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IN THIS PAPER we provide additional material on four issues in the main text.
The first is an estimator for the covariance matrix Σ in Theorem 3.2, precisely
defined in (A.15). The second concerns the claim that under our assumptions,
(3.5) and (3.6) are already implied. The third issue is the calculation of the
matrix V in Remark 3.3 for general heteroscedasticity. The last issue is the
proof of Theorem 3.3.

1. AN ESTIMATOR FOR THE COVARIANCE MATRIX Σ

Let Σ12 denote the remaining components of Σ, i.e.,

Σ12 = (κ2f (x))
−1

(
1 π1(x)

π1(x) π2(x)

)−1

×
(
σ2(x) πσ

2

1 (x)

πσ
2

1 (x) πσ
2

2 (x)

)(
1 π1(x)

π1(x) π2(x)

)−1

�

with all quantities as defined in Assumptions 1 and 2. To estimate f (x), we
propose to use the standard kernel density estimator; to estimate πv(x) =
E{Pνi |Xi = x}, ν = 1�2, any standard nonparametric regression estimator,
e.g., local polynomials, will do. More delicate is the estimation of πσ2

ν (x) =
E{Pνi σ2(Xi�Zi)|Xi = x}, ν = 1�2, and of σ2(x) = πσ

2

0 (x) = E{σ2(Xi�Zi)|
Xi = x}.

However, estimators can be constructed as in Remark 3.6. Starting out with
an estimator for σ2(Xi�Zi), namely

σ̂2(Xj�Zj)=
[∑
l �=j
K∗
l (Xj�Zj)

]−1∑
l �=j
K∗
l (Xj�Zj)ȟ

2ε̌2
l �

where all quantities are defined in the main text in Remark 3.6, recall that un-
dersmoothing is required. Finally, to obtain estimators for πσ2

ν (x), ν = 0�1�2,∑
j �=i σ̂

2(Xj�Zj)P
v
j Lx(h̆

−1(Xj −Xi))∑
j �=i Lx(h̆−1(Xj −Xi))2

� (ν = 0�1�2)�

where Lx is a standard, symmetric second order kernel and h̆ is a pilot band-
width. Together with the discussion in Remark 3.6, this summarizes the esti-
mation of Σ. In the case of general heteroscedasticity, localization in P is also
required.
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2. EQUATIONS (3.5) AND (3.6) ARE IMPLIED BY THE ASSUMPTIONS

We establish first the following lemma:

LEMMA S0: Let h(x�z�p) be a nonnegative measurable function such that∫
h(x�z�p)dz dp <∞ and

∫
p2h(x�z�p)dz dp <∞. Then if h(x�z�p) > 0

on a (z�p) set of positive Lebesgue measure and f (x) > 0,∫
h(x�z�p)dz dp

f(x)

∫
p2h(x�z�p)dz dp

f(x)
>

[∫
ph(x�z�p)dz dp

f(x)

]2

�(S1)

PROOF: By the Cauchy–Schwarz inequality (in L2(dz�dp)),[∫
ph(x�z�p)dz dp

]2

=
[∫

p
√
h
√
hdz dp

]2

(S2)

≤
∫
p2hdz dp

∫
hdz dp�

with equality holding if and only if p
√
h and

√
h are linearly dependent, i.e., if

there exists a constant λ such that

p2h(x�z�p)= λh(x�z�p) for a.a. (z�p)�

However, this is impossible if h(x�z�p) > 0 on a (z�p) set of positive
Lebesgue measure, so that strict inequality holds in (S2). Q.E.D.

Special cases—f (x� z�p) continuous density:
(i) h(x�z�p) = f (x� z�p) �

∫
f (x� z�p)dz dp = f (x), so that (S1) be-

comes ∫
p2f (x� z�p)dz dp

f(x)
>

[∫
pf(x� z�p)dz dp

f(x)

]2

�

Alternatively, with

π1(x)= E{P|X = x} =
∫
pf(x�p)dp

f(x)
�

π2(x)= E{P2|X = x} =
∫
p2f (x�p)dp

f(x)
�

the relation

π2(x) > π
2
1(x)

holds (this is the first part of (3.5)).
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(ii) h(x�z�p)= σ2(x� z)f (x� z�p)� (S1) becomes∫
σ2(x� z)f (x� z)dz

f (x)

∫
p2σ2(x� z)f (x� z�p)dz dp

f(x)

>

[∫
pσ2(x� z)f (x� z�p)dz dp

f(x)

]2

�

Alternatively, with

σ2(x)= πσ2

0 (x)= E{σ2(X�Z)|X = x} =
∫
σ2(x� z)f (x� z)dz

f (x)
�

πσ
2

1 (x)= E{Pσ2(X�Z)|X = x} =
∫
pσ2(x� z)f (x� z�p)dz dp

f(x)
�

πσ
2

2 (x)= E{P2|X = x} =
∫
p2σ2(x� z)f (x� z�p)dz dp

f(x)
�

the relation

σ2(x)πσ
2

2 (x) > π
σ2

1 (x)
2

holds (this is the first part of (3.6)).
Second parts of (3.5) and (3.6): By Bayes formula, σ2

P(x)= 0 implies that∫
σ2(x� z)[p−π1(x� z)]2f (x� z�p)dz dp= 0

or, a forteriori,

σ2(x� z)[p−π1(x� z)]2 = 0

for all (z�p) such that f (x� z�p) > 0. Hence, if σ2(x� z) > 0, p= π1(x� z) for
all such (z�p), contradicting the assumption of a joint density f (x� z�p).

3. CALCULATION OF THE V MATRIX FOR GENERAL HETEROSCEDASTICITY

In the case of unrestricted heteroscedasticity, we need the following slight
modification of Assumption 2:

ASSUMPTION 2′: We have E{εi|Xi�Zi�Pi} = 0 and E{ε2
i |Xi�Zi�Pi} = σ2(Xi�

Zi�Pi). The function σ2(x� z�p) is positive, continuously differentiable with
respect to x in a neighborhood of x0, and sup|x−x0|≤h/2σ

2(x� z�p)≤ δ(z�p) for
some function δ(z�p) that satisfies

∫
δ(z�p)2γ(z�p)dz dp < ∞. Moreover,

E|εi|2α <∞ for some k> 1.
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To start with, as in Appendix A.4 in the main text, we use the expansion

E{σ2(Xi�Zi�Pi)ΦiΦ
′
i}

= E{σ2(x0�Zi�Pi)ΦiΦ
′
i} + E{∂xσ2(X∗

i �Zi�Pi)(Xi − x0)ΦiΦ
′
i}

= Vn +Rn�
where Rn =O(h2).

Calculating the Entries of Vn

The entries of Vn are of the form

h2−µ−ν
E
{
(ξµ�l − ξµ�l)(ξν�m − ξν�m)σ2(x0�Z�P)

}
(S3)

(with ξµ�l =W (X −x0)
µPl). To calculate these expected value, we need a vari-

ant of Corollary A.4 for τ(z�p) = σ2(x0� z�p) instead of τ(z) = σ2(x0� z).
From Lemmas A.2 and A.3 we obtain the expressions (S4)–(S6):

v(µ� l� ν�m)≡ Eξµ�lξν�mτ(Z�P)= h−1
Eξµ+ν�l+mτ(Z�P)(S4)

=
{
hµ+ν−1κµ+νAl+m +O(hµ+ν+1)� µ+ ν even,
O(hµ+ν)� µ+ ν odd,

with

Al+m =
∫ ∫

pl+mτ(z�p)f (x0� z�p)dz dp;

v(µ� l� ν�m)(S5)

≡ Eξµ�lξν�mτ(Z�P)

= EW (X − x0)
µPlτ(Z�P)W (X − x0)νPm

=
{
hµ+ν−1κµκνBl�m + o(hµ+ν−1)� both µ and ν even,
O(hµ+ν)� µ or ν odd,

with

Bl�m =
∫
πm(x0� z)π

σ2

l (x0� z)f (x0� z)dz�

where now πσ
2

l (x� z) is defined as a (continuous) version of the conditional
expectation E{Plτ(Z�P)|X = x�Z = z} and πm(x�z)= E{Pl|X = x�Z = z} as
in the main text (for l�m ∈ N) (note that, by definition of τ(z�p), πσ2

l (x0� z)=
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E{Plσ2(X�Z�P)|X = x0�Z = z});

v(µ� l� ν�m)(S6)

≡ Eξµ�lξν�mτ(Z�P)

= EW (X − x0)
νPmτ(Z�P)W (X − x0)µPl

=
{
hµ+ν−1κµκνBm�l + o(hµ+ν−1)� both µ and ν even,
O(hµ+ν)� µ or ν odd.

By (A.1),

E
{
ξµ�lξν�mτ(Z�P)|WZ}= hξµ�lξν�mE{W τ(Z�P)|WZ}(S7)

= hξµ�lξν�mW τ(Z)

= ξµ�lξν�mτ(Z)

with

τ(z)=
∫ ∫ x0+h/2

x0−h/2 τ(z�p)f (x� z�p)dxdp∫ x0+h/2
x0−h/2 f (x� z)dx

�

Whereas

numerator = h
∫ ∫ 1/2

−1/2
τ(z�p)f (x0 + hs� z�p)ds dp

= h
∫
τ(z�p)f (x0� z�p)dp+O(h3)�

denominator = hf(x0)+O(h3)�

we obtain

τ(z)= f (x0)
−1

∫
τ(z�p)f (x0� z�p)dp︸ ︷︷ ︸

τ0(z)

+O(h2)�

Inserting into (S7) and taking expectation yields

E
{
ξµ�lξν�mτ(Z�P)

}= E
{
ξµ�lξν�m[τ0(z)+O(h2)]}(S8)

= E
{
ξµ�lξν�mτ0(z)

}+O(hµ+ν+1)�

provided the interchange of limit and expectation is justified. Now the first
term on the right-hand side of (S8) can be calculated as in Corollary A.4, with
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τ(z) replaced by τ0(z):

E
{
ξµ�lξν�mτ0(z)

}
=
{
hµ+ν−1κµκνB

0
l�m + o(hµ+ν−1)� both µ and ν even,

O(hµ+ν)� µ or ν odd,

with

B0
l�m =

∫
τ0(z)πl(x0� z)πm(x0� z)f (x0� z)dz�

Hence

v(µ� l� ν�m)(S9)

≡ E
{
ξµ�lξν�mτ(Z�P)

}
=
{
hµ+ν−1κµκνB

0
l�m + o(hµ+ν−1)� both µ and ν even,

O(hµ+ν)� µ or ν odd.

Putting (S4)–(S6) and (S9) together, we can calculate

wµlνm = E(ξµ�l − ξµ�l)(ξν�m − ξν�m)τ(Z�P)�
noting that

wµνlm = v(µ� l� ν�m)− v(µ� l� ν�m)− v(µ� l� ν�m)+ v(µ� l� ν�m)�
When µ= ν = 1 and l=m= 0 (corresponding to entry (1�1) of Vn),

w1100 = hκ2A0 +O(h2)�(S10)

A0 =
∫ ∫

τ(z�p)f (x0� z�p)dz dp;

when µ= 1, ν = 0, l= 0, and m= 1 (entry (1�2)),

w1001 =O(h);
when µ= ν = 1, l= 0, and m= 1 (entry (1�3)),

w1101 = hκ2A1 +O(h2)�(S11)

A1 =
∫ ∫

pτ(z�p)f (x0� z�p)dz dp;

when µ= ν = 0 and l=m= 1 (entry (2�2)),

w0011 = h−1(A2 − 2B1�1 +B0
1�1)+ o(h−1)
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with

A2 − 2B1�1 +B0
1�1 =

∫ ∫
p2τ(z�p)f (x0� z�p)dz dp(S12)

− 2
∫
π1(x0� z)π

σ2

1 (x0� z)f (x0� z)dz

+
∫
τ0(z)π

2
1(x0� z)f (x0� z)dz;

when µ= 0, ν = 1, and l=m= 1 (entry (2�3)),

w0111 =O(h);
when µ= ν = 1 and l=m= 1 (entry (3�3)),

w1111 = hκ2A2 +O(h2)�(S13)

A2 =
∫ ∫

p2τ(z�p)f (x0� z�p)dz dp�

Taking account of (S3), we find that

Vn =
hκ2A0 +O(h2) O(h2) hκ2A1 +O(h2)

∗ h(A2 − 2B1�1 +B0
1�1)+O(h) O(h2)

∗ ∗ hκ2A2 +O(h2)


and hence V = (nh)−1

∑n

i=1 Vi is of the form

V =
(
κ2A0 0 κ2A1

∗ A2 − 2B1�1 +B0
1�1 0

∗ ∗ κ2A2

)
�(S14)

Introduce the notation (for ν ∈ N)

σ2(x� z)= E{σ2(X�Z�P)|X = x�Z = z}�
σ2(x)= E{σ2(X�Z�P)|X = x}�
πσ

2

ν (x)= E{Pνσ2(X�Z�P)|X = x}�
σ2
P(x)= πσ2

2 (x0)− 2E
{
π1(X�Z)π

σ2

1 (X�Z)|X = x0

}
+ E{σ2(X�Z)π2

1(X�Z)|X = x0}�
Evaluate the constants according to (S10)–(S13), making use of the relations∫ ∫

ϕ(x0� z�p)f (x0� z�p)dz dp= E{ϕ(X�Z�P)|X = x0}f (x0)�
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ϕ(x0� z�p)f (x0� z�p)dp= E{ϕ(X�Z�P)|X = x0�Z = z}f (x0)�

τ0(z)= f (x0)
−1

∫
τ(z�p)f (x0� z�p)dp

= E{σ2(X�Z�P)|X = x0�Z = z}�

The result is

A0 =
∫ ∫

τ(z�p)f (x0� z�p)dz dp

= E{σ2(X�Z�P)|X = x0}f (x0)

= σ2(x0)f (x0)�

A1 =
∫ ∫

pτ(z�p)f (x0� z�p)dz dp

= E{Pσ2(X�Z�P)|X = x0}f (x0)

= πσ2

1 (x0)f (x0)�

A2 =
∫ ∫

p2τ(z�p)f (x0� z�p)dz dp

= E{P2σ2(X�Z�P)|X = x0}f (x0)

= πσ2

2 (x0)f (x0)�

B11 =
∫
π1(x0� z)π

σ2

1 (x0� z)f (x0� z)dz

= E
{
π1(X�Z)π

σ2

1 (X�Z)|X = x0

}
f (x0)�

B0
1�1 =

∫
τ0(z)π

2
1(x0� z)f (x0� z)dz

= E{τ0(Z)π
2
1(X�Z)|X = x0}f (x0)

= E{σ2(X�Z)π2
1(X�Z)|X = x0}f (x0)�

A2 − 2B1�1 +B0
1�1

= f (x0)
[
πσ

2

2 (x0)− 2E
{
π1(X�Z)π

σ2

1 (X�Z)|X = x0

}
+ E{σ2(X�Z)π2

1(X�Z)|X = x0}
]

= σ2
P(x0)�
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So, finally,

V = κ2f (x0)

σ2(x0) 0 πσ
2

1 (x0)

∗ κ−1
2 σ

2
P(x0) 0

∗ ∗ πσ
2

2 (x0)

 �(S15)

This illustrates that the structure of the matrix remains preserved, but with
all quantities redefined to take account of the dependence on p. Note that if
σ2(x� z�p) is independent of p, all entries of (S15) reduce to the correspond-
ing entries of (A.13) in the main text.

4. PROOF OF THEOREM 3.3

4.1. General Structure

In this section we will establish conditions under which the effect of preesti-
mation is of lower order than the leading bias term. In particular, we are inter-
ested in the difference between the infeasible estimator that contains unknown
conditional expectations,

θ̃n =
[

n∑
i=1

ΦiΦ
′
i

]−1 n∑
i=1

ΦiVi�

where Φi = [Ui�Q0i�Q1i]′ with Ui, Q0i, and Q1i as defined in the main paper,
and an estimator that contains preestimators for these conditional expecta-
tions, denoted as

θ̂n =
[

n∑
i=1

Φ̂iΦ̂
′
i

]−1 n∑
i=1

Φ̂iV̂i�

Without further mention, the assumptions of Theorem 3.4 are valid. The struc-
ture of the proof is as follows: In the second section, we decompose the differ-
ence θ̃n − θ̂n into an expression that involves individual differences between
infeasible and feasible quantities. For instance, let λ1 = (nh)−1

∑n

i=1UiVi and
λ̂1 = (nh)−1

∑n

i=1 ÛiV̂i. One individual difference is then

λ̂1 − λ1 = (nh)−1
n∑
i=1

[ÛiV̂i −UiVi]�

Corresponding to the nine separate entries in θ̃n, there will be eight additional
differences λ̂j − λj , j = 2� � � � �9. In the third section we will derive the rates of
convergence for these various differences in detail. First we treat the difference
λ̂1 − λ1 in detail. This is done in Lemmas S.1 and S.2. Second, in Lemma S.3
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we present the analogous results for the differences λ̂j − λj , j = 2� � � � �9. Fi-
nally, in the last section which contains Lemmas S.4 and S.5, we synthesize the
lemmas to produce the result for the overall estimator.

4.2. The Structure of the Difference θ̃n − θ̂n
In this section we break the estimators into their individual components.

To this end, define λ2 = (nh)−1
∑n

i=1Q1iVi, λ3 = (nh)−1
∑n

i=1Q0iVi, λ4 =
(nh)−1

∑n

i=1U
2
i , λ5 = (nh)−1

∑n

i=1UiQ1i, λ6 = (nh)−1
∑n

i=1Q
2
1i, λ7 = h−1 ×

(nh)−1
∑n

i=1UiQ0i, λ8 = h−1(nh)−1
∑n

i=1Q0iQ1i, and λ9 = (nh)−1
∑n

i=1Q
2
0i. The

reason for including h−1 in the definition of λ7 and λ8 is that only then are both
random variables Op(1) like all the others. With this notation, rewrite θ̃n as

θ̃n =


λ1λ6−λ2λ5+hλ−1

9 [λ3λ5λ8−λ3λ6λ7]+h2λ−1
9 [λ2λ7λ8−λ1λ

2
8]

λ4λ6−λ2
5+h2λ−1

9 [2λ5λ7λ8−λ4λ
2
8−λ6λ

2
7]

λ−1
9 [λ3λ4λ6−λ3λ

2
5+h[λ1(λ5λ8−λ6λ7)+λ2(λ5λ7−λ4λ8)]]

λ4λ6−λ2
5+h2λ−1

9 [2λ5λ7λ8−λ4λ
2
8−λ6λ

2
7]

λ2λ4−λ1λ5+hλ−1
9 [λ3λ5λ7−λ3λ4λ8]+h2λ−1

9 [λ1λ7λ8−λ2λ
2
7]

λ4λ6−λ2
5+h2λ−1

9 [2λ5λ7λ8−λ4λ
2
8−λ6λ

2
7]

 �

Now, let λ = (λ1� � � � � λ9)
′. Then θ̃n = ϕ(λ)−1ψ(λ), where ϕ(λ) is the denom-

inator, i.e., λ4λ6 − λ2
5 + h2λ−1

9 [2λ5λ7λ8 − λ4λ
2
8 − λ6λ

2
7], and ψ(λ) is the 3 × 1

vector of numerators. Finally, let the differences λ̂j − λj , j = 1� � � � �9, be de-
fined in the obvious fashion by replacing conditional expectations with suitable
estimators. Then

θ̃n − θ̂n = ϕ(λ)−1ψ(λ)−ϕ(̂λ)−1ψ(̂λ)

= [ϕ(λ)ϕ(̂λ)]−1[ϕ(̂λ)−ϕ(λ)]ψ(λ)+ϕ(̂λ)−1[ψ(λ)−ψ(̂λ)]�
Because ϕ(̂λ)= ϕ(λ)+ op(1) and ϕ(λ) as well as ψ(λ) are Op(1), the crucial
differences areψ(λ)−ψ(̂λ) and ϕ(̂λ)−ϕ(λ). Start with the differences for the
estimators for the first derivative k′, i.e., θ̃1 − θ̂1, where the subscript denotes
the first component. With ψ1 denoting the first component of ψ, we obtain

ψ1(λ)−ψ1(̂λ)

= (λ1λ6 − λ̂1λ̂6)− (λ2λ5 − λ̂2λ̂5)

+ h(λ9λ̂9)
−1
{̂
λ9[λ3λ5λ8 − λ3λ6λ7] − λ9[̂λ3λ̂5λ̂8 − λ̂3λ̂6λ̂7]

}
+ h2(λ9λ̂9)

−1
{̂
λ9[λ2λ7λ8 − λ1λ

2
8] − λ9[̂λ2λ̂7λ̂8 − λ̂1λ̂

2
8]
}
�

Consider in turn the first difference on the right-hand side, that is,

λ1λ6 − λ̂1λ̂6 = λ1(λ6 − λ̂6)+ λ̂6(λ1 − λ̂1)�
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Because λ̂6 = λ6 + op(1),

λ1λ6 − λ̂1λ̂6 =Op(λ1 − λ̂1)+Op(λ6 − λ̂6)�

Similarly, the second expression in brackets on the right-hand side is of order
Op(λ2 − λ̂2)+Op(λ5 − λ̂5), while the third is of order

h
{
Op(λ3 − λ̂3)+Op(λ5 − λ̂5)+Op(λ8 − λ̂8)+Op(λ9 − λ̂9)

}
and the fourth is of order h2 times the order of the slowest converging compo-
nent. By similar arguments for the denominator, we obtain that

θ̃1 − θ̂1 = Op(λj − λ̂j)+Op(h(λk − λ̂k))
(j = 1�2�4�5�6�k= 3�7�8�9)�

At this point, it is imperative to note that j covers only those terms that are
free of Q0i, while terms that involve Q0i enter only with an additional h. The
same applies for the difference in the estimators of the second derivative g′.

Finally, note that the difference between the estimators of the function h−1g,
i.e., θ̃2 − θ̂2, behaves differently. Because θ2 = h−1g, we obtain

g̃− ĝ = Op(h(λj − λ̂j))+Op(h2(λk − λ̂k))
(j = 3�4�5�6�9�k= 1�2�7�8)�

4.3. The Behavior of the Differences λ̂j − λj� j = 1� � � � �9

4.3.1. The behavior of λ̂1 − λ1

In this subsection we will concentrate on the difference λ̂1 − λ1. This differ-
ence may be rewritten as

(nh)−1

(
n∑
i=1

UiVi −
n∑
i=1

ÛiV̂i

)
= T1n + T2n + T3n�

where T1n = (nh)−1
∑n

i=1UiSi, T2n = (nh)−1
∑n

i=1 ViGi and T3n = (nh)−1 ×∑n

i=1 SiGi, with Si = Ê[WiYi|WiZi] − E[WiYi|WiZi] and Gi = Ê[WiXi|WiZi] −
E[WiXi|WiZi]. We will establish in Lemma S.1 conditions under which T3n con-
verges faster than the leading bias term, i.e., is op(h2). More precisely:

LEMMA S.1: We have T3n = op(h
2) if hr0−1

0 h
r1
1 h

−2 + (nh(d+3)/2
0 h(d+1)/2

1 )−1h−2 ×
ln(n)= o(1).
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In the following lemmas we establish that under the same conditions T3n

dominates T1n and T2n asymptotically. Intuitively, this is due to the independent
and identically distributed structure of the data. The termsUi and Si (as well as
Vi andGi) are almost uncorrelated, because only the ith observation contained
in Ê[WiYi|WiZi] is a potential source of correlation. However, this observation
has only influence of order n−1.

LEMMA S.2: Under the same assumptions, T1n and T2n are op(T3n).

4.3.2. The differences λ̂j − λj� j = 2� � � � �9

In this subsection we focus on the speed of convergence of the remaining
differences. By closer inspection, we see that all individual differences have
approximately the same structure. In particular, it is true that we may always
decompose these expressions into a product of the difference between two esti-
mators that depend on all observations and on an “observation i only” residual.
By the same argument as in Lemma S.2, we may hence focus on the terms that
involve the product of two estimation errors, i.e.,

(Ê[WiAi|WiZi] − E[WiAi|WiZi])(Ê[WiBi|WiZi] − E[WiBi|WiZi])
for Ai�Bi ∈ {Xi�Yi�Pi�Pi(Xi − x0)}. The following lemma summarizes the re-
sults, which follow similar arguments as in Lemma S.1.

LEMMA S.3: The difference λ̂j − λj is of order op(h2) if

for j = 2� h
r1
1 h

r3−1
3 h−2 + (nh(d+1)/2

1 h(d+3)/2
3

)−1
h−2 ln(n)= o(1);

for j = 3� h
r1
1 h

r2
2 h

−3 + (nh(d+1)/2
1 h(d+1)/2

2

)−1
h−3 ln(n)= o(1);

for j = 4� h
2(r0−1)
0 + (nh(d+3)

0 )−1 ln(n)= o(1);
for j = 5� h

r0−1
0 h

r2−1
3 + (nh(d+3)/2

0 nh(d+3)/2
3

)−1
ln(n)= o(1);

for j = 6� h
2(r3−1)
3 + (nh(d+3)

3 )−1 ln(n)= o(1);
for j = 7� h

r0−1
0 h

r2
2 h

−3 + (nh(d+1)/2
0 h(d+3)/2

2

)−1
h−3 ln(n)= o(1);

for j = 8� h
r2
2 h

r3−1
3 h−3 + (nh(d+1)/2

2 h(d+3)/2
3

)−1
h−3 ln(n)= o(1);

for j = 9� h
2r2
2 h

−2 + (nh(d+3)
2 )−1h−2 ln(n)= o(1)�

Note that for j = 4�5�6, these conditions are always fulfilled; only j =
1�2�3�7�8�9 are restrictive. In particular, j = 3�7�8 are hard to fulfill but they
enter only premultiplied by h and thus have an impact on the overall expres-
sion similar to j = 1�2�9.
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4.4. Synthesizing the Results

In this section we derive the implications of the speed of convergence of the
various individual differences for the components of the estimators. Start with
the estimators for the derivatives k′ and g′:

LEMMA S.4: We have (θ̃1 − θ̂1� θ̃3 − θ̂3)
′ = op(h2) if∑

s=0�3

∑
t=1�2

{
hrs−1
s hrtt + (nh(d+3)/2

s h(d+1)/2
t

)−1
ln(n)

}= o(h2)�

Similarly, for the estimators of the function g, we can state:

LEMMA S.5: We have g̃ − ĝ = op(h
2) if hr11 h

r2
2 + (nh(d+1)/2

1 h(d+1)/2
2 )−1 ln(n) =

o(h2).

Both proofs are trivial and left to the reader. The only thing to notice in the
proofs is that although some of the terms disappear always if mean squared
error optimal rates for the choice of bandwidth are assumed (e.g., j = 4�5�6),
others are dominated by the leading terms displayed. This concludes the re-
sults.

4.5. Proofs

PROOF OF LEMMA S.1: Suppressing the subscript on f̂−i, m̂f−i for ease of
notation, rewrite

T3n =
∫ ∫

h−3J(x)

[∫
J(t)tf̂ (t� z)dt∫
J(t)f̂ (t� z)dt

−
∫
J(t)tf (t� z)dt∫
J(t)f (t� z)dt

]

×
[∫
J(t)m̂f (t� z)dt∫
J(t)f̂ (t� z)dt

−
∫
J(t)m(t� z)f (t� z)dt∫

J(t)f (t� z)dt

]
F̂(dx�dz)�

where we use the shorthand J(t)= 1{|t−x0|≤h/2} and F̂ is the empirical cumula-
tive distribution function of Xi and Zi. Next, consider∫

J(t)tf̂ (t� z)dt∫
J(t)f̂ (t� z)dt

−
∫
J(t)tf (t� z)dt∫
J(t)f (t� z)dt

=
∫
J(t)(t − x0)[f̂ (t� z)− f (t� z)]dt ∫ J(t)f (t� z)dt

(
∫
J(t)f (t� z)dt)2 + ∫ J(t)[f̂ (t� z)− f (t� z)]dt ∫ J(t)f (t� z)dt

−
∫
J(t)(t − x0)f (t� z)dt

∫
J(t)[f̂ (t� z)− f (t� z)]dt
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×
((∫

J(t)f (t� z)dt

)2

+
∫
J(t)[f̂ (t� z)− f (t� z)]dt

∫
J(t)f (t� z)dt

)−1

�

By standard arguments,∫
J(t)f (t� z)dt = hf(x0� z)+ h3γ1�∫
J(t)(t − x0)f (t� z)dt = h3 ∂xf (x0� z)+ h4γ2�

where |γ1| = | ∫ ψ2K(ψ)∂2
xf (ψr� z)dψ| and |γ2| = | ∫ ψ3K(ψ)∂2

xf (ψr� z)dψ|
are bounded by c supx�z |∂2

xf (x� z)|. Here c is a generic constant. Analogously,∫
J(t)[f̂ (t� z)− f (t� z)]dt = h[f̂ (x0� z)− f (x0� z)] + h3η1�∫
J(t)(t − x0)[f̂ (t� z)− f (t� z)]dt

= h3[∂xf̂ (x0� z)− ∂xf (x0� z)] + h4η2�

where

η1 =
∫
ψ2K(ψ)[∂2

xf̂ (ψr� z)− ∂2
xf (ψr� z)]dψ�

η2 =
∫
ψ3K(ψ)[∂2

xf̂ (ψr� z)− ∂2
xf (ψr� z)]dψ�

and |η1|� |η2| ≤ c supx�z |∂2
xf̂ − ∂2

xf | =Op(hr0−2
0 + (ln(n)/nhd+5

0 )1/2). Therefore,∫
J(t)tf̂ (t� z)dt∫
J(t)f̂ (t� z)dt

−
∫
J(t)tf (t� z)dt∫
J(t)f (t� z)dt

(S16)

= h2[∂xf̂ (x0� z)− ∂xf (x0� z)]f (x0� z)+ θ
f (x0� z)[f (x0� z)+ [f̂ (x0� z)− f (x0� z)]] + τ

�

where supx�z |θ| = op(h2 supx�z |∂xf̂ (x� z)− ∂xf (x� z)|) and supx�z |τ| =Op(h2).
Hence, with probability approaching 1, |τ|< d for a constant d > 0. Moreover,
|f̂ (x� z)− f (x� z)| ≤ b/2 with probability approaching 1, and |f (x� z)| ≥ b due
to the assumption of continuously distributed random variables with compact
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support. Thus, |f (x0� z)[f (x0� z)+[f̂ (x0� z)− f (x0� z)]]| ≥ b2/2, and by choos-
ing d = b2/4, the denominator is bounded from below by b2/4.

By similar derivations,∫
J(t)m̂f (t� z)dt∫
J(t)f̂ (t� z)dt

−
∫
J(t)m(t� z)f (t� z)dt∫

J(t)f (t� z)dt
(S17)

= (m̂f (x0� z)−mf(x0� z)+ λ)([f (x0� z)+ h2γ1]2

+ [f (x0� z)+ h2γ1][[f̂ (x0� z)− f (x0� z)] + h2η1]
)−1
�

where supx�z |λ| = op(supx�z |m̂f (x� z)−mf(x�z)|). Using (S16) and (S17), as
well as the boundedness of the denominator, we obtain

|T3n| ≤ c
∫ ∫

h−1J(x)|∂xf̂ (x0� z)− ∂xf (x0� z)|

× |m̂f (x0� z)−mf(x0� z)|F̂(dx�dz)+Rn�
where Rn contains faster converging terms that involve θ and λ. Then

|T3n| ≤ c sup
x�z

|∂xf̂ − ∂xf | sup
x�z

|m̂f −mf |
∫ ∫

h−1J(x)F̂(dx�dz)+Rn�

Finally, after change of variables,
∫ ∫

h−1J(x)F̂(dx�dz) is bounded by f̂ (x0� z).
Hence, employing standard results, we obtain that T3n = Op(h

r0−1
0 h

r1
1 +

(nh(d+3)/2
0 h(d+1)/2

1 )−1 ln(n)). Thus, T3n = op(h
2) if hr0−1

0 h
r1
1 h

−2 + (nh(d+3)/2
0 ×

h(d+1)/2
1 )−1h−2 ln(n)= o(1). Q.E.D.

PROOF OF LEMMA S.2: Consider first T1n. Instead of T1n, we will con-
sider T ∗

1n, where T ∗
1n = (nh)−1

∑n

i=1UiS
∗
i and

S∗
i =Wi

[ ∫
J(t)m̂f−i(t�Zi)dt∫

J(t)f̂−i(t�Zi)dt + n−α
−
∫
J(t)m(t�Zi)f (t�Zi)dt∫

J(t)f (t�Zi)dt

]
contains an additional n−α, with α> 0. Note that in this case

T1n − T ∗
1n

= (nh)−1
n∑
i=1

Ui[Si − S∗
i ]

= n−α(nh)−1
n∑
i=1

Ui

∫
J(t)m̂f−i(t�Zi)dt

[∫ J(t)f̂−i(t�Zi)dt + n−α] ∫ J(t)f̂−i(t�Zi)dt

= op(T1n)�
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provided that h = o(nα). This is done to ensure that in the following calcula-
tions all expectations exist.

Note that due to Lemma 3.1, S∗
i is Fn-measurable, where Fn = σ(Wiζ−i) and

ζ−i = (X1� � � � �Xi−1�Xi+1� � � � �Xn�Z1� � � � �Zn�Y1� � � � �Yi−1�Yi+1� � � � �Yn). The
−i indicates that the sigma algebra does not contain Yi and Xi. Then

E
{
(WiXi − E[WiXi|WiZi])S∗

i

}= 0

by iterated expectations. Turning to the variance, this is

V

{∑
i

UiS
∗
i

nh

}
= E

{∑
i�j

UiS
∗
i S

∗
j Uj

n2h2

}
(S18)

= E

{∑
i

U2
i S

∗2
i

n2h2

}
+ E

{
2
∑
i�j>i

UiS
∗
i S

∗
j Uj

n2h2

}
�

In Step 1, we treat the second right-hand side term in (S18); in Step 2, we treat
the first.

Step 1: Rewrite the second term as

2(nh2)−2

×
∑
i�j>i

E

{
J(i)J(j)

[ ∫
J(t)m̂f−i(t�Zi)dt∫

J(t)f̂−i(t�Zi)dt + n−α
−
∫
J(t)mf(t�Zi)dt∫
J(t)f (t�Zi)dt

]

×
[ ∫

J(t)m̂f−j(t�Zj)dt∫
J(t)f̂−j(t�Zj)dt + n−α

−
∫
J(t)mf(t�Zj)dt∫
J(t)f (t�Zj)dt

]
UiUj

}
�

where, in a slight abuse of notation, we write J(i) = J(Xi). Denote F−i�n =
σ(W1ζ−i� � � � �Wiζ−i� � � � �Wnζ−i). By iterated expectations,

2(nh2)−2(S19)

×
∑
i�j>i

E

{
J(i)J(j)

[ ∫
J(t)m̂f−i(t�Zi)dt∫

J(t)f̂−i(t�Zi)dt + n−α
−
∫
J(t)mf(t�Zi)dt∫
J(t)f (t�Zi)dt

]

× E

[[ ∫
J(t)m̂f−j(t�Zj)dt∫

J(t)f̂−j(t�Zj)dt + n−α

−
∫
J(t)mf(t�Zj)dt∫
J(t)f (t�Zj)dt

]
Ui

∣∣∣F−i�n

]
Uj

}
�
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The whole expression would be zero if m̂f−j and f̂−j were not functions of
(Xi�Yi) andXi, respectively. To see this, note first that in this case S∗

i would be
F−i�n-measurable; second note that

E[Ui|F−i�n] = E
[
WiXi − E[WiXi|WiZi]|F−i�n

]= 0�

due to independence and identical distribution. Hence, the entire dependence
hinges only on m̂f−j = (nhd+1

1 )−1
∑

s �=j K
∗
s (t� j)Ys, where K∗

s (t� j) = K(h−1
1 ×

(Xs − t)�h−1
1 (Zs −Zj)), depending on Xi and Yi. Applying the decomposition

yields

m̂f−j(t�Zj)= m̂f−(i�j)(t�Zj)+ (nhd+1
1 )−1K∗

i (t� j){m(Xi�Zi)+ εi}�
where m̂f−(i�j) is (nhd+1

1 )−1
∑

s �=j�i K
∗
s (t� j)Ys, i.e., does not have normalization

((n− 1)hd+1
1 )−1. Applying a similar type of decomposition to f̂−j(t�Zj), then∫

J(t)m̂f−j(t�Zi)dt∫
J(t)f̂−j(t�Zi)dt + n−α

=
∫
J(t)m̂f−(i�j)(t�Zi)dt∫

J(t)f̂−(i�j)(t�Zi)dt + n−α
+ (nhd+1

0 )−1[Q1i +Q2i +Q3i]�

where

Q1i =
[∫

J(t)f̂−j(t�Zi)dt + n−α
]−1 ∫

J(t)K∗
i (t� j)m(Xi�Zi)dt�

Q2i =
[∫

J(t)f̂−j(t�Zi)dt + n−α
]−1 ∫

J(t)K∗
i (t� j)εi dt�

and

Q3i = −
[(∫

J(t)f̂−j(t�Zi)dt + n−α
)

×
(∫

J(t)f̂−(i�j)(t�Zi)dt + n−α
)]−1

×
∫
J(t)m̂f−(i�j)(t�Zi)dt

∫
J(t)K∗

i (t� j)dt�

Note that all of Q1i�Q2i, and Q3i are F−j�n = σ(W1ζ−j� � � � �Wiζ−j� � � � �Wnζ−j)-
measurable, because they do not depend on Yj and Xj . Because the leading
term m̂f−(i�j)(t�Zj)/f̂−(i�j)(t�Zj) is not a function of i anymore, if substituted
into the summation (S18), the corresponding expression has expectation zero
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as mentioned above. Thus, (S19) becomes

2
n3h4hd+1

1

(S20)

×
∑
i�j>i

E

{
J(i)J(j)

[ ∫
J(t)m̂f−i(t�Zi)dt∫

J(t)f̂−i(t�Zi)dt + n−α
−
∫
J(t)mf(t�Zi)dt∫
J(t)f (t�Zi)dt

]

× [Q1i +Q2i +Q3i]UiUj

}
�

Applying again the law of iterated expectations, but now with F−j�n, yields

Tn1 = 2n−4(h2hd+1
1 )−2

×
∑
i�j>i

E
{
J(i)J(j)[Q1i +Q2i +Q3i][Q1j +Q2j +Q3j]UiUj

}
�

All terms that contain εi, e.g.,
∑

i�j>i E{J(i)J(j)Q2iQ1jUiUj}, can be eliminated
by an iterated expectations argument using a sigma algebra that contains all
variables other than Yi. The same holds true for terms that contain εj . Hence
we are left with the four terms that involve Q1k and Q3k, k= i� j, only. Pick a
typical term:

Pn = 2n−4(h2hd+1
1 )−2

∑
i�j>i

E

{
J(i)J(j)m(Xi�Zi)m(Xj�Zj)

×
∫
J(t)K∗

j (t� i)dt∫
J(t)f̂−i(t�Zj)dt + n−α

∫
J(t)K∗

i (t� j)dt∫
J(t)f̂−j(t�Zi)dt + n−α

UiUj

}
�

Then write Pn = Pn1 − Pn2, where

Pn1 = 2n−4(h2hd+1
1 )−2

∑
i�j>i

E

{
J(i)J(j)m(Xi�Zi)m(Xj�Zj)

×
∫
J(t)K∗

j (t� i)dt∫
J(t)f (t�Zj)dt + n−α

∫
J(t)K∗

i (t� j)dt∫
J(t)f (t�Zi)dt + n−αUiUj

}
and

Pn2 = 2n−4(h2hd+1
1 )−2

∑
i�j>i

E

{
J(i)J(j)m(Xi�Zi)m(Xj�Zj)

×
∫
J(t)K∗

j (t� i)dt
∫
J(t)[f̂−i(t�Zj)− f (t�Zj)]dt

[∫ J(t)f̂−i(t�Zj)dt + n−α] ∫ J(t)f (t�Zj)dt
×
∫
J(t)K∗

i (t� j)dt
∫
J(t)[f̂−j(t�Zi)− f (t�Zi)]dt

[∫ J(t)f̂−j(t�Zi)dt + n−α] ∫ J(t)f (t�Zi)dt UiUj

}
�
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Assume for simplicity a product kernel, so that K∗
i (t� j) = K1(Xi − t) ×

K2(Zi −Zj), and consider Pn1,

E

{
J(i)J(j)m(Xi�Zi)m(Xj�Zj)(S21)

×
∫
J(t)K1(Xj − t) dt∫
J(t)f (t�Zj)dt + n−α

∫
J(t)K1(Xi − t) dt∫
J(t)f (t�Zi)dt + n−α

× (K2(Zi −Zj))2UiUj

}
= h−2

∫ ∫ ∫
1{|xj−x0|≤h/2}m(xj� zj)ϕ(xj� zj)(xj − x0)f (xj|zj)dxj

×
∫

1{|xi−x0|≤h/2}m(xi� zi)ϕ(xi� zi)(xi − x0)f (xi|zi)dxi
× (K2(zi − zj))2 dF(zj)dF(zi)+Rn�

where ϕ(xj� zj) = [∫ J(t)f (t�Zj)dt + n−α]−1
∫
J(t)K1(Xj − t) dt and Rn con-

tains the Op(h2) terms in the approximation, i.e., υi in Ui = Wi(Xi − x0 +
h2υ(Xi)), with supx�z |υ| = c supx�z |∂xf (x� z)|. From the right-hand side
of (S21), after change of variables (xj −x0)=ψjh, it is tedious but straightfor-
ward to show that Pn1 =O((nhd+1

1 )−2).
Next, consider a typical element Pn2(i� j) in Pn2 = 2n−4(h2hd+1

1 )−2 ×∑
i�j>i Pn2(i� j). By similar arguments as in Step 1,∫

J(t)[f̂−j(t�Zi)− f (t�Zi)]dt = h[f̂ (x0�Zi)− f (x0�Zi)] + h3η1�

where we suppress the indices as f̂−i ∼= f̂−j ∼= f̂ in large samples. Hence, the
leading term is

|Pn2(i� j)| ≤ E
{
J(i)J(j)|m(Xi�Zi)m(Xj�Zj)φ(Xi�Xj�Zi�Zj)|

× [f̂ (x0�Zi)− f (x0�Zi)][f̂ (x0�Zj)− f (x0�Zj)]|Ui||Uj|
}
�

where

φ(Xi�Xj�Zi�Zj)(S22)

=
(
h2

∫
J(t)K1(Xj − t) dt

∫
J(t)K1(Xi − t) dt [K2(Zi −Zj)]2

)
×
([∫

J(t)f̂ (t�Zj)dt + n−α
]∫

J(t)f (t�Zj)dt
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×
∫
J(t)f (t�Zi)dt

[∫
J(t)f̂ (t�Zi)dt + n−α

])−1

=
(
h2

∫
J(t)K1(Xj − t) dt

∫
J(t)K1(Xi − t) dt [K2(Zi −Zj)]2

)

×
([∫

J(t)f (t�Zj)dt

]2

+
(∫

J(t)[f̂ (t�Zj)− f (t�Zj)]dt + n−α
)∫

J(t)f (t�Zj)dt

)−1

×
([∫

J(t)f (t�Zi)dt

]2

+
(∫

J(t)[f̂ (t�Zi)− f (t�Zi)]dt + n−α
)∫

J(t)f (t�Zi)dt

)−1

and we assume again for simplicityK∗
i (t� j)=K1(Xi− t)K2(Zi−Zj). Applying

the Cauchy–Schwarz inequality, we obtain that

|Pn2(i� j)| ≤ E[G4
ij]1/4

E[φ2
ij]1/4

E(|f̂ − f |4)1/2�

where φij =φ(Xi�Xj�Zi�Zj), and

E[G4
ij] = E

[
J(i)J(j)m(Xi�Zi)

4m(Xj�Zj)
4U4

i U
4
j

]
=
∫ ∫ ∫

1{|xj−x0|≤h/2}m(xj� zj)4(xj − x0)
4f (xj|zj)dxj

×
∫

1{|xi−x0|≤h/2}m(xi� zi)4(xi − x0)
4

× f (xi|zi)dxi dF(zj)dF(zi)+Rn�
where Rn contains the higher order terms in the approximation Ui =Wi(Xi −
x0 +h2υ(Xi)). By standard arguments, E[G4

ij]1/4 =O(h5/2). Next, the following
expression in the denominator of (S22) can be bounded by[[∫

J(t)f (t�Zi)dt

]2

+
∫
J(t)[f̂ (t�Zi)− f (t�Zi)]dt

∫
J(t)f (t�Zi)dt

]−1

= [h2f (x0�Zi)
[
f (x0�Zi)+ [f̂ (x0�Zi)− f (x0�Zi)]

]+ n−α + τi
]−1

≤ nα�
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Proceeding analogously for the other terms in (S22), we obtain after change
of variables that |φij| ≤ h4n2α. Hence, E[φ2

ij]1/4 ≤ h2nα. Thus, Pn2 = O(nα ×
(nhd+1

1 )−2h−1/2
E(|f̂ − f |4)1/2), and this term converges under general assump-

tions faster than Pn1. Hence, we obtain that Pn = O((nhd+1
1 )−1). Similar argu-

ments apply to all other terms in (S20) and hence the behavior of the second
term is clarified.

Step 2: Turning to the first term in (S18),

(n2h2)−1
E

{∑
i

U2
i S

∗2
i

}
= (n2h2)−1

∑
i

E[U2
i S

∗2
i ]

and

E[U2
i S

∗2
i ] ≤ E[U4

i ]1/2
E[S∗4

i ]1/2�

Note that E[U4
i ]1/2 = O(h5/2) and E[S∗4

i ]1/2 ≤ n2α
E[[m̂f −mf ]4]1/2 by the same

arguments as in Step 1. Consequently,

(n2h2)−1
E

{∑
i

U2
i S

∗2
i

}
=O(n2αn−1h1/2(h

2r1
1 + (nhd+1

1 )−1)
)
�

Hence, the first term in (S18) is Tn1 = Op((n
1/2−α)−1h1/4h

r1
1 +

h1/4(n1−αh(d+1)/2
1 )−1). To see that Tn1 = op(Tn3), set nα ∼ h−2. Then this is the

case under our assumptions. Finally, by similar arguments, Tn2 = op(Tn3) and
this completes the second step. Q.E.D.


