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PROOF OF LEMMA 2: Suppose f satisfies Assumption DQM.
The result �f ∈Lf follows from standard arguments. Specifically, E[�f (ε)] =

0 and E[�f (ε)2]<∞ by van der Vaart (2002, Lemma 1.8). Furthermore, using
van der Vaart (2002, Example 1.15), the property E[ε�f (ε)] = 1 can be de-
duced from the fact that the functional

∫ ∞
−∞ f (ε − θ)dε = θ is differentiable

in the ordinary sense and the sense of van der Vaart (2002, Definition 1.14).
Finally, by the Cauchy–Schwarz inequality, E[�f (ε)2] ≥E[ε2]/E[ε�f (ε)]2 = 1.

To establish the locally asymptotically quadratic (LAQ) property, let cT be a
bounded sequence. The log likelihood ratio LfT (cT ) admits the expansion

L
f
T (cT )= cT

T

T∑
t=2

yt−1�f (�yt)+
T∑
t=2

RTt

− 1
4

T∑
t=2

[
cT

T
yt−1�f (�yt)+RTt

]2

(1 +βTt)�

where RTt := Rf(�yt� cT yt−1/T)� βTt := β[cT yt−1�f (�yt)/T + RTt]� and the
defining properties of Rf(·) and β(·) are

√
f (ε− θ)
f (ε)

= 1 + 1
2
θ�f (ε)+ 1

2
Rf(ε�θ)�

log(1 + r)= r − 1
2
r2[1 +β(2r)]�

The proof of Lemma 2 will be completed by showing that

T∑
t=2

RTt = −1
4
c2
T

Iff
T 2

T∑
t=2

y2
t−1 + op0�f (1)�(S1)

T∑
t=2

[
cT

T
yt−1�f (�yt)+RTt

]2

(1 +βTt)= c2
T

Iff
T 2

T∑
t=2

y2
t−1 + op0�f (1)�(S2)

In the rest of the proof, suppose H0 holds and let ϑT be any positive sequence
for which ϑT → 0 and

√
TϑT → ∞ (as T → ∞).
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Equation (S1). Let R̃T t := 1(|cT yt−1/T | ≤ ϑT)RTt denote a truncated ver-
sion of RTt� Because max2≤t≤T |cT yt−1/

√
T | = Op(1) and

√
TϑT → ∞� the se-

quences R̃T t andRTt are asymptotically equivalent in the sense that
∑T

t=2RTt =∑T

t=2 R̃T t + op(1).
Now

Et−1(R̃
2
Tt)= 1

(∣∣∣∣cTT yt−1

∣∣∣∣ ≤ϑT

)
Et−1

[
Rf

(
εt�
cT

T
yt−1

)2]

≤ Vf (ϑT)
c2
T

T 2
y2
t−1�

where Vf (ϑ) := sup|θ|≤ϑ�θ �=0 θ
−2E[Rf(ε�θ)2] and Et−1[·] denotes conditional ex-

pectation given {ε1� � � � � εt−1}. By Assumption DQM, limϑ↓0 Vf (ϑ) = 0. As a
consequence, using ϑT = o(1) and E(y2

t−1)= t − 1,

T∑
t=2

Et−1(R̃
2
Tt)≤ Vf (ϑT)E

(
c2
T

T 2

T∑
t=2

y2
t−1

)
= Vf (ϑT)O(1)= o(1)�

implying that
∑T

t=2 R̃T t =
∑T

t=2Et−1(R̃Tt)+ op(1). Moreover,
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t=2

Et−1(R̃Tt)= −1
4
Iff
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1
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)
y2
t−1

+
T∑
t=2

1
(∣∣∣∣cTT yt−1
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)
rf

(
cT

T
yt−1

)
�

where rf (θ) := 1
4Iff θ2 +E[Rf(ε�θ)] and

1
T 2

T∑
t=2

1
(∣∣∣∣cTT yt−1

∣∣∣∣ ≤ϑT

)
y2
t−1 = 1

T 2

T∑
t=2

y2
t−1 + op(1)

because max2≤t≤T |cT yt−1/
√
T | =Op(1) and

√
TϑT → ∞. The proof of (S1) can

therefore be completed by showing that

T∑
t=2

1
(∣∣∣∣cTT yt−1
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)
rf

(
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T
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)
= op(1)�

The relationship in the preceding display follows from ϑT = o(1) and the fact
that ∣∣∣∣∣
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= vf (ϑT)Op(1)�

where vf (ϑ) := sup|θ|≤ϑ�θ �=0 θ
−2|rf (θ)| = o(1) as ϑ ↓ 0 (Pollard (1997,

Lemma 1)).
Equation (S2). To prove (S2), it suffices to show that

T∑
t=2

[
cT

T
yt−1�f (εt)+RTt

]2

= c2
T

Iff
T 2

T∑
t=2

y2
t−1 + op(1)

and

max
2≤t≤T

∣∣β[cTT−1yt−1�f (εt)+RTt]
∣∣ = op(1)�

By Taylor’s theorem, β(r)→ 0 as |r| → 0. Moreover,

max
2≤t≤T

∣∣∣∣yt−1

T
�f (εt)

∣∣∣∣ ≤ max
2≤t≤T

∣∣∣∣ yt−1√
T

∣∣∣∣ max
2≤t≤T

∣∣∣∣�f (εt)√
T

∣∣∣∣ =Op(1)op(1)= op(1)

and max2≤t≤T |RTt | ≤
√∑T

t=2R
2
Tt . Therefore, the desired result will follow from

1
T 2

T∑
t=2

y2
t−1�f (εt)

2 = Iff
T 2

T∑
t=2

y2
t−1 + op(1)(S3)

and
T∑
t=2

R2
Tt = op(1)�(S4)

As noted by Jeganathan (1995, Lemma 24), (S3) can be deduced with the
help of the proof of Hall and Heyde (1980, Theorem 2.23) if it can be shown
that

1
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Et−1

[
y2
t−1�f (εt)

21
(∣∣∣∣yt−1

T
�f (εt)

∣∣∣∣>

)]

= op(1) ∀
> 0�

To do so, let 
 > 0 be given and define Qf(r) := E[�f (ε)21(|�f (ε)| > r)]. Be-
cause Qf is nonincreasing and limr→∞Qf(r)= 0,
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≤
(

1
T 2

T∑
t=2

y2
t−1

)
max
2≤t≤T

Qf

( √
T


|yt−1/
√
T |

)

=Op(1)op(1)= op(1)�

where the penultimate equality uses max2≤t≤T |yt−1/
√
T | =Op(1).

It can be shown that
∑T

t=2R
2
Tt =

∑T

t=2 R̃
2
Tt + op(1)� Moreover,

T∑
t=2

Et−1

[
R̃2
Tt1(|R̃T t |>
)

] ≤
T∑
t=2

Et−1(R̃
2
Tt)= op(1) ∀
> 0�

where the equality was established in the proof of (S1). A second applica-
tion of the proof of Hall and Heyde (1980, Theorem 2.23) therefore estab-
lishes (S4). Q.E.D.

PROOF OF LEMMA 7: For any b, any c < 0, any α ∈ (0�1)� and any symmetric
2 × 2 matrix IF for which

Var
(
W (1)
BF(1)

)
=

(
1 e′

1

e1 IF

)

is positive semidefinite, let KS
α(b� c;IF) be the 1 − α quantile of

G(W �Z�b� c;IF)

:= c
[∫ 1

0
W (r)dW (r)+ Hfη

Hηη

b+
√
Hff�η −

∫ 1

0
W (r)2 dr Z

]

− 1
2
c2Hff �

where Z ∼N (0�1) is independent ofW and Hfη�Hηη, etc. are as in Section 4.
The functionKS

α satisfies E[ψSF(SF�HF |c�α)|Sη] = α because it follows from
elementary facts about Brownian motions that

Sf�η − ∫ 1
0 W (r)dW (r)√

Hff�η − ∫ 1
0 W (r)

2 dr
∼N (0�1)

independent of W and Sη� where Sf�η and Sη are as in Section 4.
Continuity of KS

α follows from the fact that G(W �Z�bn� cn;IF�n) con-
verges in distribution to a continuous random variable whenever the se-
quence (bn� cn�IF�n) is convergent (and G(W �Z�bn� cn;IF�n) is well defined
for each n). Q.E.D.
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PROOF OF (27): Let f ∈ FDQM and c < 0 be given, suppose F satisfies As-
sumption DQM*, and let (SFT �H

F
T )� (W �Bf �Bη), etc. be as in Section 4. Be-

cause KS
α is continuous (Lemma 7) and

(S
f
T �H

ff
T � S

f�S
T � S

η
T )→d0�f (Sf �Hff �SS

f �Sη)�

the sequence φSf�T (·|c�α) satisfies

φSf�T (YT |c�α)→d0�f ψ
S
f (Sf �Hff �SS

f |c�α)�

It follows from these convergence results, Le Cam’s third lemma, and the result

LFT (c�h)→d0�f ΛF(c�h) := (c�h)SF − 1
2
(c�h)HF(c�h)

′ ∀(c�h)

that

lim
T→∞

EρT (c′)�ηT (h)φ
S
T (YT |c�α; f )

=E[
ψSf (Sf �Hff �SS

f |c�α)exp(ΛF(c
′�h))

]
for every (c′�h)� In particular, limT→∞EρT (c)�ηT (0)φ

S
T (YT |c�α; f ) = ΨS

f (c�α)�

implying that the proof of (27) can be completed by showing that φSf�T (·|c�α)
is locally asymptotically α-similar in F�

To do so, it suffices to show that E[ψSf (Sf �Hff �SS
f |c�α)|Sη] = α� Let

S⊥
η := Sη − Ifη

Iff − 1
SS
f �

Because Bη − Ifη(Iff − 1)−1(Bf −W ) and (W �Bf ) are independent, S⊥
η is

independent of (Sf �Hff �SS
f ) and

E[ψSf (Sf �Hff �SS
f |c�α)|SS

f �S⊥
η ] = E[ψSf (Sf �Hff �SS

f |c�α)|SS
f ] = α�

where the second equality is the defining property of KS
α� Because Sη is a func-

tion of (SS
f �S⊥

η )� it therefore follows from the law of iterated expectations that

E[ψSf (Sf �Hff �SS
f |c�α)|Sη] = E

(
E[ψSf (Sf �Hff �SS

f |c�α)|SS
f �S⊥

η ]∣∣Sη)
= α�

as was to be shown. Q.E.D.
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