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APPENDIX A

PROOF OF LEMMA 1: Since e−ρτiA(ti� τi) = κb(τi)
∫ ti+τi
ti

c1−α
t e−ρ(t−ti) dt, we

have

lim
τi→0

τib(τi)= lim
τi→0

e−ρτiA(ti� τi)
κ

τi

∫ ti+τi

ti

c1−α
t e−ρ(t−ti) dt

�(A.1)

Equation (9a) states that the numerator on the right hand side of (A.1)
has a positive finite limit as τi → 0. The limit of the denominator is
limτi→0

κ
τi

∫ ti+τi
ti

c1−α
t e−ρ(t−ti) dt = κc1−α

t+i
, which is positive and finite since we are

confining attention to cases with positive (and finite) consumption. Therefore,
statement (ii) holds.31 Statement (iii) follows from the fact that e−ρτiA(ti� τi)=
κb(τi)

∫ ti+τi
ti

c1−α
t e−ρ(t−ti) dt and (9b) along with the assumptions that κ > 0 and

ct > 0.
Equation (11) and κ > 0 can be used to rewrite (9c) as

b(τi)

∫ ti+τi

ti

c1−α
t e−ρ(t−ti) dt + e−ρτib(τi+1)

∫ ti+1+τi+1

ti+1

c1−α
t e−ρ(t−ti+1) dt(A.2)

> b(τi + τi+1)

∫ ti+τi+τi+1

ti

c1−α
t e−ρ(t−ti) dt�

To see the implications of (A.2) for b(τi), we first state the following lemma.

LEMMA 3: Suppose q1b(z1)+ q2b(z2) > (q1 + q2)b(z1 + z2) for all positive qi
and zi, i= 1�2, and that b(z) > 0 for all z > 0. Then b(z) is nonincreasing.

PROOF: The assumption that q1b(z1) + q2b(z2) > (q1 + q2)b(z1 + z2) for
all positive qi and zi, i = 1�2, implies that q1[b(z1)− b(z1 + z2)] + q2[b(z2)−

31Let γ = limτ→0 τb(τ)= limτ→0
τ

1/b(τ) , which, by L’Hopital’s rule (and assuming that the deriva-
tive of 1/b(τ) exists and is non-zero in a neighborhood of τ = 0) implies γ = 1

limτ→0 −b′(τ)/b[(τ)]2
or limτ→0

b′(τ)
b[(τ)]2 = −γ−1. Then limτ→0

τb′(τ)
b(τ)

= limτ→0
τb(τ)b′(τ)

[b(τ)]2 = [limτ→0 τb(τ)][limτ→0
b′(τ)

[b(τ)]2 ] =
γ(−γ−1)= −1.
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b(z1 +z2)]> 0 for all positive qi and zi, i= 1�2. Suppose that, contrary to what
is to be proved, for some positive z1 and z2, b(z1) < b(z1 + z2). Then for any
q1 >−q2

b(z2)−b(z1+z2)

b(z1)−b(z1+z2)
, q1[b(z1)− b(z1 + z2)] + q2[b(z2)− b(z1 + z2)]< 0, which

is a contradiction. Therefore, b(z1) ≥ b(z1 + z2) for any positive z1 and z2.
Q.E.D.

Applying Lemma 3 to (A.2) while setting z1 = τi, z2 = τi+1, q1 = ∫ ti+τi
ti

c1−α
t ×

e−ρ(t−ti) dt, and q2 = e−ρτi
∫ ti+1+τi+1
ti+1

c1−α
t e−ρ(t−ti) dt, implies that b(τ) is nonin-

creasing, which is statement (i) in Lemma 1. Q.E.D.

PROOF OF PROPOSITION 1: We start by proving the following lemma.

LEMMA 4: Optimal behavior requires ysyb = 0. If the optimal asset transfer
increases x, then ys < 0. If the optimal transfer decreases x, then yb > 0.

PROOF: To prove that ysyb = 0, suppose ysyb �= 0, which implies that ys < 0
and yb > 0. Now consider reducing yb by ε > 0 and increasing ys by ε > 0,
which will have no effect on the value of S relative to the original transfer, but
will increase X by (ψs +ψb)ε > 0 relative to the original transfer by reducing
the amount of proportional transactions cost incurred. Therefore, it could not
have been optimal for ysyb �= 0. Hence, ysyb = 0.

The value function V (X�S) is strictly increasing in X and S, so an optimal
transfer will never decrease both X and S. Therefore, if the optimal transfer
increases x ≡ X

S
, then the optimal transfer cannot decrease X and must de-

crease S, which implies that yb = 0 and ys < 0. Similarly, if the optimal transfer
decreases x ≡ X

S
, then the optimal transfer cannot decrease S and must de-

crease X , which implies that ys = 0 and yb > 0. Q.E.D.

Proof of statement (ii)(a). Suppose that x < ω1. The definition of ω1 in (25)
implies that v(x) �= ṽ(x). The optimal asset transfer will change the value of x
to some value z for which v(z)= ṽ(z). The definition of ω1 implies that such a
z cannot be less than ω1, so the optimal transfer increases x. Lemma 4 implies
that ys < 0.

Proof of statement (ii)(b). Suppose that on an observation date normalized
to be t = 0, X0 < ω1S0. Statement (ii)(a) implies that ys < 0. Let (X∗� S∗)
be the value of (X0+� S0+) resulting from the optimal value of ys. Define
P ≡ {(X�S) : X = X∗ + (1 − ψs)z and S = S∗ − z for z ∈ (0� S∗)}. Because
(X∗� S∗) is the result of an optimal transfer of assets from the investment
portfolio to the transactions account (and the fixed costs θXX0 and θSS0

have already been paid to reach (X∗� S∗)), there is no (X∗∗� S∗∗) ∈ P such
that V (x∗∗S∗∗� S∗∗) ≥ V (x∗S∗� S∗) and V (x∗∗S∗∗� S∗∗) > Ṽ (x∗S∗� S∗). [If there
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were such a (X∗∗� S∗∗), then either (a) V (x∗∗S∗∗� S∗∗) > V (x∗S∗� S∗) or (b)
V (x∗∗S∗∗� S∗∗) = V (x∗S∗� S∗). If (a) holds, then (X∗� S∗) is not optimal. If (b)
holds, then V (x∗S∗� S∗) > Ṽ (x∗S∗� S∗) and hence it cannot be optimal to re-
main at (X∗� S∗).] Now suppose that x∗ < π1. Then consider (X∗∗∗� S∗∗∗) ∈ P
for which x∗∗∗ ≡ X∗∗∗

S∗∗∗ is between x∗ and π1. The definition of π1 implies that
V (x∗∗∗S∗∗∗� S∗∗∗)≥ V (x∗S∗� S∗) and V (x∗∗∗S∗∗∗� S∗∗) > Ṽ (x∗S∗� S∗), which con-
tradicts the statement that there is no (X∗∗� S∗∗) ∈ P such that V (x∗∗S∗∗� S∗∗)≥
V (x∗S∗� S∗) and V (x∗∗S∗∗� S∗∗) > Ṽ (x∗S∗� S∗). Hence, x∗ <π1 is not optimal.

Proof of statement (ii)(c). Consider the point (X0� S0) with x0 ≡ X0
S0

=ω1 and
define D as the set of (X�S) for which x < ω1 and from which the consumer
can instantaneously move to (X0� S0) by transferring assets from the invest-
ment portfolio to the transactions account. Specifically,

D≡ {
(X�S) with X <ω1S :(A.3)

∃ys < 0 for which (1 − θX)X − (1 −ψs)ys =X0 and

(1 − θS)S + ys = S0

}
�

Define F as the set of (X�S) for which x ≥ ω1 and to which the consumer
can instantaneously move from any point in D by transferring assets from the
investment portfolio to the transactions account. Specifically,

F ≡ {
(X�S) with X ≥ω1S :(A.4)

∃ys < 0 for which X =X0 − (1 −ψs)ys and S = S0 + ys ≥ 0
}
�

Consider two arbitrary points (X1� S1) and (X2� S2) in set D. Since x1 < ω1

and x2 < ω1, the optimal value of ys will be strictly negative starting from ei-
ther point. Moreover, ys must be large enough in absolute value so that the
post-transfer value of (X�S) satisfies x≡ X

S
≥ω1, because it is always optimal

to transfer assets from the investment portfolio to the transactions account
from any point in set D. Therefore, the post-transfer value of (X�S) will be
an element of set F . Thus, regardless of whether the consumer starts from
point (X1� S1) or (X2� S2), the consumer’s choice of asset transfer can be de-
scribed as choosing (X+� S+) ∈ F to maximize the value function. Therefore,
V (X1� S1) = V (X2� S2), so all of the points in set D lie on the same indiffer-
ence curve of V (X�S). The slope of this indifference curve is dX

dS
= dX

dys
dys

dS
=

−(1 −ψs) 1−θS
1−θX , which proves statement (ii)(c).

Proof of statement (ii)(d). We have shown that if x < ω1, then m(x) =
(1 −ψs) 1−θS

1−θX . The expression for V (Xtj � Stj ) in (21) can be used to rewrite the

marginal rate of substitution, m(xtj )≡ VS(Xtj �Stj )

VX(Xtj �Stj )
, as m(xtj )= (1−α)v(xtj )

v′(xtj )
− xtj , so
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that

(1 − α)v(x)
v′(x)

− x= (1 −ψs) 1 − θS
1 − θX for 0 ≤ x <ω1�(A.5)

which implies

v(x)=
[
(1 − θX)x+ (1 − θS)(1 −ψs)
(1 − θX)ω1 + (1 − θS)(1 −ψs)

]1−α
v(ω1) for 0 ≤ x≤ω1�(A.6)

Proof of statement (i). We start by proving the following lemma.

LEMMA 5: For sufficiently small x > 0, 1
1−α ṽ(x) <

1
1−αv(x) for all x ∈ (0�x).

PROOF: Substitute the expression for U(C(tj� τj)) from (16) into the re-
stricted value function in (23) to obtain

Ṽ (Xtj � Stj )(A.7)

= max
C(tj �τj)�φj�τj

[
1 − (1 − α)κb(τj)

] 1
1 − α

[
h(τj)

]α[
C(tj� τj)

]1−α

+ e−ρτjEtj
{
V

(
erLτj

(
Xtj −C(tj� τj)

)
�R(tj� τj)Stj

)}
�

Equation (**) in footnote 18 states that C(tj� τj)= h(τj)ct+j , so that

[
1 − (1 − α)κb(τj)

] 1
1 − α

[
h(τj)

]α[
C(tj� τj)

]1−α
(A.8)

= 1
1 − α

[
1 − (1 − α)κb(τj)

]
h(τj)c

1−α
t+j
�

Substitute (A.8) into (A.7) to obtain

Ṽ (Xtj � Stj )= max
C(tj �τj)�φj�τj

1
1 − α

[
1 − (1 − α)κb(τj)

]
h(τj)c

1−α
t+j

(A.9)

+ e−ρτjEtj
{
V

(
erLτj

(
Xtj −C(tj� τj)

)
�R(tj� τj)Stj

)}
�

Because the choice of C(tj� τj) must satisfy the constraint Xtj − C(tj� τj) ≥ 0,
the partial derivative with respect to C(tj� τj) of the maximand on the right
hand side of (A.7) must be nonnegative. Therefore, differentiation of this max-
imand with respect to C(tj� τj) yields[

1 − (1 − α)κb(τj)
][
h(τj)

]α[
C(tj� τj)

]−α
(A.10)

− e−(ρ−rL)τjEtj
{
VX

(
erLτj

(
Xtj −C(tj� τj)

)
�R(tj� τj)Stj

)} ≥ 0�
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Since VX( ) > 0, [h(τj)]α[C(tj� τj)]−α > 0, and e−(ρ−rL)τj > 0, (A.10) implies that

1 − (1 − α)κb(τ∗
j

)
> 0�(A.11)

where τ∗
j is the value of τj that maximizes the restricted value function. Equa-

tion (A.11) implies that we can confine attention to values of τj that are greater
than τ ≡ inf{τ > 0 :κ(1 − α)b(τ) < 1}. If α > 1, then 1 − κ(1 − α)b(τj) > 0 for
any positive value of τj , so τ = 0. However, if α< 1, Lemma 1 implies τ > 0.

Now we consider the cases in which α< 1 and α> 1 separately.
Case I: α < 1. When α< 1, τ∗ > τ > 0. Since C(tj� τj)= h(τj)ct+j , then

ct+j = C(tj� τ
∗
j )

h(τ∗
j )

<
Xtj

h(τ)
�(A.12)

where the inequality follows from the constraint C(tj� τ∗
j ) ≤Xtj and the facts

that h(τj) is strictly increasing in τj and τ∗
j > τ. Equation (A.12) implies

limXtj→0 ct+j = 0. Therefore, taking the limits of both sides of (A.9) as Xtj → 0,
and using the facts that 0 ≤ C(tj� τ∗

j )≤Xtj and τ∗
j > τ > 0 implies

lim
Xtj→0

Ṽ (Xtj � Stj )= lim
Xtj→0

e−ρτ∗j Etj
{
V

(
0�R

(
tj� τ

∗
j

)
Stj

)}
(A.13)

= lim
Xtj→0

e−ρτ∗j Etj
{[
R

(
tj� τ

∗
j

)]1−α} 1
1 − αS

1−α
tj
v(0)�

Use (B.9) and the fact that τ∗ > τ to obtain

lim
Xtj→0

Ṽ (Xtj � Stj ) <
1

1 − αS
1−α
tj
v(0)= V (0� Stj )�(A.14)

Case II: α > 1. We start by showing that optimal ys(tj) < 0, when xtj = 0.
Suppose, contrary to what is to be proved, that it is optimal to set ys(tj) = 0
when xtj = 0, which implies that ct = 0 for all t ∈ [tj� tj+1] and xtj+1 = 0. In turn,
xtj+1 = 0 implies ct = 0 for all t ∈ [tj+1� tj+2] and so on ad infinitum. Accordingly,

1
1−αv(0) is −∞ when α> 1. Clearly, 1

1−αv(0) is smaller than the value associated
with the policy of setting ys(tj) = −(1 − θS)Stj , so that Xt+j = (1 − ψs)(1 −
θS)Stj and then consuming optimally from the transactions account over the
infinite future, never incurring any information costs or transactions costs. As
we show in (A.26), the value of such a policy is given by 1

1−αχ
−αX1−α

t+j
, which is

finite. Accordingly, the policy of setting ys(tj)= 0 whenever xtj = 0 cannot be
optimal.
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We show next that limxtj→0
1

1−αv(xtj ) ≥ 1
1−αv(0). Let x∗

t+j
denote the optimal

value of xt+j associated with the optimal transfer ys(tj) when xtj = 0. Value

matching implies that 1
1−αv(0)S

1−α
tj

= 1
1−αv(x

∗
t+j
)S1−α

t+j
. Now we will compute the

size of the transfer ys that changes xt from arbitrary xtj at time tj to xt+j at time
t+j . When yb = 0, (4) and (5) imply that

x∗
t+j

=
(1 − θX)xtj − (1 −ψs) y

s

Stj

(1 − θS)+ ys

Stj

�

Solving for ys

Stj
gives

ys

Stj
=
(1 − θX)xtj − (1 − θS)x∗

t+j

x∗
t+j

+ 1 −ψs �

Furthermore, when xtj = 0, then
S
t+
j

Stj
= (1 − θS) + ys

Stj
= (1 − θs) −

(1−θS)x∗
t+
j

x∗
t+
j

+1−ψs =
(1 − θs) 1−ψs

x∗
t+
j

+1−ψs and, accordingly,

v(0)
v(x∗

t+j
)

=
(
(1 − θs) 1 −ψs

x∗
t+j

+ 1 −ψs
)1−α

�(A.15)

Now take ε > 0 and suppose that xtj = ε. For sufficiently small ε > 0, set

ys

Stj
=

(1−θX)ε−(1−θS)x∗
t+
j

x∗
t+
j

+1−ψs , which will be negative as ε approaches 0. By construc-

tion, this feasible transfer implies that xt+j = x∗
t+j

. Moreover,
S
t+
j

Stj
= (1 − θs) +

(1−θX)ε−(1−θS)x∗
t+
j

x∗
t+
j

+1−ψs = (1 − θs) 1−ψs
x∗
t+
j

+1−ψs + (1 − θX) ε
x∗
t+
j

+1−ψs . Accordingly,

1
1 − αv

(
x∗
t+j

)[
(1 − θs) 1 −ψs

x∗
t+j

+ 1 −ψs + (1 − θX) ε

x∗
t+j

+ 1 −ψs
]1−α

(A.16)

≤ 1
1 − αv(ε)�
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Using (A.15) to solve for v(x∗
t+j
), substituting the resulting expression in-

side (A.16), and taking limits on both sides of (A.16) as ε = xtj → 0 implies
limxtj→0

1
1−αv(xtj )≥ 1

1−αv(0).
Next we show that limxtj→0 v(xtj ) = v(0). The proof proceeds by contra-

diction. Indeed, suppose that limxtj→0
1

1−αv(xtj ) >
1

1−αv(0). Then for any tj ,
it cannot be optimal to set C(tj� τj) = Xtj , so that Xtj+1 = 0. [To see why,
suppose otherwise. If it were optimal to set Xtj+1 = 0, then consider the
following deviation: Reduce C(tj� τj) by an arbitrarily small ε > 0, so that
Xtj+1 = erLτjε. This deviation is feasible for sufficiently small ε > 0, because
C(tj� τj) = 0 can never be optimal when α > 1. The deviation changes the
value of the program by Λ(ε) ≡ [1 − (1 − α)κb(τj)] × [U(C(tj� τj) − ε) −
U(C(tj� τj))] + e−ρτjEtj {[V (erLτjε� Stj+1) − V (0� Stj+1)]}. For given Xtj and τj ,
limε→0[1 − (1 − α)κb(τj)] × [U(C(tj� τj) − ε) − U(C(tj� τj))] = 0, so that
limε→0Λ(ε) = e−ρτj 1

1−α limε→0Etj {S1−α
tj+1

[v(erLτj ε
Stj+1

) − v(0)]}. Since the function
1

1−αv(xt) is increasing in xt , and α > 1, it follows that v( e
rLτj ε
Stj+1

) is increasing as

ε decreases to 0. Therefore, the monotone convergence theorem, along with
the supposition that limxtj→0

1
1−αv(xtj ) >

1
1−αv(0), implies that limε→0Λ(ε) =

e−ρτj 1
1−αEtj (S

1−α
tj+1

[limε→0 v(
e
rLτj ε
Stj+1

)− v(0)]) > 0. Accordingly, there always exists

small enough ε > 0, so that the deviation dominates the supposed optimal
path, a contradiction.]

Next we show that for any δ > 0, there exists a z ∈ (0� δ) such that if xtj = z
on observation date tj , then ys(tj) < 0. The proof proceeds by contradiction.
Suppose otherwise, that is, suppose that there exists a δ > 0, such that it is op-
timal to set ys = 0 for all xtj ∈ (0� δ). Now fix T > 0, and take xtj < δ. Let tj+1

denote the last observation date before tj + T . We will show next that under
this (counterfactual) supposition, the discounted sum of the observation costs∑

tk∈[tj �tj+1]e
−ρ(tk−tj )(1 − α)κb(τk)U(C(tk� τk)) approaches infinity with proba-

bility approaching 1 as xtj → 0.
To start, we note that because α> 1, it must be the case that ct+j > 0. (Other-

wise utility would be negatively infinite between t+j and t+j + τj , and that would
make the value function unboundedly negative.) Since C(Xtj ) = ct+j h(τj) <

Xtj , this implies that limxtj→0 h(τj) = 0 or, equivalently, limxtj→0 τj = 0. Now

note that xtj+1 < xtj
e
rLτj

R(tj �τj)
, so that limxtj→0 Pr(xtj+1 > δ)= 0.

More generally, for any ε ∈ (0� δ), as long as (i) xtj < ε and (ii) xtj ×
maxtk∈[tj �tj ]

∏
ti∈[tj �tk]

erLτi

R(ti�τi)
< ε, it follows that maxtk∈[tj �tj+1] xtk < xtj ×

maxtk∈[tj �tj ]
∏

ti∈[tj �tk]
erLτi

R(ti�τi)
< ε. Next we show that the probability that

maxtk∈[tj �tj+1] xtk ≤ ε approaches 1 as xtj approaches 0. Indeed, since xtj ×
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maxtk∈[tj �tj ]
∏

ti∈[tj �tk]
erLτi

R(ti�τi)
< ε implies that maxtk∈[tj �tj+1] xtk < ε, we obtain

Pr
(

max
tk∈[tj �tj+1]

xtk > ε
)

(A.17)

< Pr
(
xtj max

tk∈[tj �tj ]

∏
ti∈[tj �tk]

erLτi

R(ti� τi)
> ε

)

= Pr
(

max
tk∈[tj �tj ]

∑
ti∈[tj �tk]

(
rLτi − logR(ti� τi)

)
> logε− logxtj

)
�

Before proceeding, we make a few observations. We start by noting that
R(ti� τi) = φi

Pti+τi
Pti

+ (1 − φi)e
rf τi = φie

(μ−σ2/2)τi+σ�Bti+1 + (1 − φi)e
rf τi , where

�Bti+1 ≡ Bti+τi −Bti denotes the increments of the Brownian motion Bt between
ti + τi and ti. Since μ− σ2

2 > rf , it follows that R(ti� τi) > φierf τi+σ�Bti+1 + (1 −
φi)e

rf τi = erf τi [φieσ�Bti+1 + (1 −φi)]. Therefore, letting g(y)≡ log[φiey + (1 −
φi)], we obtain logR(ti� τi) > rf τi + g(σ�Bti+1), so that rLτi − logR(ti� τi) <
(rL − rf )τi − g(σ�Bti+1). Letting zti+1 ≡ (rL − rf )τi − g(σ�Bti+1), it follows that

Pr
(

max
tk∈[tj �tj ]

∑
ti∈[tj �tk]

(
rLτi − logR(ti� τi)

)
> logε− logxtj

)
(A.18)

< Pr
(

max
tk∈[tj �tj ]

∑
ti∈[tj �tk]

zti+1 > logε− logxtj

)
�

We next observe that g(0) = 0� g′(y) = φie
y

φie
y+(1−φi) ≤ 1� and g′′(y) =

φie
y (1−φi)

[φiey+(1−φi)]2 ≥ 0. Therefore, if y > 0, then g(y) = g(0) + ∫ y

0 g
′(y)dy ≤ y . By

a similar logic, if y < 0, then g(y) ≥ y . Accordingly, y2 ≥ g2(y) and also
E(y2) ≥ E(g2(y)). Finally, since g′′(y) ≥ 0, Jensen’s inequality implies that
E(g(y))≥ g(E(y)). Accordingly,

E(zti+1)= (rL − rf )τi −E
(
g(σ�Bti+1)

) ≤ (rL − rf )τi − g
[
E(σ�Bti+1)

]
(A.19)

= (rL − rf )τi < 0�

where the last equality in (A.19) follows from E(�Bti+1)= 0 and g(0)= 0. Now
let Ztl+1 ≡ ∑

tj≤ti≤tl (zti+1 −Eti(zti+1)). By construction, Ztl+1 is a martingale, and
Jensen’s inequality implies that |Ztl+1 | is a nonnegative submartingale.32 Equa-
tion (A.19) implies that maxtk∈[tj �tj ]

∑
ti∈[tj �tk]zti+1 < maxtk∈[tj �tj ]Ztk+1 ≤

32Etl |Ztl+1| =Etl |Ztl + ztl+1 −Etl (ztl+1)|> |Ztl +Etl (ztl+1 − ztl+1)| = |Ztl |�
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maxtk∈[tj �tj ] |Ztk+1 | and, therefore,

Pr
(

max
tk∈[tj �tj ]

∑
ti∈[tj �tk]

zti+1 > logε− logxtj

)
(A.20)

< Pr
(

max
tk∈[tj �tj ]

|Ztk+1 |> logε− logxtj
)

≤
Etj [Z2

tj+1
]

(logε− logxtj )
2 �

where the last inequality follows from Doob’s inequality for submartingales
applied to the process |Ztl+1 |. Since Ztl+1 is a martingale,

Etj
[
Z2
tj+1

] = Etj

{ ∑
ti∈[tj �tj ]

(
zti+1 −Eti(zti+1)

)2
}

(A.21)

= Etj

{ ∑
ti∈[tj �tj ]

Eti
{
g(σ�Bti+1)−Eti

[
g(σ�Bti+1)

]}2
}

= Etj

{ ∑
ti∈[tj �tj ]

Eti
[
g(σ�Bti+1)

]2 −
∑

ti∈[tj �tj ]

[
Etig(σ�Bti+1)

]2
}

≤ Etj
{ ∑
ti∈[tj �tj ]

Eti
[
g(σ�Bti+1)

]2
}

≤ Etj
{ ∑
ti∈[tj �tj ]

(σ�Bti+1)
2

}
≤ σ2T�

where the next to last inequality follows from g2(y) ≤ y2 for any y . Equations
(A.17), (A.18), (A.20), and (A.21) imply limxtj→0 Pr(maxtk∈[tj �tj+1] xtk > ε) = 0.
Since ε is an arbitrary number in (0� δ), it can be chosen arbitrarily close
to 0. In turn, this implies that for any tk ∈ [tj� tj+1], xtk approaches 0 with
probability 1 as xtj becomes arbitrarily small. Accordingly, the lengths τk of
all the inattention intervals between tj and tj+1 approach 0 with probability
approaching 1. Using this result together with (8) and assumption (9a) im-
plies that the discounted sum of the observation costs

∑
tk∈[tj �tj+1]e

−ρ(tk−tj )(1 −
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α)κb(τk)U(C(tk� τk)) approaches infinity with probability approaching 1.33

Accordingly, there cannot exist a δ > 0, such that ys = 0 for all xtj < δ.
This finding implies that for any δ > 0 (however small), there exists a

z ∈ (0� δ) such that if xtj = z on observation date tj , then optimal ys(tj) < 0.
Accordingly, it is possible to find a set of positive values X = [x(1)� x(2)� � � �]
with the properties that (i) infx∈X X =0 and (ii) if xtj ∈ X on observation date
tj , then ys(tj) < 0. Now take some x(n) ∈ X . By definition, if on observation
date tj , xtj = x(n), then it is optimal to transfer funds from the investment
portfolio to the transactions account by setting ys(tj) < 0. Let x(n∗) denote
the associated post-transfer value of xt+j . Since 1

1−αS
1−α
tj
v(xtj )= 1

1−αS
1−α
t+j
v(xt+j ),

S
t+
j

Stj
= (1 − θS)+

(1−θX)xtj−(1−θS)x∗
t+
j

x∗
t+
j

+1−ψs , xtj = x(n), and xt+j = x(n∗), we have that

v(x(n))

v(x(n
∗))

=
(

1 − θS + (1 − θX)x(n) − (1 − θS)x(n∗)

x(n
∗) + 1 −ψs

)1−α
�(A.22)

As we established at the beginning of the proof, it is always optimal to set
ys < 0 whenever xtj = 0 on an observation date. Let x∗

0 denote the optimal
post-transfer value of xt+j when xtj = 0. Since the consumer can choose any
ys < 0, optimality of xt+j requires that

1
1 − αv(0)= 1

1 − αv
(
x∗

0

)(
(1 − θS) 1 −ψs

x∗
0 + 1 −ψs

)1−α
(A.23)

≥ 1
1 − αv(x)

(
(1 − θS) 1 −ψs

x+ 1 −ψs
)1−α

for any x > 0. However, dividing (A.15) by (A.22) implies that

1
1 − αv(0)
1

1 − αv(x
(n))

(A.24)

=
1

1 − αv(x
∗
0)

1
1 − αv(x

(n∗))

(
(1 − θs) 1 −ψs

x∗
0 + 1 −ψs

)1−α

(
1 − θS + x(n)(1 − θX)− (1 − θS)x(n∗)

x(n
∗) + 1 −ψs

)1−α �

33We note that it would be impossible to set ct arbitrarily close to infinity for almost all values

between tj and tj+1, since this would violate the constraint Xtj >
∫ tj+1
tj

e−rL(s−tj )cs ds.
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Since infx∈X X =0, it is possible to take the limit as x(n) → 0 on both sides
of (A.24). Using the supposition that limx(n)→0

1
1−αv(x

(n)) > 1
1−αv(0) and noting

that α> 1 gives

1< lim
x(n)→0

1
1 − αv(0)
1

1 − αv(x
(n))

=
1

1 − αv(x
∗
0)

1
1 − αv(x

(n∗))

(
(1 − θs) 1 −ψs

x∗
0 + 1 −ψs

)1−α

(
(1 − θs) 1 −ψs

x(n∗) + 1 −ψs
)1−α �(A.25)

The fact that α > 1 along with (A.25) implies that 1
1−αv(x

∗
0)((1 − θS)×

1−ψs
x∗

0+1−ψs )
1−α < 1

1−αv(x
(n∗))((1 − θs)

1−ψs
x(n

∗)+1−ψs )
1−α, which contradicts (A.23). Ac-

cordingly, limxn−→0
1

1−αv(xn)= 1
1−αv(0).

The continuity of the function v in a positive neighborhood of zero, together
with the theorem of the maximum, implies the continuity of ṽ in a positive
neighborhood of zero. Moreover, noting that ys < 0 when xtj = 0 implies that

1
1−α ṽ(0)≡ limxtj→0

1
1−α ṽ(xtj ) <

1
1−αv(0). Q.E.D.

Proof of ω1 > 0. Since Lemma 5 implies that limxtj→0
1

1−α ṽ(xtj ) <
1

1−αv(0),
there exists x > 0 such that 1

1−α ṽ(x) <
1

1−αv(0) ≤ 1
1−αv(x) ∀x ∈ [0�x]. There-

fore, ω1 ≥ x > 0.
Proof of π2 ≥ π1. To prove that π2 ≥ π1, suppose the contrary, that is,

that π1 > π2, and consider three points (XA�SA), (XB�SB), and (XC�SC),
where XA = π1SA, (XB�SB) = (π1SA − (1 − ψs)z

∗� SA + z∗) where z∗ ≡
π1−π2
π2+1−ψs SA, which impliesXB = π2SB, and (XC�SC)= (π2SB + (1 +ψb)z∗∗� SB −
z∗∗) where z∗∗ ≡ π1−π2

π1+1+ψb SB, which implies XC = π1SC . The definition of π1

implies that V (XA�SA) ≥ V (XB�SB) and the definition of π2 implies that
V (XB�SB) ≥ V (XC�SC) so that V (XA�SA) ≥ V (XC�SC). But SC = SB − z∗∗ =
SB − π1−π2

π1+1+ψb SB = π2+1+ψb
π1+1+ψb SB = π2+1+ψb

π1+1+ψb
π1+1−ψs
π2+1−ψs SA = ( (π1−π2)(ψs+ψb)

(π1+1+ψb)(π2+1−ψs) + 1)SA >
SA, since ψs + ψb > 0. Therefore, since XC = π1SC and XA = π1SA, we
have XC > XA. Hence, since V (X�S) is strictly increasing in X and S, we
have V (XC�SC) > V (XA�SA), which contradicts the earlier statement that
V (XA�SA)≥ V (XC�SC).

Proof of ω1 ≤ π1. We prove this statement using a geometric argument to
show that ω1 > π1 leads to a contradiction. We consider three cases: θS < θX ,
θS > θX , and θS = θX .

Suppose that ω1 >π1 and consider the case in which θS < θX , so that in Fig-
ure 2(a), the line through points B, C, and E, which has slope −(1−ψs) 1−θS

1−θX , is
steeper than the line through points C andD, which has slope −(1−ψs). State-
ment (ii)(c) of Proposition 1 implies that for values of x≡ X

S
less thanω1, indif-

ference curves of the value function are straight lines with slope −(1−ψs) 1−θS
1−θX .

Therefore, V (B)= V (C)= V (E), where the notation V (j) indicates the value
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FIGURE 2.—Proof of ω1 ≤ π1.

of the value function evaluated at point j. The definition of π1 implies that
V (C) ≥ V (D). Therefore, V (E) ≥ V (D), which contradicts strict monotonic-
ity of the value function since both X and S are larger at point D than at
point E. Therefore, ω1 ≤ π1 if θS < θX .

Suppose that ω1 > π1 and consider the case in which θS > θX , so that in
Figure 2(b) the line through points D and E, which has slope −(1 −ψs) 1−θS

1−θX ,
is less steep than the line through points C and E, which has slope −(1 −ψs).
Statement (ii)(c) of Proposition 1 implies that the line from point D through
point E is an indifference curve and all points on this indifference curve are
preferred to all points below and to the left of the indifference curve for which
x <ω1. In particular, point E is preferred to all points below point E along the
line through points E and C. Since the value of x at point E is higher than π1,
the fact that the value function evaluated at point E is greater than the value
function, and hence greater than the restricted value function, evaluated at all
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points below point E with slope −(1 − ψs) contradicts the definition of π1.
Therefore, ω1 ≤ π1 if θS > θX .

Suppose that ω1 > π1 and consider the case in which θS = θX , so that in
Figure 2(c), the slope of the line through points C and E is −(1 − ψs)

1−θS
1−θX =

−(1 − ψs). Statement (ii)(c) of Proposition 1 implies that for values of x ≡
X
S
< ω1, indifference curves of the value function are straight lines with slope

−(1 −ψs) 1−θS
1−θX so points E and C are on the same indifference curve. Indeed,

point E yields the same value of the value function as all points below point
E on the line through points E and C. That is, for any point J below point
E along the line through points E and C with X ≥ 0, V (E) = V (J). Since
x < ω1 at point J, the definition of ω1 implies that V (J) > Ṽ (J). Therefore,
V (E)= V (J) > Ṽ (J). Since x > π1 at point E, the facts that for arbitrary point
J we have V (E) = V (J) and V (E) > Ṽ (J) contradict the definition of π1.
Therefore, ω1 ≤ π1 if θS = θX .

Putting together the cases in which θS < θX , θS > θX , and θS = θX , we have
proved that ω1 ≤ π1.

To prove ω2 ≥ π2, use a set of arguments similar to the proof that ω1 ≤ π1.
Proof of ω2 <∞. We prove that ω2 is finite by showing that if the invest-

ment portfolio has zero value on an observation date, the consumer will use
some of the liquid assets in the transactions account to buy assets for the in-
vestment portfolio. We use proof by contradiction. That is, suppose that time
0 is an observation date, and that at this observation date, the transactions ac-
count has a balance X0 > 0 and the investment portfolio has a zero balance so
that S0 = 0 and x0 is infinite. Suppose that whenever the investment portfolio
has zero value on an observation date, the consumer does not transfer any as-
sets to the investment portfolio. Then the consumer will simply consume from
the transactions account over the infinite future, never incurring any informa-
tion costs or transactions costs. In this case, with the values of the variables
denoted with asterisks, c∗

0+ = X0
h(∞)

= χX0 and c∗
t = exp(− ρ−rL

α
t)c∗

0+ = χX∗
t , so

X∗
t = exp(− ρ−rL

α
t)X0. Equation (16) implies that lifetime utility is

U∗ = 1
1 − α

[
h(∞)

]α
X1−α

0 = 1
1 − αχ

−αX1−α
0 �(A.26)

Now consider an alternative feasible path that sets ct = c∗
t for 0< t ≤ T and

at time 0+ transfers to the investment portfolio any liquid assets in the trans-
actions account that will not be needed to finance consumption until time T .
Under this alternative policy, the present value of consumption up to date T is
h(T)c∗

0+ = h(T)χX0, so

X0+ = h(T)χX0�(A.27)
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The consumer uses (1 − θX −χh(T))X0 liquid assets to purchase assets in the
investment portfolio. After paying the transactions cost,

S0+ = 1 − θX −χh(T)
1 +ψb X0�(A.28)

Suppose that the consumer invests the investment portfolio entirely in the risk-
less bond. At time T , the transactions account has a zero balance, and the
investment portfolio is worth ST = exp(rfT ) 1−θX−χh(T)

1+ψb X0. The consumer trans-
fers the entire investment portfolio to the transactions account, so that after
paying the transactions costs, the balance in the transactions account is

XT+ = (1 − θS) 1 −ψs
1 +ψb exp(rfT )

[
1 − θX −χh(T)]X0�(A.29)

Define P ≡ XT+
X∗
T

as the ratio of the transactions account balance at time T+

under this alternative policy to the transactions account balance under the ini-
tial policy. Use (A.29) and X∗

T = exp(− ρ−rL
α
T )X0, along with χ ≡ ρ−(1−α)rL

α
, to

obtain

P ≡ XT+

X∗
T

= (1 − θS) 1 −ψs
1 +ψbF(T)�(A.30)

where

F(T)≡ exp
[
(rf − rL)T

][
1 − θX exp(χT)

]
�(A.31)

Equation (A.30) and X∗
T = exp(− ρ−rL

α
T )X0 imply

XT+ = (1 − θS) 1 −ψs
1 +ψbF(T)exp

(
−ρ− rL

α
T

)
X0�(A.32)

Now choose T to maximize F(T). Differentiate F(T) and set the derivative
equal to zero to obtain

exp(−χT̂ )=
(

1 + χ

rf − rL
)
θX < 1�(A.33)
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where T̂ is the optimal value of T , and the inequality follows from the assump-
tion that θX < θX and the fact that χ

rf−rL > 0.34 Use (A.33) to evaluate F(T̂ ) to
obtain

F(T̂ )=
(

1 + χ

rf − rL
)−1−(rf−rL)/χ χ

rf − rL θ
−(rf−rL)/χ
X �(A.34)

Use (A.33) and the definition of h(T) to obtain

χh(T̂ )= 1 −
(

1 + χ

rf − rL
)
θX�(A.35)

The present value of lifetime utility under the alternative plan is

U = [
1 − (1 − α)κb(T̂ )] 1

1 − α
[
h(T̂ )

]α[X0+]1−α(A.36)

+ exp(−ρT̂ ) 1
1 − α

[
h(∞)

]α[XT̂+]1−α�

Substitute (A.27) and (A.32) into (A.36), and use the fact that h(∞)= 1
χ

to
obtain

U = [
1 − (1 − α)κb(T̂ )] 1

1 − αh(T̂ )[χX0]1−α(A.37)

+ exp(−ρT̂ ) 1
1 − αχ

−α

×
[
(1 − θS) 1 −ψs

1 +ψbF(T̂ )exp
(

−ρ− rL
α

T̂

)
X0

]1−α
�

Now divide the utility under the alternative plan in (A.37) by the utility under
the initial plan in (A.26), and use the definition of χ and the fact that χh(T)=
1 − exp(−χT) to obtain

U

U∗ = [
1 − (1 − α)κb(T̂ )][1 − exp(−χT̂ )](A.38)

+ exp(−χT̂ )
[
(1 − θS) 1 −ψs

1 +ψbF(T̂ )
]1−α

�

34From (27), θX ≡ [(1 − θS)
1−ψs
1+ψb

χ
rf−rL+χ ]χ/(rf−rL) rf−rL

rf−rL+χ , which implies (1 + χ
rf−rL )θX = [(1 −

θS)
1−ψs
1+ψb

χ
rf−rL+χ ]χ/(rf−rL) < 1 because (1 − θS) 1−ψs

1+ψb < 1, χ
rf−rL > 0, and hence χ

rf−rL+χ < 1.
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Then rearrange to obtain

U

U∗ = 1 +
([
(1 − θS) 1 −ψs

1 +ψbF(T̂ )
]1−α

(A.39)

− [
1 + (1 − α)κb(T̂ )(exp(χT̂ )− 1

)])
exp(−χT̂ )�

If α < 1, utility under the alternative plan, U , will exceed U∗ if U
U∗ > 1; if

α> 1, utility under the alternative plan,U , will exceedU∗ if U
U∗ < 1. A sufficient

condition for U to exceed U∗, regardless of whether α is less than or greater
than 1, is35

[
(1 − θS) 1 −ψs

1 +ψb
]
F(T̂ ) >

[
1 + (1 − α)κb(T̂ )(exp(χT̂ )− 1

)]1/(1−α)
�(A.40)

Multiply both sides of (A.34) by (1 − θS) 1−ψs
1+ψb to obtain

[
(1 − θS) 1 −ψs

1 +ψb
]
F(T̂ )(A.41)

=
[
(1 − θS) 1 −ψs

1 +ψb
χ

rf − rL +χ
](

rf − rL
rf − rL +χ

)(rf−rL)/χ
θ

−(rf−rL)/χ
X �

Use the definition of θX in (27) and the assumption that θX < θX to write
(A.41) as

[
(1 − θS) 1 −ψs

1 +ψb
]
F(T̂ )=

(
θX

θX

)−(rf−rL)/χ
> 1�(A.42)

Substitute (A.42) into (A.40) to obtain the sufficient condition for U to exceed
U∗: (

θX

θX

)−(rf−rL)/χ
>

[
1 + (1 − α)κb(T̂ )(exp(χT̂ )− 1

)]1/(1−α)
�(A.43)

35If α > 1, then κ must be less than κ̂≡ 1
α−1

1
b(T̂ )(exp(χT̂ )−1)

so that the right hand side of (A.40)

is defined. Since we assume that κ < κ in (28) and κ̂= [1 − ( θX
θX
)−((rf−rL)/χ)(1−α)]−1κ > κ, we have

κ < κ̂.
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Regardless of whether α is larger or smaller than 1, the condition in (A.43) is
satisfied if θX < θX and κ< κ, where

κ≡

(
θX

θX

)−((rf−rL)/χ)(1−α)
− 1

(1 − α)b(T̂ )(exp(χT̂ )− 1)
�(A.44)

Since θX < θX and κ < κ, the original plan, in which the consumer does not
buy any assets in the investment portfolio, is not optimal.

The proof of statement (i) is now complete.
Proof of statement (iii). The proof of statement (iii) follows the proof of state-

ment (ii).
The proof of Proposition 1 is now complete. Q.E.D.

To prepare for the proof of Proposition 2, we state and prove the following
lemma.

LEMMA 6: If C(tj� τj)≤Xtj , then, for sufficiently small θS ≥ 0, ys(tj)= 0.

PROOF: Consider some path for ct , Xt , St , ys(t), and yb(t), t ∈ [tj� tj+1],
and let c0

t , X
0
t , S0

t , y
s�0(t), and yb�0(t) denote the values of these variables

along this path. Suppose that C(tj� τt) ≤ X0
tj

and (contrary to what is to be
proved) that ys�0(tj) < 0, so that Lemma 4 implies that yb�0(tj) = 0. Con-
sider a deviation from ys�0(tj) < 0 that reduces −ys(tj) to zero so that Xt+j
changes by ys�0(tj)(1 − ψs) + θXX

0
tj

and St+j increases by −ys�0(tj) + θSS
0
tj

.
Since under the deviation, Xt+j = Xtj = X0

tj
≥ C(tj� τj), it is feasible to main-

tain ct = c0
t for tj ≤ t ≤ tj+1, and we suppose that the consumer does so.

Also suppose that the consumer invests the additional assets in the invest-
ment portfolio in the riskless bond, which pays a rate of return rf . Thus, at
the next observation date tj+1, the transactions account will have changed by
ΔX ≡ [ys�0(tj)(1 − ψs)+ θXX

0
tj
]erLτj and the investment portfolio will have in-

creased by ΔS ≡ [−ys�0(tj) + θSS
0
tj
]erf τj > 0, relative to the original path. The

deviation at time tj+1 depends on the direction of the transfer along the origi-
nal path at time tj+1.

(i) If ys�0(tj+1) < 0, increase −ys(tj+1) by (1 − θS)ΔS , which makes the value
of the investment portfolio under the deviation equal to the value under the
original path. Compared to the original path, the transactions account at time
t+j+1 changes by ξ≡ (1 − θX)ΔX + (1 −ψs)(1 − θS)ΔS . Using the definitions of
ΔS and ΔX implies

ξ = [−ys�0(tj)](1 −ψs)
[
(1 − θS)erf τj − (1 − θX)erLτj

]
+ (1 − θX)θXX0

tj
erLτj + (1 −ψs)(1 − θS)θSS0

tj
erf τj �
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which in turn implies that limθS→0 ξ= [−ys�0(tj)](1−ψs)[erf τj − (1−θX)erLτj ]+
(1 − θX)θXX0

tj
erLτj > 0.

(ii) If the consumer would not have transferred assets in either direction
between the investment portfolio and the transactions account at time tj+1,

then ω1 ≤ x0
tj+1

≤ ω2. We begin by showing that
S0
tj+1

S0
tj

= S0
tj+1

X0
tj+1

(
X0
tj+1

X0
tj

)(
X0
tj

S0
tj

) =
1

x0
tj+1

(
X0
tj+1

X0
tj

)x0
tj

is bounded above by a quantity that is finite and Ftj -measurable.

First, the fact that ω1 ≤ x0
tj+1

≤ ω2 implies that 1
x0
tj+1

≤ 1
ω1

, which is finite since

ω1 > 0. Second, X0
tj+1

= [(1 − θX)X
0
tj

− (1 − ψs)y
s�0(tj)]erLτj − C(tj� τj)e

rLτj so

that
X0
tj+1

X0
tj

= [(1 − θX)− (1 −ψs) y
s�0(tj )

X0
tj

]erLτj − C(tj �τj)

X0
tj

erLτj , which is finite and Ftj -

measurable. Third, since −ys�0(tj) > 0, we know that S0
tj

≥ 1
1−θs [−ys�0(tj)] > 0,

which implies that x0
tj

≡ X0
tj

S0
tj

is finite; it is also Ftj -measurable. Therefore,

S0
tj+1

S0
tj

= 1
x0
tj+1

(
X0
tj+1

X0
tj

)x0
tj

is bounded above by 1
ω1
(
X0
tj+1

X0
tj

)x0
tj

, which is the product of

three quantities that are finite and Ftj -measurable.
For sufficiently small θS ≥ 0, the alternative path sets ys(tj+1) equal to

−(1 − θS)Δ
S + θSS

0
tj+1

= −S0
tj
{(1 − θS)[− ys�0(tj )

S0
tj

]erf τj + θS[(1 − θS)e
rf τj − S0

tj+1

S0
tj

]},
which is negative because − ys�0(tj )

S0
tj

> 0 and
S0
tj+1

S0
tj

is bounded above by an Ftj -

measurable quantity. With ys(tj+1) = −(1 − θS)Δ
S + θSS

0
tj+1

, the value of the
investment portfolio on the alternative path equals the value on the hypoth-
esized optimal path. Compared to the hypothesized optimal path, the trans-
actions account at time t+j+1 changes by ξ2 ≡ (1 − θX)Δ

X − θXX
0
tj+1

− (1 −
ψs)[−(1 − θS)Δ

S + θSS
0
tj+1

]. Use the definitions of ΔX and ΔS to obtain ξ2 =
(1−ψs)[−ys�0(tj)][(1−θS)erf τj − (1−θX)erLτj ]+θX[(1−θX)X0

tj
erLτj −X0

tj+1
]+

(1 −ψs)(1 − θS)θSS0
tj
erf τj − (1 −ψs)θSS0

tj+1
.

Now use the fact thatX0
tj+1

= [(1−θX)X0
tj
−(1−ψs)ys�0(tj)]erLτj −C(tj� τj)×

erLτj to obtain (1 − θX)X
0
tj
erLτj − X0

tj+1
= (1 − ψs)y

s�0(tj)e
rLτj + C(tj� τj)e

rLτj ,
substitute this expression into the expression for ξ2, and factor out S0

tj
to obtain

ξ2 = S0
tj

{
(1 −ψs)

[−ys�0(tj)
S0
tj

][
(1 − θS)erf τj − erLτj

]
+ θX C(tj� τj)

S0
tj

erLτj + (1 −ψs)(1 − θS)θSerf τj − (1 −ψs)θS
S0
tj+1

S0
tj

}
�
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Since
S0
tj+1

S0
tj

is bounded above by a quantity that is Ftj -measurable and finite,

limθS→0 ξ2 = S0
tj
{(1 −ψs)[−ys�0(tj )

S0
tj

][erf τj − erLτj ] + θX C(tj �τj)

S0
tj

erLτj }> 0.

(iii) If yb�0(tj+1) > 0, the deviation depends on whether (1 − θS)Δ
S is larger

or smaller than yb�0(tj+1). (a) If (1 − θS)Δ
S > yb�0(tj+1), set ys(tj+1) = −(1 −

θS)Δ
S + yb�0(tj+1) < 0 and set yb(tj+1) = 0 so that the value of the investment

portfolio at time t+j+1 is the same for the deviation and for the original path.
Compared to the original path, the transactions account at time t+j+1 changes
by ξ3 ≡ (1 − θX)Δ

X + (1 − ψs)[(1 − θS)Δ
S − yb�0(tj+1)] + (1 + ψb)y

b�0(tj+1) =
(1 −θX)ΔX + (1 −ψs)(1 −θS)ΔS + (ψs +ψb)yb�0(tj+1). Using the definitions of
ΔX andΔS , rewrite ξ3 as ξ3 = (1−ψs)[−ys�0(tj)][(1 − θS)erf τj − (1 − θX)erLτj ]+
(1−θX)θXX0

tj
erLτj + (1−ψs)(1−θS)θSS0

tj
erf τj + (ψs +ψb)yb�0(tj+1). Therefore,

lim
θS→0

ξ3 = (1 −ψs)
[−ys�0(tj)][erf τj − (1 − θX)erLτj

]
+ (1 − θX)θXX0

tj
erLτj + (ψs +ψb)yb�0(tj+1) > 0�

(b) If (1 −θS)ΔS < yb�0(tj+1), set yb(tj+1)= yb�0(tj+1)− (1 −θS)ΔS > 0 and set
ys(tj+1)= 0 so that the value of the investment portfolio at time t+j+1 is the same
for the deviation and for the original path. Compared to the original path, the
transactions account at time t+j+1 changes by ξ4 ≡ (1 − θX)Δ

X + (1 + ψb)(1 −
θS)Δ

S . Using the definitions of ΔX and ΔS , rewrite ξ4 as ξ4 = [−ys�0(tj)][(1 +
ψb)(1 − θS)erf τj − (1 − θX)(1 −ψs)erLτj ] + (1 − θX)θXX0

tj
erLτj + (1 +ψb)(1 −

θS)θSS
0
tj
erf τj . Therefore, limθS→0 ξ4 = [−ys�0(tj)][(1 + ψb)e

rf τj − (1 − θX)(1 −
ψs)e

rLτj ] + (1 − θX)θXX0
tj
erLτj > 0.

(c) If (1 − θS)Δ
S = yb�0(tj+1), set yb(tj+1) = ys(tj+1) = 0. Compared to

the original path, the deviation increases St+j+1
by ΔS + θSS

0
tj+1

− yb�0(tj+1) =
θSS

0
tj+1

+ θSΔ
S = θSStj+1 > 0. Compared to the original path, the transactions

account at time t+j+1 changes by ξ5 ≡ ΔX + θXX0
tj+1

+ (1 +ψb)yb�0(tj+1)= ΔX +
θXX

0
tj+1

+ (1 +ψb)(1 −θS)ΔS . Using the definitions of ΔX and ΔS , rewrite ξ5 as
ξ5 = [−ys�0(tj)][(1 +ψb)(1 − θS)erf τj − (1 −ψs)erLτj ] + θXX0

tj
erLτj + θXX0

tj+1
+

(1 + ψb)(1 − θS)θSS
0
tj
erf τj . Therefore, limθS→0 ξ5 = [−ys�0(tj)][(1 + ψb)e

rf τj −
(1 −ψs)erLτj ] + θXX0

tj
erLτj + θXX0

tj+1
> 0.

To summarize, we have shown that along all possible branches, the deviation
leads to an unchanged or increased value of St+j+1

and an increased value of
Xt+j+1

(because ξi� i= 1�2�3�4�5, have positive limits for θS approaching 0) for
sufficiently small θS ≥ 0. Therefore, the hypothesized optimal path could not
have been optimal. Therefore, the optimal value of ys(tj)= 0. Q.E.D.
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PROOF OF PROPOSITION 2: Consider some path for ct , Xt , St , ys(t), and
yb(t), t ∈ [tj� tj+1], and let c0

t , X
0
t , S0

t , y
s�0(t), and yb�0(t) denote the values

of these variables along this path. Suppose that xtj < ω1 and (contrary to
what is to be proved) X0

tj+1 > 0. Since κ > 0, the consumer will not con-
tinuously observe the value of the investment portfolio. That is, τj > 0. If
xtj < ω1 on an observation date tj , then Proposition 1 implies that optimal
ys(tj) < 0. Since X0

t+j
= X0

tj
− (1 − ψs)y

s�0(tj) − θXX
0
tj

, we have −ys�0(tj) =
1

1−ψs [X0
t+j

−X0
tj
+ θXX0

tj
] = 1

1−ψs [X0
t+j

−C(tj� τj)+C(tj� τj)−X0
tj
+ θXX0

tj
]. Then

use the fact that e−rLτjX0
tj+1 =X0

t+j
−C(tj� τj) and Lemma 6 (which implies that

since ys�0(tj) < 0, C(tj� τt) > X0
tj

) to deduce that −ys�0(tj) = 1
1−ψs [e−rLτjX0

tj+1
+

(C(tj� τj)−X0
tj
)+ θXX0

tj
]> 1

1−ψs e
−rLτjX0

tj+1 > 0. We will show that there exists
a deviation from this choice that increases the consumer’s expected lifetime
utility and, hence, X0

tj+1
> 0 cannot be optimal.

Consider a deviation in which the consumer reduces −ys(tj) by
X0
t+
j

−C(tj �τj)

1−ψs =
e
−rLτj X0

tj+1

1−ψs and invests this amount in the riskless bond in the investment port-
folio. With this deviation, the value of the investment portfolio at time tj+1 will

exceed its value under the original policy by
X0
tj+1

1−ψs e
(rf−rL)τj and the transactions

account will have a zero balance at time tj+1.
The deviation from the original path at time tj+1 depends on whether, and

in which direction, the consumer would transfer assets between the transac-
tions account and the investment portfolio under the original path at that time.
First, consider the case in which ys�0(tj+1) < 0 so that the consumer transfers
assets from the investment portfolio to the transactions account at time tj+1. In

this case, the consumer can increase −ys(tj+1) by (1 − θS)
X0
tj+1

1−ψs e
(rf−rL)τj , which

leaves the value of the investment portfolio at time t+j+1 equal to its value on
the original path. Compared to the original path, this deviation will change
the balance in the transactions account at time t+j+1 by −(1 − θX)X

0
tj+1

+ (1 −
θS)X

0
tj+1
e(rf−rL)τj = [(1 − θS)e(rf−rL)τj − (1 − θX)]X0

tj+1
, which is positive for suf-

ficiently small θS ≥ 0. Therefore, the deviation dominates the original path in
this case when θS ≥ 0 is sufficiently small.

Second, consider the case in which the consumer would not make any trans-
fers between the investment portfolio and the transactions account at time
tj+1 under the original policy. Since the consumer does not make any trans-
fers at time tj+1, if the original path were optimal, Proposition 1 implies that

0 < ω1 ≤ X0
tj+1

S0
tj+1

≤ ω2, which implies that S0
tj+1

≤ X0
tj+1
ω1

. In this case, under the

deviation, the consumer sets −ys(tj+1)= (1 − θS)
X0
tj+1

1−ψs e
(rf−rL)τj − θSS0

tj+1
. There-
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fore, −ys(tj+1)≥ [ 1−θS
1−ψs e

(rf−rL)τj− θS
ω1

]X0
tj+1

, which is positive for sufficiently small
θS ≥ 0. (Proposition 1 states that ω1 > 0 for all admissible values of θS ≥ 0,
including θS = 0, so that limθS→0

θS
ω1

= 0.) With this transfer, the value of as-
sets in the investment portfolio at time t+j+1 will be the same under the de-

viation as under the original path. Compared to the original path, this de-

viation will increase the balance in the transactions account at time t+j+1 by
−X0

tj+1
− (1 −ψs)ys(tj+1)= −X0

tj+1
+ (1 − θS)X0

tj+1
e(rf−rL)τj − (1 −ψs)θSS0

tj+1
=

[(1 − θS)e
(rf−rL)τj − 1]X0

tj+1
− (1 − ψs)θSS

0
tj+1

≥ ((1 − θS)e
(rf−rL)τj − 1 − (1 −

ψs)
θS
ω1
)X0

tj+1
, which is positive for sufficiently small θS ≥ 0. Therefore, the devi-

ation dominates the original path in this case when θS ≥ 0 is sufficiently small.

Third, consider the case in which yb�0(tj+1) > 0 so that the consumer trans-

fers assets from the transactions account to the investment portfolio at time

tj+1. If yb�0(tj+1) > (1 − θS)
X0
tj+1

1−ψs e
(rf−rL)τj , the deviation reduces yb(tj+1) by

(1 − θS)
X0
tj+1

1−ψs e
(rf−rL)τj and sets ys(tj+1) = 0, which will leave the value of the

investment portfolio at time t+j+1 under the deviation equal to its value on

the original path. Compared to the original path, this deviation will increase

the balance in the transactions account at time t+j+1 by −(1 − θX)X
0
tj+1

+
(1 + ψb)(1 − θS)

X0
tj+1

1−ψs e
(rf−rL)τj = [(1 − θS)

1+ψb
1−ψs e

(rf−rL)τj − (1 − θX)]X0
tj+1

, which
is positive for sufficiently small θS ≥ 0. Therefore, the deviation dominates

the original path in this case when θS ≥ 0 is sufficiently small. If yb�0(tj+1) <

(1 − θS)
X0
tj+1

1−ψs e
(rf−rL)τj , the deviation sets yb(tj+1) = 0 and sets −ys(tj+1) =

(1 − θS)
X0
tj+1

1−ψs e
(rf−rL)τj − yb�0(tj+1) > 0, which will leave the value of the in-

vestment portfolio at time t+j+1 under the deviation equal to its value on the

original path. Compared to the original path, this deviation will increase the

balance in the transactions account at time t+j+1 by −(1 − θX)X
0
tj+1

+ (1 +
ψb)y

b�0(tj+1)+ (1 −ψs)[(1 − θS)
X0
tj+1

1−ψs e
(rf−rL)τj − yb�0(tj+1)] = [(1 − θS)e(rf−rL)τj −

(1 − θX)]X0
tj+1

+ (ψb + ψs)y
b�0(tj+1), which is positive for sufficiently small

θS ≥ 0. Therefore, the deviation dominates the original path in this case when

θS is sufficiently small. Finally, if yb�0(tj+1) = (1 − θS)
X0
tj+1

1−ψs e
(rf−rL)τj , the devia-

tion sets ys(tj+1) = yb(tj+1) = 0. Compared to the original path, the deviation

changes St+j+1
by

X0
tj+1

1−ψs e
(rf−rL)τj + θSS

0
tj+1

− yb�0(tj+1) = X0
tj+1

1−ψs e
(rf−rL)τj + θSS

0
tj+1

−
(1 − θS)

X0
tj+1

1−ψs e
(rf−rL)τj = θSS

0
tj+1

+ θS
X0
tj+1

1−ψs e
(rf−rL)τj > 0. Compared to the original
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path, the deviation changes Xt+j+1
by −X0

tj+1
+ θXX

0
tj+1

+ (1 + ψb)y
b�0(tj+1) =

−(1 − θX)X0
tj+1

+ (1 +ψb)(1 − θS)
X0
tj+1

1−ψs e
(rf−rL)τj = [(1 − θS) 1+ψb

1−ψs e
(rf−rL)τj − (1 −

θX)]X0
tj+1

, which is positive for sufficiently small θS ≥ 0.
We have shown that the deviation path dominates the original path; hence it

cannot be optimal for Xtj+1 to be positive. Since the optimal value of Xtj+1 = 0,
we have xtj+1 = 0<ω1, which implies xtj+2 = 0 and so on, ad infinitum. Q.E.D.

PROOF OF LEMMA 2: Lemma 11 states that the optimal value of φj is
positive. Since τj > 0 as a consequence of the information cost, there ex-
ists some δ > 0 such that between any two consecutive observation dates,
tj and tj+1 = tj + τj , Pr{e−rLτjR(tj� τj) >

ω2
ω1

} ≥ δ. Therefore, since xtj+1 ≡
Xtj+1
Stj+1

= e
rLτj

R(tj �τj)

X
t+
j

−C(tj �τj)
S
t+
j

< e
rLτj

R(tj �τj)

X
t+
j

S
t+
j

=
x
t+
j

e
−rLτj R(tj �τj)

≤ ω2

e
−rLτj R(tj �τj)

(where the final

inequality follows from Corollary 1), then Pr{xtj+1 < ω1} ≥ δ. Let tk ≥ tj be
the first observation date at which xtk < ω1. Then by Williams (1991, p. 233),
Pr{tk <∞} = 1 and E{tk}<∞. Q.E.D.

PROOF OF PROPOSITION 3: Lemma 2 states that eventually, with probabil-
ity 1, xtj < ω1 on an observation date. Proposition 2 implies that when this
event occurs, xtj+1 = 0 on the next observation date and on all subsequent ob-
servation dates, provided that θS ≥ 0 is sufficiently small. Since the optimal
value of τj is simply a function of xtj , τj will be constant when xtj becomes
constant. Q.E.D.

PROPOSITION 5: Let T s(tj� t)≡ ∫ t

tj
dY s(t) ≤ 0 denote the cumulative transfer

process from the investment portfolio to the transactions account from time tj to
time t ∈ [tj� tj+1], and let Tb(tj� t)≡ ∫ t

tj
dY b(t)≥ 0 denote the cumulative transfer

process from the transactions account to the investment portfolio from time tj
to time t ∈ [tj� tj+1]. We define automatic transfers as Ftj -measurable functions
T s(tj� t) and Tb(tj� t) that satisfy three requirements: (i) T s(tj� t) is nonincreasing
in t, (ii) Tb(tj� t) is nondecreasing in t, and (iii) given T s(tj� t) and Tb(tj� t), along
with the Ftj -measurable path of consumption from tj to tj+1,Xt ≥ 0 and St ≥ 0 for
any path of Pt . If the consumer can utilize automatic transfers and θX = θS = 0,
then the stochastic process for xtj is eventually, with probability 1, absorbed at zero
and the time between consecutive observations is constant.

To prepare for the proof of Proposition 5, we first introduce some notation
and then prove three ancillary lemmas.

Define Fs(t� z; r) to be the (negative of the) future value, as of time z,
of transfers from the investment portfolio to the transactions account from
time t until, but not including, time z. The future value is computed us-
ing the discount rate r. Formally, Fs(t� z; r) ≡ limx↗z

∫ x

t
er(x−v) dY s(v), where
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dY s(v)≤ 0 denotes the increments of the cumulative transfer from the invest-
ment portfolio to the transactions account (so that Fs(t� z;0)= T s(t� z)). We
use the notation Fs(t� t+; r) to capture potential lump-sum transfers at time
t (Fs(t� t+; r) = limz↘t Fs(t� z; r), which equals ys(t) using the notation in the
baseline version of the model with transfers confined to observation dates).
Similarly, Fb(t� z� r) is the future value, as of time z, of transfers from the trans-
actions account to the investment portfolio from time t until, but not includ-
ing, time z (so that Fb(t� z;0) = Tb(t� z)). The notation Fb(t� t+; r) captures
lump-sum transfers from the transactions account to the investment account
at time t. Finally, FVC(t� z)≡ ∫ z

t
cve

rL(z−v) dv is the future value, as of time z,
of consumption from time t to z, compounded at the rate rL.

We next prove the three ancillary lemmas.

LEMMA 7: Along an optimal path that includes the possibility of automatic
transfers, if θX = θS = 0 and if Xt > 0 for all t ∈ [tj� tj+1], then Fs(tj� tj+1� rL)= 0.

PROOF: Assume otherwise, that is, suppose that for an optimal path,X0
t > 0

for all t ∈ [tj� tj+1] and yet Fs�0(tj� tj+1� rL) < 0. Now consider the following
deviation: Do not transfer any assets from the investment portfolio to the
transactions account until the next observation time, tj+1, or until the trans-
actions account under this deviation reaches a nonpositive balance, whichever
comes first. Formally, denote this time as t∗ ≡ min{tj+1� inf{t : X̃t ≤ 0}}, where
X̃t is the balance in the transactions account under this deviation. We next
argue that t∗ �= tj and hence that t∗ > tj . We proceed by contradiction. Sup-
pose, contrary to what is to be proved, that t∗ = tj , so that 0 ≥ X̃t+j . Since

(i) X̃t+j = Xtj − (1 − ψs)F̃ s(tj� t
+
j ; rL) − (1 + ψb)F

b�0(tj� t
+
j ; rL), (ii) Xtj > 0,

and (iii) F̃ s(tj� t+j ; rL) cannot be positive under any circumstance, then X̃t+j
can be nonpositive only if Fb�0(tj� t+j ; rL) > 0. But if the original path is op-
timal, then Fb�0(tj� t

+
j ; rL) > 0 and Lemma 4 imply that Fs�0(tj� t+j ; rL) = 0.

Since X0
t+j

=Xtj − (1 −ψs)Fs�0(tj� t+j ; rL)− (1 +ψb)Fb�0(tj� t+j ; rL), the fact that

Fs�0(tj� t
+
j ; rL) = 0 implies that 0 < X0

t+j
= Xtj − (1 + ψb)F

b�0(tj� t
+
j ; rL) ≤ X̃t+j ,

which contradicts 0 ≥ X̃t+j above. Therefore, t∗ > tj .
Also, by construction, t∗ ≤ tj+1 and Fs�0(tj� t

∗� rL) < 0.36 To complete the
construction of the deviation, suppose that between tj and t∗ the consumer

36To show that Fs�0(tj� t∗� rL) < 0, we proceed in steps: First, we show that Fs�0(tj� t∗+� rL) <
0 by distinguishing two cases: (i) if t∗ = tj+1, then Fs�0(tj� t

∗� rL) < 0 by assumption, and
(ii) if t∗ < tj+1, then X̃t∗+ ≤ 0. Note that if Fs�0(tj� t∗+� rL) were zero, and hence equal to
F̃ s(tj� t

∗+� rL) under the deviation, then X0
t = X̃t for all t ∈ [tj� t∗+]. But X0

t > 0 for all t ∈
[tj� tj+1], which is inconsistent with X̃t∗+ ≤ 0. Having established that Fs�0(tj� t∗+� rL) < 0, we next
show that Fs�0(tj� t∗� rL) < 0. Suppose otherwise, that is, suppose that Fs�0(tj� t∗� rL) = 0 so that
Fs�0(tj� t

∗+� rL) = Fs�0(t∗� t∗+� rL). Since Fs�0(tj� t∗+� rL) < 0, it follows that Fs�0(t∗� t∗+� rL) < 0.
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invests the funds she would have transferred into the transactions account
in riskless bonds in the investment portfolio. At time t∗, the consumer sets
F̃ s(t∗� t∗+� rL) = Fs�0(t∗� t∗+� rL)+ Fs�0(tj� t

∗� rf ) < 0. From t∗+ to tj+1, the con-
sumer simply follows the same transfer and consumption policies she would
have followed under the original path.

Under this deviation, the consumption process does not change between tj
and t∗ or between t∗+ and tj+1, so that consumption is unchanged in [tj� tj+1].
Moreover, at time t∗+, the investment portfolio has the same value as un-
der the original path, and since the consumer follows the same transfer poli-
cies from t∗+ onward, the investment portfolio at tj+1 is the same under the
deviation as under the original path. The transactions account changes by
(1 −ψs)[Fs�0(tj� t∗� rL)− Fs�0(tj� t∗� rf )]> 0 at t∗+. Since the consumer follows
the same transfer policies from t∗+ onward, the deviation increases the trans-
actions account at time tj+1 relative to the original path by (1 −ψs)erL(tj+1−t∗) ×
[Fs�0(tj� t∗� rL) − Fs�0(tj� t

∗� rf )] > 0. Hence, the original path could not have
been optimal. Q.E.D.

LEMMA 8: Along an optimal path that includes the possibility of automatic
transfers, let t = inf{t ≥ tj :Xt = 0}. If θX = θS = 0, then Xt = 0 for all t ≥ t.

PROOF: Suppose that there are no transactions costs (ψs =ψb = 0). In that
case, the consumer can move freely and instantaneously between the invest-
ment portfolio and the transactions account. The allocation between the in-
vestment portfolio and the transactions account is part of an asset allocation
problem with three assets: risky equity, riskless bonds paying rf , and riskless liq-
uid assets paying rL < rf . In the absence of the requirementXt ≥ 0, there would
be an arbitrage opportunity that would send the holding of riskless bonds in
the investment portfolio to infinity and the holding of the liquid assets in the
transactions account to minus infinity. Given the requirement Xt ≥ 0 and the
ability to undertake costless transfers between Xt and St , the consumer would
immediately set Xt = 0, and then would keep Xt at zero forever by setting
Fb(t�∞)= 0 and

∫ z

t
dT s = − ∫ z

t
cs ds so that Fs(t� z� rL)= −FVC(t� z) for any

z ≥ t; in words, the consumer would transfer infinitesimal amounts from St to
Xt as needed to finance instantaneous consumption. Any allocation to risk-
less bonds would take place exclusively inside the investment portfolio and on
observation dates, the consumer would simply adjust the consumption rate.

Now introduce transactions costs so that ψs + ψb > 0. We will prove that,
also in this case, it is optimal to keep Xt = 0 for t ≥ t. Let c∗∗

t , X∗∗
t , and S∗∗

t

denote values of ct , Xt , and St along an optimal path for ψs + ψb > 0 and
t ≥ t. Now consider the case with ψs = ψb = 0, and let c∗

t , FVC∗( ), Fs∗( ), and

But then Fb�0(t∗� t∗+� rL) = 0 so X̃t∗+ = X̃t∗ − (1 − ψs)F̃s(t
∗� t∗+; rL)− (1 + ψb)F̃b(t

∗� t∗+; rL) =
X̃t∗ − (1 −ψs)F̃s(t∗� t∗+; rL)− (1 +ψb)Fb�0(t∗� t∗+; rL) ≥ X̃t∗ =X0

t > 0. So under the deviation,
Xt is positive both at time t∗ and at time t∗+, which contradicts the definition of t∗.
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Fb∗( ) denote the values of ct , FVC( ), Fs( ), and Fb( ) in this case. In this case,
setting c∗

t = 1
1−ψs c

∗∗
t is feasible. To see this, simply set c∗

t = 1
1−ψs c

∗∗
t , and keep

the observation dates, the allocations within the investment portfolio, and the
transfers between the investment portfolio and the transactions account un-
changed. Clearly the path of St does not change, so to show feasibility, it suf-
fices to show that the path of X∗

t is nonnegative. To that end, note that for
arbitrary ψs and ψb, and any feasible consumption and transfer policies, the
dynamics of Xt for t ≥ t are characterized by

Xt = −FVC(t� t)− (1 −ψs)Fs(t� t; rL)− (1 +ψb)Fb(t� t; rL)�(A.45)

For the optimal path associated with ψs +ψb > 0, we have

X∗∗
t = −FVC∗∗(t� t)− (1 −ψs)Fs∗∗(t� t; rL)− (1 +ψb)Fb∗∗(t� t; rL)�(A.46)

For the alternative path, which has ψs = ψb = 0, we have FVC∗(t� t) =
1

1−ψs FVC∗∗(t� t), Fs∗(t� t; rL) = Fs∗∗(t� t; rL), and Fb∗(t� t; rL) = Fb∗∗(t� t; rL),
which implies

X∗
t = − 1

1 −ψs FVC∗∗(t� t)− Fs∗∗(t� t; rL)− Fb∗∗(t� t; rL)�(A.47)

Dividing (A.46) by 1 − ψs, recognizing that 1+ψb
1−ψs > 1 when ψs + ψb > 0, and

then using (A.47) yields

1
1 −ψsX

∗∗
t = − 1

1 −ψs FVC∗∗(t� t)(A.48)

− Fs∗∗(t� t; rL)− 1 +ψb
1 −ψs F

b∗∗(t� t; rL)

≤ − 1
1 −ψs FVC∗∗(t� t)− Fs∗∗(t� t; rL)− Fb∗∗(t� t; rL)(A.49)

=X∗
t �(A.50)

Since the original path was feasible with X∗∗
t ≥ 0, (A.48) implies that X∗

t ≥
1

1−ψs X
∗∗
t ≥ 0 for all t. Therefore, it is feasible to set c∗

t = 1
1−ψs c

∗∗
t when ψs =

ψb = 0. Accordingly, letting V (ψs�ψb)

t
denote the time-t value function of the

consumer when the transactions costs parameters are ψs and ψb, we ob-
tain 1

(1−ψs)1−α V
(ψs�ψb)

t
≤ V (0�0)

t
or, equivalently, V (ψs�ψb)

t
≤ (1 − ψs)

1−αV (0�0)
t

. In
words, (1 −ψs)1−αV (0�0)

t
provides an upper bound to V (ψs�ψb)

t
. Next observe that

when ψs + ψb > 0, the policy that sets c∗∗
t = (1 − ψs)c

∗
t , F

b∗∗(t� t; rL) = 0, and
Fs∗(t� t; rL) = Fs∗∗(t� t; rL) = −FVC∗∗(t� t1) for all t ≥ t keeps Xt = 0 for all
t ≥ t, is feasible, and delivers welfare equal to (1 − ψs)

1−αV (0�0)
t

. That is, for
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ψs +ψb > 0, this policy attains the upper bound (1 −ψs)1−αV (0�0)
t

and hence is
optimal. Q.E.D.

LEMMA 9: Along an optimal path that includes the possibility of automatic
transfers, if θX = θS = 0 and if Fs(tj� tj+1; rL) < 0, then optimal Xtj+1 = 0.

PROOF: Lemma 7 implies that if Fs(tj� tj+1; rL) < 0, then t ≡ inf{t ≥ tj :Xt =
0}< tj+1. Then Lemma 8 implies that Xt = 0 for all t ≥ t, so that in particular,
Xtj+1 = 0. Q.E.D.

PROOF OF PROPOSITION 5: The arguments of Lemma 2, appropriately ad-
justed for automatic transfers, imply that if, along an optimal path, xtj be-
comes smaller than some number Ω1 > 0 on some observation date tj , then
C(tj� tj+1) > Xtj , which requires Fs(tj� tj+1; rL) < 0. Accordingly Lemma 9 im-
plies Xtj+1 = 0, which implies xt = 0 for all t ≥ tj+1 (by Lemma 8) so that, in
particular, xtj+k = 0 for all k≥ 1.

Next we argue that eventually, with probability 1, there will exist some
k ≥ 1, such that xtj+k ≤ Ω1. We start by observing that in the presence of
automatic transfers, Xtj+1 is Ftj -measurable.37 Lemmas 7 and 8 imply that
as long as Xtj+1 > 0, it follows that Fs(tj� tj+1; rL) = 0, which, together with
the fact that consumption and transfers from the transactions account to the
investment account are both nonnegative, implies that Xtj+1 ≤ erLτjXtj and

Stj+1 ≥ StjR(tj� τj). Accordingly, xtj+1 = Xtj+1
Stj+1

≤ e
rLτj Xtj

Stj R(tj �τj)
= xtj

e
rLτj

R(tj �τj)
. Taking logs

gives logxtj+1 ≤ logxtj + rLτj − logR(tj� τj). Taking expectations as of time
tj gives Etj logxtj+1 ≤ logxtj + rLτj − Etj logR(tj� τj). We next observe that
−Etj logR(tj� τj)≤ maxφj∈[0�1]{−Etj logR(tj� τj)} = −rf τj .38 Accordingly, logxtj
is bounded above by a random walk with drift rL − rf , which is strictly neg-
ative. Since a random walk with negative drift eventually, with probability 1,
becomes smaller than any finite number (and in particular logΩ1) with proba-
bility 1, there will exist a k, such that xtj+k ≤Ω1. Therefore, as discussed above,
xtj+k+n = 0 for all n≥ 1.

Since the optimal value of τj is simply a function of xtj and since xtj eventu-
ally, with probability 1, becomes constant (namely, zero), the inattention inter-
vals τj will eventually become constant with probability 1. Q.E.D.

37Since any transfers from the investment portfolio must be Ftj -measurable, and feasible, these
transfers will not be financed from the risky holdings in the investment portfolio.

38Note that −Etj logR(tj� τj) is a convex function of φj , since
∂2[−Etj logR(tj �τj )]

(∂φj)2
=

Etj { 1
R2(tj �τj )

[ Ptj+1
Ptj

− erf τj ]2} > 0. Hence the maximum value of −Etj logR(tj� τj) for φj ∈ [0�1] is

attained either when φj = 0, or when φj = 1. When φj = 0�−Etj logR(tj� τj) = −rf τj , whereas

when φj = 1, −Etj logR(tj� τj)= −(μ− σ2

2 )τj . Given the maintained assumption (μ− σ2

2 ) > rf ,
it follows that maxφj∈[0�1]{−Etj logR(tj� τj)} = −rf τj .
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The following lemma proves that although xt is eventually absorbed at zero
with probability 1, this absorption need not occur immediately.

LEMMA 10: Suppose that we allow automatic transfers, θX = θS = 0, and xtj is
sufficiently large. Then optimal Xt+j > 0 so that xt is not immediately absorbed at
zero.

PROOF: LetX0
t be the value ofXt along the hypothesized optimal path, and

suppose, contrary to what is to be proved, that X0
t+j

= 0, which implies that

Fb�0(tj� t
+
j � rL) = X0

tj

1+ψb and Fs�0(tj� t� rL) = −FVC(tj �t)
1−ψs for t > tj . Define τ∗ such

that 1−ψs
1+ψb e

(rf−rL)τ∗ = 1 and note that for 0 ≤ τ∗∗ < τ∗, any dollar transferred from
the transactions account to the investment portfolio at time tj , invested in the
riskless bond, and then transferred back to the transactions account at time
tj + τ∗∗ will be worth less at time tj + τ∗ than a dollar simply left in the trans-
actions account from tj to tj + τ∗∗. Now let τ∗∗∗ be a positive number less than
min{tj+1 − tj� τ∗} that is small enough that e−rLτ∗∗∗ FVC(tj� tj + τ∗∗∗) <X0

tj
. Con-

sider an alternative path that sets Fb(tj� t+j � rL)= X0
tj

−e−rLτ∗∗∗
FVC(tj �tj+τ∗∗∗)

1+ψb > 0 and
does not change any other transfers from the transactions account to the in-

vestment portfolio so that Fb(tj� t�0)= Fb�0(tj� t�0)− e−rLτ∗∗∗
FVC(tj �tj+τ∗∗∗)
1+ψb for t >

t+j . In addition, the alternative path sets Fs(tj� tj + τ∗∗∗� rL)= 0 and then main-
tains Fs(tj + τ∗∗∗� t� rL)= Fs�0(tj + τ∗∗∗� t� rL) for all t ∈ (tj + τ∗∗∗� tj+1). Suppose
that any changes in the size of the investment portfolio affect only the amount
invested in riskless bonds. Relative to the originally hypothesized optimal
path, the alternative path changes Stj+τ∗∗∗ by ΔS ≡ −erf τ∗∗∗

e−rLτ∗∗∗ FVC(tj �tj+τ∗∗∗)
1+ψb −

Fs�0(tj� tj + τ∗∗∗� rf ), where the first term reflects the reduction in Stj+τ∗∗∗ aris-
ing from the reduced transfer into the investment portfolio at time tj and
the second term reflects the fact that the consumer does not need to trans-
fer assets from the investment portfolio to the transactions account to finance
the original path of consumption until tj + τ∗∗∗. Relative to the originally hy-
pothesized optimal path, the alternative path changes Xtj+τ∗∗∗ by ΔX ≡ (1 +
ψb)[ e

−rLτ∗∗∗
FVC(tj �tj+τ∗∗∗)
1+ψb ]erLτ∗∗∗ +(1−ψs)Fs�0(tj� tj+τ∗∗∗� rL), where the first term

reflects the increase inXtj+τ∗∗∗ that arises from the reduction in the transfer out
of the transactions account at time tj and the second term reflects the reduction
in transfers into the transactions account between tj and tj + τ∗∗∗. Use the fact
that −Fs�0(tj� tj + τ∗∗∗� rf )≥ −Fs�0(tj� tj + τ∗∗∗� rL)= FVC(tj �tj+τ∗∗∗)

1−ψs to obtain ΔS ≥
−erf τ∗∗∗

e−rLτ∗∗∗ FVC(tj �tj+τ∗∗∗)
1+ψb + FVC(tj �tj+τ∗∗∗)

1−ψs = [− 1−ψs
1+ψb e

(rf−rL)τ∗∗∗ +1]FVC(tj �tj+τ∗∗∗)
1−ψs > 0

since τ∗∗∗ > τ∗. Observe that ΔX ≡ FVC(tj� tj + τ∗∗∗) + (1 − ψs)F
s�0(tj� tj +

τ∗∗∗� rL)= 0. Since ΔS > 0 and ΔX = 0, the original path could not be optimal.
Therefore, optimal Xt+j > 0. Q.E.D.
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PROPOSITION 6: Define V (0� Stj ;ψs) as the value function for a given value
of the transactions cost parameter ψs on observation date tj when (Xtj � Stj ) =
(0� Stj ), and define π1(ψs) as the optimal return value of xt+j for xtj < ω1. Suppose
that θS is sufficiently small that for any admissible value of ψs, if xtj < ω1 on
observation date tj , then on all subsequent observation dates xtj+1 = 0. Then the
following statements hold:

(i) V (0� Stj ;ψs)= (1 −ψs)1−αV (0� Stj ;0).
(ii) The optimal observation dates tk = tj + (k− j)τ∗ for k ≥ j are invariant

to ψs.
(iii) π1(ψs)= (1 −ψs)π1(0).

PROOF: Suppose that ψs = 0 and let {S∗
t }t=∞
t=tj be the path of St under the

optimal policy starting from observation date tj when the consumer observes
Xtj = 0 and Stj = S∗

tj
. Let τ∗ be the constant optimal interval of time be-

tween consecutive observations so that observation date tk = tj + (k− j)τ∗ for
k≥ j. For any observation date tk ≥ tj , the transactions account balance will be
Xtk = 0, and immediately after each observation date, the transactions account
balance will be Xt+

k
=X∗

t+
k

≡ π1(0)S∗
t+
k

. Since 0 =X∗
tk+1

= erLτ∗(X∗
t+
k

−C(tk� τ∗)),
we have C(tk� τ∗)=X∗

t+
k

.
Now letψs take an arbitrary admissible value and suppose that the consumer

continues to observe the value of the investment portfolio on dates tk = tj +
(k− j)τ∗ for k ≥ j and maintains the same path of St , that is, that St = S∗

t for
t ≥ tj . Since the consumer will make the same transfers out of the investment
portfolio as in the initial case with ψs = 0, a feasible path of the transaction
account balance immediately after each observation date would be Xt+

k
= (1 −

ψs)X
∗
t+
k

, which supports a feasible path of consumptionC(tk� τ∗)= (1−ψs)X∗
t+
k

.

Therefore, V (0� Stj ;ψs)≥ (1 −ψs)1−αV (0� Stj ;0).
A similar argument, starting with an arbitrary admissible value of ψs less

than 1, implies V (0� Stj ;0) ≥ ( 1
1−ψs )

1−αV (0� Stj ;ψs). Therefore, V (0� Stj ;ψs) ≥
(1 − ψs)

1−αV (0� Stj ;0) ≥ V (0� Stj ;ψs), which implies V (0� Stj ;ψs) = (1 −
ψs)

1−αV (0� Stj ;0) (statement (i)). We showed that by maintaining the same
observation dates when ψs is positive as when ψs = 0 allows a path of con-
sumption that achieves V (0� Stj ;ψs) ≥ (1 − ψs)

1−αV (0� Stj ;0) = V (0� Stj ;ψs).
Similarly, by maintaining the same observation dates when ψs = 0 as when
ψs is positive allows a path of consumption that achieves V (0� Stj ;0) ≥
( 1

1−ψs )
1−αV (0� Stj ;ψs)= V (0� Stj ;0). Therefore, we have proven statement (ii).

For any observation date tk ≥ tj , xt+
k

= π1(ψs). Therefore, π1(ψs) = X
t+
k

S
t+
k

=
(1−ψs)X∗

t+
k

S∗
t+
k

= (1 −ψs)π1(0), which proves statement (iii). Q.E.D.
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PROOF OF PROPOSITION 4: At each observation date tj the consumer
chooses the share φj of the investment portfolio to allocate to equity to max-
imize Etj {V (Xtj+1� Stj+1)} subject to the constraints 0 ≤ φj ≤ 1. Using (2) and
(3), we can write the Lagrangian for this constrained maximization as

Lj = Etj

{
V

(
Xtj+1�φj

Ptj+1

Ptj
St+j + (1 −φj)erf τj St+j

)}
(A.51)

+ δjSt+j φj + νjSt+j (1 −φj)�
where δjSt+j ≥ 0 is the Lagrange multiplier on the constraint φj ≥ 0 and
νjSt+j ≥ 0 is the Lagrange multiplier on the constraint φj ≤ 1. Differentiating
the Lagrangian in (A.51) with respect to φj , setting the derivative equal to
zero, and then dividing both sides by St+j yields

Etj

{
VS(Xtj+1� Stj+1)

(
Ptj+1

Ptj
− erf τj

)}
= νj − δj�(A.52)

Next, we prove the following lemma.

LEMMA 11: We have φj > 0 and δj = 0.

PROOF: We proceed by contradiction. Suppose that φj = 0, which implies
that νj = 0 and that Stj+1 is known at time tj . Therefore, (A.52) can be writ-

ten as VS(Xtj+1� Stj+1)Etj {(
Ptj+1
Ptj

− erf τj )} = −δj ≤ 0, which is a contradiction be-

cause VS(Xtj+1� Stj+1) > 0 and, by assumption, the expected equity premium,

Etj {(
Ptj+1
Ptj

− erf τj )}, is positive. Therefore, φj must be positive, which implies

δj = 0. Q.E.D.

To replace the marginal valuation of the investment portfolio VS(Xtj+1� Stj+1)
by a function of the marginal utility of consumption, first use the definition of
the marginal rate of substitution m(xtj+1) to obtain

VS(Xtj+1� Stj+1)=m(xtj+1)VX(Xtj+1� Stj+1)�(A.53)

Then use the envelope theorem to obtain

VX(Xtj+1� Stj+1)= [
1 − (1{yb(tj+1)>0} + 1{ys(tj+1)<0})θX

]
(A.54)

× (
1 − (1 − α)κb(τj+1)

)
U ′(C(tj+1� τj+1)

)
�

which implies that VX(Xtj+1� Stj+1), the increase in expected lifetime utility
made possible by a $1 increase inXtj+1 , equals the increase in utility that would
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accompany an increase of 1−(1{yb(tj+1)>0} +1{ys(tj+1)<0})θX dollars inC(tj+1� τj+1).
That is, if the consumer transfers assets between the investment portfolio
and the transactions account at time tj+1, a $1 increase in Xtj+1 would allow
C(tj+1� τj+1) to increase by 1 − θX dollars; otherwise, C(tj+1� τj+1) can increase
by $1. Differentiate (16) with respect to C(tj� τj) and use (**) in footnote 18 to
obtain

U ′(C(tj� τj)) = c−α
t+j
�(A.55)

Substitute (A.54) into (A.53) and use (A.55) to obtain

VS(Xtj+1� Stj+1)=m(xtj+1)
[
1 − (1{yb(tj+1)>0} + 1{ys(tj+1)<0})θX

]
(A.56)

× (
1 − (1 − α)κb(τj+1)

)
c−α
t+j+1
�

Substituting the right hand side of (A.56) for VS(Xtj+1� Stj+1) in (A.52) and using
Lemma 11 to set δj = 0 yields

Etj

{
m(xtj+1)

[
1 − (1{yb(tj+1)>0} + 1{ys(tj+1)<0})θX

]
(A.57)

× (
1 − (1 − α)κb(τj+1)

)
c−α
t+j+1

(
Ptj+1

Ptj
− erf τj

)}
= νj�

In standard models without information costs and transfer costs, and without
the constraints 0 ≤ φj ≤ 1, the corresponding Euler equation, which is widely
used in financial economics, is

Et

{
c−α
s

(
Ps

Pt
− erf (s−t)

)}
= 0 for s > t�(A.58)

In general, the Euler equation in the presence of information costs and trans-
actions costs in (A.57) differs from the standard Euler equation in (A.58) in
five ways: (i) the Euler equation in (A.57) contains the Lagrange multiplier on
the constraint φj ≤ 1, but this Lagrange multiplier does not appear in the stan-
dard Euler equation; (ii) the Euler equation in (A.57) contains the marginal
rate of substitution m(xtj+1), which is a random variable, but this marginal
rate of substitution is absent (or implicitly equal to a constant) in the stan-
dard Euler equation39; (iii) the Euler equation in (A.57) contains the term
1 − (1{yb(tj+1)>0} + 1{ys(tj+1)<0})θX , which reflects the additional fixed transfer cost
associated with having an additional dollar in the transactions account; (iv) the

39If assets could be transferred without any resource costs (i.e., if θX = θS =ψs =ψb = 0), then
m(xtj )= 1 at all observation dates and, hence, can be eliminated from (A.57).
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Euler equation in (A.57) contains the term 1 − (1 − α)κb(τj+1), which reflects
the utility cost of the next observation; and (v) in the presence of information
costs, the Euler equation holds only for rates of return between observation
dates, whereas the Euler equation in the standard case holds for rates of re-
turn between any arbitrary pair of dates because all dates are observation dates
in the standard case. We show that in the long run, in an interesting special
case, the first four of these differences disappear. Before showing this result,
we prove the following lemma.

LEMMA 12: Suppose that θS is sufficiently small in the sense described in the
proof of Proposition 2. If xtj ≤ ω1, then (i) φj < 1 if α > μ−rf

σ2 and (ii) φj = 1 if
α≤ μ−rf

σ2 .

PROOF: Proposition 2 implies that if xtj ≤ π1, then xtj+1 = 0. The opti-
mal value of φj , 0 ≤ φj ≤ 1, maximizes Etj {V (Xtj+1� Stj+1)} = 1

1−αEtj {S1−α
tj+1
v(0)},

which is equivalent to maximizing ϕ(φj;α) ≡ 1
1−αEtj {[φj

Ptj+τj
Ptj

+ (1 − φj)×
erf τj ]1−α}. Define α∗ such that arg maxφj ϕ(φj;α∗) = 1 and note that ϕ′(1;
α∗)= 0.

Differentiating the definition of ϕ(φj;α) with respect to φj and setting φj =
1 yields

ϕ′(1;α)=Etj
{(
Ptj+τj
Ptj

)1−α}
− erf τjEtj

{(
Ptj+τj
Ptj

)−α}
�

Use the fact that
Ptj+τj
Ptj

is log normal to obtain

ϕ′(1;α)= exp
[
(1 − α)

(
μ− 1

2
ασ2

)
τj

]
− erf τj exp

[
−α

(
μ+ 1

2
(−α− 1)σ2

)
τj

]
�

Further rearrangement yields

ϕ′(1;α)= exp
[(

−αμ+ rf − 1
2
α(1 − α)σ2

)
τj

]
× [

exp
(
(μ− rf )τj

) − exp
(
ασ2τj

)]
�

which implies that

ϕ′(1;α)� 0 as α� α∗ ≡ (μ− rf )/σ2�
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Differentiate ϕ(φj;α) twice with respect to φj to obtain

ϕ′′(φj;α)= −αEtj
{(
φj
Ptj+τj
Ptj

+ (1 −φj)erf τj
)−α−1(Ptj+τj

Ptj
− erf τj

)2}
< 0�

which implies that ϕ(φj;α) is concave. If α> α∗, then ϕ′(1;α) < 0, so the con-
cavity of ϕ(φj;α) implies that the optimal value of φj is less than 1 and the La-
grange multiplier on the constraintφj ≤ 1 is νj = 0. If α≤ α∗, then ϕ′(1;α)≥ 0,
so the concavity of ϕ(φj;α) implies that the optimal value of φj equals 1. If
α< α∗, the Lagrange multiplier on the constraint φj ≤ 1 is νj > 0. Q.E.D.

Suppose that θS is sufficiently small so that in the long run, the stochas-
tic process for xtj is absorbed at zero. Lemma 12 implies that if the coeffi-
cient of relative risk aversion α exceeds μ−rf

σ2 , then in the long run, the con-
straint φj ≤ 1 does not bind and, hence, νj = 0. In this case, the first of the
five differences between the Euler equation in (A.57) and the standard Eu-
ler equation disappears. In addition, in the long run, xtj = 0 on each obser-
vation date tj , so (i) m(xtj ) = (1 − ψs)

1−θS
1−θX on each observation date, (ii) the

consumer sells assets from the investment portfolio on each observation date
so 1 − (1{ybtj+1

>0} + 1{ystj+1
<0})θX = 1 − θX on each observation date, and (iii)

the time between consecutive observations is constant so 1 − (1 − α)κb(τj+1)
is constant. Using the fact that νj = 0 and dividing both sides of (A.57) by
(1 −ψs)(1 − θS)(1 − (1 − α)κb(τj+1)) proves Proposition 4. Q.E.D.

APPENDIX B: BASIC PROPERTIES OF THE OPTIMIZATION PROBLEM AND
THE VALUE FUNCTION

The goal of this section is to establish some basic properties of the opti-
mization problem that we consider in the paper. Specifically, we show that the
value function V (Xtj � Stj ) is finite, homogeneous of degree 1 − α, continuous,
and satisfies the Bellman equation (20). Moreover, we show that there exist
policies that attain the supremum on the right hand side of (20) and that these
policies are optimal. The main result is formulated in Proposition 7. In prepa-
ration for Proposition 7, we state and prove four lemmas.

LEMMA 13: Let aj ≡ {C(tj� τj)� yb(tj)� ys(tj)�φj� τj} denote a strategy that is
feasible given Xtj and Stj , and let

U(aj=1�����∞)≡Etj
{∫ ∞

tj

1
1 − αc

1−α
t e−ρ(t−tj) dt −

∞∑
i=j
A(ti� τi)e

−ρ(ti+τi−tj )
}
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denote the expected payoff from following the policy aj=1�����∞. Furthermore, let
V (Xtj � Stj ) = supαj=1�����∞ U(αj=1�����∞) denote the value function of the problem.
Then V (Xtj � Stj ) satisfies (20).

PROOF: First, we observe that −∞ < V (Xtj � Stj ) <∞. To see this, we note
first that there exist policies that are feasible and lead to a finite U(αj=1�����∞).
For instance, setting τ1 = ∞, ys(tj) = −[1 − θS]Stj , and C(tj�∞) = Xt+j =
(1 − θX)Xtj+(1 − ψs)(1 − θS)Stj implies the discounted utility 1

1−αχ
−αX1−α

t+j
,

where χ≡ ρ−(1−α)rL
α

> 0. Accordingly, the value function is bounded below. Fur-
thermore, the value function is bounded above by the value function that can
be attained if we remove all transactions and observations costs (κ= θS = θX =
ψs = ψb = 0). But by removing all these frictions, the problem becomes iden-
tical to the standard, continuous-time Merton (1971) problem with portfolio
weights restricted to φ ∈ [0�1]. Since that problem has a finite value function
(as long as (7) holds), we conclude that the value function is bounded above
and, hence, is finite.40

From this point on, the proof mimics closely the proof given in Stokey and
Lucas (1989, Theorem 4.2). We observe that the definition of V (Xtj � Stj ) im-
plies that

V (Xtj � Stj )≥ U(aj=1�����∞) for all aj=1�����∞(B.1)

and that for (arbitrarily small) δ > 0, there exists some strategy aj=1�����∞ such
that

U(aj=1�����∞)≥ V (Xtj � Stj )− δ�(B.2)

(If (B.2) were not true, then we must have

V (Xtj � Stj )= sup
αj=1�����∞

U(aj=1�����∞) < V (Xtj � Stj )− δ�

which is absurd.) Now, take ε > 0. To show that V (Xtj � Stj ) satisfies (20), we
will show that

V (Xtj � Stj ) ≥ [
1 − (1 − α)κb(τj)

] ×U(
C(tj� τj)

)
(B.3)

+ e−ρτjEtj
{
V

(
erLτj

(
Xt+j −C(tj� τj)

)
�R(tj� τj)St+j

)}
40For a detailed analysis of the infinite-horizon version of Merton’s problem and the condition

for its value function to be finite, see, for example, the monograph Karatzas and Shreve (1998,
p. 149).
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for all aj and that there exists aj such that for any (arbitrarily small) ε > 0,

V (Xtj � Stj ) ≤ [
1 − (1 − α)κb(τj)

] ×U(
C(tj� τj)

)
(B.4)

+ e−ρτjEtj
{
V

(
erLτj

(
Xt+j −C(tj� τj)

)
�R(tj� τj)St+j

)} + ε�

To show (B.3), note that by (B.2) there exists a policy sequence a′ = a′
tj �t

′
j+1����

such that U(α′
t′j+1�t

′
j+2����

)≥ V (Xt′j+1
� St′j+1

)− ε
2 . Moreover, using the definition of

U(C(tj� τj)) implies the existence of a policy c′
t∈(tj �tj+τ′j )

such that 1
1−α [1 − (1 −

α)κb(τ′
j)] × ∫ tj+τ′j

tj
(c′
t)

1−αe−ρ(t−tj) dt ≥ [1 − (1 − α)κb(τ′
j)] × U(C(tj� τ

′
j)) − ε

2 .
Accordingly,

V (Xtj � Stj ) ≥ U
(
a′
t′j �t

′
j+1����

)
= 1

1 − α
{[

1 − (1 − α)κb(τ′
j

)] ∫ tj+τ′
j

tj

(
c′t

)1−α
e−ρ(t−tj) dt

}
+ e−ρτ′

jEtj U
(
α′
t′j+1�t

′
j+2����

)
≥ [

1 − (1 − α)κb(τ′
j

)] ×U(
C

(
tj� τ

′
j

)) − ε

2

+ e−ρτ′
jEtj V

(
erLτj

(
X ′
t+j

−C(
tj� τ

′
j

))
�R

(
tj� τ

′
j

)
S′
t+j

) − e−ρτ′
j
ε

2

≥ [
1 − (1 − α)κb(τ′

j

)] ×U(
C

(
tj� τ

′
j

))
+ e−ρτ′

jEtj V
(
erLτj

(
X ′
t+j

−C(
tj� τ

′
j

))
�R

(
tj� τ

′
j

)
S′
t+j

) − ε�

Since ε > 0 was arbitrary, we obtain (B.3). To show (B.4), choose ε > 0 and
take a policy a′

t′j �t′j+1����
such that V (Xtj � Stj )≤ U(a′

t′j �t′j+1����
)+ ε. Accordingly

V (Xtj � Stj ) ≤ U
(
α′
t′j �t′j+1����

) + ε(B.5)

= 1
1 − α

{[
1 − (1 − α)κb(τ′

j

)] ∫ tj+τ′j

tj

(
c′
t

)1−α
e−ρ(t−tj ) dt

}
+ e−ρτ′jEtj U

(
α′
t′j+1�t

′
j+2����

) + ε
≤ [

1 − (1 − α)κb(τ′
j

)] ×U(
C

(
tj� τ

′
j

))
+ e−ρτ′jEtjV

(
erLτj

(
X ′
t+j

−C(
tj� τ

′
j

))
�R

(
tj� τ

′
j

)
S′
t+j

) + ε�

Q.E.D.
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Lemma 13 shows that the value function satisfies (20). The next lemma
shows that the reverse conclusion holds, subject to two additional conditions.

LEMMA 14: If V̂ (Xtj � Stj ) satisfies (20) with the supremum on the right hand
side of (20) attained for some policy, and if limtk→∞ e−ρtkEtj V̂ (Xtk� Stk) = 0 for
all (Xtj � Stj ) ∈ R2

+ and for all feasible aj=1�����∞, then V̂ = V and the policy that
attains the supremum on the right hand side of (20) is an optimal policy for the
intertemporal optimization problem.

PROOF: The proof closely follows Stokey and Lucas (1989), so we give a
brief sketch of some minor adaptations that are required so as to deal with the
specifics of our setup. Iterating on (20) implies that if we adopt any feasible
policy tuple aj , we obtain

V̂ (Xtj � Stj ) ≥ Etj
∑
i=j�����k

[
1 − (1 − α)κb(τi)

]
e−ρ(ti−tj )U

(
C(ti� τi)

)
(B.6)

+ e−ρ(tk+1−tj )Etj V̂ (Xtk+1� Stk+1) for any k≥ j�

Now if the feasible policy aj involves a finite number of observations (so
that τk+1 = ∞), then (B.6) shows that V̂ (Xtj � Stj ) is an upper bound to the
payoff of aj since V̂ (Xtk+1� Stk+1) ≥ Ṽ (Xtk+1� Stk+1;τj = ∞) ≥ U(ak+1), where
Ṽ (Xtk+1� Stk+1;τj = ∞) is the maximized value of the right hand side of (20)
restricted by τk+1 = ∞ and U(ak+1) denotes the payoff from following the strat-
egy ak+1 for tk+1 onward. If the feasible policy involves an infinite number of ob-
servations, then taking tk+1 → ∞ and using limtk+1→∞ e−ρtk+1Etj V̂ (Xtk+1� Stk+1)=
0, we once again conclude that V̂ (Xtj � Stj ) provides an upper bound to the
payoff from following aj=1�����∞. Furthermore, the inequality in (B.6) becomes
an equality for the policy that attains the maximum on the right hand side
of (20). Accordingly, that policy is optimal and V̂ (Xtj � Stj ) is the value func-
tion. Q.E.D.

The next lemma shows that the value function is homogeneous of degree
1 − α.

LEMMA 15: Letting xt ≡ Xt
St

, the value function satisfies (21).

PROOF: Consider an optimal policy aAj=1�����∞ associated with the initial state
variables (XA

tj
� SAtj ). Now suppose that we consider the initial state variables

(XB
tj
�1) and, additionally, we assume that xAtj = xBtj . Construct a policy aBj=1�����∞

as follows. For all j = 1� � � � �∞, let τBj = τAj and φBj = φAj , and also let
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CB(tj� τ
B
j ) = 1

SAtj

CA(tj� τ
A
j ), y

b�B(tj) = 1
SAtj

yb�A(tj), and ys�B(tj) = 1
SAtj

ys�A(tj). Us-

ing (4), (5), and (19), and the fact that policy A is feasible, it is straightforward
to verify that policy B is feasible and implies a consumption process that is
equal to cBt = cAt

SAtj

for all t ∈ (tj� tj+1], all tj , and all realizations of uncertainty.

Accordingly, V (XB
tj
�1)= V (xBtj �1)= V (xAtj �1)≥ 1

(SAtj
)1−α V (X

A
tj
� SAtj ).

Similarly, consider a path that is optimal for (XB
tj
�1). Repeating the same

arguments as above, the policy defined by τAj = τBj �φ
A
j = φBj , CA(tj� τ

A
j ) =

SAtj C
B(tj� τ

B
j ), y

b�A(tj)= SAtj y
b�B(tj), and ys�A(tj)= SAtj y

s�B(tj) is feasible starting
from (XA

tj
� SAtj ), assuming always that xAtj = xBtj . Moreover, this policy implies

that cAt = SAtj c
B
t for all t ∈ (tj� tj+1], all tj� and all realizations of uncertainty.

Accordingly, V (XA
tj
� SAtj )≥ (SAtj )1−αV (XB

tj
�1)= (SAtj )1−αV (xAtj �1).

Now letting v(xtj )≡ (1 − α)V (xtj �1) and using
v(xAtj

)

1−α = V (xAtj �1) ≥ 1
(SAtj

)1−α ×
V (XA

tj
� SAtj ) together with

v(xAtj
)

1−α (S
A
tj
)1−α = V (xAtj �1)(SAtj )

1−α ≤ V (XA
tj
� SAtj ) yields

(21). Q.E.D.

In preparation for the main proposition, we also introduce the norm

‖f‖ ≡ max
Xt�St∈R2+ s�t� Xt+St=1

∣∣f (Xt� St)
∣∣�(B.7)

We let B denote the set of functions that map R2
+ →R+ if α < 1 (respectively,

R2
+ → R− if α > 1) that are homogeneous of degree 1 − α and bounded in

the norm defined in (B.7). Similarly, we let H denote the set of functions that
belong in B and additionally are continuous. Finally, define the operator T
applied to function f as

Tf ≡ sup
C(tj �τj)�y

b(tj )�y
s(tj )�φj�τj

{[
1 − (1 − α)κb(τj)

]
U

(
C(tj� τj)

)
(B.8)

+ e−ρτjEtj
[
f (Xtj+1� Stj+1)

]}
�

The next proposition contains our main result.

PROPOSITION 7: The operator Tf maps H into H and has a fixed point in H,
which is the value function V . Moreover, for f = V , there exist policies that attain
the optimum on the right hand side of (B.8) and these policies are optimal.

PROOF: First, we prove that Tf maps H into H. Using the definition of
U(C(tj� τj)) and inspection of (B.8), it is immediate that if f is homogeneous of
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degree 1−α (so that it can be expressed as 1
1−α(Xt +St)1−αf̃ (x̃t)), then so is Tf .

Next we observe that if f is bounded in the norm (B.7), so is Tf . In the case
α> 1, the result is immediate, since Tf is bounded above by zero and below by
the feasible policy that sets τ1 = ∞, ys(tj)= −[1 − θS]Stj , and C(tj�∞)=Xt+j ,
which implies the discounted utility U ≡ 1

1−α(Xtj + Stj )
1−αχ−α[(1 − θX)x̃tj +

(1 − ψs)(1 − θS)(1 − x̃tj )]1−α, where χ ≡ ρ−(1−α)rL
α

> 0. Clearly, this feasible
policy is bounded in the norm (B.7), and thus Tf is bounded in the norm
(B.7). In the case where α < 1, we note that U still provides a lower bound.
To derive an upper bound, let l(τj) ≡ [1 − (1 − α)κb(τj)] × [h(τj)]α, define
G ≡ supτj>0 l(τj), and observe that the assumptions of Lemma 1 imply that
G is finite.41 In turn, this implies that [1 − (1 − α)κb(τj)] × U(C(tj� τj)) =
[1 − (1 −α)κb(τj)] × 1

1−α [h(τj)]α[C(tj� τj)]1−α ≤ 1
1−αG[Xtj + Stj ]1−α is bounded

in the norm (B.7). Moreover, ‖e−ρτjEtj f (Xtj+1� Stj+1)‖ ≤ ‖f (Xt� St)‖ is bounded
in the norm (B.7), since f is bounded in the norm (B.7). Accordingly, Tf is
bounded in the norm (B.7) for both α < 1 and α > 1. Finally, Tf maps contin-
uous functions to continuous functions. (To see this, note that the right hand
side of (B.8) can be expressed as the maximum of three functions, namely the
maximal value conditional on yb > 0, conditional on ys < 0, and conditional
on yb = ys = 0. Each of these functions is continuous by a version of the the-
orem of the maximum (see in particular Alvarez and Stokey (1998)42), and
hence so is the maximum of the three functions.) We conclude that Tf maps
H into H.

To show that Tf has a fixed point in H, we adapt the arguments in
Alvarez and Stokey (1998). Specifically, we distinguish two cases, depending
on whether α < 1 or α > 1. The case α < 1 allows a relatively straightforward
proof based on a contraction mapping argument. The case α> 1 requires a dif-
ferent set of arguments. It is useful to note that the proof that we develop for
the case α > 1 would provide an alternate proof (with obvious modifications)
for the case α< 1, but the reverse is not true.

We start with the case α < 1. For this case, we start by proving the following
implication of assumption (7).

LEMMA 16: For all τj > 0 and all φj ∈ [0�1], assumption (7) implies that

e−ρτjEtj
{[
R(tj� τj)

]1−α}
< 1�(B.9)

41To see this, note that l(τj) is continuous, limτj→0 l(τj)≤ 0, and limτj→∞ l(τj)= 1
χα
<∞.

42Notice in particular that Tf is always bounded below by U for any f ∈ H.
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PROOF: To simplify notation, we fix some tj and tj+1, and for any t ∈ [tj� tj+1]�
we let Rt ≡R(tj� t − tj)=φj PtPtj + (1 −φj)erf (t−tj ). Applying Ito’s lemma gives

dRt =φj Pt
Ptj
μdt + (1 −φj)erf (t−tj )rf dt +φj Pt

Ptj
σ dzt�(B.10)

Dividing both sides of (B.10) by Rt and letting πt ≡ φj(Pt/Ptj )

φj(Pt /Ptj )+(1−φj)erf (t−tj )
gives

dRt

Rt
= πtμdt + (1 −πt)rf dt +πtσ dzt�(B.11)

The unique solution of the linear stochastic differential equation (B.11) for
t ∈ [tj� tj+1] subject to the initial condition Rtj =R(tj�0)= 1 is given by

Rt = e
∫ t
tj

[πtμ−(1/2)π2
t σ

2+(1−πt)rf ]dt+∫ t
tj
πtσ dzt

�(B.12)

Using (B.12) and recalling that Rtj+1 =R(tj� tj+1 − tj)=R(tj� τj), we obtain

e−ρτjE
{[
R(tj� τj)

]1−α}
(B.13)

=E{
e

−ρτj+(1−α){∫ tj+1
tj

[πtμ−(1/2)π2
t σ

2+(1−πt)rf ]dt+∫ tj+1
tj

πtσ dzt }}
≤ max

πt
E

{
e

−ρτj+(1−α){∫ tj+1
tj

[πtμ−(1/2)π2
t σ

2+(1−πt)rf ]dt+∫ tj+1
tj

πtσ dzt }}
�

In light of (B.11) and (B.12), the maximization problem in (B.13) is identi-
cal to the Merton-type problem of maximizing maxπt e

−ρτjE{R1−α
tj+1

} subject to
the constant-investment-opportunity-set dynamics (B.11), which has the well
known constant rebalancing solution πt = π= μ−rf

ασ2 . Substituting this solution
into (B.13), letting

ν≡ (1 − α)
[
rf + 1

2α

(
μ− rf
σ

)2]
�

and utilizing properties of the log-normal distribution gives

max
πt∈[0�1]

E
{
e

−ρτj+(1−α){∫ tj+1
tj

[πtμ−(1/2)π2
t σ

2+(1−πt)rf ]dt+∫ tj+1
tj

πtσ dzt }} = e(ν−ρ)τj < 1�(B.14)

Combining (B.14) with (B.13) and noting that φj� τj are arbitrary implies
(B.9). Q.E.D.
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We next define x̃t ≡ Xt
Xt+St = xt

xt+1 and observe that xt = x̃t
1−x̃t . Because of (21),

we obtain that

V (Xtj � Stj )= 1
1 − α(Xt + St)1−α

(
St

Xt + St
)1−α

v(xt)

= 1
1 − α(Xt + St)1−α(1 − x̃t)1−αv

(
x̃t

1 − x̃t
)

= 1
1 − α(Xt + St)1−αv∗(x̃t)�

where v∗(x̃t)≡ (1 − x̃t)1−αv( x̃t
1−x̃t ).

In that case, we obtain that

Etj

{
e−ρτj

(
Xtj+1 + Stj+1

Xtj + Stj

)1−α}
(B.15)

=Etj
{
e−ρτj

(erLτj (Xt+j −C(tj� τj))+R(tj� τj)St+j
Xtj + Stj

)1−α}

≤
(Xt+j + St+j
Xtj + Stj

)1−α
e−ρτjEtj

{(
erLτj x̃t+j +R(tj� τj)(1 − x̃t+j )

)1−α}
�

where the inequality follows from C(tj� τj)≥ 0 and the definition of x̃t+j . Next
we show that

e−ρτjEtj
{(
erLτj x̃t+j +R(tj� τj)(1 − x̃t+j )

)1−α}
(B.16)

≤ max
φj∈[0�1]

e−ρτjEtj
{
R(tj� τj)

1−α}�
To see why (B.16) holds, note that for anyφj ∈ [0�1] and x̃t+j ∈ [0�1], we obtain

erLτj x̃t+j +R(tj� τj;φj)× (1− x̃t+j )= erLτj x̃t+j + (φj Ptj+τjPtj
+ (1−φj))× (1− x̃t+j )≤

φj(1− x̃t+j )
Ptj+τj
Ptj

+((1−φj)(1− x̃t+j )+ x̃t+j )erf τj =φj(1− x̃t+j )
Ptj+τj
Ptj

+(1−φj(1−
x̃t+j ))e

rf τj = R(tj� τj;φj(1 − x̃t+j )). Therefore, Etj (e
rLτj x̃t+j + R(tj� τj;φj)(1 −

x̃t+j ))
1−α ≤Etj (R(tj� τj;φj(1 − x̃t+j )))1−α ≤ maxφj∈[0�1]Etj {R(tj� τj)1−α}.

Using (B.16) inside (B.15), noting that
X
t+
j

+S
t+
j

Xtj+Stj
≤ 1, and using (B.9), im-

plies that Etj {e−ρτj (
Xtj+1 +Stj+1
Xtj+Stj

)1−α}< 1. Suppose next that we choose some (ar-

bitrarily small) ε > 0 and we confine attention to choices τj ≥ ε. (Also de-
fine T (ε) to equal T subject to τj ≥ ε.) Then we obtain that there exists
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β < 1 such that e−ρτjEtjR(tj� τj)
1−α ≤ β.43 Therefore, for any constant η and

any function f ∈ H, the operator T (ε) satisfies the “discounting” property
T (ε)(f + η(Xtj + Stj )

1−α) ≤ T (ε)f + ηβ(Xtj + Stj )
1−α. Furthermore, the op-

erator T (ε) satisfies the monotonicity property f ≤ g ⇒ T (ε)f ≤ T (ε)g. Ac-
cordingly, the operator T (ε) is a contraction by Lemma 1 in Alvarez and
Stokey (1998) (Boyd’s lemma) and possesses a unique fixed point V (ε). Since
this fixed point is in H (so that, in particular, TV (ε) is bounded below and
above in the norm (B.7) and continuous), it implies that the supremum on
the right hand side of (B.8) is attained. Furthermore, the fixed point V (ε)

is in H and hence in B. But note that for any function f ∈ B, we ob-
tain 0 ≤ limtk→∞ e−ρtkEtj f (Xtk� Stk)= limtk→∞ e−ρtkEtj (Xtk +Stk)1−α f(Xtk �Stk )

(Xtk+Stk )1−α ≤
(Xtj +Stj )1−α‖f‖× limtk→∞ e−ρtkEtj (

Xtk+Stk
Xtj+Stj

)1−α = 0. Accordingly, by Lemma 14,

V (ε) is the value function subject to the additional constraint τj ≥ ε.
Next consider a sequence of εk > 0 such that limk→∞ εk = 0. The associ-

ated sequence V (εk)(Xtj � Stj ) is a nondecreasing sequence of functions, which
is bounded above by V (0)(Xtj � Stj ). Hence this sequence of functions converges
pointwise to a limit V = limεk→0 V

(εk). The completeness of H implies that
V ∈ H. Moreover, V = limεk→0 V

(εk) = limεk→0 T
(εk)V (εk) = TV , where the last

equality follows upon applying the theorem of the maximum to

lim
εk→0

sup
C(tj �τj)�y

b(tj )�y
s(tj )�φj�τj≥εk

[
1 − (1 − α)κb(τj)

]
U

(
C(tj� τj)

)
+ e−ρτjEtj

{
V (εk)(Xtj+1� Stj+1)

}
and observing that the monotone convergence theorem implies that
limεk→0Etj {V (εk)(Xtj+1� Stj+1)} = EtjV (Xtj+1� Stj+1). Accordingly, V ∈ H is a fixed
point of (B.8). And since V ∈ H (so that, in particular, it is continuous and
bounded in the norm (B.7)), it satisfies the rest of the requirements44 of

43The fact that there exists such β follows from the fact that e−ρτjEtjR(tj� τj)
1−α ≤

supτj≥ε>0�φj∈[0�1] e
−ρτjEtjR(tj� τj)

1−α = maxτj≥ε>0�φj∈[0�1] e−ρτjEtjR(tj� τj)
1−α. To see why the supre-

mum is attained, we note that a continuous function on a closed set attains its maximum,
so that on any set [ε�τ], the function e−ρτjEtjR(tj� τj)

1−α attains a maximum. Moreover,
since limτj→∞ e−ρτjEtjR(tj� τj)

1−α = 0, there exists τ and τ̂ ≥ τ such that e−ρτjEtjR(tj� τ)
1−α ≥

e−ρτEtjR(tj� τ)
1−α for all τ > τ̂. Accordingly, we can confine attention to closed sets of τ. Finally,

by (B.9), maxτj≥τ>0�φj∈[0�1] e−ρτjEtjR(tj� τj)
1−α < 1.

44We note that even if we remove the requirement that τj ≥ ε, it is still the case that

limtk→∞ e−ρtkEtj (
Xtk+Stk
Xtj+Stj

)1−α = 0. Indeed, the proof of Lemma 16 implies that

lim
tk→∞

Etj
∏

k=1�����∞
e−ρτk(φkerf τk + (1 −φj)e(μ−0�5σ2)τk+σBτk

)1−α ≤ lim
tk→∞e

(ν−ρ)(tk−tj ) = 0�
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Lemma 14 and, hence, is the value function. Moreover, the policies that at-
tain the maximum on the right hand side of (B.8) are optimal.

We next consider the case α > 1. In this case a contraction mapping argu-
ment does not necessarily apply (see, e.g., Alvarez and Stokey (1998)) and
hence we need to take a more direct approach. The value function V satis-
fies (B.8) by Lemma 13. Hence, it is a fixed point of (B.8). So it suffices to
show that V ∈ H. By Lemma 14, V is homogeneous of degree 1 − α. Also
by the arguments given as part of the proof of Lemma 13, V is bounded
above by zero and below by the (homogeneous of degree 1 − α) function

1
1−α(Xtj + Stj )

1−αχ−α[(1 − θX)x̃tj + (1 − ψs)(1 − θS)(1 − x̃tj )]1−α, which corre-
sponds to the feasible policy τ1 = ∞, ys(tj)= −[1 −θS]Stj , and C(tj�∞)=Xt+j .
Accordingly, V ∈ B.

We next show that V is continuous. To that end we start by introduc-
ing some notation. Let Wtj ≡ (Xtj � Stj ) denote a two-dimensional vector with
Xtj and Stj its two elements. We also let ‖Wtj‖d ≡ max(Xtj � Stj ) and let aj =
{C(tj� τj)� yb(tj)� ys(tj)�φj� τj} denote some optimal policies starting from Wtj .
We next show that for any η> 0, there exists Δ> 0, such that ‖Wtj − Ŵtj‖d < Δ
implies V (Wtj ) < V (Ŵtj ) − η. To see this, fix η > 0. We next show that it is
possible to choose ε > 0, δ > 0� ŷs ≤ 0� ŷb ≥ 0 so that[

1 − (1 − α)κb(τj)
] × ∣∣U(

C(tj� τj)
) −U(

Ĉ(tj� τj)
)∣∣(B.17)

<
η

2
for all ‖Wtj − Ŵtj‖d < δ�

where Ĉ(tj� τj)= X̂t+j − e−rLτj (1 − ε)Xtj+1 ,

Ŝt+j ≥ (1 − ε)St+j �(B.18)

and ∣∣1 − (1 − ε)1−α∣∣Etj ∑
i=j+1�����∞

[
1 − (1 − α)κb(τi)

]
e−ρ(ti−tj )∣∣U(

C(ti� τi)
)∣∣(B.19)

<
η

2
�

To show that it is possible to find such ε, δ, ŷs ≤ 0� ŷb ≥ 0, we start by ob-
serving that it is clearly possible to find sufficiently small ε > 0 that satisfies
(B.19). To show the existence of δ > 0� ŷs ≤ 0� ŷb ≥ 0 satisfying (B.17) and
(B.18), we distinguish three cases, namely (i) ys = yb = 0, (ii) ys < 0, and
(iii) yb > 0. (Because of Lemma 4, it is never optimal to set ys < 0 and si-
multaneously yb > 0.) If ys = 0 and yb = 0, then setting ŷs = 0� ŷb = 0 implies

Hence, using (B.15) and (B.16), it follows that limtk→∞ e−ρtkEtj (
Xtk+Stk
Xtj+Stj

)1−α = 0.
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that X̂t+j = X̂tj � Ŝt+j = Ŝtj . In turn, for any ε > 0, there exists sufficiently small

δ(ε) > 0, so that for all Ŝtj with |Ŝtj − Stj |< δ(ε), condition (B.18) holds, since

Ŝt+j − St+j = Ŝtj − Stj . Moreover, for a sufficiently small ε > 0, there exists δ(ε)

so that condition (B.17) holds for |X̂tj −Xtj |< δ(ε). Accordingly, there exists

sufficiently small ε and sufficiently small δ(ε) <min(δ(ε)�δ(ε)) such that con-
ditions (B.17), (B.18), and (B.19) hold. Next suppose that ys < 0. In that case,
set −ŷs = −ys + εSt+j − (1 − θS)[Stj − Ŝtj ], and note that for (sufficiently small)

ε > 0 and δ̃(ε), we obtain that −ŷs > 0 as long as |Ŝtj −Stj |< δ̃(ε). By construc-
tion, this choice of −ŷs satisfies constraint (B.18) with equality. Furthermore,

for this choice of −ŷs and sufficiently small ε > 0, there exists ˜̃δ(ε) < δ̃(ε) such
that for all ‖Wtj − Ŵtj‖d < ˜̃δ(ε), condition (B.17) also holds. Finally, if ŷb > 0,
then set ŷb = yb − εSt+j − (1 − θS)[Stj − Ŝtj ]. Once again observe that for (suf-

ficiently small) ε > 0 and δ̃(ε), we obtain that yb > 0 and X̂t+j > 0 as long as

‖Wtj − Ŵtj‖d < ˜̃δ(ε). Additionally, this choice of ŷb satisfies constraint (B.18)
with equality. Furthermore, for this choice of ŷb and sufficiently small ε > 0,

there exists ˜̃δ(ε) < δ̃(ε) such that for all ‖Wtj − Ŵtj‖d < ˜̃δ(ε), condition (B.17)
holds.

From this point onward, the proof follows from Alvarez and Stokey (1998,
p. 177) and we repeat their argument for completeness. Specifically choose
ε > 0, δ > 0� ŷs ≤ 0� ŷb ≥ 0 so that conditions (B.17), (B.18), and (B.19) hold,
and take some Ŵtj with ‖Wtj − Ŵtj‖d < δ. Consider the following policy aj=1�����∞
with initial conditions Ŵtj . Set τ̂j = τj� φ̂j = φj for all j ≥ 1. Furthermore,
at tj choose ŷs ≤ 0� ŷb ≥ 0 consistent with (B.17), (B.18), and (B.19), and
set Ĉ(tj� τj) = X̂t+j − e−rLτj (1 − ε)Xtj+1 . From tj+1 onward, set ŷs = (1 − ε)ys,

ŷb = (1 − ε)yb, and Ĉ(tj+k� τj+k) = (1 − ε)C(tj+k� τj+k) for all k ≥ 1. By con-
struction, this policy satisfies Ŵt+1 ≥ (1 − ε)Wt+1 and, hence, it is feasible. Fur-
thermore, we obtain∣∣V (Wtj )− U(Ŵtj ;aj=1�����∞)

∣∣
≤ [

1 − (1 − α)κb(τj)
] × ∣∣U(

C(tj� τj)
) −U(

Ĉ(tj� τj)
)∣∣

+ ∣∣1 − (1 − ε)1−α∣∣
×Etj

∑
i=j+1�����∞

[
1 − (1 − α)κb(τi)

]
e−ρ(ti−tj )∣∣U(

C(ti� τi)
)∣∣

<η�

Accordingly, V (Ŵtj )≥ U(Ŵtj ;aj=1�����∞)≥ V (Wtj )−η.
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By similar arguments, letting âj = {Ĉ(tj� τj)� ŷb(tj)� ŷs(tj)� φ̂j� τ̂j} denote an
optimal policy starting from Ŵtj , and reversing the roles of (Wtj � aj) and
(Ŵtj � âj) in (B.17)–(B.19) implies the existence of small enough δ1 > 0, such
that for all Ŵtj with ‖Wtj − Ŵtj‖d < δ1, we also obtain V (Wtj ) ≥ V (Ŵtj ) − η.
We conclude that there exists small enough Δ = min{δ�δ1} such that for all
‖Wtj −Ŵtj‖d < Δ, we obtain |V (Wtj )−V (Ŵtj )|<η, proving the continuity of V .

Since, as we showed above, V ∈ H and there always exists a choice (namely
τ1 = ∞, ys(tj) = −[1 − θS]Stj ) that provides a lower bound to the expression
inside curly brackets in (B.8), it follows that the supremum in (B.8) is attained
when f = V . Furthermore, Theorem 4.5 in Stokey and Lucas (1989) implies
that the policy that maximizes the right hand side of (B.8) for f = V is opti-
mal. Q.E.D.

REMARK 1: We note that since the value function is unique, an implication
of Lemma 14 and Proposition 7 is that V is the unique fixed point of T in H
satisfying the condition limtk→∞ e−ρtkEtjV (Xtk� Stk)= 0.
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