12p−12)

n ϕ̃(q)2/3

≤KΔ7/6
n +KΔnϕ(q)	

where the first inequality follows from |g′n
j | ≤K/kn and the law of iterated ex-

pectations; the second inequality is obtained by applying Hölder’s inequality
with index 3/2 and then (S.A.62); the third inequality is obtained by apply-
ing (S.A.61) with w = 3/2 and then the cr-inequality; the fourth inequality is
due to (S.A.22); the last inequality holds because when p≥ 4, 5p−6

4p−4 ≥ 7/6 and
13p−16
12p−12 ≥ 1.

Combining (S.A.67)–(S.A.70), we verify (S.A.65) for k= 5.
Step 3(vi). We consider ζ(q	6)ni for p = 2 first, so f ′(x) = 2x. Under As-

sumption S.N, the FiΔn -conditional mean of

f ′(Y ∗
s

)− f ′
(∫ s

0
gn(u)b

′
u du

)

= 2

(∫ s

0
gn(u)σ

′
u dW

′
u −

�s/Δn
∑
j=1

g′n
j χ(i+j−1)Δn

)

is zero; by Fubini’s theorem, E[ζ(q	6)ni |FiΔn] = 0. Moreover,

E
[∣∣ζ(q	6)ni

∣∣2]
≤Ka2

nη
2
nΔ

1/2
n

× E

[∫ knΔn

0

(∫ s

0
gn(u)σ

′
u dW

′
u −

�s/Δn
∑
j=1

g′n
j χ(i+j−1)Δn

)2

ds

]

≤Ka2
nη

2
nΔ

3/2
n

≤KΔ2
n	
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where the first inequality follows from the Cauchy–Schwarz inequality and the
fact that gn(·) and b′′ are bounded; the second inequality is obtained by apply-
ing Fubini’s theorem and the Burkholder–Davis–Gundy inequality, and using
the fact |g′n

j | ≤ K/kn; the third inequality holds because ηn is bounded and
an =O(Δ1/4

n ) when p= 2. We hence verify (S.A.66) for k= 6.
Next we suppose p≥ 4. Note that

E

∣∣∣∣anηn ∫ knΔn

0
f ′(Y ∗

s

)
gn(s)b

′′
s ds

∣∣∣∣ ≤Kanηn ∫ knΔn

0
E
∣∣f ′(Y ∗

s

)∣∣ds
≤KanηnΔ1/2

n Δ
(p−1)/4
n

≤KΔ(5p−6)/(4p−4)
n

≤KΔ7/6
n 	

where the first inequality holds because gn(·) and b′′ are bounded; the second
inequality follows from (S.A.62) with w = p − 1; the third inequality follows
(S.A.22); the last inequality holds because when p ≥ 4, 5p−6

4p−4 ≥ 7/6. Combine
this estimate with the estimates in Step 3(ii), we verify (S.A.65) for k= 6.

Step 3(vii). By the martingale property of stochastic integrals, it is clear that
E[ζ(q	7)ni |FiΔn] = 0. We consider two cases, p = 2 and p ≥ 4, separately. We
start with p = 2, so an = O(Δ1/4

n ) and f ′(Ys)− f ′(Y ∗
s ) = 2(Ys − Y ∗

s ). We then
have

E
[∣∣ζ(q	7)ni

∣∣2]
≤Ka2

n

∫ knΔn

0
E
[∣∣Ys −Y ∗

s

∣∣2]ds
≤Ka2

nΔ
1/2
n η

2
n

(
Δn +Δ1/2

n ϕ̃(q)
)

≤KΔ2
n +KΔ3/2

n ϕ(q)	

where the first inequality is obtained by applying the Burkholder–Davis–
Gundy inequality and using the fact that gn(·) and σ ′ are bounded; the sec-
ond inequality follows from (S.A.61) with w = 2; the last inequality follows
an =O(Δ1/4

n ) and the boundedness of ηn.
When p≥ 4, we have

E
[∣∣ζ(q	7)ni

∣∣2] ≤Ka2
n

∫ knΔn

0
E
[∣∣Yp−1

s − (Y ∗
s

)p−1∣∣2]ds
≤Ka2

nΔ
1/2
n

(
η2(p−1)
n Δp−1

n +η2(p−1)
n Δ1/2

n ϕ̃(q)

+η2
nΔ

p/2
n +η2

nΔ
(p−2)/2+1/4
n ϕ̃(q)1/2

)
≤KΔpn +KΔ3/2

n ϕ(q)+KΔ(5p−6)/(2p−2)
n
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+KΔ(7p−9)/(4p−4)
n ϕ(q)

≤KΔ7/3
n +KΔ3/2

n ϕ(q)	

where the first inequality follows the Burkholder–Davis–Gundy inequality and
the boundedness of gn(·) and σ ′; the second inequality is obtained by applying
(S.A.64) withw= p−1, v= 2, andm= 2; the third inequality follows (S.A.22);
the last inequality holds because when p≥ 4, 5p−6

2p−2 ≥ 7/3 and 7p−9
4p−4 ≥ 19/12.

Combining the two cases together, we verify (S.A.66) for k= 7.
Step 3(viii). By construction, ζ(q	8)ni is a martingale increment, so

E[ζ(q	8)ni |FiΔn] = 0. Moreover,

E
[∣∣ζ(q	8)ni

∣∣2]
≤Ka2

nE

[∫ knΔn

0

∫
E

G
(
Ys	ηngn(s)δ

′(s	 z)
)2

1{γ(z)≤1/q}ν(ds	dz)
]

≤Ka2
nη

2
nE

[∫ knΔn

0

∫
E

|Ys|2(p−1)γ(z)21{γ(z)≤1/q}ν(ds	dz)
]

+Ka2
nη

2(p−1)
n E

[∫ knΔn

0

∫
E

|Ys|2γ(z)2(p−1)1{γ(z)≤1/q}ν(ds	dz)
]

≤Ka2
nη

2
nΔ

p/2
n ϕ(q)+Ka2

nη
2(p−1)
n Δnϕ(q)

≤KΔ(4p−5)/(2p−2)
n ϕ(q)+KΔ3/2

n ϕ(q)

≤KΔ3/2
n ϕ(q)	

where the first inequality follows the Burkholder–Davis–Gundy inequality; the
second inequality is due to (S.A.45), |δ′(s	 z)| ≤ γ(z), and the boundedness of
gn(·); the third inequality is obtained by applying (S.A.63) with w = 2(p− 1)
and w = 2; the fourth inequality is due to (S.A.22); the last inequality holds
because 4p−5

2p−2 ≥ 3
2 when p≥ 2. We hence verify (S.A.66) for k= 8.

Step 3(ix). Let Gt = F (0) ∨ σ{χs : s < t}. Then YjΔn− and Y ∗
jΔn− are G(i+j−1)Δn -

measurable and E[χ(i+j−1)Δn |G(i+j−1)Δn] = 0 (the noise is conditionally mean 0).
It is then obvious that ζ(q	9)ni is a sum of martingale differences. By repeated
conditioning, E[ζ(q	9)ni |FiΔn] = 0. Moreover, by repeated conditioning, we get

E
[∣∣ζ(q	9)ni

∣∣2]≤ a2
nk

−2
n

kn∑
j=1

E
[∣∣f ′(YjΔn−)− f ′(Y ∗

jΔn−
)∣∣2]�

With essentially the same argument as in Step 3(vii), we derive

E
[∣∣ζ(q	9)ni

∣∣2]≤KΔ2
n +KΔ3/2

n ϕ(q)	
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which verifies (S.A.66) for k= 9.
Step 4. We prove the claims of the lemma in this step. When p = 2, we

define Γ ′(q)ni =∑5
k=1 ζ(q	k)

n
i and Γ ′′(q)ni =∑9

k=6 ζ(q	k)
n
i ; when p ≥ 4, we

define Γ ′(q)ni = ∑6
k=1 ζ(q	k)

n
i and Γ ′′(q)ni = ∑9

k=7 ζ(q	k)
n
i . In either case,

Γ (q)ni = Γ ′(q)ni + Γ ′′(q)ni because of (S.A.60). It is obvious that Γ ′(q)ni and
Γ ′′(q)ni are F(i+kn)Δn -measurable. The claims of the lemma follow from (S.A.65)
and (S.A.66) with r1 = 7/6 and r2 = 2. Q.E.D.

PROOF OF LEMMA 10: Recall the notation in (S.A.55). Observe that

∣∣R(q)nt ∣∣ ≤ anηpn
∣∣∣∣∣
kn−1∑
j=1

(
gnj
)p −Δ−1/2

n θḡ(p)

∣∣∣∣∣Σqt(S.A.71)

+KanηpnknΣqknΔn +Kanηpnkn
(
Σ
q
t −Σqt−knΔn

)
�

Following an argument similar to that which led to (S.A.49), we can show that
the first term on the majorant side of (S.A.71) is op	ηn(1). Moreover,

E
[
Σ
q
knΔn

]= E

[∫ knΔn

0

∫ ∣∣δ(s	 z)∣∣p1{γ(z)≤1/q}μ(ds	dz)
]

≤
∫ knΔn

0

∫
γ(z)p1{γ(z)≤1/q}ν(ds	dz)

≤ KΔ1/2
n �

Hence, ΣqknΔn = Op(Δ
1/2
n ), which implies anηpnknΣ

q
knΔn

= op	ηn(1). By the same
argument, we can show that the third term on the majorant side of (S.A.71) is
also op	ηn(1). Therefore, for each q≥ 1,

R(q)nt = op	ηn(1)�(S.A.72)

With the same notation as in Lemma 12, we have Γ (q)ni = Γ ′(q)ni + Γ ′′(q)ni
and

E

∣∣∣∣∣
�t/Δn
−kn∑

i=0

Γ ′(q)ni

∣∣∣∣∣≤KΔr1−1
n +Kϕ(q)�(S.A.73)

Observe that Γ ′′(q)ni and Γ ′′(q)ni+j are uncorrelated whenever |j| ≥ kn, because
Γ ′′(q)ni ∈ F(i+kn)Δn and E[Γ ′′(q)ni |FiΔn] = 0. By the Cauchy–Schwarz inequality
and Lemma 12, we derive

E

[(�t/Δn
−kn∑
i=0

Γ ′′(q)ni

)2]
≤KΔr2−3/2

n +Kϕ(q)�(S.A.74)
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By (S.A.55), the triangle inequality, and Markov’s inequality, we have for
each q≥ 1,

lim sup
n→∞

P
(∣∣VJ ′(g	p	q)nt

∣∣> ε)
≤ lim sup

n→∞
P
(∣∣R(q)nt ∣∣> ε/3)+Kε−1 lim sup

n→∞
E

∣∣∣∣∣
�t/Δn
−kn∑

i=0

Γ ′(q)ni

∣∣∣∣∣
+Kε−2

E

[(�t/Δn
−kn∑
i=0

Γ ′′(q)ni

)2]
≤K(ε−1 + ε−2

)
ϕ(q)	

where the second inequality follows from (S.A.72), (S.A.73), and (S.A.74), re-
calling from Lemma 12 that r1 > 1, r2 > 3/2. Since limq→∞ϕ(q)= 0, the claim
of Lemma 10 readily follows. Q.E.D.

PROOF OF LEMMA 11: Step 1. In this step, we show that for each l ∈
{1	 � � � 	p/2},

an

�t/Δn
−kn∑
i=0

E
[∣∣∣∣Z̄n

i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l∣∣(χ̂ni )l]→ 0�(S.A.75)

When l = p/2, the claim holds trivially, because the left-hand side of (S.A.75)
is identically zero. It remains to consider p≥ 4 and l ∈ {1	 � � � 	p/2 − 1}.

For any m> 1, we have

E
[∣∣∣∣Z̄n

i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l∣∣(χ̂ni )l](S.A.76)

≤KE
[∣∣Z̄n

i − Z̄∗n
i

∣∣p−2l(
χ̂ni
)l]

+KE
[∣∣Z̄n

i − Z̄∗n
i

∣∣∣∣Z̄∗n
i

∣∣p−2l−1(
χ̂ni
)l]

≤KΔl/2n
{
E
[∣∣Z̄n

i − Z̄∗n
i

∣∣(p−2l)m]}1/m

+KΔ(p−2l−1)/4
n Δl/2n

{
E
[∣∣Z̄n

i − Z̄∗n
i

∣∣m]}1/m

≤KΔl/2n ηp−2l
n Δ1/(2m)

n +KΔ(p−1)/4
n ηnΔ

1/(2m)
n 	

where the first inequality holds because for any v ≥ 1, ||x + y|v − |x|v| ≤
K|x|v−1|y| + K|y|v; the second inequality is obtained by using Hölder’s in-
equality, and then using (S.A.4) and (S.A.5); the third inequality follows from
(S.A.16).
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Hence,

an

�t/Δn
−kn∑
i=0

E
[∣∣∣∣Z̄n

i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l∣∣(χ̂ni )l]
≤KanΔ−1

n

(
Δl/2n η

p−2l
n +Δ(p−1)/4

n ηn
)
Δ1/(2m)
n

≤K(Δ−(2p−3)/(4p−4)
n +Δ−p/(4p−4)

n

)
Δ1/(2m)
n

≤KΔ1/(2m)−(2p−3)/(4p−4)
n 	

where the first inequality follows from (S.A.76); the second inequality is due to
(S.A.22); the last inequality is due to p≥ 4. This estimate holds for any m> 1.
If we take m< (2p− 2)/(2p− 3), the bound in the above inequality goes to
zero as Δn → 0. We hence have (S.A.75) as desired.

Step 2. In this step, we show the claim of the lemma. For each l ∈
{1	 � � � 	p/2}, by the triangle inequality,

∣∣D(g	p	 l)nt ∣∣ ≤ an �t/Δn
−kn∑
i=0

∣∣Z̄n
i

∣∣p−2l∣∣(Ẑn
i

)l − (χ̂ni )l∣∣(S.A.77)

+ an
�t/Δn
−kn∑

i=0

∣∣Z̄∗n
i

∣∣p−2l∣∣(Ẑ∗n
i

)l − (χ̂ni )l∣∣
+ an

�t/Δn
−kn∑
i=0

∣∣∣∣Z̄n
i

∣∣p−2l − ∣∣Z̄∗n
i

∣∣p−2l∣∣(χ̂ni )l�
By Lemma 8(a), the first term on the right-hand side of (S.A.77) is op	ηn(1).
Taking ηn in that lemma to be 0, we use it to show that the second term
on the right-hand side of (S.A.77) is op(1). In view of (S.A.75), we conclude
D(g	p	 l)nt = op	ηn(1) as desired. Q.E.D.

S.A.5. Proof of Theorem 3

To simplify notation, we denote

xn	η = Pη

(∑
s≤t

|�Js|p ∈ CSn1−c

)
�

By Corollary 2 and Assumption V, it is easy to see that

(ηn)n∈N ⊂ [0	1] and Δ−r̄
n ηn → h ∈ [0	∞] ⇒ xn	ηn → 1 − c�(S.A.78)
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Taking any ηn that satisfies (S.A.78), we have

lim sup
n→∞

inf
η∈[0	1]

xn	η ≤ lim sup
n→∞

xn	ηn = 1 − c�(S.A.79)

We now show that

lim inf
n→∞

inf
η∈[0	1]

xn	η ≥ 1 − c�(S.A.80)

If (S.A.80) were false, then there would exist ε > 0, a subsequence N1 ⊆ N, and
a sequence (η̃n)n∈N1 ⊂ [0	1], such that for every n ∈ N1, xn	η̃n < 1 − c− ε. Then
we could extract a further subsequence N2 ⊆ N1 such that Δ−r̄

n η̃n → h along N2

for some h ∈ [0	∞]. Given (η̃n)n∈N2 and h, we construct a sequence (η∗
n)n∈N as

follows: if n ∈ N2, we set η∗
n = η̃n; if n /∈ N2, we set

η∗
n =
{

1 if h= ∞,
min
{
Δr̄nh	1

}
if h ∈ [0	∞)�

By construction, we have (η∗
n)n∈N ⊂ [0	1]. Moreover, since r̄ > 0 whenever

p> 2, we have Δ−r̄
n η

∗
n → h. Applying (S.A.78) to η∗

n, we get xn	η∗
n
→ 1−c along

N and, thus, also along N2. But this contradicts the fact that for every n ∈ N2,
xn	η∗

n
= xn	η̃n < 1 − c − ε. We hence derive (S.A.80). By (S.A.79) and (S.A.80),

we readily have

lim
n→∞

inf
η∈[0	1]

Pη

(∑
s≤t

|�Js|p ∈ CSn1−c

)
= 1 − c;(S.A.81)

this finishes the proof of the first claim.
Next, replacing CSn1−c in (S.A.81) with CSnc ≡ R\CSn1−c and noting that CSnc is

a confidence set associated with the nonrandom set R \ S1−c , we derive

lim
n→∞

inf
η∈[0	1]

Pη

(∑
s≤t

|�Js|p /∈ CSn1−c

)
= c�

This is equivalent to

lim
n→∞

sup
η∈[0	1]

Pη

(∑
s≤t

|�Js|p ∈ CSn1−c

)
= 1 − c	

which is the second claim of the theorem. Q�E�D.
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S.A.6. Proof of Theorem 4

LEMMA 13: Suppose that Assumptions S.H-1 and S.N hold. Let p ≥ 4 and
ηn be a sequence in [0	1] such that Δ−r̄

n ηn → h for some h ∈ [0	∞]. Let � ∈
((p− 1)/(4p− 2)	1/4). Then for l ∈ {0	 � � � 	p},

a2
nΔ

−1/2
n V ∗(Zηn	g	2p− 2l	 l

)n
t

P	ηn−→ 1
(1 + hp−1)2

V (g	2p	 l)t�(S.A.82)

PROOF: Step 1. In this step, we prove the following elementary (but probably
not obvious) result: for any k ≥ 1, there exists K > 0 such that for any ε > 0
and x	 y ∈ R	∣∣|x+ y|k1{|x+y|≤ε} − |x|k∣∣≤K(|x|k1{|x|>ε/2} + εk−1|y|)�(S.A.83)

Fix k≥ 1. We first suppose that |x+y| ≤ ε, so the left-hand side of (S.A.83) is
||x+ y|k − |x|k|. By Taylor’s expansion and the cr-inequality, there exists K > 0
such that for any x	 y ∈ R,∣∣|x+ y|k − |x|k∣∣≤K|y|k +K|x|k−1|y|�(S.A.84)

Note that |y| ≤ |x+ y| + |x| ≤ |x| + ε. Hence, if |x|> ε/2, then |y| ≤K|x| and
the right-hand side of (S.A.84) is bounded by K|x|k; if |x| ≤ ε/2, then |y| ≤Kε
and the right-hand side of (S.A.84) is bounded by Kεk−1|y|. In both cases, we
have (S.A.83).

Now suppose |x+y|> ε, so the left-hand side of (S.A.83) is |x|k. If |x|> ε/2,
then (S.A.83) is obvious. If |x| ≤ ε/2, then |x+ y| > ε implies |y| > ε/2, and
thus |x|k ≤Kεk−1|y|. Again, we have (S.A.83).

Step 2. By using (S.A.26) with p replaced by 2p, we have

Δ1−p/2
n V

(
Z∗	 g	2p− 2l	 l

)n
t

P−→ V (g	2p	 l)t�(S.A.85)

Therefore,

a2
nΔ

−1/2
n V

(
Z∗	 g	2p− 2l	 l

)n
t

P	ηn−→ 1
(1 + hp−1)2

V (g	2p	 l)t�

It remains to show that

a2
nΔ

−1/2
n

(
V ∗(Zηn	g	2p− 2l	 l

)n
t
− V (Z∗	 g	2p− 2l	 l

)n
t

)= op	ηn(1)�
By the triangle inequality, the left-hand side of the above expression is bounded
by
∑3

j=1 ζ(l	 j)
n
t , where

ζ(l	1)nt = a2
nΔ

−1/2
n

�t/Δn
−kn∑
i=1

∣∣Z̄∗n
i

∣∣2p−2l∣∣(Ẑ∗n
i

)l − (χ̂ni )l∣∣	
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ζ(l	2)nt = a2
nΔ

−1/2
n

�t/Δn
−kn∑
i=1

∣∣Z̄n
i

∣∣2p−2l
1{|Z̄ni |≤un}

∣∣(Ẑn
i

)l − (χ̂ni )l∣∣	
ζ(l	3)nt = a2

nΔ
−1/2
n

�t/Δn
−kn∑
i=1

∣∣∣∣Z̄n
i

∣∣2p−2l
1{|Z̄ni |≤un} − ∣∣Z̄∗n

i

∣∣2p−2l∣∣(χ̂ni )l�
It remains to show that ζ(l	 j)nt = op	ηn(1) for each l ∈ {0	 � � � 	p} and j = 1	2	3;
this is the task below.

Step 3. We show ζ(l	1)nt = op	ηn(1) in this step. Clearly, ζ(0	1)nt = 0. When
l ≥ 1, Lemma 8(a) implies

Δ3/4−p/2
n

�t/Δn
−kn∑
i=0

E
[∣∣Z̄∗n

i

∣∣2p−2l∣∣(Ẑ∗n
i

)l − (χ̂ni )l∣∣]→ 0�

Note that a2
nΔ

−1/2
n = O(Δ1−p/2

n ). The above convergence then implies that
ζ(l	1)nt = op	ηn(1) holds for l ≥ 1.

Step 4. We now show ζ(l	2)nt = op	ηn(1). When l = 0, ζ(l	2)nt = 0. When
l= 1, we have

E
[
ζ(1	2)nt

] ≤ a2
nΔ

−1/2
n u2p−2

n

�t/Δn
−kn∑
i=1

E
∣∣Ẑn

i − χ̂ni
∣∣

≤Ka2
nΔ

−1/2
n u2p−2

n → 0	

where the second inequality follows (S.A.14) and the convergence follows our
choice of un. When l ≥ 2, we have

E
[
ζ(l	2)nt

] ≤ a2
nΔ

−1/2
n

�t/Δn
−kn∑
i=1

E
[∣∣Z̄n

i

∣∣2p−2l∣∣(Ẑn
i

)l − (χ̂ni )l∣∣]
≤ Ka2

nΔ
−3/2
n

(
Δp/2+1/2
n +ηnΔp/2+1/(2p)

n

+η2p−2l
n Δ1+l/2−l/(2p)

n +η2p−2l+1
n Δ1/2−l/(2p)+l/2+1/(2p)

n

)
≤ KΔ1/2

n +KΔ(p2−2)/(4p(p−1))
n

+KΔ(p2−2p+2)/(2p(p−1))
n +KΔ(p2−2p+2)/(4p(p−1))

n

→ 0	

where the second inequality follows a calculation similar to (S.A.36); the third
inequality follows (S.A.22). Hence, ζ(l	2)nt = op	ηn(1) for all l ∈ {0	 � � � 	p}.
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Step 5. In this step, we show ζ(l	3)nt = op	ηn(1). First suppose that l ∈
{0	 � � � 	p− 1}. Applying (S.A.83) with k= 2p− 2l, we have

ζ(l	3)nt ≤Kζ ′(l	3)nt +Kζ ′′(l	3)nt 	

where

ζ ′(l	3)nt = a2
nΔ

−1/2
n

�t/Δn
−kn∑
i=1

∣∣Z̄∗n
i

∣∣2p−2l
1{|Z̄∗n

i |>un/2}
(
χ̂ni
)l
	

ζ ′′(l	3)nt = a2
nΔ

−1/2
n

�t/Δn
−kn∑
i=1

u2p−2l−1
n

∣∣Z̄n
i − Z̄∗n

i

∣∣(χ̂ni )l�
For ζ ′(l	3)nt , we note that

E
[∣∣Z̄∗n

i

∣∣2p−2l
1{|Z̄∗n

i |>un/2}
(
χ̂ni
)l] ≤Ku−1

n E
[∣∣Z̄∗n

i

∣∣2p−2l+1(
χ̂ni
)l]

≤Ku−1
n Δ

(2p−2l+1)/4+l/2
n

≤KΔ1/4−�
n Δp/2n 	

where the first inequality follows 1{|Z̄∗n
i |>un/2} ≤Ku−1

n |Z̄∗n
i |; the second inequality

is obtained by applying Hölder’s inequality and then (S.A.4) and (S.A.5); the
last inequality is due to the definition of un. Since an =O(Δ3/4−p/4

n ),

E
[
ζ ′(l	3)nt

]≤KΔ1/4−�
n → 0�

Hence, ζ ′(l	3)nt = op	ηn(1) for l ∈ {0	 � � � 	p− 1}.
The term ζ ′′(l	3)nt satisfies the following: for every m> 1,

E
[
ζ ′′(l	3)nt

]= a2
nΔ

−1/2
n u2p−2l−1

n

�t/Δn
−kn∑
i=1

E
[∣∣Z̄n

i − Z̄∗n
i

∣∣(χ̂ni )l]
≤ Ka2

nΔ
−1/2
n u2p−2l−1

n Δl/2n

�t/Δn
−kn∑
i=1

{
E
[∣∣Z̄n

i − Z̄∗n
i

∣∣m]}1/m

≤ Ka2
nΔ

−3/2
n u2p−2l−1

n Δl/2n ηnΔ
1/(2m)
n

≤ KΔ−p/2+l/2+1/(2m)
n Δ(2p−2l−1)�

n

≤ KΔ−p/2+1/(2m)
n Δ(2p−1)�

n 	

where the first inequality follows Hölder’s inequality and (S.A.5); the second
inequality follows (S.A.16); the third inequality holds because an =O(Δ3/4−p/4

n )
and ηn is bounded; the fourth inequality is due to l ≥ 0 and � < 1/4. By as-
sumption, (2p− 1)� > (p− 1)/2. Therefore, by choosing m > 1 sufficiently
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close to 1, we have (2p− 1)� − p/2 + 1/(2m) > 0. Hence, E[ζ ′′(l	3)nt ] → 0
and ζ ′′(l	3)nt = op	ηn(1) for l ∈ {0	 � � � 	p−1}. Consequently, ζ(l	3)nt = op	ηn(1)
for l ∈ {0	 � � � 	p− 1}.

Finally, we consider ζ(p	3)nt . By definition,

ζ(p	3)nt = a2
nΔ

−1/2
n

�t/Δn
−kn∑
i=1

1{|Z̄ni |>un}
(
χ̂ni
)p
�

By Chebyshev’s inequality and (S.A.17) with v = 2, we derive P(|Z̄n
i | > un) ≤

KΔ1/2−2�
n . By the Cauchy–Schwarz inequality and (S.A.5), E[1{|Z̄ni |>un}(χ̂

n
i )
p] ≤

KP(|Z̄n
i |> un)1/2Δp/2n . Since an =O(Δ3/4−p/4

n ), we have

E
[
ζ(p	3)nt

]≤Ka2
nΔ

−3/2
n Δ1/4−�

n Δp/2n ≤KΔ1/4−�
n → 0�

Hence, ζ(p	3)nt = op	ηn(1). This finishes the proof of this lemma. Q.E.D.

PROOF OF THEOREM 4: By localization, we can and will suppose that As-
sumptions S.H-1 and S.N hold without loss of generality. We first recall
from (C.3) of AJL the following elementary result: for any weight function
φ and x	 y ∈ R, we have for any integer w,

w∑
l=0

ρ(2w)l
(
2y2φ̄′(2)

)l
m2w−2l(φ;x	 y)=m2wx

2w
(
φ̄(2)
)w
�(S.A.86)

By (S.A.23) and (S.A.86),

w∑
l=0

ρ(2w)lV (φ	2p	p+ l−w)t

= θ−pm2w2p−wφ̄(2)wφ̄′(2)p−w
∫ t

0
(θσs)

2wα2(p−w)
s ds�

Then by Lemma 13,

a2
nΔ

−1/2
n

m2w2p−wφ̄(2)wφ̄′(2)p−w

w∑
l=0

ρ(2w)lV ∗(Zηn	φ	2w− 2l	p+ l−w)n
t

(S.A.87)

P	ηn−→ 1
(1 + hp−1)2

θ−p
∫ t

0
(θσs)

2wα2(p−w)
s ds�

As shown in Lemma 4 of AJL, for weight functions gi	 gj and x	 y ∈ R,

μ(gi	 gj;x	 y)=
p∑
w=0

x2wy2p−2wA′(gi	 gj;w)�
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Hence,

Σ
ij
C = θ1−p

p∑
w=0

A′(gi	 gj;w)
∫ t

0
(θσs)

2wα2p−2w
s ds�(S.A.88)

Combining (S.A.87) with (S.A.88), we have a2
nΣ̂

n	ij
C

P	ηn−→ 1
(1+hp−1)2

Σ
ij
C as

claimed. Q.E.D.

S.A.7. Proof of Theorem 5

The proof follows the same scheme as Theorem 1, but is slightly more com-
plicated. We only emphasize the key modifications here. For brevity, we only
consider N(Zηn	φ	ψ	0	−)nt , as the other three cases follow essentially the
same argument. By localization, we assume that Assumptions S.H-1 and S.N
hold without loss of generality.

Step 1. In this step, we introduce some notation and outline the scheme of the
proof. To simplify notation, we denote ξni = ξ(Zηn	φ	0)ni . In view of Lemma 3,
we have

E
∣∣ξni ∣∣≤K	 ξni−kn−k′

n
∈ FiΔn �(S.A.89)

We set, for l ∈ {0	 � � � 	p− 1} and any process Y ,

v(Y	ψ	 l)ni = ∣∣Ȳ (ψ)ni ∣∣2p−2−2l(
Ŷ (ψ)ni

)l
	(S.A.90)

Ñ(Y	φ	ψ	 l)nt =
�t/Δn
−kn∑
i=kn+k′

n

v(Y	ψ	 l)ni ξ
n
i−kn−k′

n
	

Q(ψ	0	 l)t = θ−(p−1)

∫ t

0

(
2α2

s ψ̄
′(2)
)l
m2p−2−2l(ψ;θσs	αs)σ2

s ds�

Then we have

N(Y	φ	ψ	0	−)nt(S.A.91)

=
p−1∑
l=0

ρ(2p− 2)lÑ(Y	φ	ψ	 l)nt

and, by (S.A.86),

ψ̄(2)p−1Q(0)t =
p−1∑
l=0

ρ(2p− 2)lQ(ψ	0	 l)t�(S.A.92)
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In Step 3 below, we show

a2
nÑ
(
Zηn	φ	ψ	0

)n
t

P	ηn−→ 1
(1 + hp−1)2

Q(ψ	0	0)t(S.A.93)

+
(

hp−1

1 + hp−1

)2

ψ̄(2p− 2)N(0	−)t	

and in Step 4, we show, for l ∈ {1	 � � � 	p− 1},

a2
nÑ
(
Zηn	φ	ψ	 l

)n
t

P	ηn−→ 1
(1 + hp−1)2

Q(ψ	0	 l)t�(S.A.94)

Combining (S.A.91)–(S.A.94), we readily derive the claim of this theorem.
Step 2. In this step, we consider the limiting behavior of Ñ(Z∗	φ	ψ	 l)nt for

l ∈ {0	 � � � 	p− 1}. We decompose

Δ3/2−p/2
n Ñ

(
Z∗	φ	ψ	 l

)n
t
= ζ(l)nt + ζ ′(l)nt 	

where

ζ(l)nt = Δ3/2−p/2
n

�t/Δn
−kn∑
i=kn+k′

n

v
(
Z∗	ψ	 l

)n
i

(
ξni−kn−k′

n
− σ2

iΔn

)
	

ζ ′(l)nt = Δ3/2−p/2
n

�t/Δn
−kn∑
i=kn+k′

n

v
(
Z∗	ψ	 l

)n
i
σ2
iΔn
�

A straightforward adaptation of Theorem 3.3 in JPV and Lemma 2 in AJL
complements (S.A.26) with

ζ ′(l)nt =Q(ψ	0	 l)t + op(1)�(S.A.95)

By Lemma 2 and Hölder’s inequality, E[|v(Z∗	ψ	 l)ni |FiΔn] ≤KΔp/2−1/2
n . Ob-

serving that ξn
i−kn−k′

n
− σ2

iΔn
is FiΔn -measurable, we use the triangle inequality

and repeated conditioning to get

E
∣∣ζ(l)nt ∣∣≤KE

(
Δn

�t/Δn
−kn∑
i=kn+k′

n

γni

)
	 where γni = ∣∣ξni−kn−k′

n
− σ2

iΔn

∣∣�(S.A.96)

On the product space (Ω×[0	 t]	F ⊗ B[0	 t]	P⊗Leb), we define a sequence
of measurable functions as

fn(ω	 s)= γn�s/Δn
(ω)1[(kn+k′
n)Δn	(�t/Δn
−kn+1)Δn)(s)�
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By construction,

Δn

�t/Δn
−kn∑
i=kn+k′

n

γni (ω)=
∫ t

0
fn(ω	 s)ds�(S.A.97)

Consider s ∈ [0	 t] such that s �= iΔn for any i ∈ N and n ∈ N. This condition is
satisfied for Lebesgue almost every (a.e.) s ∈ [0	 t] and implies σ2

�s/Δn
Δn → σ2
s−.

Moreover, noting that ηn is bounded, we can apply Lemma 3 in AJL with
in = �s/Δn
 − kn − k′

n to get ξn�s/Δn
−kn−k′
n

= σ2
s− + op	ηn(1). Therefore, for

Lebesgue a.e. s ∈ [0	 t], fn(·	 s) = op	ηn(1). With an appeal to Fubini’s theo-
rem and the bounded convergence theorem, we see that fn(·	 ·) converges to
zero in measure on the product space. Moreover, under Assumptions S.H-1
and S.N, it is easily seen that the sequence (fn(·	 ·))n≥1 is uniformly integrable.
Hence,

E

(∫ t

0
fn(·	 s)ds

)
→ 0�(S.A.98)

Combining (S.A.96), (S.A.97), and (S.A.98), we derive ζ(l)nt = op	ηn(1). By
(S.A.95), we obtain Δ3/2−p/2

n Ñ(Z∗	φ	ψ	 l)nt =Q(ψ	0	 l)t + op	ηn(1). Recalling
the definition of an, we readily have

a2
nÑ
(
Z∗	φ	ψ	 l

)n
t

P	ηn−→ 1
(1 + hp−1)2

Q(ψ	0	 l)t�(S.A.99)

Step 3. In this step, we show (S.A.93). For each q ≥ 1, let Ωn(t	q) be the
collection of paths on which |Tm−Tm′ |> 2knΔn+(k′

n+1)Δn and 2knΔn < Tm <
t − 2knΔn whenever Tm	Tm′ ≤ t for some m	m′ in Pq. We have Ωn(t	q)→Ω
almost surely as n→ ∞. Denote Inm = �Tm/Δn
. On Ωn(t	q), we decompose

Ñ
(
Z∗ +ηnJq	φ	ψ	0

)n
t

(S.A.100)

= Ñ(Z∗	φ	ψ	0
)n
t
+ Ñ(ηnJq	φ	ψ	0

)n
t
+R(q)nt 	

where

R(q)nt =
∑

m∈Pq :Tm≤t

Inm∑
i=Inm−kn+2

G̃
(
Z̄∗n
i 	ηnJ̄

q	n
i

)
ξni−kn−k′

n
	

G̃(x	 y)= |x+ y|2p−2 − |x|2p−2 − |y|2p−2	 x	 y ∈ R�

We also denote for each q≥ 1,

N(0	−	 q)t = θ
∑

m∈Pq :Tm≤t
|�XTm |2p−2σ2

Tm−�(S.A.101)
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By Lemma 6 in AJL (taking Z there to be Jq), we have Δ1/2
n Ñ(J

q	φ	ψ	0)nt =
ψ̄(2p− 2)N(0	−	 q)t + op(1). Consequently,

a2
nÑ
(
ηnJ

q	φ	ψ	0
)n
t

P	ηn−→
(

hp−1

1 + hp−1

)2

ψ̄(2p− 2)N(0	−	 q)t�(S.A.102)

Let β> 0 be arbitrary. There exists Kβ > 0 such that ||x+ y|2p−2 − |x|2p−2| ≤
Kβ|y|2p−2 +β|x|2p−2. For such β and Kβ, we have, on Ωn(t	q),∣∣R(q)nt ∣∣≤ (Kβ + 1)R̄(q)nt +βÑ(ηnJq	φ	ψ	0

)n
t
	(S.A.103)

where

R̄(q)nt =
∑

m∈Pq :Tm≤t

Inm∑
i=Inm−kn+2

∣∣Z̄∗n
i

∣∣2p−2∣∣ξ(Z∗ +ηnJ ′q	φ	0
)n
i−kn−k′

n

∣∣�(S.A.104)

Recall the definition of Ht from the proof of Lemma 6. Following a simi-
lar argument as in that lemma, we derive E[|Z̄∗n

i |2p−2|HiΔn] ≤ KΔp/2−1/2
n and

E[|ξ(Z∗ + ηnJ
′q	φ	0)n

i−kn−k′
n
||H0] ≤ K. By applying repeated conditioning to

(S.A.104), we have E[R̄(q)nt 1Ωn(t	q)] ≤KΔp/2−1
n . Since an =O(Δ3/4−p/4

n ),

a2
nR̄(q)

n
t = op	ηn(1)�(S.A.105)

Combining (S.A.102), (S.A.103), and (S.A.105), and noting that β is arbitrary,
we derive for each q≥ 1,

a2
nR(q)

n
t = op	ηn(1)�(S.A.106)

By (S.A.99), (S.A.100), (S.A.102), and (S.A.106), we have for each q ∈ N,

a2
nÑ
(
Z∗ +ηnJq	φ	ψ	0

)n
t

(S.A.107)

P	ηn−→ 1
(1 + hp−1)2

Q(ψ	0	0)t

+
(

hp−1

1 − hp−1

)2

ψ̄(2p− 2)N(0	−	 q)t�

By repeated conditioning and (S.A.89), we can easily adapt the proof of
Lemma 5 to show that for any ε > 0,

lim
q→∞

lim sup
n→∞

P
(∣∣a2

nÑ
(
ηnJ

′q	φ	ψ	0
)n
t

∣∣> ε)= 0�(S.A.108)

Finally, observe thatN(0	−	 q)t converges in probability toN(0	−)t as q→
∞. Following the same steps that led to (S.A.40), we combine (S.A.107) and
(S.A.108) to derive (S.A.93).
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Step 4. We prove (S.A.94) in this step for l ∈ {1	 � � � 	p− 1}. By repeated con-
ditioning and (S.A.89), we can easily adapt the proofs of Lemmas 7 and 8(b)
to derive ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2
n

[t/Δn]−kn∑
i=kn+k′

n

∣∣Z̄n
i

∣∣2p−2−2l((
Ẑn
i

)l − (χ̂ni )l)ξni−kn−k′
n
= op	ηn(1)	

a2
n

[t/Δn]−kn∑
i=kn+k′

n

∣∣Z̄∗n
i

∣∣2p−2−2l((
Ẑ∗n
i

)l − (χ̂ni )l)ξni−kn−k′
n
= op	ηn(1)	

a2
n

[t/Δn]−kn∑
i=kn+k′

n

(∣∣Z̄n
i

∣∣2p−2−2l − ∣∣Z̄∗n
i

∣∣2p−2−2l)(
χ̂ni
)l
ξni−kn−k′

n
= op	ηn(1)	

which imply

a2
n

(
Ñ
(
Zηn	φ	ψ	 l

)n
t
− Ñ(Z∗	φ	ψ	 l

)n
t

)= op	ηn(1)�(S.A.109)

Combining (S.A.99) and (S.A.109), we have (S.A.94). Q.E.D.

APPENDIX S.B: SIMULATION RESULTS

S.B.1. The Baseline Setting

In this supplemental appendix, we examine the validity of the asymptotic
theory in the main text in a simulation setting designed to approximate the
constraints faced in a typical real life application.1 We adopt a similar simula-
tion setting as in AJL. The log price Zt is generated according to the model

Zt =X∗
t + Jt +χt	

X∗
t =X0 +

∫ t

0
σs dWs	 σt = v1/2

t 	

dvt = κ(β− vt)dt + γv1/2
t dBt	 E[dWt dBt] = ρdt	 where

β1/2 = 0�4	 γ = 0�5	 κ= 5	 ρ= −0�5	 X0 = log(100)�

Here, X∗
t is the continuous part with instantaneous volatility σt , Jt is a pure

jump process, and χt is the additive noise. The drift in X∗
t is excluded because

it plays little role in the high frequency setting. Parameters that govern the
stochastic volatility process are calibrated according to the estimates in Aït-
Sahalia and Kimmel (2007). We use an observation length of T = 5 days, with

1I wish to thank an anonymous referee whose suggestions significantly improved the scope of
this simulation study.
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each day consisting of 6.5 hours, and sample the continuous-time process every
5 seconds. There are 2,000 simulations in each experiment.

The additive noise χt is generated according to

χt = 3σtΔ1/2
n

(
χAt +χBt

)
	(S.B.1)

χAt ∼ N (0	1)	

χBt = f25(χ̃
B
t )

SD(f25(χ̃Bt ))
	 f25(x)= min

{
max{x	−25}	25

}
	

χ̃Bt ∼ t-distribution with degrees of freedom 2.5,

where SD(·) is the standard deviation operator, and χAt and χBt are i.i.d. draws
and mutually independent. The instantaneous standard deviation of either the
Gaussian noise or the (truncated) t-distributed noise is three times that of the
diffusive increment, that is, σtΔ1/2

n . This experimental design allows temporal
heteroskedasticity and dependence in χt . The t-distributed noise is introduced
to capture the large bouncebacks commonly observed in transaction data. In
this setting, the microstructure noise clearly dominates the diffusive increment.
Moreover, with the t-distributed noise present, one could observe many large
returns even in the absence of jumps. The task of estimating and making infer-
ence on jump characteristics is thus fairly challenging.

We simulate the jump process Jt from a centered symmetric α-stable pro-
cess with activity index 0�5, 1, 1�5, or 1�75. To compare results across activity
levels, we scale Jt so that in each realization, the realized quadratic variation of
Jt is fixed at βT/9 (resp. βT/4). In other words, the jump quadratic variation
(JV) is 10% (resp. 20%) of the total quadratic variation (QV) on average; this
configuration is motivated by the empirical findings in Aït-Sahalia and Jacod
(2012).2 Our design allows for a wide spectrum of jump behaviors. When the
jump activity level is low, the jump process is dominated by a few big jumps,
featuring the situation with “infrequent big jumps”; when the activity is high,
jumps have relatively similar sizes, featuring the situation with “many small
jumps.” As the activity index approaches 2, that is, the index of the Brown-
ian motion, it becomes more difficult to disentangle the jump part from the
continuous part.

Throughout the simulations, we fix p = 4 and consider weight functions
g1(x) = max{1 − |2x − 1|2	0} and gk(x) = g1(kx) for k ≥ 1. We use weight
functions g1 and g2 in the computation of the bias-corrected estimator Ĥn

T ,
which we denote by Ĥ below for notational simplicity. We also compute the
standard uncorrected pre-averaging estimators for

∑
s≤T |�Js|p: we denote

2In an application to transaction prices of 30 component stocks of the Dow Jones Industrial
Average (DJIA), Aït-Sahalia and Jacod (2012) found that the JV/QV ratio is about 25% for
individual stocks and ranges from 5% to 15% for the DJIA index.
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H̃k = Δ1/2
n (θḡk(p))

−1V̄ (Z	gk	p)
n
T for k ≥ 1 (recall Corollary 1 in the main

text). Note that Ĥ is a linear combination of H̃1 and H̃2, so these uncorrected
estimators serve as natural benchmarks for comparison. This comparison is
made in Section S.B.2. In Section S.B.3, we further discuss the finite-sample
behavior of H̃k and the associated nonrobust confidence intervals (CI) for
1 ≤ k≤ 15. Section S.B.4 reports a length comparison between the robust and
the nonrobust CI’s. We set the pre-averaging window kn = 80, 100, or 120. In
the computation of the variance estimator Σ̂n, we setφ=ψ1 = g1, ψ2 = g2, and
k′
n = 3kn, and set the truncation level un = 5(V̄ (Z	g1	2)nT /T)

1/2Δ0�49
n . Robust-

ness checks for the choice of k′
n and un are presented in Section S.B.5, where

we also report simulation results for cases with rounding effect.

S.B.2. Baseline Results

Figure S.1 plots the distributions of estimation errors of the bias-corrected
estimator Ĥ and the uncorrected estimators H̃1 and H̃2. We start with the case
with low-activity jumps (top panel). When the jump signal is weak (top left),
the standard estimators are clearly upward biased, while the estimation error
of the bias-corrected estimator is properly centered around 0. These findings
are consistent with our asymptotic theory. As the jump signal becomes stronger
(top right), the standard estimators still appear to be upward biased, but only
mildly. However, the performance of the standard estimators deteriorates sub-
stantially when jumps become more active and smaller (bottom panel). Even
in the case with JV/QV = 0�2 (bottom right), the standard estimators are still
quite biased; indeed, the distributions of their estimation errors put almost all
mass on the positive real line. In contrast, the estimation error of the bias-
corrected estimator remains properly centered around zero, regardless of the
strength of the jump signal.

Table S.I summarizes the relative estimation error, defined as the ratio of
the estimation error to the estimand

∑
s≤T |�Js|4 and expressed in percentage

terms. We report the sample median of the relative estimation error, hence-
forth the median relative bias (MRB).3 As clearly shown in the table, the un-
corrected estimators H̃1 and H̃2 are always upward biased, and the bias can be
quite substantial when the jump signal is weak. On the other hand, the MRB
of the bias-corrected estimator Ĥ is much smaller, insensitive to the strength
of the jump signal, and fairly close to zero. We remind the reader that Ĥ is a
linear combination of H̃1 and H̃2, so the comparison here is natural and clearly
demonstrates the effectiveness of the bias correction. These findings are robust
with respect to the choice of kn.

3We report the median instead of the sample average for the following reason. As
∑

s≤T |�Js|4

is a random variable, it takes very small values in some realizations, leading to very large relative
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FIGURE S.1.—Comparison of the distributions of estimation errors of bias-corrected and
uncorrected estimators. The estimation error is defined as the estimate less the estimand∑

s≤T |�Js|4. We consider three estimators: the bias-corrected estimator Ĥ (shaded area), as well
as standard uncorrected estimators H̃1 (dot–dash) and H̃2 (dash).

Next we examine the finite-sample coverage rate of the robust confidence
set. We set the nominal level to be 95% and consider the symmetric two-sided
CI given by

CIRbst = [Ĥ − z0�975Δ
1/2
n

√
κ�Σ̂nκ	 Ĥ + z0�975Δ

1/2
n

√
κ�Σ̂nκ

]
	(S.B.2)

where for any c ∈ (0	1), zc is the c-quantile of N (0	1), that is. P(ξ ≤ zc) = c
for ξ ∼ N (0	1). This CI is a special case of the robust confidence set CSn1−c
introduced in Section 3.3 of the main text.

estimation errors. In face of these “outliers,” we consider the sample median as a better measure
of the center of the distribution.
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TABLE S.I

MEDIAN RELATIVE BIAS (%) OF BIAS-CORRECTED AND UNCORRECTED ESTIMATORS

JV/QV = 0.1 JV/QV = 0.2

Activity Rbst Std 1 Std 2 Rbst Std 1 Std 2

Panel A: kn = 80
0.50 −5�4 93 46 −3�7 20 9
1.00 −5�3 163 84 −2�7 41 21
1.50 −7�3 475 241 −4�7 119 61
1.75 −3�7 1601 813 −6�6 394 202

Panel B: kn = 100
0.50 −5�4 114 58 −3�3 26 12
1.00 −5�4 201 104 −3�1 49 27
1.50 −4�4 594 302 −4�7 149 76
1.75 −0�9 2015 1007 −4�2 498 251

Panel C: kn = 120
0.50 −7�4 137 69 −4�3 31 15
1.00 −5�0 239 124 −3�2 58 32
1.50 −3�9 706 361 −4�1 176 89
1.75 6.2 2402 1191 −4�2 591 300

Note: We report the sample median of the relative bias (i.e., the ratio of the estimation error to the estimand∑
s≤T |�Js |4) for the robust estimator Ĥ (Rbst), as well as the standard uncorrected estimators H̃1 (Std 1) and H̃2

(Std 2).

For comparison, we also consider CI’s that would be justified by the standard
asymptotics. We denote for k= 1	2,

C̃I
Std
k =
[
H̃k − z0�975Δ

1/4
n

√
ΣJ	k

θḡk(p)
	 H̃k + z0�975Δ

1/4
n

√
ΣJ	k

θḡk(p)

]
	

where ΣJ	k is the kth diagonal element of ΣJ , that is, the asymptotic variance of
V̄ (Z	gk	p)

n
T in the presence of jumps under the standard asymptotics (recall

comment (iii) of Theorem 2 in the main text). We note that C̃I
Std
k is infeasible

because it depends on the unknown variable ΣJ	k. A feasible version demands
an estimator for ΣJ	k that is consistent under the standard asymptotics. We
construct such an estimator as follows. Recall the notation in Appendix B of
the main text. We set

N̂Std
k (m	±)nT = Δ1/2

n N(Z	φ	ψ	m	±)nT
ψ̄(2p− 2)

	 m= 0	1	

Σ̂Std
J	k = θ2p2

(
Ψk−N̂Std

k (0	−)nT
+Ψk+N̂Std

k (0	+)nT +Ψ ′
k−N̂

Std
k (1	−)nT +Ψ ′

k+N̂
Std
k (1	+)nT

)
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where φ and ψ are weight functions (we set φ = ψ = gk in the simulation),
and the scalars Ψk± and Ψ ′

k± are defined in the same way as Ψ± and Ψ ′
±, but

only for each weight function gk. By specializing Theorem 5 of the main text to
the case with ηn ≡ 1, it is easy to see that N̂Std

k (m	±)nT P→N(m	±)nT , m= 0	1,
and thus Σ̂Std

J	k

P→ ΣJ	k. A feasible CI under the standard asymptotics can then
be constructed as

CIStd
k =
[
H̃k − z0�975Δ

1/4
n

√
Σ̂Std
J	k

θḡk(p)
	 H̃k + z0�975Δ

1/4
n

√
Σ̂Std
J	k

θḡk(p)

]
�

Table S.II compares the Monte Carlo coverage rate of CIRbst with that of
CIStd

1 and CIStd
2 . In all cases, the standard CI’s exhibit undercoverage. Their best

performance occurs in the case when the jump activity is 0.5 and JV/QV = 0�2,
so jumps are relatively large. In this case, the standard CI’s undercover only by
3–4 percentage points and slightly outperform the robust CI. This finding sup-
ports the standard asymptotic theory, as well as the intuition that the standard
asymptotics should perform well when jumps are “big.” However, as the jump
signal becomes weaker, the undercoverage problem is quite severe for the stan-
dard CI’s. In contrast, the coverage rate of the robust CI is fairly close to the
nominal level in all cases. These findings are robust to the choice of kn, at least
within the range considered here.

TABLE S.II

FINITE-SAMPLE COVERAGE RATES (%) OF 95% NOMINAL LEVEL CI’S

JV/QV = 0.1 JV/QV = 0.2

Activity CIRbst CIStd
1 CIStd

2 CIRbst CIStd
1 CIStd

2

Panel A: kn = 80
0.50 91.5 70�6 80�4 90.0 91.4 92.1
1.00 93.5 42�8 54�8 91.3 83.0 86.7
1.50 95.2 17�2 24�6 93.3 51.0 58.6
1.75 95.6 7�9 10�9 94.4 25.4 31.0

Panel B: kn = 100
0.50 93.2 66�8 77�5 90.7 91.4 91.9
1.00 95.1 39�0 50�7 93.4 82.3 86.1
1.50 95.9 15�6 21�6 94.6 47.6 56.4
1.75 96.5 6�9 9�7 95.0 23.5 29.0

Panel C: kn = 120
0.50 94.8 64�0 75�0 90.8 91.2 92.4
1.00 95.7 36�8 47�6 92.7 80.5 85.7
1.50 96.5 14�7 20�3 94.8 45.8 54.2
1.75 96.9 6�2 8�8 95.9 22.8 26.9
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TABLE S.III

NUMBER OF NEGATIVE REALIZATIONS OF BIAS-CORRECTED ESTIMATORS AND ROBUST CI’S

JV/QV = 0.1 JV/QV = 0.2

Activity Ĥ < 0 CIRbst ∩ R+ = ∅ Ĥ < 0 CIRbst ∩ R+ = ∅

Panel A: kn = 80
0.50 21 1 1 0
1.00 62 0 1 1
1.50 246 3 42 0
1.75 499 8 218 2

Panel B: kn = 100
0.50 35 1 2 1
1.00 94 1 6 1
1.50 303 4 80 0
1.75 556 10 282 2

Panel C: kn = 120
0.50 64 1 4 1
1.00 143 1 14 2
1.50 341 4 114 0
1.75 582 7 331 2

Note: The total number of Monte Carlo trials is 2,000. The nominal level of each CI is 95%.

The good performance of the robust CI in cases with active jumps may be
surprising. Indeed, when the jump activity is greater than 1, Assumption H-1
is not satisfied. Somewhat more surprisingly, the robust CI actually performs
slightly better when the jump activity is higher. Our conjecture is that one might
be able to prove Theorems 2 and 3 in the main text under weaker conditions.
The pursuit of such generality is beyond the scope of the current paper.

We further discuss some seemingly “irregular” behaviors of Ĥ and CIRbst.
While the jump power variation is nonnegative, the bias-corrected estimator
Ĥ may be negative in finite samples due to sampling errors. The robust CI
around a negative estimate of Ĥ should be wide enough to cover zero, that
is, CIRbst ∩ R+ �= ∅. However, for a given nominal level, CIRbst ∩ R+ may still
be empty in some realizations, but the probability of such an event should
be small. To be concrete, when the nominal level is 95%, the probability of
the event {CIRbst ∩ R+ = ∅} is bounded above by 5% asymptotically, in gen-
eral, and bounded above by 2.5% for the symmetric two-sided CI considered
here. Table S.III reports the number of Monte Carlo realizations for Ĥ < 0
and CIRbst ∩ R+ = ∅ out of 2,000 Monte Carlo trials. The results are quite in-
tuitive: the number of such realizations is small when the jump signal is strong
and vice versa. In particular, the number of realizations with CIRbst ∩ R+ = ∅ is
always well below the theoretical bound 2,000 × 2�5% = 50. In this regard, the
performance of the robust CI is quite satisfactory.
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In applications, one may adopt post-estimation regularization to incorporate
the prior knowledge that the jump power variation is nonnegative. Perhaps the
simplest option is to report max{Ĥ	0} as the estimate and CIRbst ∩ R+ as the
CI ({0} in the case with empty intersection). In general, the necessity and the
specific choice of regularization method should depend on the problem at hand
and likely involve decision-theoretic arguments. A discussion in this direction
is clearly beyond our scope here. We stress that, throughout the paper, we only
report the “raw” estimates for all estimators and CI’s, so as to maintain the
consistency between the simulation setting and the theoretical results in the
main text.

S.B.3. Extended Results for Nonrobust Estimators and CI’s

Tables S.I and S.II reveal an interesting pattern for the standard estimators:
H̃2 always has a smaller MRB than H̃1 and CIStd

2 always has less size distor-
tion than CIStd

1 . Hence, for fixed kn, using g2 as the weight function appears to
be strictly better than using g1. Observe that pre-averaging under g2 results in
less smoothing than under g1. Indeed, since gk is supported on [0	1/k], pre-
averaging under gk only involves �kn/k
 raw returns within each averaging
window. In other words, the “effective” averaging window of gk is kn/k. The
jump signal is thus better preserved under the weight function g2 than is g1.
It is then not surprising to find g2 outperforming g1. This intuition suggests
that using the weight function gk with a larger k may further improve the per-
formance of the standard estimators. This being said, we note that choosing
k too large will introduce other finite-sample complications. In the standard
pre-averaging theory, as well as in the current paper, we need the effective
averaging window to go to infinity sufficiently fast, so that the noise can be
sufficiently smoothed and higher-order effects vanish sufficiently fast. Hence,
when k is large (so the effective averaging window is small), the finite-sample
behavior of the standard estimators tends to be confounded by higher-order
effects on which the existing theory is silent. In the absence of theoretical guid-
ance, we examine the choice of the weighting scale k via simulation for a broad
range of k.

In the same simulation setting as above, we compute H̃k and CIStd
k for all

1 ≤ k≤ 15. For brevity, we fix kn = 100. Table S.IV shows the MRB of uncor-
rected estimators. We have two findings. First, the MRB of H̃k decreases as we
increase k up to k≤ 5. In the case with JV/QV = 0�2 and jump activity = 0.5,
the MRB of H̃5 is only 1.7%, which is smaller in magnitude than that of the ro-
bust estimator (−3�3%). This being said, we note that when k≤ 5, the uncor-
rected estimators carry evidently large MRB, in general, and, consistent with
our theory, the MRB’s are positive. Second, as we further increase k above 5,
the MRB decreases in numerical value but eventually increases in magnitude.
Indeed, in each simulation setting, the MRB becomes negative when k is large
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TABLE S.IV

MEDIAN RELATIVE BIAS OF UNCORRECTED ESTIMATORS

Activity Std 3 Std 4 Std 5 Std 7 Std 9 Std 11 Std 13 Std 15

Panel A: JV/QV = 0.1
0.50 37 26 19 9�3 −1�9 −13 −22 −34
1.00 71 52 39 23 6�9 −11 −24 −40
1.50 202 150 116 72 34 −8�0 −32 −63
1.75 681 506 395 251 126 −2�2 −49 −131

Panel B: JV/QV = 0.2
0.50 7�0 4�1 1�7 −2�1 −6�5 −12 −17 −24
1.00 17 12 8�2 2�4 −3�8 −11 −17 −25
1.50 52 38 29 16 4�9 −7�4 −18 −31
1.75 169 127 98 61 32 −1�4 −21 −43

Note: Std k, 1 ≤ k ≤ 15, stands for the uncorrected estimator H̃k associated with the weight function gk(x) =
g1(kx)= max{1 − |2kx− 1|2	0}.

enough and becomes “more negative” when k is larger. The negative sign
of the MRB contradicts our theoretical prediction. As hinted in the previous
paragraph, some higher-order confounding effect brought on by large values
of k is likely in force, which leads to a negative bias. This confounding effect
appears to take effect when k > 5 and becomes dominant in all settings when
k≥ 11. Hence, the seemingly good performance of H̃k for large k (k≈ 11) is
likely due to a cancellation of biases from two sources with opposite signs and,
hence, can only be taken with a grain of salt.

We further examine the coverage property of CIStd
k and its infeasible coun-

terpart C̃I
Std

k for 1 ≤ k ≤ 15. The purpose of considering the infeasible CI’s is
to directly examine the approximation quality of the nonlocal asymptotic dis-
tribution. Indeed, the coverage property of the feasible CI inevitably depends
on our choice of the asymptotic variance estimator Σ̂Std

J	k, which some readers
may find arbitrary. The infeasible CI’s are immune to such choice.

Figure S.2 plots the Monte Carlo coverage rates of C̃I
Std
k and CIStd

k versus
the weighting scale k. In light of the discussion above, we discuss cases with
k≤ 5 and k> 5 separately, as the latter are likely to be confounded by higher-
order effects that are not captured by the existing theory (including the cur-
rent paper). We have the following findings for cases with k ≤ 5. First, both
the feasible and infeasible nonrobust CI’s often have evident undercoverage,
except for cases when jumps are big. This finding is consistent with those in Ta-
ble S.II. Second, by moderately increasing k, say from 1 to 5, hence effectively
reducing the degree of smoothing, the size distortion of nonrobust CI’s is mit-
igated in most cases. Third, infeasible nonrobust CI’s often suffer from even
larger size distortion than their feasible counterparts. The reason is simple:
the variance estimator Σ̂Std

J	k tends to overestimate ΣStd
J	k, but the overestimation
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FIGURE S.2.—Finite-sample coverage rates of nominal level 95% nonrobust CI’s. We plot
the coverage rate for C̃I

Std
k (top) and CIStd

k (bottom) versus the scaling factor k in the weight
function, 1 ≤ k ≤ 15. The quadratic variation of jumps is set to be 10% (left) or 20% (right)
of the total quadratic variation, on average. The jump process is α-stable with activity index 0�5
(dot), 1 (dot–dash), 1.5 (dash), and 1�75 (solid).

helps reduce the undercoverage problem; the overestimation can be explained
by Theorem 5 in the main text. Therefore, the better coverage of the feasible
nonrobust CI’s relative to the infeasible ones should be taken with caution.

We now turn to cases with k > 5 and summarize our findings as follows.
First, the coverage rate no longer increases in k monotonically, as evidenced
by the hump shapes in the plots. The “optimal” choice of k clearly depends on
the simulation setting and appears to increase with the jump activity. Second,
the coverage rates of the infeasible CI’s exhibit an intuitive ordering: the un-
dercoverage is almost always more severe when jumps are small (high activity).
This pattern is not preserved for feasible CI’s. Indeed, when k is large enough,
this ordering is reversed, likely due to additional confounding effects associ-
ated with large k. Third, we note that even in the ideal case in which CIStd

k and
C̃I

Std

k are implemented at the “optimal” k that maximizes the coverage rate ex
post, the overall performance of these nonrobust CI’s is still worse than that



JUMPS IN NOISY HIGH FREQUENCY DATA 53

of the robust CI’s (cf. panel B of Table S.II). In practice, the optimal choice
of a tuning parameter like k is difficult, as it involves higher-order asymptotic
expansions and other unknown functionals of the underlying process. Never-
theless, based on the aforementioned evidence, the nonrobust CI’s are unlikely
to outperform the robust CI’s, even if the optimal tuning is feasible.

In summary, we find that moderately increasing k in the weight function
gk tends to improve the performance of the uncorrected estimators and the
nonrobust CI’s. However, further increasing k brings in additional confound-
ing effects, which may improve or worsen the finite-sample performance of
the standard methods. Overall, the bias-corrected estimators and robust CI’s
tend to outperform the standard methods, especially when jumps are relatively
small.

S.B.4. Length Comparison for CI’s

In this section, we compare the average length of the robust and the non-
robust CI’s to better understand the relative advantage/disadvantage of these
methods. Table S.V reports the relative average length of the nonrobust CI’s
with respect to that of the robust CI. The robust CI’s are computed in the same
way as in Table S.II. For the nonrobust CI’s, we consider both infeasible and
feasible versions associated with weight functions gk, 1 ≤ k ≤ 5. Results for
6 ≤ k≤ 15 are omitted here for brevity, but are available on request.

In view of the coverage results in Table S.II and Figure S.2, Table S.V shows
the trade-off between coverage and length in the comparison of robust ver-
sus nonrobust CI’s: the nonrobust CI’s in general are tighter than their robust
counterparts, which partially explains their undercoverage. We also observe

TABLE S.V

RELATIVE AVERAGE LENGTH OF THE NONROBUST 95% NOMINAL LEVEL CI’S

JV/QV = 0.1 JV/QV = 0.2

Activity C̃IStd
1 C̃IStd

2 C̃IStd
3 C̃IStd

4 C̃IStd
5 C̃IStd

1 C̃IStd
2 C̃IStd

3 C̃IStd
4 C̃IStd

5

Panel A: Relative average length of infeasible CI’s
0.50 1.14 0.81 0.66 0.57 0.51 1.35 0.95 0.78 0.68 0.60
1.00 1.02 0.72 0.59 0.51 0.45 1.25 0.88 0.72 0.62 0.56
1.50 0.85 0.60 0.49 0.42 0.38 1.11 0.79 0.64 0.56 0.50
1.75 0.65 0.46 0.38 0.33 0.29 0.97 0.68 0.56 0.48 0.43

Panel B: Relative average length of feasible CI’s
0.50 1.36 0.86 0.68 0.58 0.51 1.41 0.97 0.78 0.67 0.59
1.00 1.38 0.82 0.63 0.53 0.46 1.38 0.93 0.74 0.63 0.56
1.50 1.55 0.81 0.59 0.48 0.41 1.40 0.88 0.69 0.59 0.51
1.75 1.79 0.82 0.55 0.43 0.36 1.52 0.86 0.65 0.54 0.47

Note: In each simulation setting, we compute the average length of each nonrobust CI and report the length as its
ratio with respect to the average length of the robust CI (CIRbst) in the same setting. We fix kn = 100.
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that the robust CI’s are not much wider than their nonrobust counterparts.
Given the size distortion of the nonrobust CI’s, we consider the extra length
of the robust CI’s to be reasonable and likely necessary for achieving good
coverage.

S.B.5. Additional Robustness Checks

We now examine the robustness of the performance of the bias-corrected es-
timator and the robust CI against (i) the choice of k′

n, (ii) the choice of the trun-
cation level un, and (iii) the case with rounding effect. We remind the reader
that k′

n and un are tuning parameters in the computation of the asymptotic
variance estimator Σ̂n; hence they are only relevant for the CI’s. For brevity,
we fix kn = 100. Previous findings in Section S.B.2 appear to be robust to these
changes. The details are given below.

The Choice of k′
n

We set k′
n = Ckn for C = 2	3, or 4 and keep other settings the same as in the

baseline case; the baseline case corresponds to C = 3. As shown in Table S.VI,
the perturbation on k′

n has only a mild effect on the coverage rate of CIRbst.

The Choice of Truncation Threshold un

We set un = C(V̄ (Z	g1	2)nT /T)
1/2Δ0�49

n for C = 4, 5, or 6 and keep other set-
tings the same as in the baseline case; the baseline case corresponds to C = 5.
As shown in Table S.VII, the coverage rate of CIRbst increases in un. In all cases,
the perturbation on the truncation threshold affects the coverage rate by less
than 4 percentage points.

Rounding

Finally, we consider pure rounding on the price level. That is the situa-
tion in which there is no additive noise and we only observe the price level

TABLE S.VI

FINITE-SAMPLE COVERAGE RATES (%) OF THE 95% NOMINAL LEVEL CIRbst FOR VARIOUS
VALUES OF k′

n

JV/QV = 0.1 JV/QV = 0.2

Activity C = 2 C = 3 C = 4 C = 2 C = 3 C = 4

0.50 93.2 93.2 93.2 89.5 90.7 90.7
1.00 94.7 95.1 95.0 91.7 93.4 93.2
1.50 95.7 95.9 96.1 94.2 94.6 94.8
1.75 96.2 96.5 96.5 95.1 95.0 95.5

Note: We set k′
n = Ckn with kn = 100. Other settings are the same as in the baseline case.
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TABLE S.VII

FINITE-SAMPLE COVERAGE RATES (%) OF THE 95% NOMINAL LEVEL CIRbst FOR VARIOUS
TRUNCATION THRESHOLDS

JV/QV = 0.1 JV/QV = 0.2

Activity C = 4 C = 5 C = 6 C = 4 C = 5 C = 6

0.50 89.5 93.2 96.5 89.3 90.7 93.2
1.00 92.5 95.1 97.2 90.6 93.4 95.3
1.50 94.2 95.9 96.9 92.2 94.6 96.2
1.75 94.9 96.5 96.8 93.7 95.0 96.5

Note: We set un = C(V̄ (Z	g1	2)nT /T)
1/2Δ0�49

n . Other settings are the same as in the baseline case.

rounded to the nearest multiple of the tick size. The pure rounding case
serves as an interesting robustness check because it is not covered by Assump-
tion N. As is typical in stock market applications, we set the tick size to be 1
cent and control the severity of rounding by varying the initial log price level
X0 ∈ {log(10)	 log(100)}; the lower the price, the larger the effect of rounding.
We keep other settings the same as in the baseline case. Table S.VIII shows the
median relative bias of Ĥ (panel A) and the coverage rate of CIRbst (panel B).
In all cases, the results are robust with respect to the price level, suggesting
that pure rounding is not very important in our setting. Simulations with both
additive noise and rounding on the price level deliver very similar results and,
thus, are omitted for brevity.

TABLE S.VIII

MEDIAN RELATIVE BIAS AND FINITE-SAMPLE COVERAGE RATES (%) IN THE CASE
WITH PURE ROUNDING

JV/QV = 0.1 JV/QV = 0.2

Activity X0 = log(100) X0 = log(10) X0 = log(100) X0 = log(10)

Panel A: Median relative bias of the bias-corrected estimator
0.50 −5�7 −5�5 −3�3 −3�3
1.00 −5�1 −5�4 −3�2 −3�6
1.50 −3�5 −3�4 −4�6 −4�1
1.75 −0�9 0�2 −4�7 −4�4

Panel B: Finite-sample coverage of the 95% robust CI’s
0.50 94�5 94�2 91�5 91�4
1.00 95�7 95�6 93�3 93�3
1.50 96�4 96�4 94�8 94�8
1.75 96�8 96�7 95�9 95�6
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