SUPPLEMENT TO "SEMIPARAMETRIC POWER ENVELOPES FOR TESTS OF THE UNIT ROOT HYPOTHESIS" (*Econometrica*, Vol. 76, No. 5, September 2008, 1103–1142)

BY MICHAEL JANSSON

PROOF OF LEMMA 2: Suppose f satisfies Assumption DQM.

The result $\ell_f \in \mathcal{L}_f$ follows from standard arguments. Specifically, $E[\ell_f(\varepsilon)] = 0$ and $E[\ell_f(\varepsilon)^2] < \infty$ by van der Vaart (2002, Lemma 1.8). Furthermore, using van der Vaart (2002, Example 1.15), the property $E[\varepsilon \ell_f(\varepsilon)] = 1$ can be deduced from the fact that the functional $\int_{-\infty}^{\infty} f(\varepsilon - \theta) d\varepsilon = \theta$ is differentiable in the ordinary sense and the sense of van der Vaart (2002, Definition 1.14). Finally, by the Cauchy–Schwarz inequality, $E[\ell_f(\varepsilon)^2] \ge E[\varepsilon^2]/E[\varepsilon \ell_f(\varepsilon)]^2 = 1$.

To establish the locally asymptotically quadratic (LAQ) property, let c_T be a bounded sequence. The log likelihood ratio $L_T^f(c_T)$ admits the expansion

$$L_T^f(c_T) = \frac{c_T}{T} \sum_{t=2}^T y_{t-1} \ell_f(\Delta y_t) + \sum_{t=2}^T R_{Tt} - \frac{1}{4} \sum_{t=2}^T \left[\frac{c_T}{T} y_{t-1} \ell_f(\Delta y_t) + R_{Tt} \right]^2 (1 + \beta_{Tt}),$$

where $R_{Tt} := R_f(\Delta y_t, c_T y_{t-1}/T)$, $\beta_{Tt} := \beta [c_T y_{t-1} \ell_f(\Delta y_t)/T + R_{Tt}]$, and the defining properties of $R_f(\cdot)$ and $\beta(\cdot)$ are

$$\sqrt{\frac{f(\varepsilon-\theta)}{f(\varepsilon)}} = 1 + \frac{1}{2}\theta\ell_f(\varepsilon) + \frac{1}{2}R_f(\varepsilon,\theta),$$
$$\log(1+r) = r - \frac{1}{2}r^2[1+\beta(2r)].$$

The proof of Lemma 2 will be completed by showing that

(S1)
$$\sum_{t=2}^{T} R_{Tt} = -\frac{1}{4} c_T^2 \frac{\mathcal{I}_{ff}}{T^2} \sum_{t=2}^{T} y_{t-1}^2 + o_{p_{0,f}}(1),$$

(S2)
$$\sum_{t=2}^{T} \left[\frac{c_T}{T} y_{t-1} \ell_f(\Delta y_t) + R_{Tt} \right]^2 (1 + \beta_{Tt}) = c_T^2 \frac{\mathcal{I}_{ff}}{T^2} \sum_{t=2}^{T} y_{t-1}^2 + o_{p_{0,f}}(1).$$

In the rest of the proof, suppose H_0 holds and let ϑ_T be any positive sequence for which $\vartheta_T \to 0$ and $\sqrt{T} \vartheta_T \to \infty$ (as $T \to \infty$).

© 2008 The Econometric Society

DOI: 10.3982/ECTA6113SUPP

MICHAEL JANSSON

Equation (S1). Let $\tilde{R}_{Tt} := 1(|c_T y_{t-1}/T| \le \vartheta_T)R_{Tt}$ denote a truncated version of R_{Tt} . Because $\max_{2 \le t \le T} |c_T y_{t-1}/\sqrt{T}| = O_p(1)$ and $\sqrt{T} \vartheta_T \to \infty$, the sequences \tilde{R}_{Tt} and R_{Tt} are asymptotically equivalent in the sense that $\sum_{t=2}^{T} R_{Tt} =$ $\sum_{\substack{t=2\\\text{Now}}}^{T} \tilde{R}_{Tt} + o_p(1).$

$$E_{t-1}(\tilde{R}_{Tt}^2) = 1\left(\left|\frac{c_T}{T}y_{t-1}\right| \le \vartheta_T\right) E_{t-1}\left[R_f\left(\varepsilon_t, \frac{c_T}{T}y_{t-1}\right)^2\right]$$
$$\le V_f(\vartheta_T)\frac{c_T^2}{T^2}y_{t-1}^2,$$

where $V_f(\vartheta) := \sup_{|\theta| \le \vartheta, \theta \ne 0} \theta^{-2} E[R_f(\varepsilon, \theta)^2]$ and $E_{t-1}[\cdot]$ denotes conditional expectation given $\{\varepsilon_1, \ldots, \varepsilon_{t-1}\}$. By Assumption DQM, $\lim_{\vartheta \downarrow 0} V_f(\vartheta) = 0$. As a consequence, using $\vartheta_T = o(1)$ and $E(y_{t-1}^2) = t - 1$,

$$\sum_{t=2}^{T} E_{t-1}(\tilde{R}_{Tt}^2) \le V_f(\vartheta_T) E\left(\frac{c_T^2}{T^2} \sum_{t=2}^{T} y_{t-1}^2\right) = V_f(\vartheta_T) O(1) = o(1),$$

implying that $\sum_{t=2}^{T} \tilde{R}_{Tt} = \sum_{t=2}^{T} E_{t-1}(\tilde{R}_{Tt}) + o_p(1)$. Moreover,

$$\sum_{t=2}^{T} E_{t-1}(\tilde{R}_{Tt}) = -\frac{1}{4} \mathcal{I}_{ff} \frac{c_T^2}{T^2} \sum_{t=2}^{T} 1\left(\left| \frac{c_T}{T} y_{t-1} \right| \le \vartheta_T \right) y_{t-1}^2 + \sum_{t=2}^{T} 1\left(\left| \frac{c_T}{T} y_{t-1} \right| \le \vartheta_T \right) r_f\left(\frac{c_T}{T} y_{t-1} \right),$$

where $r_f(\theta) := \frac{1}{4} \mathcal{I}_{ff} \theta^2 + E[R_f(\varepsilon, \theta)]$ and

$$\frac{1}{T^2} \sum_{t=2}^{T} \left| \left(\left| \frac{c_T}{T} y_{t-1} \right| \le \vartheta_T \right) y_{t-1}^2 = \frac{1}{T^2} \sum_{t=2}^{T} y_{t-1}^2 + o_p(1) \right|$$

because $\max_{2 \le t \le T} |c_T y_{t-1}/\sqrt{T}| = O_p(1)$ and $\sqrt{T} \vartheta_T \to \infty$. The proof of (S1) can therefore be completed by showing that

$$\sum_{t=2}^{T} 1\left(\left| \frac{c_T}{T} y_{t-1} \right| \le \vartheta_T \right) r_f \left(\frac{c_T}{T} y_{t-1} \right) = o_p(1).$$

The relationship in the preceding display follows from $\vartheta_T = o(1)$ and the fact that

$$\left|\sum_{t=2}^{T} 1\left(\left|\frac{c_T}{T}y_{t-1}\right| \le \vartheta_T\right) r^f\left(\frac{c_T}{T}y_{t-1}\right)\right| \le v_f(\vartheta_T) \frac{c_T^2}{T^2} \sum_{t=2}^{T} y_{t-1}^2$$

2

$$= v_f(\vartheta_T)O_p(1),$$

where $v_f(\vartheta) := \sup_{|\theta| \le \vartheta, \theta \ne 0} \theta^{-2} |r_f(\theta)| = o(1)$ as $\vartheta \downarrow 0$ (Pollard (1997, Lemma 1)).

Equation (S2). To prove (S2), it suffices to show that

$$\sum_{t=2}^{T} \left[\frac{c_T}{T} y_{t-1} \ell_f(\varepsilon_t) + R_{Tt} \right]^2 = c_T^2 \frac{\mathcal{I}_{ff}}{T^2} \sum_{t=2}^{T} y_{t-1}^2 + o_p(1)$$

and

$$\max_{2\leq t\leq T} \left|\beta[c_T T^{-1} y_{t-1}\ell_f(\varepsilon_t) + R_{Tt}]\right| = o_p(1).$$

By Taylor's theorem, $\beta(r) \rightarrow 0$ as $|r| \rightarrow 0$. Moreover,

$$\max_{2 \le t \le T} \left| \frac{y_{t-1}}{T} \ell_f(\varepsilon_t) \right| \le \max_{2 \le t \le T} \left| \frac{y_{t-1}}{\sqrt{T}} \right| \max_{2 \le t \le T} \left| \frac{\ell_f(\varepsilon_t)}{\sqrt{T}} \right| = O_p(1) o_p(1) = o_p(1)$$

and $\max_{2 \le t \le T} |R_{Tt}| \le \sqrt{\sum_{t=2}^{T} R_{Tt}^2}$. Therefore, the desired result will follow from

(S3)
$$\frac{1}{T^2} \sum_{t=2}^{T} y_{t-1}^2 \ell_f(\varepsilon_t)^2 = \frac{\mathcal{I}_{ff}}{T^2} \sum_{t=2}^{T} y_{t-1}^2 + o_p(1)$$

and

(S4)
$$\sum_{t=2}^{T} R_{Tt}^2 = o_p(1).$$

т

As noted by Jeganathan (1995, Lemma 24), (S3) can be deduced with the help of the proof of Hall and Heyde (1980, Theorem 2.23) if it can be shown that

$$\frac{1}{T^2} \sum_{t=2}^{T} E_{t-1} \left[y_{t-1}^2 \ell_f(\varepsilon_t)^2 \mathbf{1} \left(\left| \frac{y_{t-1}}{T} \ell_f(\varepsilon_t) \right| > \varrho \right) \right] = o_p(1) \quad \forall \varrho > 0.$$

To do so, let $\rho > 0$ be given and define $Q_f(r) := E[\ell_f(\varepsilon)^2 1(|\ell_f(\varepsilon)| > r)]$. Because Q_f is nonincreasing and $\lim_{r\to\infty} Q_f(r) = 0$,

$$\frac{1}{T^2} \sum_{t=2}^{T} E_{t-1} \left[y_{t-1}^2 \ell_f(\varepsilon_t)^2 \mathbf{1} \left(\left| \frac{y_{t-1}}{T} \ell_f(\varepsilon_t) \right| > \varrho \right) \right]$$
$$= \frac{1}{T^2} \sum_{t=2}^{T} y_{t-1}^2 Q_f \left(\frac{\sqrt{T}\varrho}{|y_{t-1}/\sqrt{T}|} \right)$$

$$\leq \left(\frac{1}{T^2} \sum_{t=2}^{T} y_{t-1}^2\right) \max_{2 \leq t \leq T} Q_f\left(\frac{\sqrt{T}\varrho}{|y_{t-1}/\sqrt{T}|}\right) \\ = O_p(1)o_p(1) = o_p(1),$$

where the penultimate equality uses $\max_{2 \le t \le T} |y_{t-1}/\sqrt{T}| = O_p(1)$. It can be shown that $\sum_{t=2}^{T} R_{Tt}^2 = \sum_{t=2}^{T} \tilde{R}_{Tt}^2 + O_p(1)$. Moreover,

$$\sum_{t=2}^{T} E_{t-1} \Big[\tilde{R}_{T_t}^2 \mathbb{1}(|\tilde{R}_{T_t}| > \varrho) \Big] \le \sum_{t=2}^{T} E_{t-1}(\tilde{R}_{T_t}^2) = o_p(1) \quad \forall \varrho > 0,$$

where the equality was established in the proof of (S1). A second application of the proof of Hall and Heyde (1980, Theorem 2.23) therefore establishes (S4). Q.E.D.

PROOF OF LEMMA 7: For any *b*, any c < 0, any $\alpha \in (0, 1)$, and any symmetric 2×2 matrix \mathcal{I}_F for which

$$\operatorname{Var}\begin{pmatrix}W(1)\\B_F(1)\end{pmatrix} = \begin{pmatrix}1 & e_1'\\e_1 & \mathcal{I}_F\end{pmatrix}$$

is positive semidefinite, let $K^{S}_{\alpha}(b, c; \mathcal{I}_{F})$ be the $1 - \alpha$ quantile of

$$G(W, Z, b, c; \mathcal{I}_F)$$

$$:= c \left[\int_0^1 W(r) \, dW(r) + \frac{\mathcal{H}_{f\eta}}{\mathcal{H}_{\eta\eta}} b + \sqrt{\mathcal{H}_{ff,\eta}} - \int_0^1 W(r)^2 \, dr \, Z \right]$$

$$- \frac{1}{2} c^2 \mathcal{H}_{ff},$$

where $Z \sim \mathcal{N}(0, 1)$ is independent of W and $\mathcal{H}_{f\eta}$, $\mathcal{H}_{\eta\eta}$, etc. are as in Section 4.

The function K_{α}^{S} satisfies $E[\psi_{F}^{S}(\mathcal{S}_{F}, \mathcal{H}_{F}|c, \alpha)|\dot{\mathcal{S}}_{\eta}] = \alpha$ because it follows from elementary facts about Brownian motions that

$$\frac{\mathcal{S}_{f.\eta} - \int_0^1 W(r) \, dW(r)}{\sqrt{\mathcal{H}_{ff.\eta} - \int_0^1 W(r)^2 \, dr}} \sim \mathcal{N}(0, 1)$$

independent of W and S_{η} , where $S_{f,\eta}$ and S_{η} are as in Section 4.

Continuity of K_{α}^{S} follows from the fact that $G(W, Z, b_n, c_n; \mathcal{I}_{F,n})$ converges in distribution to a continuous random variable whenever the sequence $(b_n, c_n, \mathcal{I}_{F,n})$ is convergent (and $G(W, Z, b_n, c_n; \mathcal{I}_{F,n})$ is well defined for each n). Q.E.D.

4

PROOF OF (27): Let $f \in \mathcal{F}_{DQM}$ and c < 0 be given, suppose F satisfies Assumption DQM*, and let (S_T^F, H_T^F) , (W, B_f, B_η) , etc. be as in Section 4. Because K_{α}^S is continuous (Lemma 7) and

$$(S_T^f, H_T^{ff}, S_T^{f,S}, S_T^\eta) \rightarrow_{d_{0,f}} (\mathcal{S}_f, \mathcal{H}_{ff}, \mathcal{S}_f^S, \mathcal{S}_\eta),$$

the sequence $\phi_{f,T}^{S}(\cdot|c,\alpha)$ satisfies

$$\phi_{f,T}^{S}(Y_{T}|c,\alpha) \rightarrow_{d_{0,f}} \psi_{f}^{S}(\mathcal{S}_{f},\mathcal{H}_{ff},\mathcal{S}_{f}^{S}|c,\alpha).$$

It follows from these convergence results, Le Cam's third lemma, and the result

$$L_T^F(c,h) \to_{d_{0,f}} \Lambda_F(c,h) := (c,h) \mathcal{S}_F - \frac{1}{2}(c,h) \mathcal{H}_F(c,h)' \quad \forall (c,h)$$

that

$$\lim_{T \to \infty} E_{\rho_T(c'), \eta_T(h)} \phi_T^S(Y_T | c, \alpha; f)$$

= $E \left[\psi_f^S(\mathcal{S}_f, \mathcal{H}_{ff}, \mathcal{S}_f^S | c, \alpha) \exp(\Lambda_F(c', h)) \right]$

for every (c', h). In particular, $\lim_{T\to\infty} E_{\rho_T(c),\eta_T(0)} \phi_T^S(Y_T|c, \alpha; f) = \Psi_f^S(c, \alpha)$, implying that the proof of (27) can be completed by showing that $\phi_{f,T}^S(\cdot|c, \alpha)$ is locally asymptotically α -similar in F.

To do so, it suffices to show that $E[\psi_f^S(\mathcal{S}_f, \mathcal{H}_{ff}, \mathcal{S}_f^S | c, \alpha) | \mathcal{S}_{\eta}] = \alpha$. Let

$$\mathcal{S}_{\eta}^{\perp} := \mathcal{S}_{\eta} - \frac{\mathcal{I}_{f\eta}}{\mathcal{I}_{ff} - 1} \mathcal{S}_{f}^{S}.$$

Because $B_{\eta} - \mathcal{I}_{f\eta}(\mathcal{I}_{ff} - 1)^{-1}(B_f - W)$ and (W, B_f) are independent, S_{η}^{\perp} is independent of $(S_f, \mathcal{H}_{ff}, S_f^S)$ and

$$E[\psi_f^{S}(\mathcal{S}_f, \mathcal{H}_{ff}, \mathcal{S}_f^{S}|c, \alpha)|\mathcal{S}_f^{S}, \mathcal{S}_{\eta}^{\perp}] = E[\psi_f^{S}(\mathcal{S}_f, \mathcal{H}_{ff}, \mathcal{S}_f^{S}|c, \alpha)|\mathcal{S}_f^{S}] = \alpha,$$

where the second equality is the defining property of K_{α}^{S} . Because S_{η} is a function of $(S_{f}^{S}, S_{\eta}^{\perp})$, it therefore follows from the law of iterated expectations that

$$E[\psi_f^{S}(\mathcal{S}_f, \mathcal{H}_{ff}, \mathcal{S}_f^{S} | c, \alpha) | \mathcal{S}_{\eta}] = E(E[\psi_f^{S}(\mathcal{S}_f, \mathcal{H}_{ff}, \mathcal{S}_f^{S} | c, \alpha) | \mathcal{S}_f^{S}, \mathcal{S}_{\eta}^{\perp}] | \mathcal{S}_{\eta})$$

= α ,

as was to be shown.

Q.E.D.

MICHAEL JANSSON

REFERENCES

- HALL, P., AND C. C. HEYDE (1980): *Martingale Limit Theory and Its Application*. New York: Academic Press. [3,4]
- JEGANATHAN, P. (1995): "Some Aspects of Asymptotic Theory With Applications to Time Series Models," *Econometric Theory*, 11, 818–887. [3]
- POLLARD, D. (1997): "Another Look at Differentiability in Quadratic Mean," in *Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics*, ed. by D. Pollard, E. Torgersen, and G. L. Yang. New York: Springer Verlag, 305–314. [3]

VAN DER VAART, A. W. (2002): "Semiparametric Statistics," in *Lectures on Probability Theory and Statistics (Saint-Flour, 1999)*, ed. by P. Bernard. New York: Springer Verlag, 341–457. [1]

Dept. of Economics, University of California at Berkeley, 508-1 Evans Hall, 3880, Berkeley, CA 94720-3880, U.S.A. and Center for Research in Econometric Analysis of Time Series (CREATES), School of Economics and Management, University of Aarhus, DK-8000 Aarhus C, Denmark; mjansson@econ.berkeley.edu.

Manuscript received October, 2005; final revision received April, 2007.