SUPPLEMENT TO "COSTLY SELF-CONTROL AND RANDOM SELF-INDULGENCE"
 (Econometrica, Vol. 80, No. 3, MAY 2012, 1271-1302)

By Eddie Dekel and Barton L. Lipman ${ }^{1}$

OMITTED PROOF

LEMMA 3: $w_{1} C_{u} w_{2}$ if and only if there exists $v \in \mathcal{V}$ such that $w_{i}=v \sqrt{1-A_{i}^{2}}+$ $A_{i} u, i=1,2$, with $A_{1} \geq A_{2}$.

Recall that $\eta(A)=\sqrt{1-A^{2}}$.
The proof uses the following lemma.
Lemma S1: If $w_{1} C_{u} w_{2}$ and $w_{2} \notin\{-u, u\}$, then there exists $C, c \geq 0$, at least one strictly positive, such that $w_{1}=C u+c w_{2} .{ }^{2}$

Proof: Suppose not. Let

$$
W=\left\{w^{\prime} \mid w^{\prime}=C u+c w_{2}+e \mathbf{1}, \text { for some } C, c \geq 0, \text { some } e\right\} .
$$

Obviously, W is closed, convex, and nonempty. Since $w_{1} \notin W$ by hypothesis, there is a separating hyperplane. So there exists a vector $p \neq 0$, such that p. $w_{1}<p \cdot w^{\prime}$ for all $w^{\prime} \in W$; that is,

$$
p \cdot w_{1}<C p \cdot u+c p \cdot w_{2}+e p \cdot \mathbf{1}
$$

for all $C, c \geq 0$ and all e.
Since the sign of e is arbitrary, this implies that $\sum_{k} p_{k}=0$. Otherwise, we can take $e \rightarrow-\infty$ or $e \rightarrow \infty$ to make $e p \cdot \mathbf{1}$ arbitrarily negative and force a contradiction. Similarly, $p \cdot u \geq 0$ and $p \cdot w_{2} \geq 0$. To see this, suppose to the contrary that $p \cdot u<0$. Then we can take C arbitrarily large to generate a contradiction. Obviously, w_{2} is analogous. Finally, we must have $p \cdot w_{1}<0$. Otherwise, take $C=c=e=0$ for all i to get a contradiction.

Hence there exists a vector p, such that $\sum_{k} p_{k}=0, p \cdot u \geq 0, p \cdot w_{2} \geq 0$, and $p \cdot w_{1}<0$. It is not difficult to show that we can rewrite the vector p as a difference between two interior lotteries, α and β, to obtain the conclusion that $u \cdot \alpha \geq u \cdot \beta$ and $w_{2} \cdot \alpha \geq w_{2} \cdot \beta$, but $w_{1} \cdot \alpha<w_{1} \cdot \beta$.

Since $w_{1} C_{u} w_{2}$, it must be true that $u \cdot \alpha=u \cdot \beta$. We can write $w_{2}=\eta\left(A_{2}\right) v_{2}+$ $A_{2} u$. Fix $\varepsilon>0$ and let

$$
\alpha^{*}=\alpha+\varepsilon\left[\eta\left(A_{2}\right) u-A_{2} v_{2}\right] .
$$

[^0]It is not hard to show that if ε is sufficiently small, then α^{*} is a lottery. Note that $u \cdot \alpha^{*}=u \cdot \alpha+\varepsilon \eta\left(A_{2}\right)$ as $u \cdot u=1$ and $u \cdot v_{2}=0$. Since $w_{2} \notin\{-u, u\}$, we have $A_{2} \in(-1,1)$, so $\eta\left(A_{2}\right)>0$. Hence $u \cdot \alpha^{*}>u \cdot \alpha=u \cdot \beta$.

Also,

$$
w_{2} \cdot \alpha^{*}=w_{2} \cdot \alpha+\varepsilon\left[\eta\left(A_{2}\right) A_{2}-A_{2} \eta\left(A_{2}\right)\right]=w_{2} \cdot \alpha=w_{2} \cdot \beta .
$$

For ε sufficiently small, the fact that $w_{1} \cdot \alpha<w_{1} \cdot \beta$ implies $w_{1} \cdot \alpha^{*}<w_{1} \cdot \beta$, contradicting $w_{1} C_{u} w_{2}$.

Proof of Lemma 3: $I f$. First, suppose there exists $v \in \mathcal{V}$ such that $w_{i}=$ $\eta\left(A_{i}\right) v+A_{i} u, i=1,2$, with $A_{1} \geq A_{2}$. If $A_{2}=1$, this requires $A_{1}=1$ also, in which case $w_{1}=w_{2}=u$ and $w_{1} C_{u} w_{2}$. If $A_{2}=-1$, then it is easy to see that every w satisfies $w C_{u} w_{2}$, so w_{1} certainly does.

So suppose $A_{2} \in(-1,1)$, implying $\eta\left(A_{2}\right)>0$. Obviously, if $A_{1}=A_{2}$, then $w_{1}=w_{2}$, so $w_{1} C_{u} w_{2}$. So without loss of generality, assume $A_{1}>A_{2}$. Then we have

$$
\begin{aligned}
w_{1} & =A_{1} u+\eta\left(A_{1}\right) v=\left[A_{1}-A_{2} \frac{\eta\left(A_{1}\right)}{\eta\left(A_{2}\right)}\right] u+A_{2} \frac{\eta\left(A_{1}\right)}{\eta\left(A_{2}\right)} u+\eta\left(A_{1}\right) v \\
& =\left[A_{1}-A_{2} \frac{\eta\left(A_{1}\right)}{\eta\left(A_{2}\right)}\right] u+\frac{\eta\left(A_{1}\right)}{\eta\left(A_{2}\right)}\left[A_{2} u+\eta\left(A_{2}\right) v\right] \\
& =\left[A_{1}-A_{2} \frac{\eta\left(A_{1}\right)}{\eta\left(A_{2}\right)}\right] u+\frac{\eta\left(A_{1}\right)}{\eta\left(A_{2}\right)} w_{2} .
\end{aligned}
$$

The coefficient on w_{2} is nonnegative. Also, $A_{1}>A_{2}$ implies that the coefficient on u is strictly positive. To see this, note that the conclusion is obvious if $A_{1}>0 \geq A_{2}$ since $\eta\left(A_{1}\right) / \eta\left(A_{2}\right) \geq 0$. If $A_{1}>A_{2}>0$, the fact that η is strictly decreasing in A in this range implies

$$
A_{1}-A_{2} \frac{\eta\left(A_{1}\right)}{\eta\left(A_{2}\right)}>A_{1}-A_{2}>0
$$

If $0 \geq A_{1}>A_{2}$, the fact that η is strictly increasing in A in this range implies exactly the same conclusion. So the coefficient on u is strictly positive. Hence if $u(\alpha)>u(\beta)$ and $w_{2}(\alpha) \geq w_{2}(\beta)$, we must have $w_{1}(\alpha)>w_{1}(\beta)$. Hence $w_{1} C_{u} w_{2}$.

Only if. Suppose $w_{1} C_{u} w_{2}$. If $w_{2}=u$, then this requires $w_{1}=u$ and the claim follows trivially. If $w_{2}=-u$, again the claim follows trivially, since for any $v \in \mathcal{V}$, we have $w_{2}=\eta\left(A_{2}\right) v+A_{2} u$ with $A_{2}=-1$. So suppose $w_{2} \notin\{-u, u\}$. Then by Lemma S1, there exists $C, c \geq 0$, at least one strictly positive, such that $w_{1}=C u+c w_{2}$. Since $w_{2} \notin\{-u, u\}$, there is a unique $v \in \mathcal{V}$ and $A_{2} \in(-1,1)$ such that $w_{2}=\eta\left(A_{2}\right) v+A_{2} u$. Hence $w_{1}=c \eta\left(A_{2}\right) v+\left(C+c A_{2}\right) u$. If $c=0$,
then $w_{1}=u$, implying that $w_{1}=\eta\left(A_{1}\right) v+A_{1} u$ with $A_{1}=1 \geq A_{2}$, so the conclusion follows. If $C=0$, we must have $c=1$ implying $w_{1}=w_{2}$, so again the conclusion follows. Hence we can assume that $C>0$ and $c>0$. Thus we have $w_{1}=\eta\left(A_{1}\right) v+A_{1} u$. So we only need to show that $A_{1} \geq A_{2}$.

So suppose $1>A_{2}>A_{1}$. If $w_{1}=-u$, then we cannot have $w_{1} C_{u} w_{2}$, so $A_{1}>$ -1 . Hence $\eta\left(A_{i}\right)>0, i=1,2$. Fix any interior α and $\varepsilon>0$. Let

$$
\beta=\alpha+\varepsilon\left[\eta\left(A_{2}\right) u-A_{2} v\right] .
$$

It is easy to show that β is a lottery for all sufficiently small ε. Then $u \cdot \beta=$ $u \cdot \alpha+\varepsilon \eta\left(A_{2}\right)$. Since $\eta\left(A_{2}\right)>0$, then $u(\beta)>u(\alpha)$. Also, it is easy to see that $w_{2} \cdot \beta=w_{2} \cdot \alpha$. Finally, $w_{1} \cdot \beta=w_{1} \cdot \alpha+\varepsilon\left[\eta\left(A_{2}\right) A_{1}-A_{2} \eta\left(A_{1}\right)\right]$. Hence $w_{1} \cdot \beta<w_{1} \cdot \alpha$ iff $A_{1} / \eta\left(A_{1}\right)<A_{2} / \eta\left(A_{2}\right)$ which holds as $A_{1}<A_{2}$. Thus there is a pair of lotteries for which w_{2} agrees with u and w_{1} does not, so we cannot have $w_{1} C_{u} w_{2}$, a contradiction. Q.E.D.

REFERENCE

Weymark, J. (1991): "A Reconsideration of the Harsanyi-Sen Debate on Utilitarianism," in Interpersonal Comparisons of Well-Being, ed. by J. Elster and J. Roemer. Cambridge: Cambridge University Press, 255-320. [1]

Dept. of Economics, Northwestern University, 2003 Sheridan Road, Evanston, IL 60208, U.S.A. and Eitan Berglas School of Economics, Tel Aviv University, Tel Aviv, 69978, Israel; dekel@nwu.edu

and

Dept. of Economics, Boston University, 270 Bay State Road, Boston, MA 02215, U.S.A.; blipman@bu.edu.

[^0]: ${ }^{1}$ We acknowledge the National Science Foundation, Grants SES-0820333 (Dekel) and SES0851590 (Lipman), for support for this research.
 ${ }^{2}$ This is a version of the Harsanyi aggregation theorem. See Weymark (1991).

