Econometrica Supplementary Material

SUPPLEMENT TO "COSTLY SELF-CONTROL AND RANDOM SELF-INDULGENCE" (Econometrica, Vol. 80, No. 3, MAY 2012, 1271–1302)

BY EDDIE DEKEL AND BARTON L. LIPMAN¹

OMITTED PROOF

LEMMA 3: $w_1C_uw_2$ if and only if there exists $v \in \mathcal{V}$ such that $w_i = v\sqrt{1-A_i^2} + A_iu$, i = 1, 2, with $A_1 \ge A_2$.

Recall that $\eta(A) = \sqrt{1 - A^2}$. The proof uses the following lemma.

LEMMA S1: If $w_1C_uw_2$ and $w_2 \notin \{-u, u\}$, then there exists $C, c \ge 0$, at least one strictly positive, such that $w_1 = Cu + cw_2$.²

PROOF: Suppose not. Let

 $W = \{w' \mid w' = Cu + cw_2 + e\mathbf{1}, \text{ for some } C, c \ge 0, \text{ some } e\}.$

Obviously, W is closed, convex, and nonempty. Since $w_1 \notin W$ by hypothesis, there is a separating hyperplane. So there exists a vector $p \neq 0$, such that $p \cdot w_1 for all <math>w' \in W$; that is,

$$p \cdot w_1 < Cp \cdot u + cp \cdot w_2 + ep \cdot \mathbf{1}$$

for all $C, c \ge 0$ and all e.

Since the sign of *e* is arbitrary, this implies that $\sum_k p_k = 0$. Otherwise, we can take $e \to -\infty$ or $e \to \infty$ to make $ep \cdot \mathbf{1}$ arbitrarily negative and force a contradiction. Similarly, $p \cdot u \ge 0$ and $p \cdot w_2 \ge 0$. To see this, suppose to the contrary that $p \cdot u < 0$. Then we can take *C* arbitrarily large to generate a contradiction. Obviously, w_2 is analogous. Finally, we must have $p \cdot w_1 < 0$. Otherwise, take C = c = e = 0 for all *i* to get a contradiction.

Hence there exists a vector p, such that $\sum_k p_k = 0$, $p \cdot u \ge 0$, $p \cdot w_2 \ge 0$, and $p \cdot w_1 < 0$. It is not difficult to show that we can rewrite the vector p as a difference between two interior lotteries, α and β , to obtain the conclusion that $u \cdot \alpha \ge u \cdot \beta$ and $w_2 \cdot \alpha \ge w_2 \cdot \beta$, but $w_1 \cdot \alpha < w_1 \cdot \beta$.

Since $w_1 C_u w_2$, it must be true that $u \cdot \alpha = u \cdot \beta$. We can write $w_2 = \eta(A_2)v_2 + A_2u$. Fix $\varepsilon > 0$ and let

$$\alpha^* = \alpha + \varepsilon [\eta(A_2)u - A_2v_2].$$

¹We acknowledge the National Science Foundation, Grants SES-0820333 (Dekel) and SES-0851590 (Lipman), for support for this research.

²This is a version of the Harsanyi aggregation theorem. See Weymark (1991).

© 2012 The Econometric Society

DOI: 10.3982/ECTA9280

It is not hard to show that if ε is sufficiently small, then α^* is a lottery. Note that $u \cdot \alpha^* = u \cdot \alpha + \varepsilon \eta(A_2)$ as $u \cdot u = 1$ and $u \cdot v_2 = 0$. Since $w_2 \notin \{-u, u\}$, we have $A_2 \in (-1, 1)$, so $\eta(A_2) > 0$. Hence $u \cdot \alpha^* > u \cdot \alpha = u \cdot \beta$. Also,

$$w_2 \cdot \alpha^* = w_2 \cdot \alpha + \varepsilon[\eta(A_2)A_2 - A_2\eta(A_2)] = w_2 \cdot \alpha = w_2 \cdot \beta.$$

For ε sufficiently small, the fact that $w_1 \cdot \alpha < w_1 \cdot \beta$ implies $w_1 \cdot \alpha^* < w_1 \cdot \beta$, contradicting $w_1 C_u w_2$. Q.E.D.

PROOF OF LEMMA 3: If. First, suppose there exists $v \in \mathcal{V}$ such that $w_i = \eta(A_i)v + A_iu$, i = 1, 2, with $A_1 \ge A_2$. If $A_2 = 1$, this requires $A_1 = 1$ also, in which case $w_1 = w_2 = u$ and $w_1C_uw_2$. If $A_2 = -1$, then it is easy to see that every w satisfies wC_uw_2 , so w_1 certainly does.

So suppose $A_2 \in (-1, 1)$, implying $\eta(A_2) > 0$. Obviously, if $A_1 = A_2$, then $w_1 = w_2$, so $w_1C_uw_2$. So without loss of generality, assume $A_1 > A_2$. Then we have

$$w_{1} = A_{1}u + \eta(A_{1})v = \left[A_{1} - A_{2}\frac{\eta(A_{1})}{\eta(A_{2})}\right]u + A_{2}\frac{\eta(A_{1})}{\eta(A_{2})}u + \eta(A_{1})v$$
$$= \left[A_{1} - A_{2}\frac{\eta(A_{1})}{\eta(A_{2})}\right]u + \frac{\eta(A_{1})}{\eta(A_{2})}[A_{2}u + \eta(A_{2})v]$$
$$= \left[A_{1} - A_{2}\frac{\eta(A_{1})}{\eta(A_{2})}\right]u + \frac{\eta(A_{1})}{\eta(A_{2})}w_{2}.$$

The coefficient on w_2 is nonnegative. Also, $A_1 > A_2$ implies that the coefficient on u is strictly positive. To see this, note that the conclusion is obvious if $A_1 > 0 \ge A_2$ since $\eta(A_1)/\eta(A_2) \ge 0$. If $A_1 > A_2 > 0$, the fact that η is strictly decreasing in A in this range implies

$$A_1 - A_2 \frac{\eta(A_1)}{\eta(A_2)} > A_1 - A_2 > 0.$$

If $0 \ge A_1 > A_2$, the fact that η is strictly increasing in A in this range implies exactly the same conclusion. So the coefficient on u is strictly positive. Hence if $u(\alpha) > u(\beta)$ and $w_2(\alpha) \ge w_2(\beta)$, we must have $w_1(\alpha) > w_1(\beta)$. Hence $w_1C_uw_2$.

Only if. Suppose $w_1C_uw_2$. If $w_2 = u$, then this requires $w_1 = u$ and the claim follows trivially. If $w_2 = -u$, again the claim follows trivially, since for any $v \in V$, we have $w_2 = \eta(A_2)v + A_2u$ with $A_2 = -1$. So suppose $w_2 \notin \{-u, u\}$. Then by Lemma S1, there exists $C, c \ge 0$, at least one strictly positive, such that $w_1 = Cu + cw_2$. Since $w_2 \notin \{-u, u\}$, there is a unique $v \in V$ and $A_2 \in (-1, 1)$ such that $w_2 = \eta(A_2)v + A_2u$. Hence $w_1 = c\eta(A_2)v + (C + cA_2)u$. If c = 0, then $w_1 = u$, implying that $w_1 = \eta(A_1)v + A_1u$ with $A_1 = 1 \ge A_2$, so the conclusion follows. If C = 0, we must have c = 1 implying $w_1 = w_2$, so again the conclusion follows. Hence we can assume that C > 0 and c > 0. Thus we have $w_1 = \eta(A_1)v + A_1u$. So we only need to show that $A_1 \ge A_2$.

So suppose $1 > A_2 > A_1$. If $w_1 = -u$, then we cannot have $w_1C_uw_2$, so $A_1 > -1$. Hence $\eta(A_i) > 0$, i = 1, 2. Fix any interior α and $\varepsilon > 0$. Let

$$\beta = \alpha + \varepsilon [\eta(A_2)u - A_2v].$$

It is easy to show that β is a lottery for all sufficiently small ε . Then $u \cdot \beta = u \cdot \alpha + \varepsilon \eta(A_2)$. Since $\eta(A_2) > 0$, then $u(\beta) > u(\alpha)$. Also, it is easy to see that $w_2 \cdot \beta = w_2 \cdot \alpha$. Finally, $w_1 \cdot \beta = w_1 \cdot \alpha + \varepsilon [\eta(A_2)A_1 - A_2\eta(A_1)]$. Hence $w_1 \cdot \beta < w_1 \cdot \alpha$ iff $A_1/\eta(A_1) < A_2/\eta(A_2)$ which holds as $A_1 < A_2$. Thus there is a pair of lotteries for which w_2 agrees with u and w_1 does not, so we cannot have $w_1C_uw_2$, a contradiction. Q.E.D.

REFERENCE

WEYMARK, J. (1991): "A Reconsideration of the Harsanyi–Sen Debate on Utilitarianism," in *Interpersonal Comparisons of Well-Being*, ed. by J. Elster and J. Roemer. Cambridge: Cambridge University Press, 255–320. [1]

Dept. of Economics, Northwestern University, 2003 Sheridan Road, Evanston, IL 60208, U.S.A. and Eitan Berglas School of Economics, Tel Aviv University, Tel Aviv, 69978, Israel; dekel@nwu.edu

and

Dept. of Economics, Boston University, 270 Bay State Road, Boston, MA 02215, U.S.A.; blipman@bu.edu.

Manuscript received May, 2010; final revision received November, 2011.