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APPENDIX

THIS APPENDIX COMPRISES proofs for the main paper, intermediate results,
supplementary explanations, and Monte Carlo simulations.

A.1. Notation

Throughout this appendix, a.s. abbreviates almost surely, i.p. abbreviates
in probability, i.o.p. abbreviates in outer probability, w.p.a.1 abbreviates with
probability approaching 1, w.o.p.a.1 abbreviates with outer probability ap-
proaching 1, SLLN refers to the strong law of large numbers, CLT refers to
the central limit theorem, and LIL refers to the law of iterated logarithm.

For any θ ∈ Θ� we denote v(mθ) = √
n(En(m(Z�θ)) − E(m(Z�θ)))� For

any (θ� j) ∈ Θ × {1� � � � � J}� we denote vn(mj�θ) = √
n(En(mj(Z�θ)) −

E(mj(Z�θ)))�
We refer to the space of bounded functions that mapΘ onto RJ as l∞J (Θ) and

refer to the space of continuous functions that map Θ onto RJ as CJ(Θ)� For
both spaces, we use the uniform metric, denoted by ‖y‖∞� that is, ∀y ∈ l∞J (Θ)�‖y‖∞ = supθ∈Θ ‖y(θ)‖� For matrix spaces, we use the Frobenius norm, that is,
∀M ∈ RI×J� ‖M‖ = (∑I

i=1

∑J

j=1M
2
(i�j))

1/2� Finally, IJ denotes the J × J identity
matrix and 0I×J denotes the null matrix with I rows and J columns.

For any s ∈ N� the space of Borel measurable convex sets in Rs is denoted
by Cs� For any function H :A1 → A2 and any set S ⊂ A2� H

−1(S) = {x ∈
A1 :H(x) ∈ S}� For any ε > 0 and ∀S ⊂ Rs� Sε = {x ∈ Rs :∃x′ ∈ S∩‖x−x′‖ ≤ ε}
and ∂S denotes the boundary of S�

For any set of finite elements A� {PA/∅} denotes the set of all nonempty
subsets of A.

For any square matrix Σ ∈ RJ×J and any Borel measurable set A ⊆ RJ�
ΦΣ(A) denotes P(Z ∈A), whereZ ∼N(0�Σ)� For any square matrix Σ ∈ RJ×J

and any vector x ∈ RJ� ΦΣ(x) denotes P(Z ≤ x), where Z ∼ N(0�Σ) and, if
Σ ∈ RJ×J is nonsingular, φΣ(x) denotes the density of Z� where Z ∼N(0�Σ)�
Finally, if J = 1 and Σ = 1� the reference of the variance–covariance matrix
may be dropped, so Φ=Φ1 and φ=φ1�

A.2. Preliminary Results

A.2.1. On the Assumptions

LEMMA A.1: Assumptions B1–B4 imply Assumption A4.
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PROOF: We define SZ = SX × RJ , Z = (X�Y) :Ω → SZ� and m(z�θ) =
{{(yj−Mj(θ�xk))1[x= xk]}Jj=1}Kk=1 :SZ×Θ→ RJK� For every (j�k) ∈ {1�2� � � � �
J} × {1�2� � � � �K}� define mj�k(z�θ)= (yj −Mj(θ�xk))1[x= xk]�

For every (j�k�θ) ∈ {1�2� � � � � J} × {1�2� � � � �K} × Θ� V (mj�k(Z�θ)) =
V (Yj|Xk)� which is finite and positive. Also, ∀z ∈ SZ� {m(z�θ)− E(m(Z�θ))} :
Θ→ RJK is a continuous function, and the continuous functions defined on a
compact space constitute a separable subset of the space of bounded functions.
To conclude this proof, we need to show the stochastic equicontinuity property
of the empirical process associated to m(Z�θ)� For every θ�θ′ ∈Θ,

vn(mθ)− vn(mθ′)
= {{√

n(Mj(θ
′�xk)−Mj(θ�xk))(p̂k −pk)

}J
j=1

}K
k=1
�

where, ∀k= 1�2� � � � �K� p̂k = n−1
∑n

i=1 1[X = xk] and pk = P(X = xk)�
If the design is fixed, then, ∀k = 1� � � � �K� p̂k = pk and so stochas-

tic equicontinuity is trivially satisfied. Thus, we focus the rest of the ar-
gument on the random design case. Fix ε > 0 arbitrarily. Let δ > 0 be
such that

∑K

k=1 2Φ(−ε/(δ√JKpk(1 −pk))) < ε� For every k = 1�2� � � � �K�
M(θ�xk) :Θ→ RJ is continuous and so, ∃η> 0 such that

max
k=1�����K

max
j=1�����J

sup
θ∈Θ

sup
{θ′∈Θ:‖θ′−θ‖≤η}

‖Mj(θ�xk)−Mj(θ
′�xk)‖< δ�

Therefore, supθ∈Θ sup{θ′ :‖θ′−θ‖≤η} ‖vn(mθ)−vn(mθ′)‖ ≤ δ√J‖{√n(p̂k−pk)}Kk=1‖,
which implies

P∗
(

sup
θ∈Θ

sup
{θ′∈Θ:‖θ′−θ‖≤η}

‖vn(mθ)− vn(mθ′)‖> ε
)

≤
K∑
k=1

P
(|√n(p̂k −pk)|> ε/δ

√
JK

)
�

By the CLT,

lim sup
n→+∞

P∗
(

sup
θ∈Θ

sup
{θ′∈Θ:‖θ′−θ‖≤η}

‖vn(mθ)− vn(mθ′)‖> ε
)

≤
K∑
k=1

2Φ
(−ε/(δ√JKpk(1 −pk))

)
�

and by the definition of δ� the right-hand side is less than ε� completing the
proof. Q.E.D.
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A.2.2. Verification of the Assumptions in the Example

In this section, we complete the specification of the example provided in
Section 2.1.3 so that the assumptions of the general model are satisfied. More-
over, depending on how we do this, we can also satisfy the assumptions of the
conditionally separable model.

Suppose that our economic phenomenon corresponds to a binary choice
model, where the dependent variable, Y� takes only two values. Without loss of
generality, we assume that these values are 0 and 1, and so, ∀k= 1�2� � � � �K�
YH(wk) = 1 and YL(wk) = 0� Moreover, we restrict the values of the exoge-
nous covariate to those for which the choice is not deterministic, so, ∀k =
1�2� � � � �K� P(Y = 1|W = wk) ∈ (0�1)� Also, we assume that we have miss-
ing data, but not all data are missing, so that, ∀k= 1�2� � � � �K� P(U = 1|W =
wk) ∈ (0�1)�

Our econometric model predicts that E(Y − f (X�θ)|W = w) = 0� where
θ ∈Θ�We take Θ to be a convex and compact subset of Rη for some η<+∞�
We assume the following properties about the function f : (a) ∀(θ�x) ∈
Θ×SX� f (x�θ) ∈ [0�1], (b) ∃k ∈ {1�2� � � � �K} such that infθ∈Rη E(f (X�θ)|W =
wk)= 0 and supθ∈Rη

E(f (X�θ)|W =wk)= 1� and (c) ∀(θ�θ′�x) ∈Θ×Θ×SX�
|f (x�θ)− f (x�θ′)|<B(x)‖θ− θ′‖ for some function B(x) :SX → R such that
E(|B(X)|) < +∞. All these requirements on f are satisfied in the probit
model, where SX ⊆ Rη and f (x�θ)=Φ(x′θ)�

Under these additional conditions, the identified set is given by

ΘI =
{
θ ∈Θ :

{
E
(
(Y(1 −U)− f (X�θ))1[W =wk]

)≤ 0
E
(−(Y(1 −U)+U − f (X�θ))1[W =wk]

)≤ 0

}K
k=1

}
�

As required by our assumptions, we observe an i.i.d. sample of {(Yi�Ui�Xi�
Wi)}ni=1�

Notice that the relationship between the explanatory variable X and the ex-
ogenous variable W has been left unspecified. We entertain two cases. In the
first case, we verify all the assumptions of the general model and we point out
that some of the assumptions of the conditionally separable model may not be
satisfied. In the second case, we verify all the assumptions of the conditionally
separable model.

CASE 1—Endogenous Explanatory Variable: Suppose that X is an endoge-
nous explanatory random vector. SinceW represents the exogenous covariates,
this means that ∃k = 1�2� � � � �K such that {X|W = wk} is a nondeterministic
random vector.

We now verify the assumptions of the general model. In the probability space
(Ω�B�P)� we define the random vector Z = (Y�U�X�W ) :Ω→ SZ , where
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SZ = {{0�1}×{0�1}×SX×{wk}Kk=1}�We define the functionm(z�θ) : SZ×Θ→
R2K as

m(z�θ)=m((y�u�x�w)�θ)
= {
(y(1 − u)− f (x�θ))1[w=wk]�
(y(1 − u)+ u− f (x�θ))1[w=wk]

}K
k=1
�

Assumptions A1 and A2 are explicitly assumed. By definition, ΘI = {θ ∈
Θ : {E(mj(Z�θ)) ≤ 0}2K

j=1}, the function m is measurable, and E(m(Z�θ)) :
Θ→ R2K is continuous. Fix k = k̄ such that infθ∈Rη E(f (X�θ)|W = wk̄) = 0
and supθ∈Rη

E(f (X�θ)|W = wk̄) = 1� Since P(U = 1|W = wk̄) ∈ (0�1) and
P(Y = 1|W =wk̄) ∈ (0�1)� either E(Y(1 −U)|W =wk̄) > 0 or E(Y(1 −U)+
U |W =wk̄) < 1� Suppose that E(Y(1 −U)|W =wk̄) > 0� Since infθ∈Rη E(f (X�
θ)|W =wk̄)= 0� we can always defineΘ large enough so that infθ∈ΘE(f (X�θ)|
W = wk̄) < E(Y(1 − U)|W = wk̄). Now suppose that E(Y(1 − U) + U |W =
wk̄) < 1� Since supθ∈Rη

E(f (X�θ)|W = wk̄)= 1� we can always define Θ large
enough so that supθ∈ΘE(f (X�θ)|W = wk̄) > E(Y(1 − U) + U |W = wk̄). In
either case, ΘI is a proper subset of Θ� This verifies Assumption A3.

Now we verify Assumption A4. For any k = 1�2� � � � �K� supθ∈Θ V ((Y(1 −
U)− f (X�θ))1[W =wk])= 0 if and only if ∃θ′ ∈Θ such that⎧⎪⎪⎨

⎪⎪⎩
P(1 = f (X�θ′)|W =wk�Y(1 −U)= 1)

× P(Y(1 −U)= 1|W =wk)
+ P(0 = f (X�θ′)|W =wk�Y(1 −U)= 0)

× (
1 − P(Y(1 −U)= 1|W =wk)

)

⎫⎪⎪⎬
⎪⎪⎭= 1�

To show that this condition is impossible, it suffices to show that P(Y(1−U)=
1|W = wk) ∈ (0�1)� which is a consequence of P(Y = 1|W = wk) ∈ (0�1) and
P(U = 1|W =wk) ∈ (0�1)� By repeating this argument with Y(1 −U)+U in-
stead of Y(1 −U)� we verify that, ∀(θ� j) ∈Θ×{1� � � � �2K}� V (mj(Z�θ)) > 0.
For every (θ� j) ∈ Θ × {1� � � � �2K}� |mj(Z�θ)| ≤ 1 and so, ∀(θ� j) ∈ Θ ×
{1� � � � �2K}� V (mj(Z�θ)) is bounded. Finally, ∀(θ�θ′� z) ∈Θ×Θ× SZ�∥∥(m(z�θ)− E(m(Z�θ))

)− (
m(z�θ′)− E(m(Z�θ′))

)∥∥
≤ 2J

(|f (x�θ)− f (x�θ′)| + ∣∣E(f (X�θ)− f (X�θ′))
∣∣)

≤ 2J
(
B(x)+ E

(|B(X)|))‖θ− θ′‖�
By taking ‖θ− θ′‖ sufficiently small, we can make the left-hand side arbitrarily
small. Therefore, ∀z ∈ SZ� {m(z�θ)−E(m(Z�θ)) :Θ→ RJ} belongs to CJ(Θ),
which is a separable subset of l∞J (Θ)� Finally, to show stochastic equicontinuity
of the empirical process associated tom(Z�θ), it suffices to show the stochastic
equicontinuity of the empirical process associated to {f (X�θ)1[W = wk]}Kk=1�
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This can be verified by using arguments in Section 2.7.4 in van der Vaart and
Wellner (1996).

As a final remark, note that it is possible that this example violates some of
the assumptions of the conditionally separable model. Since ∃k = 1�2� � � � �K
such that {X|W =wk} is nondeterministic, it is possible that ∃θ0 ∈Θ such that
{f (X�θ0)|W =wk} is nondeterministic. In particular, this would be the case in
the probit model. If so, the conditional separability required by Assumption B3
would be violated.

CASE 2 —Exogenous Covariates: In this case, X is equal to W � Assump-
tion B1 is implied by random sampling and by SX = {wk}Kk=1. Assumption B2
has already been verified in the previous case. To verify Assumption B3, in the
probability space (Ω�B�P)� define Z = {Y(1 −U)�Y(1 −U)+U} :Ω→ SZ ,
where SZ = {0�1} × {0�1}, and M(θ�x) = {f (x�θ)� f (x�θ)} :Θ × SX → R2�
which implies that

ΘI = {
θ ∈Θ :

{{
E(Zj −Mj(θ�X)|X =wk)≤ 0

}2

j=1

}K
k=1

}
�

Finally, notice that ∀k= 1�2� � � � �K� M(θ�wk) :Θ→ R2 is continuous. Condi-
tions under which ΘI is a proper subset of Θ have been provided in the previ-
ous case. This verifies Assumption B3.

By the arguments used in the previous case, if ∀k = 1�2� � � � �K� P(Y =
1|W = wk) ∈ (0�1) and P(U = 1|W = wk) ∈ (0�1)� then it follows that,
∀(k� j)= {1� � � � �K} × {1�2}� V (Zj|X = wk) is positive. Since ‖Z‖ ≤ 1� it fol-
lows that, ∀(k� j) = {1� � � � �K} × {1�2}, {Zj|X = wk} has finite absolute mo-
ments of all orders, which verifies Assumption B4.

A.2.3. On the Choice of the Criterion Function

The following lemma characterizes all possible criterion functions.

LEMMA A.2: Under Assumption A3, the function Q :Θ → R is a criterion
function if and only if it is given by Q(θ) = GP({[E(mj(Z�θ))]+}Ji=1), where
GP : RJ+ → R is a nonnegative function such that GP(y) = 0 if and only if
y = 0J×1.

This proof is elementary and is, therefore, omitted.
Lemma A.2 reveals that there is a wide range of criterion functions. The no-

tation GP reveals that, in principle, the criterion function could depend on
the probability distribution P� In particular, one way in which the probability
distribution could enter the specification of the criterion function is through
Studentization, that is, by dividing each expectation by its standard deviation.
For example, Studentization has been considered by Chernozhukov, Hong,
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and Tamer (2007) (henceforth, CHT) and Andrews and Soares (2007). With
Studentization, the criterion function is given by

Q(θ)=G
({[

E(mj(Z�θ))√
V (mj(Z�θ))

]
+

}J
j=1

)
�

whereG is any of the functions admitted by Assumption CF (or even Assump-
tion CF′, which will be defined below). One benefit of Studentization is that the
criterion function is not affected by changes in the scale of any of the moment
inequalities. Studentization can be applied to all of the procedures proposed
in the paper (bootstrap, asymptotic approximation, and subsampling). Argu-
ments similar to those used in this paper show that Studentized procedures
produce consistent inference in level and have the same rates of convergence
of the error in the coverage probability as their non-Studentized counterparts.1
Unfortunately, in general, Studentization does not generate asymptotically piv-
otal statistics. We show this in a more general context in the next paragraph.

A statistic is asymptotically pivotal if its limiting distribution does not de-
pend on unknown parameters. As explained by Hall (1992) and Horowitz
(2002), under certain conditions, the bootstrap approximation of an asymp-
totically pivotal statistics is more accurate than its asymptotic approxima-
tion. This feature is usually referred to as the asymptotic refinement of the
bootstrap. We now show that, in general, the criterion functions defined by
Lemma A.2 cannot be asymptotically pivotal. To see this, consider the partially
identified model ΘI = {θ ∈Θ : {E(Y1) ≤ θ ∩ E(Y2) ≤ θ}}� where, in particular,
{Y1�i�Y2�i}ni=1 is i.i.d. with {Y1�Y2} ∼ N((0�0)�Σ(ρ))� Σ(ρ) = (1�ρ;ρ�1), and
ρ ∈ (−1�1)� Given that the diagonal elements of Σ(ρ) are equal to 1, the non-
Studentized and Studentized statistics coincide. Since GP satisfies the condi-
tions of Lemma A.2, we deduce

P
(
GP

([√
n(En(Y1)− E(Y1))

]
+�
[√
n(En(Y2)− E(Y2))

]
+
)≤ 0

)
= P(√n(En(Y1)− E(Y1))≤ 0 ∩ √

n(En(Y2)− E(Y2))≤ 0
)

=
∫ 0

−∞

∫ 0

−∞
φΣ(ρ)(x1�x2)dx1 dx2�

The last expression is a strictly decreasing function of |ρ|� which is an unknown
parameter. Thus, in general, it is not possible to define a valid criterion func-
tion that produces an asymptotically pivotal statistic of interest.

For the sake of exposition, the main text assumes that the criterion function
satisfies Assumption CF. Most of the results of the paper extend to a much
larger class of criterion functions, characterized by Assumption CF′.

1We omit these results for the sake of brevity. They are available from the author upon request.



BOOTSTRAP INFERENCE IN PARTIALLY IDENTIFIED MODELS 7

ASSUMPTION CF′: The population criterion function is given by Q(θ) =
G({[E(mj(Z�θ))]+}Jj=1)� where G : RJ+ → R is a nonnegative function that
does not depend on P, is strictly increasing in every coordinate, weakly convex,
continuous, homogeneous of degree β, and satisfies G(y) = 0 if and only if
y = 0�

Consistency of any of the proposed inferential schemes considered in this pa-
per (bootstrap, asymptotic approximation, and subsampling) only requires As-
sumption CF′. We introduce Assumption CF when we are interested in obtain-
ing rates of convergence of the error in the coverage probability. In particular,
Assumption CF is required to show that the error in the coverage probability of
our bootstrap procedure converges to zero at a rate of n−1/2� In this appendix,
we also show that under Assumption CF′, the error in the coverage probability
of our bootstrap procedure converges to zero at a rate of n−1/2 lnn1/2. Since the
criterion function is a choice of the econometrician and since Assumption CF
allows us to prove a better rate of convergence for our bootstrap approxima-
tion, we decided to restrict the discussion of the main text to this assumption.
Nevertheless, wherever reasonable, in this appendix we distinguish between
results obtained under these two assumptions.

A.2.4. On the Estimation of the Identified Set

PROOF OF LEMMA 2.1:
First part. The definition of ΘI implies the sequence of inequalities

sup
θ∈ΘI

max
j=1�����J

En(mj(Z�θ))

≤ sup
θ∈ΘI

max
j=1�����J

(
En(mj(Z�θ))− E(mj(Z�θ))

)+ sup
θ∈ΘI

max
j=1�����J

E(m(Z�θ))

≤ n−1/2 sup
θ∈Θ

max
j=1�����J

vn(mj�θ)�

Therefore, {supθ∈Θmaxj=1�����J vn(mj�θ)≤ τn} implies {ΘI ⊆ Θ̂I(τn)} and so

P
(
lim inf{ΘI ⊆ Θ̂I(τn)}

)
≥

J∑
j=1

P
(

lim inf
{

sup
θ∈Θ

|vn(mj�θ)| ≤ τn
})

− J + 1�

Under the separability assumption and the fact that
√

ln lnn/τn = o(1) a.s., the
LIL for empirical processes (see, for example, Kuelbs (1977)) implies that the
expression on the right-hand side is equal to 1.
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The definition of Θ̂I(τn) implies the sequence of inequalities

sup
θ∈Θ̂I (τn)

max
j=1�����J

E(mj(Z�θ))

≤ sup
θ∈Θ̂I (τn)

max
j=1�����J

(
E(mj(Z�θ))− En(mj(Z�θ))

)
+ sup
θ∈Θ̂I (τn)

max
j=1�����J

En(mj(Z�θ))

≤ n−1/2
(
τn − inf

θ∈Θ
min
j=1�����J

vn(mj�θ)
)
�

Therefore, {infθ∈Θminj=1�����J vn(mj�θ) ≥ −τn} and (τn/
√
n)/εn = o(1) implies

{Θ̂I(τn)⊆ΘI(εn)}, so

P
(
lim inf{Θ̂I(τn)⊆ΘI(εn)}

)
≥

J∑
j=1

P
(

lim inf
{

sup
θ∈Θ

|vn(mj�θ)| ≤ τn
})

− J + 1

and for the same reasons as before, the expression on the right-hand side is
equal to 1. Elementary properties of the lim inf operator complete the proof.

Second part. Since E(m(Z�θ)) :Θ→ RJ is lower semicontinuous and Θ is
compact, maxj=1�����J E(mj(Z�θ)) achieves a minimum onΘ� SinceΘI = ∅, such
minimum is a positive value, which we denote by�> 0� and so

inf
θ∈Θ

max
j=1�����J

En(mj(Z�θ))

≥ inf
θ∈Θ

min
j=1�����J

(
En(mj(Z�θ))− E(mj(Z�θ))

)
+ inf
θ∈Θ

max
j=1�����J

E(mj(Z�θ))

≥ n−1/2 inf
θ∈Θ

min
j=1�����J

vn(mj�θ)+��

Therefore, {infθ∈Θminj=1�����J vn(mj�θ)≥ −τn} implies {Θ̂I(τn)= ∅}; hence,

P
(
lim inf{Θ̂I(τn)= ∅})≥

J∑
j=1

P
(

lim inf
{

sup
θ∈Θ

|vn(mj�θ)| ≤ τn
})

− J + 1

and for the same reasons as before, the expression on the right-hand side is
equal to 1. Q.E.D.
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A.2.5. Differences With the Naive Bootstrap

The bootstrap procedure we propose to construct confidence sets differs
qualitatively from replacing the subsampling scheme in CHT with the tradi-
tional bootstrap.

To approximate the quantile of the distribution of interest, the subsampling
approximation proposed by CHT considers the statistic2

Γ SS�CHT
bn�n

=
⎧⎨
⎩

sup
θ∈Θ̂I (τn)

G
({[√

bnE
SS
bn�n
(mj(Z�θ))

]
+
}J
j=1

)
� if Θ̂I(τn) �= ∅,

0� if Θ̂I(τn)= ∅,

where {ZSS
i }bni=1 is a random sample of size bn extracted without replacement

from the data and, ∀j = 1�2� � � � � J� ESS
bn�n
(mj(Z�θ)) = b−1

n

∑bn
i=1mj(Z

SS
i � θ).

If we were to (naively) replace their subsampling scheme with a bootstrap
scheme, we would propose the statistic

Γ naive
n =

⎧⎨
⎩

sup
θ∈Θ̂I (τn)

G
({[√

nE∗
n(mj(Z�θ))

]
+
}J
j=1

)
� if Θ̂I(τn) �= ∅,

0� if Θ̂I(τn)= ∅,

where {Z∗
i }ni=1 is a random sample of size n extracted with replacement from

the data and, ∀j = 1�2� � � � � J� E∗
n(mj(Z�θ)) = n−1

∑n

i=1mj(Z
∗
i � θ)� Since the

statistic Γ naive
n is the consequence of naively replacing one resampling proce-

dure with another, we refer to the resulting bootstrap procedure as the naive
bootstrap. Even though the subsampling approximation proposed by CHT pro-
duces consistent inference in level, the naive bootstrap, in general, results in
inconsistent inference in level.

There are two reasons why the naive bootstrap is inconsistent in level. Recall
from Section 2.2.2 that we estimate the identified set by artificially expanding
the sample analogue estimator by a certain amount. The effect of this expan-
sion is asymptotically negligible for the subsampling procedure in CHT but
generates inconsistencies for the naive bootstrap. We refer to this problem as
the expansion problem. The second problem is directly related to the well known
inconsistency of the bootstrap on the boundary of the parameter space studied by
Andrews (2000).

To understand the nature of these problems, we provide two examples. In
each of these examples, we show three things: (i) that the naive bootstrap is
inconsistent in level; (ii) that the bootstrap procedure proposed in this paper
corrects these inconsistencies; (iii) that these inconsistencies are not present in
the subsampling scheme proposed by CHT.

2To be precise, the subsampling approximation proposed by CHT uses a different estimator
for the identified set. In any case, this difference is asymptotically negligible.
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PROBLEM 1—The Expansion Problem: The objective is to construct a con-
fidence set for the identified set

ΘI = {
θ ∈Θ : {E(Y1)≤ θ≤ E(Y2)}

}
�

where E(Y1) = E(Y2) = 0� Suppose that the sample {Y1�i�Y2�i}ni=1 is i.i.d. such
that, ∀i= 1�2� � � � � n� (Y1�i�Y2�i)∼N(0� I2). Notice that all assumptions of the
conditionally separable model are satisfied. The distribution of interest is given
by Γn =G([ζ1]+� [ζ2]+)� where ζ ∼N(0� I2)�

Now consider estimation of the identified set. The key feature of this setup is
that even though the identified set is nonempty (because E(Y1)≤ E(Y2)), the
analogy principle estimator of the identified set, given by

Θ̂AP
I = {θ ∈Θ : En(Y1)≤ θ≤ En(Y2)}�

is empty with positive probability (in this case, with probability 0�5). Hence,
using the estimator Θ̂AP

I as the domain of the maximization problem in Step 3
does not result in consistent inference in level. This illustrates why we need to
introduce the sequence {τn}+∞

n=1 to estimate the identified set. Our estimator for
the identified set is given by

Θ̂I(τn)=
{
θ ∈Θ : {En(Y1)− τn/

√
n≤ θ≤ En(Y2)+ τn/

√
n}}�

Consider performing inference with the naive bootstrap. In this setting, it
follows that

Γ naive
n = 1[Θ̂I(τn) �= ∅]max

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

G
([√

n(E∗
n(Y1)− En(Y1))+ τn

]
+�[√

n(En(Y1)− E∗
n(Y2))− τn

]
+

)
�

G
([√

n(E∗
n(Y1)− En(Y2))− τn

]
+�[√

n(En(Y2)− E∗
n(Y2))+ τn

]
+

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
�

For any ε > 0� consider the events

A= {{√
n(E∗

n(Y1)− En(Y1)�E
∗
n(Y2)− En(Y2))|Xn

} d→N(0� I2)
}
�

B= lim inf
{{
Θ̂I(τn)= ∅}∩ {∣∣√n(En(Y1)− En(Y2))

∣∣≤ τn/2}}�
Let ω ∈ {A∩B}� Since ω ∈ B� ∃N ∈ N such ∀n≥N ,

Γ naive
n ≥ max

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

G
([√

n(E∗
n(Y1)− En(Y1))+ τn

]
+�[√

n(En(Y2)− E∗
n(Y2))− 1�5τn

]
+

)
�

G
([√

n(E∗
n(Y1)− En(Y1))− 1�5τn

]
+�[√

n(En(Y2)− E∗
n(Y2))+ τn

]
+

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
�
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Since ω ∈ A, the conditional distribution of the right-hand side diverges to
infinity a.s. By the LIL and the requirements on {τn}+∞

n=1, P(A) = 1. By Theo-
rem 2.1 in Bickel and Freedman (1981), P(B)= 1� Hence, the naive bootstrap
produces inference that is not consistent in level.

The intuition for this result is as follows. The estimation of the identified set
requires the introduction of the sequence {τn}+∞

n=1� which enters directly into the
[·]+ term of the criterion function of the naive bootstrap. Since this sequence
diverges to infinity, the distribution of the naive bootstrap approximation also
diverges to infinity. As we show next, our bootstrap procedure corrects this
problem by removing the sequence from the [·]+ term.

If we choose to perform inference with our proposed bootstrap method, we
have the statistic

Γ ∗
n = 1[Θ̂I(τn) �= ∅] max

θ∈Θ̂I (τn)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
G

⎛
⎜⎜⎜⎜⎝

[√
n(E∗

n(Y1)− En(Y1))
]
+

× 1
[|En(Y1)− θ| ≤ τn/√n

]
�[√

n(En(Y2)− E∗
n(Y2))

]
+

× 1
[|θ− En(Y2)| ≤ τn/√n

]

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
�

Consider ω ∈ {A∩B′}, where B′ is defined by

B′ = lim inf
{{{0} ∈ Θ̂I(τn)}

∩ {|√nEn(Y1)| ≤ τn
}∩ {|√nEn(Y2)| ≤ τn

}}
�

Since ω ∈ B′� then ∃N ∈ N such that ∀n≥N�
Γ ∗
n =G([√n(E∗

n(Y1)− En(Y1))
]
+�
[√
n(En(Y2)− E∗

n(Y2))
]
+
)
�

Since ω ∈ A� the conditional distribution of the right-hand side converges
weakly to G([ζ1]+� [ζ2]+)� where ζ ∼ N(0� I2) a.s. By the same arguments as
before, P(A′ ∩ B) = 1 and, thus, our bootstrap procedure leads to consistent
inference in level.

It is important to understand that the inconsistency problem of the naive
bootstrap is not present in the subsampling procedure proposed by CHT. In
this case,

Γ SS�CHT
bn�n

= 1[Θ̂I(τn) �= ∅]

× max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

G

([√
bn
(
ESS
bn�n
(Y1)− En(Y1)

)+ τn
√
bn/n

]
+�[√

bn
(
En(Y1)− ESS

bn�n
(Y2)

)− τn
√
bn/n

]
+

)

G

([√
bn
(
ESS
bn�n
(Y1)− En(Y2)

)− τn
√
bn/n

]
+�[√

bn
(
En(Y2)− ESS

bn�n
(Y2)

)+ τn
√
bn/n

]
+

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
�
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For any ε > 0� let B′′ be defined as

B′′ = lim inf
{{{0} ∈ Θ̂I(τn)}

∩ {∣∣√bn(En(Y1)− En(Y2))
∣∣≤ (1 + ε)2√(bn ln lnn)/n

}}
�

Consider ω ∈ {A∩B′′}� If the sequence {τn}+∞
n=1 is chosen such that τn

√
bn/n=

o(1) a.s., then, conditionally on the sample, Γ SS�CHT
bn�n

converges weakly to
G([ζ1]+� [ζ2]+)� where ζ ∼ N(0� I2)� By previous arguments, P(A′′ ∩ B) = 1�
Hence, the subsampling scheme proposed by CHT results in consistent infer-
ence in level. Just like with the naive bootstrap, the estimation of the identified
set introduces a sequence into the [·]+ term of the statistic. The key difference
with the naive bootstrap is that this sequence converges to zero (instead of
diverging to infinity), so it does not affect the asymptotic distribution.

PROBLEM 2—Boundary Problem: To isolate this problem from the previous
one, we consider an example of an identified set that can be estimated without
the need to introduce any expansion. The identified set is given by

ΘI = {
θ ∈Θ : {E(Y1)≤ θ} ∩ {E(Y2)≤ θ}

}
�

where E(Y1) = E(Y2) = 0� Suppose that the sample {Y1�i�Y2�i}ni=1 is i.i.d. such
that, ∀i= 1�2� � � � � n� (Y1�i�Y2�i)∼N(0� I2)� Notice that all assumptions of the
conditionally separable model are satisfied. The distribution of interest is given
by Γn =G([ζ1]+� [ζ2]+)� where ζ ∼N(0� I2)�

As opposed to the previous example, the identified set has nonempty interior
and the analogy principle estimate will always be nonempty. Hence, we can
estimate the identified set with the analogy principle estimate given by

Θ̂AP
I = Θ̂I(0)=

{
θ ∈Θ : {En(Y1)≤ θ} ∩ {En(Y2)≤ θ}

}
�

Now consider performing inference with the naive bootstrap. For any con-
stant c > 0� consider the events

A= {{√
n(E∗

n(Y1)− En(Y1)�E
∗
n(Y2)− En(Y2))|Xn

} d→N(0� I2)
}
�

B= lim sup
{{Θ̂I(0) �= ∅} ∩ {√

n(En(Y1)− En(Y2)) <−c}}�
Suppose that ω ∈ {A ∩ B}� Since ω ∈ B, there exists a subsequence {nk}+∞

k=1

such that, along this subsequence, Θ̂I(0) is nonempty and {√nk(Enk(Y1) −
Enk(Y2)) <−c}� Along this subsequence,

Γ naive
nk

≤G
([√

n
(
E∗
nk
(Y1)− Enk(Y1)

)− c]+�[√
n
(
E∗
nk
(Y2)− Enk(Y2)

)]
+

)
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and since ω ∈ A� then the right-hand side converges weakly to G([ζ1 −
c]+� [ζ2]+)� where ζ ∼ N(0� I2). By using previous arguments, P(A ∩ B) = 1�
This implies that the naive bootstrap produces inference that is not consistent
in level.

One may relate this result to the inconsistency of the bootstrap on the
boundary of the parameter space. The boundary of the unknown identified set
is determined by the parameters E(Y1) and E(Y2)� which happen to coincide.
The boundary of the sample identified set is determined by En(Y1) and En(Y2)�
which do not coincide a.s. As a consequence, the structure of the boundaries
of the identified set and the estimator of the identified set do not coincide a.s.,
producing inconsistency of the resulting inference.

Now consider doing inference with our proposed bootstrap procedure. As-
sume that ω ∈ {A∩B′}, where B′ is the event

B′ = lim inf
{{0 ∈ Θ̂I(0)}

∩ {|√nEn(Y1)| ≤ τn
}∩ {|√nEn(Y2)| ≤ τn

}}
�

Since ω ∈ B′� ∃N ∈ N such that, ∀n ≥ N� 0 ∈ Θ̂I(0)� |√nEn(Y1)| ≤ τn, and
|√nEn(Y2)| ≤ τn� Thus, ∀n≥N�

Γ ∗
n =G([√n(E∗

n(Y1)− En(Y1))
]
+�
[√
n(E∗

n(Y2)− En(Y2))
]
+
)
�

Since ω ∈ A� the conditional distribution of the right-hand side converges
weakly to G([ζ1]+� [ζ2]+)� where ζ ∼ N(0� I2)� By using previous arguments
P(A∩B′)= 1 and so our bootstrap procedure is consistent in level.

Now consider using the subsampling scheme proposed by CHT. In this case,

Γ SS�CHT
bn�n

= 1[Θ̂I(0) �= ∅]

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G

([√
bn
(
ESS
bn�n
(Y1)− En(Y1)

)]
+�[√

bn
(
ESS
bn�n
(Y2)− En(Y1)

)]
+

)

× 1[En(Y1)≥ En(Y2)]

+G
([√

bn
(
ESS
bn�n
(Y1)− En(Y2)

)]
+�[√

bn
(
ESS
bn�n
(Y2)− En(Y2)

)]
+

)

× 1[En(Y1) < En(Y2)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
�

Let ω ∈ {A∩B′′}� where B′′ is given by

B′′ = lim inf
{{0 ∈ Θ̂I(0)}

∩ {∣∣√bn(En(Y1)− En(Y2))
∣∣≤ (1 + ε)2√(bn ln lnn)/n

}}
�
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If (bn ln lnn)/n = o(1) and using previous arguments, Γ SS�CHT
n�bn

converges
weakly to G([ζ1]+� [ζ2]+)� where ζ ∼N(0� I2)� Since P(A ∩ B′′)= 1� the sub-
sampling procedure proposed by CHT is consistent in level.

A.3. Representation Results

A.3.1. Representation Result for the Population Test Statistic

The following theorem provides an alternative asymptotic representation for
the statistic of interest.

THEOREM A.1: (i) Assume Assumptions A1–A4 and CF′, and ΘI �= ∅. Then
Γn =H(vn(mθ))+ δn� where the following conditions hold:

(a) For any ε > 0� limn→+∞ P∗(|δn|> ε)= 0�
(b) vn(mθ) :Ωn → l∞J (Θ) is an empirical process that converges weakly to a

tight zero-mean Gaussian process, denoted ζ� whose variance–covariance func-
tion is denoted by Σ� For every θ1� θ2 ∈Θ� Σ(θ1� θ2) is given by

Σ(θ1� θ2)= E
[(
m(Z�θ1)− E(m(Z�θ1))

)
× (
m(Z�θ2)− E(m(Z�θ2))

)′]
�

(c) H : l∞J (Θ)→ R is continuous, nonnegative, weakly convex, homogeneous
of degree β ≥ 1, and H(y) = 0 implies that ∃(θ0� j) ∈ Θ × {1� � � � � J} such that
yj(θ0)≤ 0.

(ii) Let ρ denote the rank of the variance–covariance matrix of the vector
{{1[X = xk]Yj}Jj=1}Kk=1� If we assume Assumptions B1–B4 and CF, and ΘI �= ∅,
then Γn = H̃(√n(En(Z)− E(Z)))+ δ̃n� where the following conditions hold:

(a) For any εn =O(n−1/2)� P(|δ̃n|> εn)= o(n−1/2)�
(b) {En(Z)− E(Z)} :Ωn → Rρ is a zero-mean sample average of n i.i.d. ob-

servations from a distribution with variance–covariance matrix Iρ� Moreover, this
distribution has finite third absolute moments.

(c) H̃ : Rρ → R is continuous, nonnegative, weakly convex, and homogeneous
of degree 1. For all μ > 0, any |h| ≥ μ > 0 and any positive sequence {εn}+∞

n=1

such that εn = o(1)� H̃−1((h− εn�h+ εn])⊆ {H̃−1({h})}ηn , where ηn = O(εn).
Finally, H̃(y)= 0 implies that for some nonzero vector b ∈ Rρ, b′y ≤ 0.

(iii) Assume Assumptions A1–A4 and CF′, and ΘI = ∅. Then Γn = 0.

PROOF: (i) Let δn be defined as

δn = sup
θ∈ΘI
G
({[√

nEn(mj(Z�θ))
]
+
}J
j=1

)
− sup
θ∈ΘI
G
({[vn(mj�θ)]+1

[
E(mj(Z�θ))= 0

]}J
j=1

)
and set H(y)= supθ∈ΘI G({[yj]+1[E(mj(Z�θ))= 0]}Jj=1)�
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(a) Restrict attention to θ ∈ ΘI and fix ε > 0 arbitrarily. By definition,
δn ≥ 0 and so it suffices to show that P∗(δn > ε) = o(1). For any positive se-
quence {εn}+∞

n=1 such that
√

ln lnn/εn = o(1) and εn/
√
n = o(1)� denote An =

{supθ∈ΘI ‖vn(mθ)‖ ≤ εn}� By the LIL for empirical processes, P({An}c)= o(1)
and so it suffices to show that P∗(δn > ε∩An)= o(1).

Denote Gn�1(θ) = G({[√nEn(mj(Z�θ))]+}Jj=1), Gn�2(θ) = G({[vn(mj�θ)]+ ×
1[E(mj(Z�θ))= 0]}Jj=1), Ḡn�1 = supθ∈ΘI Gn�1(θ), and Ḡn�2 = supθ∈ΘI Gn�2(θ)�

By definition of supremum, ∀ε > 0� ∃θ ∈ΘI so thatGn�1(θ)+ε/2 ≥ Ḡn�1 and
so the event {δn > ε∩An} is equivalent to{{δn > ε} ∩ {∃θ ∈ΘI : {Gn�1(θ)+ ε/2 ≥ Ḡn�1}

∩ {Gn�1(θ)−Gn�2(θ)≥ ε/2}}∩An
}
�

For any S ∈ {P {1�2�����J}/∅}� consider the set Dn(S) given by

Dn(S)=
{
ΘI ∩

{⋂
j∈S

{
En(mj(Z�θ))≥ 0

}}

∩
{ ⋂
j∈{{1�2�����J}/S}

{
En(mj(Z�θ)) < 0

}}}
�

The event {∃θ ∈ ΘI : {Gn�1(θ)−Gn�2(θ) ≥ ε/2}} implies that ∃j ∈ {1�2� � � � � J}
such that En(mj(Z�θ)) ≥ 0 and E(mj(Z�θ)) < 0, which, in turn, implies the
event

⋃
S∈{P {1�2�����J}/∅}{∃θ ∈Dn(S)}.

For any S ∈ {P {1�2�����J}/∅}� define the two sets

D̃n(S)=
{
ΘI ∩

{⋂
j∈S

{
E(mj(Z�θ)) ∈ [−εn/

√
n�0]}}}�

D(S)=
{
ΘI ∩

{⋂
j∈S

{
E(mj(Z�θ))= 0

}}}
�

For any S ∈ {P {1�2�����J}/∅}� {{∃θ ∈ Dn(S)} ∩ An} implies {{∃θ ∈ D̃n(S)} ∩ An}�
Also, ∀S ∈ {P {1�2�����J}/∅}, limn→+∞ D̃n(S) = D(S)� which implies that, ∀η > 0�
∃N ∈ N such that, ∀n ≥ N� {∃θ ∈ D̃n(S)} implies {∃θ′ ∈ D(S) :‖θ − θ′‖ < η}�
Then ∀η > 0, ∃N ∈ N such that, ∀n ≥ N� {δn > ε ∩An} is equivalent to the
event ⋃

S∈{P {1�2�����J}/∅}

{
{δn > ε∩An}

∩
{ ∃(θ�θ′) ∈ {Dn(S)×D(S)} :

‖θ− θ′‖ ≤ η∩ {Gn�1(θ)+ ε/2 ≥ Ḡn�1}
}}
�
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Now ∀η> 0 and ∀S ∈ {P {1�2�����J}/∅}, the event{{δn > ε} ∩ {∃(θ�θ′) ∈ {Dn(S)×D(S)} :‖θ− θ′‖ ≤ η
∩{Gn�1(θ)+ ε/2 ≥ Ḡn�1}

}}
leads to the derivation

G
([vn(mj�θ)]+1[j ∈ S])+ ε

2
(1)≥G([√nEn(mj(Z�θ))]+1[j ∈ S])+ ε

2
(2)≥G([√nEn(mj(Z�θ))]+

)+ ε
2

(3)≥ sup
θ̃∈ΘI
G
({[√

nEn(mj(Z� θ̃))
]
+
}J
j=1

)
(4)≥ sup
θ̃∈ΘI
G
({[vn(mj�θ̃)]+1

[
E(mj(Z� θ̃))= 0

]}J
j=1

)+ ε

(5)≥G([vn(mj�θ′)]+1[j ∈ S])+ ε�

where
(1)≥ holds because θ ∈ Dn(S) ⊆ ΘI�

(2)≥ holds because θ ∈ Dn(S) and

so 1[j ∈ S] = 1[En(mj(Z�θ)) ≥ 0]� (3)≥ holds because {Gn�1(θ) + ε/2 ≥ Ḡn�1}�
(4)≥ holds because δn > ε, and

(5)≥ holds because θ′ ∈ D(S) ⊆ ΘI and so
1[E(mj(Z�θ′))= 0] ≥ 1[j ∈ S]� As a consequence,{

sup
θ∈Θ

sup
{θ′∈Θ:‖θ′−θ‖≤η}

∣∣G([vn(mj�θ)]+1[j ∈ S])−G([vn(mj�θ′)]+1[j ∈ S])∣∣}

>
ε

2
�

By a continuity argument, ∀η > 0, ∃γ > 0 and ∃N ∈ N such that, ∀n ≥ N ,
{δn > ε ∩An} implies that {supθ∈ΘI sup‖θ′−θ‖≤η ‖vn(mθ) − vn(mθ′)‖ > γ}� As a
consequence,

lim sup
n→+∞

P∗(δn > ε∩An)

≤ lim sup
n→+∞

P∗
(

sup
θ∈Θ

sup
{θ′∈Θ:‖θ′−θ‖≤η}

‖vn(mθ)− vn(mθ′)‖> γ
)
�

Taking η ↓ 0 and by stochastic equicontinuity, this part is completed.
(b) By assumption, the class of functions {m(z�θ) :SZ → RJ} indexed by

θ ∈Θ is stochastically equicontinuous for P and the pseudometric τ(mθ�mθ′)=



BOOTSTRAP INFERENCE IN PARTIALLY IDENTIFIED MODELS 17

‖θ−θ′‖� SinceΘ is assumed to be closed and bounded,Θ is totally bounded for
this pseudometric. By Theorem 3.7.2 in Dudley (1999), this class of functions is
P-Donsker and so vn(mθ) :Ωn → l∞J (Θ) converges to a tight Borel measurable
element in l∞J (Θ). The nature of the limiting process follows from considera-
tion of its marginals. By the CLT, for every finite collection of elements of Θ�
denoted by {θl}Ll=1� the stochastic process {vn(mθl)}Ll=1 converges to a zero-mean
Gaussian random vector with a variance–covariance matrix whose (l1� l2) ele-
ment is given by Σ(θl1� θl2). This completes the proof.

(c) The function H(y) = supθ∈ΘI G({[yj(θ)]+1[E(mj(Z�θ)) = 0]}Jj=1) is triv-
ially continuous and nonnegative. Weak convexity can be verified by definition.
Homogeneity of degree β can also be verified by definition and it only remains
to be shown that β ≥ 1� By weak convexity, for α ∈ (0�1) and ∀y� y ′ ∈ l∞J (Θ)�
H(αy + (1 − α)y ′)≤ αH(y)+ (1 − α)H(y ′) and if the function y ′ is chosen so
that, ∀θ ∈Θ� y ′(θ)= 0� then, this implies thatH(αy)≤ αH(y)� By homogene-
ity of degree β� H(αy)= αβH(y)� Now choose y ∈ l∞J (Θ) such that H(y) > 0
to deduce that β≥ 1�

Finally, we show that ∃(θ0� j) ∈ΘI×{1�2� � � � � J} such that E(mj(Z�θ0))= 0�
Since the function E(m(Z�θ)) :Θ→ RJ is lower semicontinuous, ΘI is closed
or, equivalently,Θ∩{ΘI}c is open. Now proceed by contradiction. That is, sup-
pose that ∀θ ∈ΘI , maxj=1�����J E(mj(Z�θ)) < 0� which implies that ΘI is open.
Since ΘI is a proper subset of Θ, ∃θ′ ∈Θ∩ {ΘI}c . By the case under considera-
tion,ΘI �= ∅, and so ∃θ′′ ∈ΘI�Consider the set S = {θ ∈Θ :θ′′π+θ′(1−π)�π ∈
[0�1]}. It then follows that S is a convex set (hence, connected) and it can
be expressed as the union of two nonempty open sets (by intersecting it with
ΘI and {ΘI}c), which is a contradiction. As a corollary, H(y)= 0 implies that
yj(θ0)≤ 0�

(ii) Let δ̃n be defined as

δ̃n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
θ∈ΘI
G
({{[√

np̂k(En(Yj|xk)− E(Yj|xk))

+ √
np̂k(E(Yj|xk)−Mj�k(θ))

]
+
}J
j=1

}K
k=1

)
− sup
θ∈ΘI
G
({{[√

np̂k(En(Yj|xk)− E(Yj|xk))
]
+

× 1
[
pk(Mj�k(θ)− E(Yj|xk))= 0

]}J
j=1

}K
k=1

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
�

where, ∀(k� j) ∈ {1� � � � �K} × {1� � � � � J}� pk = P(X = xk), p̂k = n−1 ×∑n

i=1 1[Xi = xk], and En(Yj|xk)= (p̂kn)−1
∑n

i=1Yj1[Xi = xk]�
(a) Define yn = {{√np̂k(En(Yj|xk)− E(Yj|xk))}Jj=1}Kk=1, p̂= {p̂k}Kk=1 and the

functions Rn : RK × RJK ×ΘI → R and R : RJK ×ΘI → R as

Rn(π� y�θ)=G
({{[

yj�k + √
nπk(E(Yj|xk)−Mj�k(θ))

]
+
}J
j=1

}K
k=1

)
�

R(y�θ)=G
({{[yj�k]+1

[
pk(Mj�k(θ)− E(Yj|xk))= 0

]}J
j=1

}K
k=1

)
�
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Then δ̃n = supθ∈ΘI Rn(p̂� yn� θ)− supθ∈ΘI R(yn�θ)�
Denote pL = min{pk}Kk=1 and define Δ= {π :

∑K

k=1πk = 1� πk ≥ pL/2}� For
any positive sequence {εn}+∞

n=1 with εn = o(1), consider the derivation

√
nP(|δ̃n|> εn)

= √
n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(∣∣∣ sup
θ∈ΘI
Rn(p̂� yn� θ)− sup

θ∈ΘI
R(yn�θ)

∣∣∣> εn
∩ {
p̂ ∈ Δ∩ ‖yn‖ ≤ n1/8

})
+ P

(∣∣∣ sup
θ∈ΘI
Rn(p̂� yn� θ)− sup

θ∈ΘI
R(yn�θ)

∣∣∣> εn
∩ {
p̂ /∈ Δ∪ ‖yn‖> n1/8

})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
n1
[
sup
π∈Δ

sup
‖y‖≤n1/8

∣∣∣ sup
θ∈ΘI
Rn(π� y�θ)− sup

θ∈ΘI
R(y�θ)

∣∣∣> εn]

+ √
nP

(‖yn‖> n1/8
)+

K∑
k=1

√
nP(p̂k ≤ pL/2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
�

The right-hand side is a sum of three terms. We now show that each term
is o(1)� By Chebyshev’s inequality,

√
nP(‖yn‖ > n1/8) = o(1) and ∀k =

1�2� � � � �K�
√
nP(p̂k ≤ pL/2)= o(1)�

To conclude this point, we show that ∃N ∈ N such that, ∀n ≥ N and
∀(y�π) ∈ {‖y‖ ≤ n1/8}×Δ� supθ∈ΘI Rn(π� y�θ)= supθ∈ΘI R(y�θ)� By definition,
∀(π� y�θ) ∈ RK ×RJK ×ΘI� Rn(π� y�θ) ≥ R(y�θ) and so supθ∈ΘI Rn(π� y�θ)≥
supθ∈ΘI R(y�θ)�

For any S ∈ {P {1�����J}×{1�����K}/∅}, consider the two sets

Dn(S)=
{
θ ∈ΘI :

{∃(y�π) ∈ {‖y‖ ≤ n1/8
}×Δ :{

yj�k + √
nπk(E(Yj|xk)−Mj�k(θ)) > 0

}
(j�k)∈S

}}
�

D(S)= {
θ ∈ΘI : {E(Yj|xk)−Mj�k(θ)= 0}(j�k)∈S

}
�

Fix (y�π) ∈ {‖y‖ ≤ n1/8} × Δ and suppose that supθ∈ΘI Rn(π� y�θ) >
supθ∈ΘI R(y�θ)� We now show that this implies that ∃S̄ ∈ {P {1�����J}×{1�����K}/∅}
such that D(S̄) = ∅ and Dn(S̄) �= ∅� Since ΘI is nonempty and compact,
and Rn(π� y�θ) :Θ→ R+ is upper semicontinuous, then ∃θ0 ∈ ΘI such that
Rn(π� y�θ0)= supθ∈ΘI Rn(π� y�θ)� By definition,Rn(π� y�θ0) > supθ∈ΘI R(y�θ)
implies that ∃(j�k) ∈ {1� � � � � J}×{1� � � � �K} such that {yj�k+√

nπk(E(Yj|xk)−
Mj�k(θ0)) > 0}� Let S̄ ∈ {P {1�����J}×{1�����K}/∅} be defined so that, ∀(j�k) ∈ S̄� {yj�k+√
nπk(E(Yj|xk) − Mj�k(θ0)) > 0} and ∀(j�k) ∈ {{1� � � � � J} × {1� � � � �K}} \ S̄,

{yj�k + √
nπk(E(Yj|xk) − Mj�k(θ0)) ≤ 0}. According to this definition, θ0 ∈
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Dn(S̄). Furthermore, if D(S̄) �= ∅� then ∃θ1 ∈ ΘI such that R(y�θ1) ≥
Rn(π� y�θ0)� which would be a contradiction.

To conclude, it suffices to show that ∃N ∈ N� such that, ∀n ≥ N and
∀S ∈ {P {1�����J}×{1�����K}/∅}� D(S)= ∅ impliesDn(S)= ∅� Fix S ∈ {P {1�����J}×{1�����K}/∅}
arbitrarily and consider the following argument. The event D(S) = ∅ im-
plies that {min(j�k)∈S maxθ∈ΘI (E(Yj|xk) − Mj�k(θ)) < 0}� which, by continu-
ity of Mj�k� implies that ∃δ > 0 such that {min(j�k)∈S maxθ∈ΘI (E(Yj|xk) −
Mj�k(θ)) <−δ}� If so, ∃(j�k) ∈ S such that, ∀(y�π�θ) ∈ {‖y‖ ≤ n1/8} ×Δ×ΘI�
{yj�k + √

nπk(E(Yj|xk) −Mj�k(θ)) ≤ n1/8 − √
npL/2δ} and thus, ∃N ∈ N such

that, ∀n≥N , Dn(S)= ∅�
(b) and (c). We now show that {{p̂k(En(Yj|xk) − E(Yj|xk))}Jj=1}Kk=1 =

B(En(Z) − E(Z)), where {En(Z) − E(Z)} is an average of i.i.d. vectors de-
noted by {Zi}+∞

i=1 , such that E(Zi)= 0ρ×1, V (Zi)= Iρ, and E(|Zi|3) <+∞�
The random vector {{p̂k(En(Yj|xk) − E(Yj|xk))}Jj=1}Kk=1 is the sample aver-

age of an i.i.d. sample of {{1[X = xk](Yj − E(Yj|xk))}Jj=1}Kk=1� Denote by Ψ
the variance–covariance matrix of {{1[X = xk]Yj}Jj=1}Kk=1� which is also the
variance–covariance matrix of {{1[X = xk](Yj − E(Yj|xk))}Jj=1}Kk=1� Notice that
Ψ is a block diagonal matrix with K diagonal blocks, whose kth block is
given by pkVk, where pk = P(Y |X = xk) and Vk = V (Y |X = xk). For every
k = 1�2� � � � �K� let ρk be the rank of Vk, let Bk be defined as the J × ρk di-
mensional matrix such that BkB′

k = pkVk, and let B be defined as the JK × ρ
dimensional block diagonal matrix that results from using the matrices {Bk}Kk=1

as the diagonal blocks. For example, for K = 3� B is given by

B=
⎡
⎣ B1 0J×ρ2 0J×ρ3

0J×ρ1 B2 0J×ρ3

0J×ρ1 0J×ρ2 B3

⎤
⎦ �

By construction, B ∈ RJK×ρ� has rank ρ and BB′ =Ψ�
For every (i�k) ∈ {1�2� � � � � n} × {1�2� � � � �K}� repeat the following argu-

ment. If Xi = xk� define Wk�i ∈ Rρk such that {Yj�i − E(Yj|xk)}Jj=1 = BkWk�i�
and if Xi �= xk� define Wk�i = 0ρk×1. Then define Wi = [W1�i� � � � �WK�i] ∈ Rρ� By
construction, notice that, ∀i= 1�2� � � � � n� E(Wi)= 0ρ×1�

Finally, ∀i = 1�2� � � � � n� we define Zi = Wi and so E(Z) = 0ρ×1� By con-
struction, ∀i = 1� � � � � n� {1[Xi = xk](Yi − E(Y |xk))}Kk=1 = B(Zi − E(Z)) and
E(Zi − E(Z)) = 0ρ×1� Since the variance of BZi equals BB′ and B has
rank ρ� then V (Zi − E(Z)) = Iρ� Finally, if {Yi|Xi = xk}Kk=1 is assumed
to have finite third absolute moments, then (Zi − E(Z)) will also have fi-
nite third absolute moments. Averaging these observations, we deduce that
{{p̂k(En(Yj|xk) − E(Yj|xk))}Jj=1}Kk=1 = B(En(Z) − E(Z)). By slightly abusing
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the notation, ∀(j�k) ∈ {1�2� � � � � J} × {1�2� � � � �K}� let Bj�k ∈ R1×ρ denote the
((K − 1)j + k)th row of B� The function H̃(y) : Rρ → R is defined as

H̃(y)= sup
θ∈ΘI

{
G
({{[Bj�ky]+1

[
pk(Mj�k(θ)− E(Yj|xk))= 0

]}J
j=1

}K
k=1

)}
�

We show that this function has all the desired properties. This function is con-
tinuous, nonnegative, and weakly convex by the arguments used in the previous
part. Homogeneity of degree 1 can be verified by definition. Since the matrix B
has rank ρ, ∀(j�k) ∈ {1� � � � � J} × {1� � � � �K}� Bj�k �= 0ρ×1� By the arguments in
part (i), ∃(θ0� j�k) ∈ΘI ×{1� � � � � J}×{1� � � � �K} such that E(Yj|xk)=Mj�k(θ0)

and so, if we define b′ = Bj�k, H̃(y)= 0 implies that for b �= 0ρ×1, b′y ≤ 0�
Finally, consider yA ∈ H̃−1((hB−εn�hB+εn])� By definition, this means that

∃hA such that ‖hA−hB‖< εn and H̃(yA)= hA� To conclude the proof, we need
to show that ∃yB ∈ Rρ such that ‖yA − yB‖ ≤O(εn) and H̃(yB)= hB�

We consider first the case when G(x) = ∑JK

s=1wsxs for positive weights
{ws}JKs=1� For any z ∈ Rρ� let g(z�θ)=G({{[Bj�kz]+1[pk(Mj�k(θ)− E(Yj|xk))=
0]}Jj=1}Kk=1)� Since g(z�θ) depends on θ through indicator functions, then we
partition ΘI into finitely many subsets, according to whether each of the JK
indicator functions is turned on or off. From each subset, we can extract
one representative. Let {θ1� θ2� � � � � θπ} denote the set of such representa-
tives. By construction, ∀z ∈ Rρ�maxθ∈ΘI g(z�θ)= maxθ∈{θ1�����θπ } g(z�θ). For any
(z�θ) ∈ {Rρ�ΘI}� let Λ+(z�θ) denote the subset of {1� � � � � J}×{1� � � � �K} such
that Mj�k(θ) = E(Yj|xk) and Bj�kz > 0, and let Λ0(z�θ) denote the subset of
{1� � � � � J} × {1� � � � �K} such thatMj�k(θ)= E(Yj|xk) and Bj�kz = 0�

Let {θ1� � � � � θm} denote the subset of the representatives that maximize
g(yA�θ)� Consider any arbitrary θ′ ∈ {θ1� � � � � θm}� By definition, yA ∈ Rρ sat-
isfies the following equations: ∀(j�k) ∈ Λ0(yA�θ

′), Bj�kz = 0 and ∀(j�k) ∈
Λ+(yA�θ′), Bj�kz = hA�(j�k) > 0� By summing the equations for (j�k) ∈
Λ+(yA�θ′)� we get

∑
(j�k)∈Λ+(yA�θ′) hA�(j�k) = hA� Thus, yA ∈ Rρ satisfies the sys-

tem of equations⎡
⎣

∑
(j�k)∈Λ+(yA�θ′)

B(j�k)

[
B(j�k)

]
(j�k)∈Λ0(yA�θ

′)

⎤
⎦z =

[
hA

[0](j�k)∈Λ0(yA�θ
′)

]
�

We can repeat this process for the rest of the maximizers, that is, ∀θ′′ ∈
{θ2� � � � � θm} \ θ′. Instead of expressing the information contained in Λ0(yA�θ

′′)
as

∑
(j�k)∈Λ+(yA�θ′′) Bj�k = hA, we reexpress it as

∑
(j�k)∈Λ+(yA�θ′′) Bj�k −∑

(j�k)∈Λ+(yA�θ′) Bj�k = 0� which gives the new set of equations

⎡
⎣

∑
(j�k)∈Λ+(yA�θ′′)

Bj�k −
∑

(j�k)∈Λ+(yA�θ′)
Bj�k

[
B(j�k)

]
(j�k)∈Λ0(yA�θ

′′)

⎤
⎦z =

[
0

[0](j�k)∈Λ0(yA�θ
′′)

]
�
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If we put together all the equations from θ ∈ {θ1� θ2� � � � � θm} in this fashion,
we will produce a system of linear equations of the form [C1�C2]′z = [hA� �0]′
where the matrix [C1�C2]′ does not depend on hA� Consider the homogeneous
system C2z = �0� The matrix C2 may or may not have full rank, but can always
be reduced to a system C3z = �0, where C3 has full rank. Since hA > 0� [C1�C3]′
has full rank. If this rank is ρ� then yA = [[C1�C3]′]−1[hA� �0]′� If the rank is less
than ρ� pick C4 so that [C1�C3�C4] has rank ρ, set c such that C4yA = c, and
add the additional (equality) restrictions satisfied by yA� which are of the form
C4z = c� Then yA = [[C1�C3�C4]′]−1[hA� �0� c]′�

Consider yB = [[C1�C3�C4]′]−1[hB� �0� c]′� By construction, ‖yA − yB‖ =
O(εn)� By construction and a continuity argument, ∀θ ∈ {θ1� � � � � θm}� Λ+(yA�
θ)=Λ+(yB�θ) and if

∑
(j�k)∈Λ+(yA�θ) Bj�kyA = hA� then

∑
(j�k)∈Λ+(yB�θ) Bj�kyB = hB�

Also by construction, ∀θ ∈ {θ1� � � � � θm}� then Λ0(yA�θ) = Λ0(yB�θ)� By con-
tinuity, ∀(j�k) ∈ {1�2� � � � � J} × {1�2� � � � �K} such that Mj�k(θ) = E(Yj|xk)
and Bj�kyA < 0� then Bj�kyB < 0� As a consequence, ∀θ ∈ {θ1� � � � � θm}� g(yB�
θ) = hB� By continuity, ∀θ ∈ {θ1� � � � � θπ} \ {θ1� � � � � θm}� g(yB�θ) < hB� Thus,
by construction, H̃(yB)= hB.

The arguments for G(x)= maxi=1�����JK{wixi} for positive weights {wi}JKi=1 are
similar and, therefore, omitted.

(iii) If ΘI = ∅� then, by definition, Γn = 0� Q.E.D.

In part (ii) of Theorem A.1, Assumption CF was used to provide certain
properties to the function H̃. The following theorem shows how this result
changes when Assumption CF is replaced by Assumption CF′.

THEOREM A.2: Let ρ denote the rank of the variance–covariance matrix of the
vector {{1[X = xk]Yj}Jj=1}Kk=1� If we assume Assumptions B1–B4 and CF′, and
ΘI �= ∅, then, Γn = H̃(√n(En(Z)− E(Z)))+ δ̃n� where the following conditions
hold.

(a) For any εn =O(n−1/2)� P(|δ̃n|> εn)= o(n−1/2)�
(b) {En(Z)− E(Z)} :Ωn → Rρ is a zero-mean sample average of n i.i.d. ob-

servations from a distribution with variance–covariance matrix Iρ� Moreover, this
distribution has finite third absolute moments,

(c) H̃ : Rρ → R is continuous, nonnegative, weakly convex, and homogeneous
of degree β ≥ 1. For any μ > 0, any h such that |h| ≥ μ > 0, and any pos-
itive sequence {εn}+∞

n=1 such that εn = o(1)� {H̃−1({h}εn) ∩ ‖y‖ ≤ O(√gn)} ⊆
{H̃−1({h})}δn� where δn = O(εn√gn). Finally, H̃(y) = 0 implies that for some
nonzero vector b ∈ Rρ, b′y ≤ 0.

PROOF: The definitions of {En(Z)− E(Z)} and H̃ are exactly the same as
in part (ii) of Theorem A.1. To conclude, we only need to show that ∀μ > 0
and ∀h such that |h| ≥ μ� {H̃−1({h}εn)∩‖y‖ ≤O(√gn)} ⊆ {H̃−1({h})}δn , where
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δn =O(εn√gn)� To this purpose, consider y ′ ∈ H̃−1({h}εn) such that ‖y ′‖ ≤
O(

√
gn). We need to show that ∃y ∈ H̃−1({h}) such that ‖y ′ − y‖ ≤O(εn√gn)�

Consider y = y ′(h/h′)1/β� By homogeneity of degree β� H̃(y) = h� By defini-
tion,

‖y ′ − y‖ ≤ ‖y ′‖∣∣1 − (h′/h)−1/β
∣∣

≤ O(√gn)max
{
1 − (h′/h)−1/β� (h′/h)−1/β − 1

}
�

where |h′ − h| ≤ εn� For any fixed h such that |h| ≥ μ > 0 and h′ ∈ (h − εn�
h + εn]� a first order Taylor expansion argument implies that max{1 −
(h′/h)−1/β� (h′/h)−1/β − 1} ≤ O(|h′ − h|) = O(εn)� As a consequence, ‖y ′ −
y‖ ≤O(εn√gn)� completing the proof. Q.E.D.

A.3.2. Representation Result for the Bootstrap Test Statistic

The following theorem shows that the bootstrap test statistic has a represen-
tation that is analogous to that obtained for the population test statistic.

THEOREM A.3: (i) Assume Assumptions A1–A4 and CF′, and ΘI �= ∅. Then
Γ ∗
n =H(v∗

n(mθ))+ δ∗
n� where the following conditions hold:

(a) For any ε > 0� limn→+∞ P∗(|δ∗
n|> ε|Xn)= 0 a.s.

(b) {v∗
n(mθ)|Xn} :Ωn → l∞J (Θ) is an empirical process that converges weakly

to the same Gaussian process as in Theorem A.1 i.o.p.
(c) H : l∞J (Θ)→ R is the same function as in Theorem A.1.

(ii) Let ρ denote the rank of the variance–covariance matrix of the vector
{{1[X = xk]Yj}Jj=1}Kk=1� If we assume Assumptions B1–B4 and CF, and ΘI �= ∅,
and we choose the bootstrap procedure to be the one specialized for the condi-
tionally separable model, then Γ ∗

n = H̃(√n(E∗
n(Z) − En(Z))) + δ̃∗

n� where the
following conditions hold:

(a) P(δ̃∗
n = 0|Xn)= 1[δ̃∗

n = 0] a.s. and lim inf{δ̃∗
n = 0} a.s.

(b) {(E∗
n(Z) − En(Z))|Xn} :Ωn → Rρ is a zero-mean sample average of n

independent observations from a distribution with variance–covariance ma-
trix V̂ � Moreover, this distribution has finite third moments a.s. and ‖V̂ − Iρ‖ ≤
Op(n

−1/2).
(c) H̃ : Rρ → R is the same function as in Theorem A.1.

(iii) Assume Assumptions A1–A4 and CF′, and ΘI = ∅. Then lim inf{P(Γ ∗
n =

0|Xn)= 1} a.s.

PROOF: (i) By the CLT for bootstrapped empirical processes applied to
P-Donsker classes (see, for example, Giné and Zinn (1990) or Theorem 3.6.13
in van der Vaart and Wellner (1996)), {v∗

n|Xn} :Ωn → l∞J (Θ) converges weakly
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to ζ i.o.p., where ζ is the Gaussian process described in Theorem A.1. Let the
function H : l∞J (Θ)→ R be defined as in Theorem A.1, let Hn : l∞J (Θ)→ R be
the function

Hn(y)= sup
θ∈Θ̂I (τn)

G
({[yj(θ)]+1

[∣∣En(mj(Z�θ))∣∣≤ τ̃n/√n]}Jj=1

)
�

and let δ∗
n = Hn(v∗

n(mθ)) −H(v∗
n(mθ)). To conclude the proof of this part, it

suffices to show that ∀ε > 0� P(|δ∗
n|> ε|Xn)= o(1) a.s.

Step 1. We now show that P(δ∗
n < 0|Xn)= o(1) a.s. Define the event

An =
{
{ΘI ⊆ Θ̂I(τn)} ∩

{⋂
θ∈Θ

⋂
j=1�����J

{{
E(mj(Z�θ))= 0

}

�⇒ {∣∣En(mj(Z�θ))∣∣≤ τ̃n/√n}}
}}
�

By definition, An implies {δ∗
n ≥ 0}� Conditional on the sample, An is non-

random and so it suffices to show the lim inf{An} a.s., which follows from
the LIL.

Step 2. We now show that ∀ε > 0� P(δ∗
n > ε|Xn)= o(1) a.s.

For any ε > 0� let ΘI(ε) = {θ ∈ Θ : {E(mj(Z�θ)) ≤ ε}Jj=1} and let Hε :
l∞J (Θ) → R denote the function Hε(y) = supθ∈ΘI(ε) G({[yj(θ)]+1[|E(mj(Z�
θ))| < ε]}Jj=1)� For a positive sequence {εn}+∞

n=1 such that εn = o(1)� (τn/√
n)ε−1

n = o(1), and (τ̃n/
√
n)ε−1

n = o(1) a.s., let A′
n denote the event

A′
n =

{
{Θ̂I(τn)⊆ΘI(εn)} ∩

{⋂
θ∈Θ

⋂
j=1�����J

{{∣∣En(mj(Z�θ))∣∣≤ τ̃n/√n}

�⇒ {∣∣E(mj(Z�θ))∣∣< εn}}
}}
�

and let ηH1
n and ηH2

n be defined by

ηH1
n =

⎧⎪⎨
⎪⎩

sup
θ∈ΘI(εn)

G
({[v∗

n(mj�θ)]+1
[∣∣E(mj(Z�θ))∣∣< εn]}Jj=1

)
− sup
θ∈ΘI
G
({[v∗

n(mj�θ)]+1
[∣∣E(mj(Z�θ))∣∣< εn]}Jj=1

)
⎫⎪⎬
⎪⎭ �

ηH2
n =

⎧⎪⎨
⎪⎩

sup
θ∈ΘI
G
({[v∗

n(mj�θ)]+1
[∣∣E(mj(Z�θ))∣∣< εn]}Jj=1

)
− sup
θ∈ΘI
G
({[v∗

n(mj�θ)]+1
[
E(mj(Z�θ))= 0

]}J
j=1

)
⎫⎪⎬
⎪⎭ �
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Notice that A′
n implies {Hn(v∗

n(mθ)) ≤ Hεn(v∗
n(mθ))}, which, in turn, implies

that {δ∗
n ≤ ηH1

n +ηH2
n }� Based on this, consider the derivation

P(δ∗
n > ε|Xn)= P({δ∗

n > ε} ∩A′
n|Xn)+ P({δ∗

n > ε} ∩ {A′
n}c|Xn)

≤ P({δ∗
n > ε} ∩ {

Hn(v
∗
n(mθ))≤Hεn(v∗

n(mθ))
}|Xn

)
+ P({A′

n}c|Xn)

≤ P(ηH1
n > ε/2|Xn)+ P(ηH2

n > ε/2|Xn)

+ P({A′
n}c|Xn)�

By the LIL, lim inf{A′
n} a.s. and, therefore, P({A′

n}c|Xn)= o(1) a.s. To conclude
the proof of this step, it suffices to show that, ∀ε > 0 and ∀i = 1�2� P(ηHin >
ε/2|Xn)= o(1) a.s. We only cover the case for i= 1, because the proof for i= 2
follows from similar arguments.

Fix ε > 0� Let Gn�1(θ) = G({[v∗
n(mj�θ)]+1[|E(mj(Z�θ))| < εn]}Jj=1), Ḡn�1 =

supθ∈ΘI(εn) Gn�1(θ)� Gn�2 = G({[v∗
n(mj�θ)]+1[|E(mj(Z�θ))| < εn]}Jj=1), and

Ḡn�2 = supθ∈ΘI Gn�2(θ)� By definition, ηH1
n = Ḡn�1 − Ḡn�2 and so {ηH1

n > ε/2|Xn}
implies that {∃θ ∈ {ΘI(εn)∩ {ΘI}c} : {Gn�1(θ)+ ε/4 ≥ Ḡn�1}|Xn}.

For any S ∈ {P {1�2�����J}/∅}� consider the sets Dn(S) and D(S) defined as

Dn(S)=
{
Θ∩

{{⋂
j∈S

{
E(mj(Z�θ)) ∈ [−εn�εn]

}}

∩
{ ⋂
j∈{1�2�����J}\S

{
E(mj(Z�θ))≤ −εn

}}}}
�

D(S)=
{
Θ∩

{⋂
j∈S

{
E(mj(Z�θ))= 0

}}

∩
{ ⋂
j∈{1�2�����J}\S

{
E(mj(Z�θ))≤ 0

}}}
�

By definition, {ΘI(εn) ∩ {ΘI}c} ⊆ ⋃
S∈{P {1�2�����J}/∅}Dn(S) and so the event {ηH1

n >

ε/2|Xn} implies that
⋃
S∈{P {1�2�����J}/∅}{∃θ ∈Dn(S) : {Gn�1(θ)+ε/4 ≥ Ḡn�1}|Xn}. For

every S ∈ {P {1�2�����J}/∅} and ∀η> 0� ∃N ∈ N such that, ∀n≥N� the event {∃θ ∈
Dn(S)} implies that {∃θ′ ∈D(S) : {‖θ− θ′‖< η}}� Thus, ∀S ∈ {P {1�2�����J}/∅} and
∀η> 0� ∃N ∈ N such that, ∀n≥N� {∃θ ∈Dn(S) : {Gn�1(θ)+ ε/4 ≥ Ḡn�1}|Xn} is
equivalent to {∃(θ�θ′) ∈ {Dn(S) ×D(S)} : {{‖θ − θ′‖ ≤ η} ∩ {Gn�1(θ) + ε/4 ≥
Ḡn�1}}|Xn}. Therefore, ∀η > 0� ∃N ∈ N such that, ∀n ≥ N , the event {ηH1

n >
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ε/2|Xn} is equivalent to the event

⋃
S∈{P {1�2�����J}/∅}

{
{ηH1

n > ε/2}

∩
{ ∃(θ�θ′) ∈ {Dn(S)×D(S)} :{{‖θ− θ′‖ ≤ η} ∩ {Gn�1(θ)+ ε/4 ≥ Ḡn�1}

}} ∣∣∣Xn

}
�

Now, ∀η> 0 and ∀S ∈ {P {1�2�����J}/∅}, the event{{ηH1
n > ε/2} ∩ {∃(θ�θ′) ∈ {Dn(S)×D(S)} :{{‖θ− θ′‖ ≤ η} ∩ {Gn�1(θ)+ ε/4 ≥ Ḡn�1}

}}|Xn

}
leads to the derivation

G
([v∗

n(mj�θ)]+1[j ∈ S])+ ε
4

(1)≥G([v∗
n(mj�θ)]+1

[∣∣E(mj(Z�θ))∣∣< εn])+ ε
4

(2)≥ sup
θ̃∈ΘI(εn)

G
({[v∗

n(mj�θ̃)]+1
[∣∣E(mj(Z� θ̃))∣∣< εn]}Jj=1

)
(3)≥ sup
θ̃∈ΘI
G
({[v∗

n(mj�θ̃)]+1
[∣∣E(mj(Z� θ̃))∣∣< εn]}Jj=1

)+ ε
2

(4)≥G({[v∗
n(mj�θ′)]+1

[∣∣E(mj(Z�θ′))
∣∣< εn]}Jj=1

)+ ε
2

(5)≥G([v∗
n(mj�θ′)]+1[j ∈ S])+ ε

2
�

where
(1)≥ holds because θ ∈ Dn(S) and so 1[j ∈ S] ≥ 1[|E(mj(Z�θ))| < εn],

(2)≥ holds by {Gn�1(θ) + ε/4 ≥ Ḡn�1},
(3)≥ holds because {ηH1

n > ε/2}, (4)≥ holds

because θ′ ∈D(S)⊆ΘI , and
(5)≥ holds because θ′ ∈D(S) and thus 1[|E(mj(Z�

θ′))|< εn] ≥ 1[j ∈ S]� By the arguments used in the proof of Theorem A.1(i),
∀η> 0� ∃γ > 0 such that

lim sup
n→+∞

P∗(ηH1
n > ε/2|Xn)

≤ lim sup
n→+∞

P∗
(

sup
θ∈Θ

sup
{θ′∈Θ:‖θ′−θ‖≤η}

‖v∗
n(mθ)− v∗

n(mθ′)‖> γ
∣∣Xn

)
�

If we take η ↓ 0� Theorem 3.6.13 in van der Vaart and Wellner (1996) implies
that the right-hand side is equal to zero i.o.p.
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(ii) Let the matrices {Bk}Kk=1 and B be defined as in the proof of Theo-
rem A.1(ii).

Step 1. We now show that, conditionally on Xn� {{p̃∗
k(E

∗
n(Yj|xk) − En(Yj|

xk))}Kk=1}Jj=1 is the average of n independent observations from a distribution
with variance–covariance matrix Ψ̂ = BV̂ B′ such that ‖V̂ −Iρ‖ ≤Op(n−1/2) and
with finite third absolute moments a.s. For every k= 1�2� � � � �K� let p̃∗

k = p̄k
in the fixed design case and let p̃∗

k = p̂∗
k in the random design case.

We only cover the proof for the fixed design case because the proof for the
random design case follows from similar arguments. Let {n1� n2� � � � � nK} de-
note the number of observations in the sample of each covariate value and so∑K

k=1 nk = n� For each k = 1�2� � � � �K� extract a bootstrap sample of size nk
from the observations in the sample that satisfy Xi = xk and denote this ran-
dom sample by {Y ∗

i�k}nki=1� Next, construct a sample of size n� where the first n1

observations are given by {Y ∗
i�1 − En(Y |x1)�01×J� � � � �01×J}n1

i=1� the next n2 ob-
servations are given by {01×J�Y ∗

i�2 − En(Y |x2)�01×J� � � � �01×J}n2
i=1� and so on. As

a result, we have constructed n observations of JK dimensional vectors, whose
average is {{p̃∗

k(E
∗
n(Yj|xk)− En(Yj|xk))}Kk=1}Jj=1. Conditional on the sample and

the design, these observations are independent, with variance–covariance ma-
trix Ψ̂ and finite third absolute moments a.s.

Step 2. The next step is to show that {{p̃∗
k(E

∗
n(Yj|xk)− En(Yj|xk))}Kk=1}Jj=1 =

B(E∗
n(Z)−En(Z)), whereBB′ =Ψ , and, conditionally on the sample, {E∗

n(Z)−
En(Z)} is the average of a sample of independent observations with mean-zero,
variance–covariance matrix V̂ such that ‖V̂ − Iρ‖ = Op(n−1/2) and finite third
absolute moments a.s.

For every k= 1�2� � � � �K� Bk has full rank and so, ∀i= 1� � � � � n, ∃W ∗
k�i ∈ Rρk

such that BkW ∗
k�i = (Y ∗

i − En(Y |xk))1[X∗
i = xk]� For every i= 1� � � � � n� we de-

fine W ∗
i = [W ∗

1�i� � � � �W
∗
K�i] ∈ Rρ� By construction, notice that, ∀i = 1�2� � � � � n�

E(W ∗
i |Xn)= 0ρ×1�

Finally, ∀i= 1�2� � � � � n� we defineZ∗
i =W ∗

i and, thus, En(Z)= 0ρ×1� By con-
struction, {Z∗

i − En(Z)}ni=1 is a sample of random vectors from a distribution
with E(Z∗

i − En(Z)|Xn) = 0ρ×1 and V (B(Z∗
i − En(Z))|Xn) = Ψ̂ � The matrix

Ψ̂ satisfies ‖Ψ̂ −Ψ‖ = ‖B(V̂ − Iρ)B′‖� where V̂ = V (Z∗
i − En(Z)|Xn)� By the

CLT, ‖Ψ̂ − Ψ‖ = Op(n−1/2) and since B ∈ R(JK)×ρ has rank ρ� it follows that
‖V̂ − Iρ‖ ≤Op(n−1/2). Finally, since {(Y ∗

i − En(Y |xk))1[X∗
i = xk]}Kk=1 has finite

third moments a.s., {Z∗
i − En(Z)} also has finite third moments a.s.

Step 3. We now show that Γ ∗
n = H̃(√n(E∗

n(Z)−En(Z)))+ δ̃∗
n, where H̃ is the

same function as in Theorem A.1 and for any positive sequence {εn}+∞
n=1 such

that εn =O(n−1/2)� P(|δ̃∗
n|> εn|Xn)= o(n−1/2) a.s. By the definitions of Γ ∗

n and
H̃� it follows that the event {δ̃∗

n = 0} depends exclusively on Xn and, therefore,
P(δ̃∗

n = 0|Xn)= 1[δ̃∗
n = 0]� Thus, it suffices to show that lim inf{δ∗

n = 0} a.s.
Step 3.1. For any arbitrary S ∈ P {{1�����J}×{1�����K}} \ ∅, suppose that ∃θ0 ∈ΘI that

satisfies {pk(E(Yj|xk)−Mj(θ0�xk))= 0}(j�k)∈S�We show that ∃N ∈ N such that,
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∀n≥N , ∃θ ∈ Θ̂I(τn) that satisfies {|p̂k(En(Yj|xk)−Mj(θ�xk))| ≤ τ̃n/√n}(j�k)∈S
a.s. In particular, by the LIL, it follows that

P
(

lim inf
{{θ0 ∈ Θ̂I(τn)}

∩{∣∣p̂k(En(Yj|xk)−Mj(θ0�xk))
∣∣≤ τ̃n/√n}(j�k)∈S})= 1�

which is exactly the desired result for θ= θ0�
Step 3.2. For any arbitrary S ∈ P {{1�����J}×{1�����K}} \ ∅, suppose that �θ ∈ΘI that

satisfies {pk(E(Yj|xk)−Mj(θ�xk))= 0}(j�k)∈S� In this step, we show that ∃N ∈ N

such that, ∀n ≥N� �θ ∈ Θ̂I(τn) that satisfies {|p̂k(En(Yj|xk)−Mj(θn�xk))| ≤
τ̃n/

√
n}(j�k)∈S a.s. Let Dn(S) be defined as

Dn(S)=
{
θ ∈Θ :

{ ⋂
(j�k)∈S

{∣∣p̂k(En(Yj|xk)−Mj(θ�xk))
∣∣≤ τ̃n/√n}

}}
�

It then it suffices to show that lim inf{{Θ̂I(τn)∩Dn(S)} = ∅} a.s.
For any ε ≥ 0� define ΘI(ε) = {θ ∈ Θ : {{pk(E(Yj|xk) − Mj(θ�xk)) ≤

ε}Jj=1}Kk=1}� First, we show that if �θ ∈ΘI such that {pk(E(Yj|xk)−Mj(θ�xk))=
0}(j�k)∈S� then ∃η> 0 and ∃�> 0 such that

ΘI(η)⊆
{
θ ∈Θ :

{
max
(j�k)∈S

∣∣pk(Mj(θ�xk)− E(Yj|xk))
∣∣≥�}}�(A.1)

To show this, notice that the minimization problem infθ∈ΘI {max(j�k)∈S |pk(Mj(θ�
xk)− E(Yj|xk))|} achieves a minimum and, by the case under consideration,
the minimum cannot be zero. Assign this minimum to � > 0� As a conse-
quence, ΘI ⊆ {θ ∈ Θ : {max(j�k)∈S |pk(Mj(θ�xk) − E(Yj|xk))| ≥�}}� By a con-
tinuity argument, ∃η> 0 such that equation (A.1) is satisfied.

By elementary properties, lim inf{{Θ̂I(τn)∩Dn(S)} = ∅} a.s. holds if we show
that

P
(
lim sup

{{Θ̂I(τn)∩Dn(S)∩ΘI(η)} �= ∅})= 0(A.2)

and

P
(
lim sup

{{
Θ̂I(τn)∩ {ΘI(η)}c

} �= ∅})= 0�(A.3)

We begin with equation (A.2). By definition of η, it suffices to show that

P

(
lim sup

{{
Dn(S)

∩
{
θ ∈Θ : max

(j�k)∈S

∣∣pk(Mj(θ�xk)− E(Yj|xk))
∣∣≥�}} �= ∅

})
= 0�



28 FEDERICO A. BUGNI

To show this, notice that{
Dn(S)∩

{
θ ∈Θ : max

(j�k)∈S

∣∣pk(Mj(θ�xk)− E(Yj|xk))
∣∣≥�}}

⊆
⋃
(j�k)∈S

{{∣∣p̂k(En(Yj|xk)−Mj(θ�xk))
∣∣≤ τ̃n/√n}

∩ {∣∣pk(Mj(θ�xk)− E(Yj|xk))
∣∣≥�}

}

⊆
⋃
(j�k)∈S

⎧⎨
⎩

{∣∣p̂k(En(Yj|xk)− E(Yj|xk))
∣∣≥�/2 − τ̃n/√n

}
∪
{
|pk − p̂k| sup

θ∈Θ
|Mj(θ�xk)− E(Yj|xk)| ≥�/2

}
⎫⎬
⎭

and so the result follows from the SLLN.
To show equation (A.3), notice that,{

Θ̂I(τn)∩ {ΘI(η)}c
}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
J⋂
j=1

K⋂
k=1

{
θ ∈Θ :

{
p̂k(En(Yj|xk)−Mj(θ�xk))≤ τn/

√
n
}}}

∩
{

J⋃
j=1

K⋃
k=1

{
θ ∈Θ :

{
pk(E(Yj|xk)−Mj(θ�xk)) > η

}}}
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
⎧⎨
⎩

J⋃
j=1

K⋃
k=1

{
θ ∈Θ :

{{
p̂k(En(Yj|xk)−Mj(θ�xk))≤ τn/√n

}
∩ {
pk(E(Yj|xk)−Mj(θ�xk)) > η

} }}⎫⎬
⎭

⊆
⎧⎨
⎩

J⋃
j=1

K⋃
k=1

{ {{
p̂k(E(Yj|xk)− En(Yj|xk)) > η/4

}}
∪
{
|pk − p̂k| sup

θ∈Θ

∣∣(E(Yj|xk)−Mj(θ�xk))
∣∣>η/2}

}⎫⎬
⎭

and so, again, the result follows from the SLLN.
Step 3.3. By Step 3.1, lim inf{δ̃∗

n ≥ 0} a.s., and by Step 3.2, lim inf{δ̃∗
n ≤ 0}�

Combining both statements, lim inf{δ̃∗
n = 0} a.s., which completes the proof of

this part.
(iii) By definition, {Θ̂I(τn) = ∅} implies {Γ ∗

n = 0} and thus P(Γ ∗
n = 0|Xn) ≥

1[Θ̂I(τn)= ∅]� By Lemma 2.1, ifΘI = ∅, then lim inf{Θ̂I(τn)= ∅} a.s., complet-
ing the proof. Q.E.D.

The following theorem shows how the results of Theorem A.3 change when
Assumption CF is replaced by Assumption CF′.

THEOREM A.4: Let ρ denote the rank of the variance–covariance matrix of
the vector {{1[X = xk]Yj}Jj=1}Kk=1� If we assume Assumptions B1–B4 and CF′, and
ΘI �= ∅, then, Γ ∗

n = H̃(√n(E∗
n(Z)−En(Z)))+ δ̃∗

n� where the following conditions
hold:
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(a) P(δ̃∗
n = 0|Xn)= 1[δ̃∗

n = 0] a.s. and lim inf{δ̃∗
n = 0} a.s.

(b) {(E∗
n(Z) − En(Z))|Xn} :Ωn → Rρ is a zero-mean sample average of n

independent observations from a distribution with variance–covariance ma-
trix V̂ � Moreover, this distribution has finite third moments a.s. and ‖V̂ − Iρ‖ ≤
Op(n

−1/2).
(c) H̃ : Rρ → R is the same function as in Theorem A.2.

The proof of this theorem follows from Theorems A.2 and A.3.

A.4. Consistency in Level

This section collects all the results that take us from the representation the-
orems to the main theorem of bootstrap consistency, Theorem 2.1. We begin
with a lemma that characterizes the limiting distribution.

LEMMA A.3: Assume Assumptions A1–A4 and CF′.
(i) If ΘI �= ∅� then limm→+∞ P(Γm ≤ h)= P(H(ζ)≤ h)� where H and ζ are

the function and the stochastic process described in Theorem A.1.
(ii) If ΘI = ∅, then P(Γn ≤ h)= 1[h≥ 0].

(iii) limm→+∞P(Γm ≤ h) is continuous for all h �= 0�

PROOF: (i) and (ii) Both statements follow directly from Theorem A.1.
(iii) If ΘI = ∅� the statement is trivial from part (ii). If ΘI �= ∅, then, by

part (i), limn→+∞ P(Γn = h)= P(H(ζ)= h)� SinceH ≥ 0, we only need to con-
sider h > 0� By Theorem A.1, H is weakly convex and lower semicontinuous,
and, therefore, the result follows from Theorem 11.1(i) in Davydov, Lifshits,
and Smorodina (1995). Q.E.D.

The traditional definition of bootstrap consistency requires the conditional
distribution of the bootstrap approximation to converge uniformly to the lim-
iting distribution of the statistic of interest (see, for example, Hall (1992) or
Horowitz (2002)). When ΘI �= ∅, the limiting distribution has a discontinuity
at zero and, given this discontinuity, it is possible that our bootstrap approxi-
mation fails to converge (pointwise) at zero. To resolve this issue, our strategy
will be to exclude the discontinuity point from our goal. Except on an arbitrar-
ily small neighborhood around zero, we show that the bootstrap approximation
is consistent. We refer to this result as bootstrap consistency on any set excluding
zero.

THEOREM A.5—Bootstrap Consistency on Any Set Excluding Zero: Assume
Assumptions A1–A4 and CF′.

(i) If ΘI �= ∅� then ∀μ> 0 and ∀ε > 0�

lim
n→+∞

P∗
(

sup
|h|≥μ

∣∣∣P(Γ ∗
n ≤ h|Xn)− lim

m→+∞
P(Γm ≤ h)

∣∣∣≤ ε)= 1�
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(ii) If ΘI = ∅� then

P
(

lim inf
{

sup
h∈R

∣∣∣P(Γ ∗
n ≤ h|Xn)− lim

m→+∞
P(Γm ≤ h)

∣∣∣= 0
})

= 1�

PROOF: (i) We divide the argument into two steps.
Step 1. We begin by showing the pointwise version of the result. In particu-

lar, we now show that, ∀ε > 0 and ∀h �= 0� |P(Γ ∗
n ≤ h|Xn)− limm→+∞P(Γm ≤

h)| ≤ ε w.o.p.a.1.
By Theorem A.3, {v∗

n(mθ)|Xn} converges weakly to ζ i.o.p., H̃ is continuous,
and P∗(|δ∗

n|> ε|Xn)= o(1) a.s. Therefore, by the continuous mapping theorem
and Slutsky’s lemma, {Γ ∗

n |Xn} converges weakly to H(ζ) i.o.p. In other words,
if h is a continuity point of P(H(ζ)≤ h)� then, ∀ε > 0�

lim
n→+∞

P∗(∣∣P(Γ ∗
n ≤ h|Xn)− P(H(ζ)≤ h)

∣∣≤ ε)= 1�

By Lemma A.3, P(H(ζ) ≤ h) = limm→+∞P(Γm ≤ h)� which is continuous for
all h �= 0� This completes the proof of this step.

Step 2. We now show the uniform version of the result. This result follows
from using the pointwise convergence in Step 1, the continuity of the function
limm→+∞ P(Γm ≤ h) ∀h such that |h| ≥ μ, and the defining properties of the
CDFs.

(ii) By Theorem A.3, lim inf{P(Γ ∗
n ≤ h|Xn) = 1[h ≥ 0]} a.s., and by Lem-

ma A.3, 1[h ≥ 0] = limm→+∞P(Γm ≤ h)� The result follows from combining
these two findings. Q.E.D.

In the case when ΘI �= ∅, we have dealt with the discontinuity at zero
by simply excluding the point from the analysis. This raises the follow-
ing question: Is it important to obtain a bootstrap approximation at zero?
The answer is negative. By Theorem A.1 and Lemma A.3, it follows that
limm→+∞P(Γm ≤ 0)≤ 0�5. Since the purpose of the approximation is to con-
duct hypothesis tests, we are typically interested in approximating the 90, 95,
and 99 percentiles of the distribution. For all these quantiles, our consistency
result holds w.o.p.a.1. This is the content of the following corollary.

COROLLARY A.1: Assume Assumptions A1–A4 and CF′, andΘI �= ∅� For any
α ∈ (0�0�5), define qBn (1 − α)= P(Γ ∗

n ≤ ĉBn (1 − α)|Xn)� Then

|qBn (1 − α)− (1 − α)| = op∗(1)�

PROOF: By Lemma A.3, limn→+∞ P(Γn ≤ h)= P(H(ζ)≤ h)� where H is the
function and ζ is the stochastic process described in Theorem A.1�

By Theorem A.1, H(ζ) ≤ 0 implies that ∃(j� θ0) ∈ {1� � � � � J} ×ΘI such that
ζ(θ0) ≤ 0� Since ζ(θ0) ∼ N(0� V (mj(Z�θ0))) with V (mj(Z�θ0)) > 0� then
P(H(ζ)≤ 0)≤ P(ζ(θ0)≤ 0)≤ 0�5< 1 − α�
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Let c∞(1 − α) denote the (1 − α) quantile of the limiting distribution.
By Lemma A.3, ∀h > 0� P(H(ζ) ≤ h) is continuous, and so, ∀α ∈ (0�0�5)�
P(H(ζ)≤ c∞(1 − α))= (1 − α), which implies that c∞(1 − α) > 0�

By Theorem A.5, sup|h|≥μ |P(Γ ∗
n ≤ h|Xn)− P(H(ζ) ≤ h)| = op∗(1). For any

ε/2 > 0� choose μ > 0 so that {c∞(1 − α + ε/2) ≥ μ}� By the continuity of
P(H(ζ)≤ h), it follows that

lim
n→+∞

P∗((1 − α)≤ P(Γ ∗
n ≤ c∞(1 − α+ ε/2)|Xn)≤ (1 − α)+ ε)= 1�

By definition, {(1 − α)≤ P(Γ ∗
n ≤ c∞(1 − α+ ε/2)|Xn)} implies {ĉBn (1 − α)≤

c∞(1 − α+ ε/2)}, which, in turn, implies {(1 − α) ≤ P(Γ ∗
n ≤ ĉBn (1 − α)|Xn) ≤

P(Γ ∗
n ≤ c∞(1 − α+ ε/2)|Xn)}� Therefore,

lim
n→+∞

P∗(∣∣P(Γ ∗
n ≤ ĉBn (1 − α)|Xn)− (1 − α)∣∣≤ ε)

≥ lim
n→+∞

P∗
(

(1 − α)≤ P(Γ ∗
n ≤ ĉBn (1 − α)|Xn)

≤ P(Γ ∗
n ≤ c∞(1 − α+ ε/2)|Xn)≤ (1 − α)+ ε

)
= 1�

which completes the proof. Q.E.D.

The final consequence of these results is the main theorem of this section,
Theorem 2.1, which is formulated in the main text. Even though the formula-
tion of the theorem in the main text imposes Assumption CF, the proof only
makes use of Assumption CF′.

PROOF OF THEOREM 2.1: Fix α ∈ (0�0�5) and consider the derivation∣∣P(ΘI ⊆ ĈBn (1 − α))− (1 − α)∣∣(A.4)

≤

⎧⎪⎨
⎪⎩

∣∣P(Γn ≤ ĉBn (1 − α))− P(H(ζ)≤ ĉBn (1 − α))∣∣
+ ∣∣P(H(ζ)≤ ĉBn (1 − α))− P(Γ ∗

n ≤ ĉBn (1 − α)|Xn)
∣∣

+ ∣∣P(Γ ∗
n ≤ ĉBn (1 − α)|Xn)− (1 − α)∣∣

⎫⎪⎬
⎪⎭ �

The right-hand side of equation (A.4) is the sum of three terms. The second
term is op∗(1) by Theorem A.5 and the third term is op∗(1) by Corollary A.1.
For any μ> 0� the first term on the right-hand side of equation (A.4) satisfies,∣∣P(Γn ≤ ĉBn (1 − α))− P(H(ζ)≤ ĉBn (1 − α))∣∣(A.5)

≤ sup
|h|≥μ

∣∣P(Γn ≤ h)− P(H(ζ)≤ h)∣∣+ 1
[|ĉBn (1 − α)|<μ]�

The right-hand side of equation (A.5) is the sum of two terms. For any μ> 0�
Theorem A.1 and the arguments used in the proof of Theorem A.5 imply that
the first term is o(1). To show that the second term is op∗(1)� it suffices to
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find μ > 0 such that {ĉBn (1 − α) ≥ μ} w.o.p.a.1. By the arguments in Corol-
lary A.1, ∀α ∈ (0�0�5)� {c∞(1 − α) > 0}� By Lemma A.3, the limiting distribu-
tion evaluated at c∞(1−α) is equal to (1−α) and it is continuous on the inter-
val [0� c∞(1 − α)]� Then, by intermediate value theorem, ∃η ∈ (0� c∞(1 − α))
such that P(H(ζ)≤ η)= ((1 − α)− 0�5)/2 + 0�5�We choose μ= η. By Theo-
rem A.5, ∣∣P(Γ ∗

n ≤ μ|Xn)− ((1 − α)− 0�5)/2 + 0�5
∣∣

=
∣∣∣P(Γ ∗

n ≤ μ|Xn)− lim
n→+∞

P(Γn ≤ μ)
∣∣∣

= op∗(1)

and thus {P(Γ ∗
n ≤ μ|Xn) < (1 − α)} w.o.p.a.1. By definition of quantile, {(1 −

α)≤ P(Γ ∗
n ≤ ĉBn (1 − α)|Xn)}� and so, by the monotonicity of the CDF, {ĉBn (1 −

α)≥ μ} w.o.p.a.1.
As a consequence of our arguments, we deduce that, ∀ε > 0�

lim
n→+∞

P∗(∣∣P(ΘI ⊆ ĈBn (1 − α))− (1 − α)∣∣≤ ε)= 1�

Since the event {|P(ΘI ⊆ ĈBn (1 −α))− (1 −α)| ≤ ε} is nonstochastic, then the
statement of the theorem follows as a conclusion. Q.E.D.

A.4.1. Stepdown Control Bootstrap Procedure

The inferential schemes described in this paper can be used as an ingredient
in a stepdown control procedure like the one described in Romano and Shaikh
(2006). In this section, we only describe the stepdown control version of our
bootstrap procedure, but the same arguments can be applied to any of the
inferential schemes developed in this paper.

As an intermediate step, consider the following auxiliary bootstrap proce-
dure.

Step 1. Choose {τn}+∞
n=1 to be a positive sequence such that τn/

√
n= o(1) a.s.

and
√

ln lnn/τn = o(1) a.s.
Step 2. Repeat the following procedure for s = 1�2� � � � � S: Construct boot-

strap samples of size n by sampling randomly with replacement from the data.
Denote the bootstrapped observations by {Z∗

i }ni=1 and, ∀j = 1�2� � � � � J� let
E∗
n(mj(Z�θ))= n−1

∑n

i=1mj(Z
∗
i � θ)� Compute

Γ ∗
n (K)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
θ∈K
G

({[√
n
(
E∗
n(mj(Z�θ))− En(mj(Z�θ))

)]
+

× 1
[∣∣En(mj(Z�θ))∣∣≤ τn/√n]

}J
j=1

)
�

if K �= ∅�
0� if K = ∅�
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Step 3. Let ĉSB
n (K�1 − α) be the (1 − α) quantile of the bootstrapped distri-

bution of Γ ∗
n (K)� approximated with arbitrary accuracy in the previous step.

Some remarks are in order. The superscript SB of ĉSB
n (K�1−α) refers to the

fact that this quantile will be an ingredient in the stepdown control bootstrap
procedure. Also, notice that the quantile is a function of the set K� which con-
stitutes the input of the auxiliary procedure. In particular, if we setK = Θ̂I(τn)�
this auxiliary bootstrap scheme is equal to the one described in Section 2.2.3.
Finally, if the model under consideration satisfies the assumptions of the con-
ditionally separable model, we can define an auxiliary bootstrap procedure that
is specialized for this framework in the same way as we did in Section 2.2.3. We
prefer not to do this here to avoid repetition.

Following Romano and Shaikh (2006), we can define a (1 − α) confidence
set for the identified set, denoted ĈSB

n (1 −α)� by using the following stepdown
control bootstrap procedure.

Step 1. Let K1 = Θ̂I(τn). If supθ∈K1
G({[√nEn(mj(Z�θ))]+}Jj=1) ≤ ĉSB

n (K1�

1 − α)� take ĈSB
n (1 − α)=K1 and stop; otherwise, set K2 = {θ ∈Θ :G({[√n×

En(mj(Z�θ))]+}Jj=1)≤ ĉSB
n (K1�1 − α)} and continue.

Step 2. If supθ∈K2
G({[√nEn(mj(Z�θ))]+}Jj=1)≤ ĉSB

n (K2�1−α), take ĈSB
n (1−

α) = K2 and stop; otherwise, set K3 = {θ ∈ Θ :G({[√nEn(mj(Z�θ))]+}Jj=1) ≤
ĉSB
n (K2�1 − α)} and continue.

���
Step j. If supθ∈Kj G({[

√
nEn(mj(Z�θ))]+}Jj=1)≤ ĉSB

n (Kj�1−α)� take ĈSB
n (1−

α)=Kj and stop; otherwise, set Kj+1 = {θ ∈Θ :G({[√nEn(mj(Z�θ))]+}Jj=1)≤
ĉSB
n (Kj�1 − α)} and continue.

���
To analyze the coverage properties of the stepdown control bootstrap proce-

dure, we first establish the following result.

LEMMA A.4: Assume Assumptions A1–A4 and CF′, and that ΘI �= ∅� Then,
∀α ∈ (0�0�5)�

lim
n→+∞

P
(

sup
θ∈ΘI
G
({[√

nEn(mj(Z�θ))
]
+
}J
j=1

)
> ĉSB

n (ΘI�1 − α)
)

= α�

Furthermore, ∀K such that ΘI ⊆K� ĉSB
n (ΘI�1 − α)≤ ĉBn (K�1 − α)�

PROOF: The first statement of the theorem follows from replacing the set
Θ̂I(τn) by the setΘI in the proof of Theorem 2.1. The second statement follows
from the definition of ĉSB

n (K�1 − α)� Q.E.D.
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The next lemma shows that the confidence sets constructed using the step-
down control procedure are always contained in the confidence sets con-
structed using the procedure described in Section 2.2.3.

LEMMA A.5: For any α ∈ (0�1)�

ĈSB
n (1 − α)⊆ ĈBn (1 − α)�

PROOF: By definition of the stepdown control bootstrap procedure, K1 =
Θ̂I(τn), ĉSB

n (K1�1 − α) = ĉBn (1 − α), and K2 = ĈBn (1 − α). Suppose that
the stepdown procedure stops in Step j∗� If j∗ = 1� then, by definition,
ĈSB
n (1 − α) = K1 = Θ̂I(τn) and since the procedure stopped in the first

step, supθ∈K1
G({[√nEn(mj(Z�θ))]+}Jj=1) ≤ ĉSB

n (K1�1 − α)� which implies that

ĈSB
n (1 − α) = Θ̂I(τn) ⊆ ĈBn (1 − α)� If j∗ = 2� then ĈSB

n (1 − α) = K2 =
ĈBn (1 − α)� If j∗ > 2� then, by definition, ∀i ∈ {2� � � � � j∗ − 1}� Ki+1 = {θ ∈
Θ :G({[√nEn(mj(Z�θ))]+}Jj=1) ≤ ĉSB

n (Ki�1 − α)} and supθ∈Ki+1
G({[√n ×

En(mj(Z�θ))]+}Jj=1) > ĉ
SB
n (Ki+1�1 − α). By combining these two, we deduce

that, ∀i ∈ {2� � � � � j∗ − 1}� ĉSB
n (Ki+1�1 − α) < ĉSB

n (Ki�1 − α)� which, in turn, im-
plies that Ki ⊆Ki−1 and, as a consequence, ĈSB

n (1 − α)⊆ ĈBn (1 − α)� Q.E.D.

Based on the previous results, we are ready to establish the consistency in
level of the stepdown control bootstrap procedure.

THEOREM A.6: Assume Assumptions A1–A4 and CF′, and thatΘI �= ∅� Then,
∀α ∈ (0�0�5)�

lim
n→+∞

P(ΘI ⊆ ĈSB
n (1 − α))= 1 − α�

PROOF: By Theorem 2.1 in Romano and Shaikh (2006) and Lemma A.4, it
follows that

lim inf
n→+∞

P(ΘI ⊆ ĈSB
n (1 − α))≥ 1 − α�

By Lemma A.5, ĈSB
n (1 − α)⊆ ĈBn (1 − α) and so

lim sup
n→+∞

P(ΘI ⊆ ĈSB
n (1 − α))≤ lim sup

n→+∞
P(ΘI ⊆ ĈBn (1 − α))�

By Theorem 2.1, the right-hand side is equal to (1 − α)� completing the
proof. Q.E.D.
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A.5. Rates of Convergence Results

This section collects all the results that take us from the representation theo-
rems to the main theorem of rates of convergence of the error in the coverage
probability for the bootstrap approximation.

A.5.1. Results Under Assumption CF

The following lemma shows a useful property of the function described in
Theorem A.1.

LEMMA A.6: (i) Let H̃ be the function in Theorem A.1, let ξ∼N(0�Ξ), where
Ξ ∈ Rρ×ρ is nonsingular, and let {εn}+∞

n=1 be a positive sequence with εn = o(1).
Then, ∀μ> 0�

sup
|h|≥μ

∣∣P(H̃(ξ) ∈ (h− εn�h+ εn])
∣∣≤O(εn)�

(ii) Let H̃ be the function in Theorem A.1, let {ξn|Xn} ∼ N(0�Ξn), where
Ξn ∈ Rρ×ρ is conditionally nonstochastic and nonsingular w.p.a.1, and let {εn}+∞

n=1
be a positive sequence with εn = o(1). Then, ∀μ> 0�

sup
|h|≥μ

∣∣P(H̃(ξn) ∈ (h− εn�h+ εn]|Xn)
∣∣≤Op(εn)�

PROOF: (i) First, consider h such that h ≤ −μ. Since H̃(ξn) ≥ 0 and
εn = o(1), then, eventually, h+ εn < 0 and so P(H̃(ξn)≤ h+ εn)= 0�

Next, consider h such that h ≥ μ� Since εn = o(1), then, eventually,
h− εn > 0. Since h> 0 and εn = o(1), then, by Theorem A.1, H̃−1((h−εn�h+
εn]) ⊆ {H̃−1({h})}γn for γn = O(εn)� By the submultiplicative property of the
matrix norm, Ξ−1/2{H̃−1({h})}γn ⊆ {Ξ−1/2H̃−1({h})}ηn for ηn =O(εn).

By Theorem A.1, H̃ is continuous and weakly quasiconvex, and so
H̃−1({h}) = ∂H̃−1((−∞�h])� where H̃−1((−∞�h]) ∈ Cρ. Using the submulti-
plicative property, Ξ−1/2 ∂H̃−1((−∞�h]) = ∂Ξ−1/2H̃−1((−∞�h]), where
Ξ−1/2H̃−1((−∞�h]) ∈ Cρ. Combining all these steps, we deduce that

P(H̃(ξ) ∈ (h− εn�h+ εn])≤ΦIρ

({
∂
[
Ξ−1/2H̃−1((−∞�h])]}ηn)�

where Ξ−1/2H̃−1((−∞�h]) ∈ Cρ. The right-hand side is O(εn) by Corollary 3.2
in Bhattacharya and Rao (1976) (with s = 0).

(ii) Let An = {Ξn is nonsingular} and let Ξ̃n =Ξn1[An] + IJ×J1[{An}c]. By
the arguments in the previous step,

P(H̃(ξn) ∈ (h− εn�h+ εn]|Xn)

≤ΦIρ

({
∂
[
Ξ̃−1/2
n H̃−1((−∞�h])]}ηn)1[An] + 1[{An}c]�
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where Ξ̃−1/2
n H̃−1((−∞�h]) ∈ Cρ� The right-hand side is a sum of two terms.

The first term is O(εn) by Corollary 3.2 in Bhattacharya and Rao (1976)
(with s = 0) and the second term is Op(εn) because Ξn is nonsingular
w.p.a.1. Q.E.D.

The next theorem provides the rate of convergence of the bootstrap approx-
imation, which is one of the ingredients necessary to obtain the rate of conver-
gence of the error in the coverage probability.

THEOREM A.7—Rate of Convergence—Bootstrap Approximation: Assume
Assumptions B1–B4 and CF, and choose the bootstrap procedure to be the one
specialized for the conditionally separable model.

(i) If ΘI �= ∅, then, ∀μ> 0,

sup
|h|≥μ

|P(Γ ∗
n ≤ h|Xn)− P(Γn ≤ h)| =Op

(
n−1/2

)
�

(ii) If ΘI = ∅� then

P
(

lim inf
{

sup
h∈R

|P(Γ ∗
n ≤ h|Xn)− P(Γn ≤ h)| = 0

})
= 1�

PROOF: (i) Fix μ > 0 arbitrarily and consider the argument ∀h such that
|h| ≥ μ�

sup
|h|≥μ

|P(Γ ∗
n ≤ h|Xn)− P(Γn ≤ h)|

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
|h|≥μ

∣∣P(Γ ∗
n ≤ h|Xn)− P(H̃(ϑ̂)≤ h|Xn)

∣∣
+ sup

|h|≥μ

∣∣P(H̃(ϑ̂)≤ h|Xn)− P(H̃(ϑ)≤ h)
∣∣

+ sup
|h|≥μ

∣∣P(H̃(ϑ)≤ h)− P(Γn ≤ h)∣∣

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
�

The right-hand side is a sum of three terms. We show that each of them is
Op(n

−1/2)�

Step 1. In this step, we show that sup|h|≥μ |P(Γn ≤ h) − P(H̃(ϑ) ≤ h)| ≤
O(n−1/2)� where ϑ ∼ N(0� Iρ)� For h ≤ −μ� the statement holds since both
Γn and H̃(ϑ) are nonnegative. For h≥ μ and for any positive sequence {εn}+∞

n=1
such that εn =O(n−1/2)� Theorem A.1 leads to the derivation

sup
|h|≥μ

{
P(Γn ≤ h)− P(H̃(ϑ)≤ h)}

≤ sup
|h|≥μ

{
P
(
H̃
(√
n(En(Z)− E(Z))

)≤ h+ εn
)− P(H̃(ϑ)≤ h+ εn)

+ P(H̃(ϑ) ∈ (h− εn�h+ εn])+ P(|δ̃n|> εn)

}
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≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
|h|≥μ

∣∣∣P(√n(En(Z)− E(Z)) ∈ H̃−1((−∞�h+ εn])
)

−ΦIρ
(
H̃−1((−∞�h+ εn])

)∣∣∣
+ sup

|h|≥μ
P(H̃(ϑ) ∈ (h− εn�h+ εn])+ P(|δ̃n|> εn)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≤

⎧⎪⎨
⎪⎩

sup
A∈Cρ

∣∣P(√n(En(Z)− E(Z)) ∈A)−ΦIρ(A)
∣∣

+ sup
|h|≥μ

P(H̃(ϑ) ∈ (h− εn�h+ εn])+ P(|δ̃n|> εn)

⎫⎪⎬
⎪⎭ �

The right-hand side is a sum of three terms. By the Berry–Esseén theorem,
the first term is O(n−1/2)� by Lemma A.6, the second term is O(εn)=O(n−1/2),
and by Theorem A.1, the last term is o(n−1/2)� If we combine this result with
the analogous argument for P(Γn > h) (instead of P(Γn ≤ h)), we complete
this step.

Step 2. We now show that sup|h|≥μ |P(Γ ∗
n ≤ h|Xn) − P(H̃(ϑ̂) ≤ h|Xn)| ≤

Op(n
−1/2)� where ϑ̂ ∼ N(0� V̂ ) and V̂ is the sample variance of {Zi}ni=1. For

h ≤ −μ� the statement holds since both Γ ∗
n and H̃(ϑ̂) are nonnegative. For

h ≥ μ and for any positive sequence {εn}+∞
n=1 such that εn = O(n−1/2)� Theo-

rem A.3 leads to the derivation

sup
|h|≥μ

{
P(Γ ∗

n ≤ h|Xn)− P(H̃(ϑ̂)≤ h|Xn)
}

≤

⎧⎪⎨
⎪⎩

sup
A∈Cρ

∣∣P(√n(E∗
n(Z)− En(Z)) ∈A|Xn

)−ΦV̂ (A)
∣∣

+ sup
|h|≥μ

P(H̃(ϑ̂) ∈ (h− εn�h+ εn]|Xn)+ P(|δ̃∗
n|> εn|Xn)

⎫⎪⎬
⎪⎭ �

The right-hand side is a sum of three terms. Conditional on Xn and on the de-
sign, {E∗

n(Z)− En(Z)} is the average of independent observations with mean
zero, variance–covariance matrix V̂ , and finite third moments w.p.a.1. Thus,
the Berry–Esseén theorem implies that the first term is Op(n−1/2)� Condition-
ally on Xn� V̂ is nonstochastic and by the SLLN, V̂ is nonsingular w.p.a.1. Thus,
by Lemma A.6, the second term is Op(n−1/2). By Theorem A.3, the last term is
op(n

−1/2)�We combine this with the same argument for P(Γ ∗
n > h|Xn) (instead

of P(Γ ∗
n ≤ h|Xn)) to complete the step.

Step 3. We now show that sup|h|≥μ |P(H̃(ϑ) ≤ h) − P(H̃(ϑ̂) ≤ h|Xn)| =
Op(n

−1/2) for ϑ∼N(0� Iρ), ϑ̂∼N(0� V̂ ), and ‖V̂ − Iρ‖ ≤Op(n−1/2). It suffices
to show that

∫
Rρ

|φV̂ (x) − φIρ(x)|dx = Op(n−1/2)� which follows from simple
arguments.

(ii) By Theorem A.1, Γn = 0 or, equivalently, P(Γn ≤ h)= 1[h≥ 0]� By Theo-
rem A.3, lim inf{P(Γ ∗

n = 0|Xn)= 1} a.s. or, equivalently, lim inf{suph∈R
|P(Γ ∗

n ≤
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h|Xn) − 1[h ≥ 0]| = 0} a.s. The combination of these two statements implies
the result. Q.E.D.

COROLLARY A.2: Assume Assumptions B1–B4 and CF, ΘI �= ∅, and choose
the bootstrap procedure to be the one specialized for the conditionally separable
model. For any α ∈ (0�0�5), let qBn (1 − α)= P(Γ ∗

n ≤ ĉBn (1 − α)|Xn)� Then

|qBn (1 − α)− (1 − α)| ≤Op
(
n−1/2

)
�

PROOF: Let c∞(1 − α) denote the (1 − α) quantile of the limiting distribu-
tion. By arguments in Corollary A.1, c∞(1 − α) > 0� By Theorem A.7, ∀μ > 0
and ∀γ > 0� ∃K <+∞ such that, ∀n ∈ N�

P
(

sup
|h|≥μ

∣∣P(Γ ∗
n ≤ h|Xn)− P(H(ϑ)≤ h)

∣∣≤Kn−1/2
)

≥ 1 − γ�

where ϑ∼N(0� Iρ)� Choose μ> 0 so that ∃N ∈ N such that, ∀n≥N� {c∞(1 −
α+Kn−1/2) > μ}� As a consequence, ∀n≥N ,

P
(∣∣P(Γ ∗

n ≤ c∞
(
1 − α+Kn−1/2

)|Xn

)
− P(H(ϑ)≤ c∞(1 − α+Kn−1/2

))∣∣≤Kn−1/2
)

≥ 1 − γ�
By the continuity of P(H(ϑ)≤ h), P(H(ϑ)≤ c∞(1 − α+Kn−1/2))= 1 − α+
Kn−1/2� so that, ∀n≥N ,

P
(
(1 − α)≤ P(Γ ∗

n ≤ c∞
(
1 − α+Kn−1/2

)|Xn

)≤ (1 − α)+ 2Kn−1/2
)

≥ 1 − γ�
The event {(1 − α)≤ P(Γ ∗

n ≤ c∞(1 − α+Kn−1/2)|Xn)} implies {ĉBn (1 − α)≤
c∞(1−α+Kn−1/2)}, which, in turn, implies {(1−α)≤ P(Γ ∗

n ≤ ĉBn (1−α)|Xn)≤
P(Γ ∗

n ≤ c∞(1 − α+Kn−1/2)|Xn)}� Therefore, ∃N ∈ N such that, ∀n≥N ,

P
(∣∣P(Γ ∗

n ≤ ĉBn (1 − α)|Xn)− (1 − α)∣∣≤ 2Kn−1/2
)

≥ P((1 − α)≤ P(Γ ∗
n ≤ ĉBn (1 − α)|Xn)≤ (1 − α)+ 2Kn−1/2

)
≥ P

(
(1 − α)≤ P(Γ ∗

n ≤ c∞
(
1 − α+Kn−1/2

)|Xn

)
≤ (1 − α)+ 2Kn−1/2

)
≥ 1 − γ�

This conclusion can be extended ∀n ∈ N by an appropriate choice
of K. Q.E.D.
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The final consequence of these results is the main theorem of this section,
Theorem 2.2, which is formulated in the main text.

PROOF OF THEOREM 2.2: For any K > 0, μ > 0, and n ∈ N� consider the
derivation{∣∣P(ΘI ⊆ ĈBn (1 − α))− (1 − α)∣∣>Kn−1/2

}
= {∣∣P(Γn ≤ ĉBn (1 − α))− (1 − α)∣∣>Kn−1/2

}
⊆
{{∣∣P(Γn ≤ ĉBn (1 − α))− P(Γ ∗

n ≤ ĉBn (1 − α)|Xn)
∣∣> (K/2)n−1/2

}
∪ {∣∣P(Γ ∗

n ≤ ĉBn (1 − α)|Xn)− (1 − α)∣∣> (K/2)n−1/2
} }

⊆

⎧⎪⎪⎨
⎪⎪⎩

sup
|h|≥μ

{∣∣P(Γn ≤ μ)− P(Γ ∗
n ≤ μ|Xn)

∣∣> (K/2)n−1/2
}

∪ {ĉBn (1 − α) < μ}
∪ {∣∣P(Γ ∗

n ≤ ĉBn (1 − α)|Xn)− (1 − α)∣∣> (K/2)n−1/2
}
⎫⎪⎪⎬
⎪⎪⎭ �

Therefore, ∀K > 0� ∀μ> 0, and ∀n ∈ N�

P
(∣∣P(ΘI ⊆ ĈBn (1 − α))− (1 − α)∣∣>Kn−1/2

)

≤

⎧⎪⎪⎨
⎪⎪⎩
P
(

sup
|h|≥μ

|P(Γn ≤ μ)− P(Γ ∗
n ≤ μ|Xn)|> (K/2)n−1/2

)
+ P(ĉBn (1 − α) < μ)

+ P(∣∣P(Γ ∗
n ≤ ĉBn (1 − α)|Xn)− (1 − α)∣∣> (K/2)n−1/2

)

⎫⎪⎪⎬
⎪⎪⎭ �

The right-hand side is a sum of three terms. For any arbitrary ε > 0� we now
show that ∃K > 0 and ∃N ∈ N such that, ∀n ≥ N� each of the terms in the
right-hand side is less than ε/3�

By Theorem A.7, ∃K > 0 such that, ∀μ > 0 and ∀n ∈ N� the first term is
less than ε/3� By arguments in Corollary 2.1, {ĉBn (1 − α) ≥ μ} w.p.a.1 and so,
∀μ> 0, ∃N ∈ N such that, ∀n≥N� the second term is less than ε/3� By Corol-
lary A.2, ∃K > 0 such that, ∀n ∈ N� the third term is less than ε/3�

As a consequence, ∀ε > 0� ∃K > 0, and ∃N ∈ N such that, ∀n≥N�

P
(∣∣P(ΘI ⊆ ĈBn (1 − α))− (1 − α)∣∣≤Kn−1/2

)≥ 1 − ε�
This conclusion can be extended ∀n ∈ N by an appropriate choice of K.

To conclude, since the event {|P(ΘI ⊆ ĈBn (1 − α)) − (1 − α)| ≤ Kn−1/2} is
nonstochastic, the previous derivation implies that the event must always oc-
cur. This completes the proof. Q.E.D.

Our confidence sets also exhibit desirable coverage properties when ΘI = ∅.
By construction, the smallest possible confidence set that could be constructed
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using the criterion function approach is Θ̂I(0)� The following lemma shows
that if ΘI = ∅, then the confidence set eventually coincides with Θ̂I(0) a.s.

LEMMA A.7: Assume Assumptions A1–A4 and CF′ and ΘI = ∅� Then,
∀α ∈ (0�1),

P
(
lim inf{ĈBn (1 − α)= Θ̂I(0)}

)= 1�

PROOF: By Theorem A.3, lim inf{Γ ∗
n = 0} a.s. or, equivalently, ∀α ∈ (0�1)�

lim inf{ĉBn (1 − α)= 0} a.s., completing the proof. Q.E.D.

A.5.2. Results Under Assumption CF′

In this subsection, we show how the results on the rates of convergence
change if we replace Assumption CF with Assumption CF′.

LEMMA A.8: (i) Let H̃ be the function in Theorem A.1 and assume that
ξ∼N(0�Ξ) with nonsingular Ξ ∈ Rρ×ρ. Then, ∀μ> 0,

sup
|h|≥μ

P
(
H̃(ξ) ∈ (

h− n−1/2�h+ n−1/2
])≤O(n−1/2(lnn)1/2

)
�

(ii) Let H̃ be the function in Theorem A.1 and let {ξn|Xn} ∼N(0�Ξn), where
Ξn ∈ Rρ×ρ is conditionally nonstochastic and nonsingular w.p.a.1. Then, ∀μ> 0�

sup
|h|≥μ

∣∣P(H̃(ξn) ∈ (h− εn�h+ εn]|Xn)
∣∣≤Op(n−1/2(lnn)1/2

)
�

PROOF: (i) Consider the derivation for εn = n−1/2:

sup
|h|≥μ

P(H̃(ξ) ∈ (h− εn�h+ εn])

= sup
|h|≥μ

P
(
ϑ ∈Ξ−1H̃−1({h}εn))

≤
{

sup
|h|≥μ

P
(
ϑ ∈ (

Ξ−1H̃−1({h}))O(εn√gn))
+ P(‖ϑ‖>O(√gn))

}
�

where ϑ∼N(0� Iρ)� Choose gn = ln(n(1+γ)) for some γ > 0� By Theorem A.2
and Corollary 3.2 in Bhattacharya and Rao (1976), the first term on the
right side is O(εn

√
gn)� By Theorem 1 in Hüsler, Liu, and Singh (2002),

P(‖ϑ‖ > O(√gn)) = o(εn√gn)� Since εn
√
gn = O(n−1/2(lnn)1/2)� the proof is

completed.
(ii) This follows from part (i) by using the same arguments as in Lem-

ma A.3. Q.E.D.
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The next theorem provides rates of convergence of the error in the coverage
probability under Assumption CF′.

THEOREM A.8: Assume Assumptions B1–B4 and CF′, and choose the boot-
strap procedure to be the one specialized for the conditionally separable model. If
ΘI �= ∅, then, ∀α ∈ (0�0�5)�∣∣P(ΘI ⊆ ĈBn (1 − α))− (1 − α)∣∣=O(n−1/2(lnn)1/2

)
�

The proof of the theorem follows from arguments used to prove Theorem
2.2 and Lemma A.8.

A.6. Alternative Procedures

A.6.1. Subsampling

We consider two subsampling procedures. The first procedure is, essentially,
the subsampling version of the bootstrap procedure proposed in Section 2.2.3
and is referred to as Subsampling 1. The second procedure is similar to the one
proposed by CHT and is referred to as Subsampling 2.

SUBSAMPLING 1: The procedure is as follows.
Step 1. Choose {bn}+∞

n=1 to be a positive sequence such that bn → +∞ and
bn/n = o(1), and choose {τn}+∞

n=1 to be a positive sequence such that τn/
√
n =

o(1) a.s. and
√

ln lnn/τn = o(1) a.s.
Step 2. Estimate the identified set with

Θ̂I(τn)=
{
θ ∈Θ :

{
En(mj(Z�θ))≤ τn/

√
n
}J
j=1

}
�

Step 3. Repeat the following procedure for s = 1�2� � � � � S. Construct a
subsample of size bn by sampling randomly without replacement from the
data. Denote these observations by {ZSS

i }bni=1 and, for every j = 1�2� � � � � J� let
ESS
bn�n
(mj(Z�θ))= b−1

n

∑bn
i=1mj(Z

SS
i � θ)� Compute,

Γ
SS1
bn�n

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
θ∈Θ̂I (τn)

G

⎛
⎝
{[√

bn
(
ESS
bn�n
(mj(Z�θ))− En(mj(Z�θ))

)]
+

× 1
[∣∣En(mj(Z�θ))∣∣≤ τn/√n]

}J
j=1

⎞
⎠ �

if Θ̂I(τn) �= ∅�
0� if Θ̂I(τn)= ∅�

Step 4. Let ĉSS1
bn�n
(1 − α) be the (1 − α) quantile of the distribution of Γ SS1

bn�n
�

simulated with arbitrary accuracy in the previous step. The (1 − α) confidence
set for the identified set is given by

Ĉ
SS1
bn�n
(1 − α)=

{
θ ∈Θ :G

({[√
nEn(mj(Z�θ))

]
+
}J
j=1

)≤ ĉSS1
bn�n
(1 − α)

}
�
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If the model is conditionally separable, we can consider a subsampling pro-
cedure specialized for this framework. In this case, the expression for Γ SS1

bn�n
in

Step 3 would be replaced by

Γ
SS1
bn�n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
θ∈Θ̂I (τn)

G

⎛
⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[√
bnp̂

SS
k

(
ESS
bn�n
(Yj|xk)

− En(Yj|xk)
)]

+
× 1

[∣∣p̂k(En(Yj|xk)−Mj�k(θ))
∣∣

≤ τn/√n
]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

J

j=1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

K

k=1

⎞
⎟⎟⎟⎟⎠ �

if Θ̂I(τn) �= ∅�
0� if Θ̂I(τn)= ∅�

where, ∀(j�k) ∈ {1� � � � �K} × {1� � � � � J}, we define p̂SS
k = b−1

n

∑bn
i=1 1[XSS

i = xk]
and ESS

bn�n
(Yj|xk)= (p̂SS

k bn)
−1
∑bn
i=1Y

SS
j�i 1[XSS

i = xk].
The following result is the representation result for this subsampling proce-

dure.

THEOREM A.9: (i) Assume Assumptions A1–A4 and CF′, and ΘI �= ∅. Then
Γ

SS1
bn�n

=H(vSS
bn�n
(mθ))+ δSS1

bn�n
� where the following conditions hold.

(a) For any ε > 0� limn→+∞ P∗(|δSS1
bn�n

|> ε|Xn)= 0 a.s.
(b) {vSS

bn�n
(mθ)|Xn} :Ωn → l∞J (Θ) is an empirical process that converges weakly

to the same Gaussian process as in Theorem A.1 i.o.p.
(c) H : l∞J (Θ)→ R is the same function as in Theorem A.1.

(ii) Let ρ denote the rank of the variance–covariance matrix of the vector
{{1[X = xk]Yj}Jj=1}Kk=1� If we assume Assumptions B1–B4 and CF, ΘI �= ∅, and
we choose the subsampling procedure to be the one specialized for the condition-
ally separable model, then Γ SS1

bn�n
= H̃(√bn(ESS

bn�n
(Z)− En(Z)))+ δ̃SS1

bn�n
� where the

following conditions hold:
(a) P(δ̃SS1

bn�n
= 0|Xn)= 1[δ̃SS1

bn�n
= 0] a.s. and lim inf{δ̃SS1

bn�n
= 0} a.s.

(b) {(ESS
bn�n
(Z)− En(Z))|Xn} :Ωn → Rρ is a zero-mean sample average of bn

observations sampled without replacement from a distribution with variance–
covariance matrix V̂ �Moreover, this distribution has finite third moments a.s. and
‖V̂ − Iρ‖ ≤Op(n−1/2).

(c) H̃ : Rρ → R is the same function as in Theorem A.1.
(iii) Assume Assumptions A1–A4 and CF′, andΘI = ∅� Then lim inf{P(Γ SS1

bn�n
=

0|Xn)= 1} a.s.

PROOF: This proof follows that for Theorem A.3 very closely. The only dif-
ference that is worthwhile to point out occurs in (i).

(i) In the proof of Theorem A.3, we used the CLT for bootstrapped em-
pirical processes applied to a P-Donsker class. We replace this step with the
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following one: By Theorem 3.6.13 and Example 3.6.14 in van der Vaart and
Wellner (1996), {vSS

bn�n
(mθ)

√
1 − bn/n|Xn} :Ωn → l∞J (Θ) converges weakly to a

tight Gaussian process i.o.p. Since bn/n = o(1)� Slutsky’s lemma implies that
the empirical process {vSS

bn�n
(mθ)|Xn} :Ωn → l∞J (Θ) also converges weakly to the

same tight Gaussian process i.o.p. The nature of the limiting process can be
characterized by considering its marginal distributions. By Theorem 2.2.1 of
Politis, Romano, and Wolf (1999), the tight limiting process is the one charac-
terized in Theorem A.1 i.p. Q.E.D.

As a consequence of the representation result, we can establish the consis-
tency of the subsampling approximation.

THEOREM A.10—Consistency of Subsampling 1 Excluding Zero: Assume
Assumptions A1–A4 and CF′.

(i) If ΘI �= ∅, then, ∀μ> 0 and ∀ε > 0�

lim
n→+∞

P∗
(

sup
|h|≥μ

∣∣∣P(Γ SS1
bn�n

≤ h|Xn

)− lim
m→+∞

P(Γm ≤ h)
∣∣∣≤ ε)= 1�

(ii) If ΘI = ∅, then

P
(

lim inf
{

sup
h∈R

∣∣∣P(Γ SS1
bn�n

≤ h|Xn

)− lim
m→+∞

P(Γm ≤ h)
∣∣∣= 0

})
= 1�

The proof of this theorem follows from the arguments used in the proof of
Theorem A.5. The previous result can be utilized to prove the consistency in
level of the subsampling approximation, Theorem 2.3, whose formulation is
given in the main text. The proof of Theorem 2.3 follows the arguments used
in the proof of Theorem 2.1.

The remaining results of this subsection have the objective of establishing
upper and lower bounds on the rates of convergence of the error in the cover-
age probability of the subsampling approximation. The next lemma establishes
an asymptotic expansion for the distribution of a multidimensional average of
subsampled observations.

LEMMA A.9: Assume Assumptions B1–B4 and CF, and that the distribution
of the vector {{1[X = xk]Yj}Jj=1}Kk=1 is strongly nonlattice. Then the conditional
distribution of {ESS

bn�n
(Z)− En(Z)}, defined as in Theorem A.9, satisfies the repre-

sentation

P
(√
bn
(
ESS
bn�n
(Z)− En(Z)

) ∈ S|Xn

)
=ΦIρ(S)+K1(S)b

−1/2
n +K2(S)bn/n+ op

(
b−1/2
n + bn/n

)
uniformly in S ∈ Cρ� where supS∈Cρ |K1(S)|<+∞ and supS∈Cρ |K2(S)|<+∞�
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PROOF: By assumption, the distribution of the vector {{1[X = xk]Yj}Jj=1}Kk=1

is strongly nonlattice which implies that the distribution of the vector {{1[X =
xk](Yj − E(Yj|xk))}Jj=1}Kk=1 is also strongly nonlattice.

According to Theorem A.9, {ESS
bn�n
(Z) − En(Z)} is the average of a ran-

dom sample extracted without replacement from observations that satisfy
BZ = {{1[X = xk](Yj − E(Yj|xk))}Jj=1}Kk=1� As a corollary, {ESS

bn�n
(Z)− En(Z)}

is the average of a random sample extracted without replacement from i.i.d.
observations of a strongly nonlattice distribution.

For any S ∈ Cρ� let Sn(S)= {x ∈ Rρ : (1 − bn/n)−1/2y ∈ S}. Notice that S ∈ Cρ
if and only if Sn(S) ∈ Cρ� By definition,

P
(√
bn
(
ESS
bn�n
(Z)− En(Z)

) ∈ S|Xn

)
= P(√bn(1 − bn/n)−1/2

(
ESS
bn�n
(Z)− En(Z)

) ∈ Sn(S)|Xn

)
�

Under the strongly nonlattice assumption, Babu and Singh (1985) provided
an Edgeworth expansion for averages of samples extracted without replace-
ment from a finite population. Using arguments in Bhattacharya and Rao
(1976), we show that this expansion has an error term that is op(b−1/2

n ) uni-
formly for a class of functions. We apply the expansion to the class of indicator
functions on the elements of Cρ� One of the leading terms of the expansion in
Babu and Singh (1985) is a function of sample moments. If we replace sam-
ple moments with population moments, we introduce an error term that is
Op(n

−1/2)= op(b−1/2
n )� uniformly in S ∈ Cρ� After this replacement, the Edge-

worth expansion is

P
(√
bn
(
ESS
bn�n
(Z)− En(Z)

) ∈ S|Xn

)
=ΦIρ(Sn(S))+ b−1/2

n K1(Sn(S))+ op
(
b−1/2
n

)
uniformly in S ∈ Cρ and where, ∀S̃ ∈ Cρ� K1(S̃) is given by

K1(S̃)=
∑

l∈{b∈Nρ:∑ρ
j=1 bj=3}

1∏
j=1�����ρ

lj!
E

( ∏
j=1�����ρ

(Zj − E(Zj))
lj

)

×
∫
y∈S̃

( ∏
j=1�����ρ

∂ljφIρ(y)

∂yj

)
dy�

Using change of variables and a Taylor expansion, we deduce that

b−1/2
n K1(Sn(S))= b−1/2

n K1(S)+ o
(
b−1/2
n

)
uniformly in S ∈ Cρ� Furthermore, since the normal distribution has finite ab-
solute moments of all orders, it follows that supS∈Cρ |K1(S)|<+∞�
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By applying change of variables and a Taylor expansion once again, we de-
duce that

ΦIρ(Sn(S))=ΦIρ(S)+K2(S)bn/n+ o(bn/n)

uniformly in S ∈ Cρ� where, ∀S̃ ∈ Cρ and denoting ϑ∼N(0� Iρ)� K2(S̃) is given
by

K2(S̃)= P(ϑ ∈ S̃)E(1 −ϑ′ϑ|ϑ ∈ S̃)�

Since the normal distribution has finite second moments, it follows that
supS∈Cρ |K2(S)|<+∞� Q.E.D.

The following lemma utilizes the previous result to establish an upper bound
in the error in this subsampling approximation.

LEMMA A.10: Assume Assumptions B1–B4 and CF, and that the distribution
of the vector {{1[X = xk]Yj}Jj=1}Kk=1 is strongly nonlattice.

(i) If ΘI �= ∅, then, ∀μ> 0,

sup
|h|≥μ

∣∣P(Γ SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h)∣∣≤Op(b−1/2
n + bn/n

)
�

(ii) If ΘI = ∅, then

P
(

lim inf
{

sup
h∈R

∣∣P(Γ SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h)∣∣= 0
})

= 1�

PROOF: (i) Consider the argument

sup
|h|≥μ

∣∣P(Γ SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h)∣∣

≤

⎧⎪⎨
⎪⎩

sup
|h|≥μ

∣∣∣P(Γ SS1
bn�n

≤ h|Xn)− lim
m→+∞

P(Γm ≤ h)
∣∣∣

+ sup
|h|≥μ

∣∣∣ lim
m→+∞

P(Γm ≤ h)− P(Γn ≤ h)
∣∣∣
⎫⎪⎬
⎪⎭ �

The right-hand side is a sum of two terms. In the proof of Theorem A.7, we
showed that the second term is Op(n−1/2)� Thus, to complete the proof of this
part, it suffices to show that the first term is Op(b−1/2

n + bn/n)�
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By Theorem A.1, limm→+∞P(Γm ≤ h) =ΦIρ(H̃
−1((−∞�h])). For any posi-

tive sequence {εn}+∞
n=1 that satisfies εn =O(n−1/2), consider the derivation

sup
|h|≥μ

(
P
(
Γ

SS1
bn�n

≤ h|Xn

)−ΦIρ

(
H̃−1((−∞�h])))

≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
|h|≥μ

∣∣∣P(√bn(ESS
bn�n
(Z)− En(Z)

) ∈ H̃−1((−∞�h+ εn])|Xn

)
−ΦIρ

(
H̃−1((−∞�h+ εn])

)∣∣∣+ P(∣∣δ̃SS1
bn�n

∣∣> εn|Xn

)
+ sup

|h|≥μ
ΦIρ

(
H̃−1((h− εn�h+ εn])

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
�

The upper bound is a sum of three terms. By Lemma A.9, the first term
is Op(b−1/2

n + bn/n)� by Theorem A.9, the second term is op(n−1/2), and
by Lemma A.6, the third term is Op(n−1/2)� Thus, the whole expression is
Op(b

−1/2
n + bn/n)� The proof of this part is completed by repeating the same

argument with P(Γ SS1
bn�n
> h|Xn) (instead of P(Γ SS1

bn�n
≤ h|Xn)).

(ii) This follows from the arguments used in the proof of Theorem A.7.
Q.E.D.

COROLLARY A.3: Assume Assumptions B1–B4 and CF, ΘI �= ∅, and that the
distribution of the vector {{1[X = xk]Yj}Jj=1}Kk=1 is strongly nonlattice. For any α ∈
(0�0�5)� let qSS1

bn�n
(1 − α)= P(Γ SS1

bn�n
≤ ĉSS1

bn�n
(1 − α)|Xn)� Then |qSS1

bn�n
(1 − α)− (1 −

α)| ≤ Op(b−1/2
n + bn/n)�

This proof follows the arguments used in Corollary A.2.
These results allow us to show an upper bound on the rate of convergence

of the error in the coverage probability, which is formulated in the main text.
The proof of Theorem 2.4 follows the arguments used in Theorem 2.2.
Theorem 2.4 describes the coverage properties of Subsampling 1 when

ΘI �= ∅� In the case when ΘI = ∅� the confidence sets constructed using Sub-
sampling 1 present the same coverage properties as shown for the bootstrap in
Lemma A.7.

As a corollary of Theorem 2.4, the subsampling size that minimizes the up-
per bound on the rate of convergence of the error in the coverage probability
is bn = O(n2/3)� which implies a rate of convergence of order n1/3. In the re-
mainder of this section, we show conditions under which this rate is the exact
rate of convergence of the error in the coverage probability.

We begin by establishing a useful property of the function associated to one
of the leading terms of the asymptotic expansion provided in Lemma A.9.

LEMMA A.11: For H̃ defined as in Theorem A.1, ϑ∼N(0� Iρ), and ∀γ > 0�
let hL and hH be such that P(H̃(ϑ) ≤ hL) = 0�72 and P(H̃(ϑ) ≤ hH) =
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1 − γ, and let Λ(γ) = {S ∈ Cρ :∃h ∈ [hL�hH] :S = {y ∈ Rρ : H̃(y) ≤ h}}. Then
the function K2 : Cρ → R defined in Lemma A.9 satisfies infS∈Λ(γ) |K2(S)|> 0.

PROOF: Fix γ > 0 arbitrarily and consider any S ∈ Λ(γ)� Since H̃ is homo-
geneous of degree β≥ 1� if y ∈ S� then, ∀λ ∈ [0�1]� λy ∈ S�

Case 1. ρ = 1� In this case, ∀S ∈ Λ(γ)� S = [−y1� y2] for some y1, y2 ∈
R+ ∩ {+∞}� Define Hγ ∈ R such that P(ϑ ∈ [−Hγ�Hγ]) = 1 − γ� It follows
immediately that, ∀[−y1� y2] ∈Λ(γ)� min{y1� y2} ≤Hγ� Define L ∈ R such that
P(ϑ ∈ [−L�+∞)) = 0�72 (or, equivalently, P(ϑ ∈ (−∞�L]) = 0�72). It fol-
lows immediately that, ∀[−y1� y2] ∈Λ(γ)� min{y1� y2} ≥L�

By symmetry in the formula, K2([−y1� y2])=K2([0� y1])+K2([0� y2])� Con-
sider the function f (y) = K2([0� y]) : R+ ∩ {+∞} → R� This function is
strictly increasing for y ≤ 1 and strictly decreasing for y ≥ 1. Moreover,
∀y ∈ (0�+∞)� f (y) > 0 and f (0) = f (+∞) = 0� Therefore, it follows that
infL≤y K2([0� y])= 0 and infL≤y≤Hγ K2([0� y]) = min{K2([0�L])�K2([0�
Hγ])}> 0� Therefore,

inf
S∈Λ(γ)

K2(S)

= inf
{{y1�y2}:[−y1�y2]∈Λ(γ)}

{
K2

([0�min{y1� y2}]
)+K2

([0�max{y1� y2}]
)}

≥ inf
L≤y≤Hγ

K2([0� y])+ inf
L≤y
K2([0� y])

= min
{
K2([0�L])�K2([0�Hγ])

}
�

If we set CA = min{K2([0�L])�K2([0�Hγ])} > 0� then ∃CA > 0 such that
infS∈Λ(γ) K2(S)≥ CA�

Case 2. ρ ≥ 2� To keep track of the dimension, denote ϑρ ∼ N(0� Iρ)� For
every ρ ≥ 2 and π ∈ [0�1]� let c(π�ρ) be (uniquely) defined by P(ϑ′

ρϑρ ≤
c(π�ρ))= π� Notice that c(π�ρ) is an increasing function of π and a decreas-
ing function of ρ� By definition, ∀S ∈ Λ(γ) and ∀ρ ≥ 2� P(ϑ′

ρϑρ ≤ c(P(ϑρ ∈
S)�ρ))= P(ϑρ ∈ S) and so it follows that

P
(
ϑρ ∈ {

S ∩ {
x ∈ Rρ :x′x > c(P(ϑρ ∈ S)�ρ)}})

= P(ϑρ ∈ {{S}c ∩ {
x ∈ Rρ :x′x≤ c(P(ϑρ ∈ S)�ρ)}})�

Based on this definitions, ∀S ∈Λ(γ) and ∀ρ≥ 2� consider the derivation

K2(S)=
∫
x∈S
(1 − x′x)dΦIρ(x)

≤

⎧⎪⎪⎨
⎪⎪⎩

∫
x∈{S∩{x′x≤c(P(ϑρ∈S)�ρ)}}

(1 − x′x)dΦIρ(x)

+
∫
x∈{S∩{x′x>c(P(ϑρ∈S)�ρ)}}

(
1 − c(P(ϑρ ∈ S)�ρ))dΦIρ(x)

⎫⎪⎪⎬
⎪⎪⎭
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=

⎧⎪⎪⎨
⎪⎪⎩

∫
x∈{S∩{x′x≤c(P(ϑρ∈S)�ρ)}}

(1 − x′x)dΦIρ(x)

+
∫
x∈{{S}c∩{x′x≤c(P(ϑρ∈S)�ρ)}}

(
1 − c(P(ϑρ ∈ S)�ρ))dΦIρ(x)

⎫⎪⎪⎬
⎪⎪⎭

≤ P(ϑρ ∈ S)E(1 −ϑ′
ρϑρ|ϑ′

ρϑρ ≤ c(P(ϑρ ∈ S)�ρ))�
Since c(P(ϑρ ∈ S)�ρ) is increasing in the first coordinate and ∀S ∈ Λ(γ)�

P(ϑρ ∈ S) ≥ 0�72� it follows that, ∀S ∈ Λ(γ) and ∀ρ ≥ 2� K2(S) ≤ P(ϑρ ∈
S)E(1 − ϑ′

ρϑρ|ϑ′
ρϑρ ≤ c(0�72�ρ))� To conclude the proof, it suffices to show

that, ∀ρ ≥ 2� infρ≥2 E(ϑ′
ρϑρ|ϑ′

ρϑρ ≤ c(0�72�ρ)) > 1� It can be verified that
E(ϑ′

ρϑρ|ϑ′
ρϑρ ≤ c(0�72�ρ)) is increasing in ρ and is greater than one of ρ= 2.

As a consequence, ∀ρ≥ 2� there exists CB > 0 such that supS∈Λ(γ) K2(S)≤ −CB�
To conclude the proof, defineC = min{CA�CB}> 0 and combine the findings

of both cases to deduce that infS∈Λ(γ) |K2(S)| ≥ C� Q.E.D.

The following lemma provides conditions under which the rate of conver-
gence of the subsampling approximation is exactly b−1/2

n + bn/n�

LEMMA A.12: Assume Assumptions B1–B4 and CF, and that the distribu-
tion of the vector {{1[X = xk]Yj}Jj=1}Kk=1 is strongly nonlattice. Furthermore, as-
sume that K1(H̃

−1((−∞� c∞(1 − α)])) > 0� where K1 : Cρ → R is defined as in
Lemma A.9, c∞(1 − α) is defined by P(H̃(ϑ)≤ c∞(1 − α))= (1 − α)� H̃ is the
function defined in Theorem A.1, and ϑ ∼ N(0� Iρ). If ΘI �= ∅, then, ∀ε > 0�
∃η> 0� ∃C > 0, and ∃N ∈ N such that, ∀n≥N ,

P
(

inf
h∈[c∞(1−α)−η�c∞(1−α)+η]

∣∣P(Γ SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h)∣∣
≥ C(b−1/2

n + bn/n
))

≥ 1 − ε�

PROOF: Fix μ> 0 arbitrarily. Consider, ∀h such that |h|>μ� the derivation

P
(
Γ

SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
P
(
Γ

SS1
bn�n

≤ h|Xn

)− P(H̃(√
bn(ESS

n (Z)− En(Z))
)≤ h|Xn

))
+
(
P
(
H̃
(√
bn(ESS

n (Z)− En(Z))
)≤ h|Xn

)− P(H̃(ϑ)≤ h)
)

+ (
P(H̃(ϑ)≤ h)− P(Γn ≤ h))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
�

where ϑ ∼ N(0� Iρ)� The right-hand side is a sum of three terms. By Theo-
rem A.9, the first term is op(n−1/2) uniformly in h ∈ R� By arguments used in
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Theorem A.7, the third term is Op(n−1/2)= op(b−1/2
n ) uniformly in |h| ≥ μ� Fi-

nally, using Lemma A.9, the second term can be expressed as

P
(
H̃
(√
bn(E

SS
n (Z)− En(Z))

)≤ h|Xn

)− P(H̃(ϑ)≤ h)
= P(√bn(ESS

n (Z)− En(Z)) ∈ H̃−1((−∞�h])|Xn

)
−ΦIρ

(
H̃−1((−∞�h]))

=K1

(
H̃−1((−∞�h]))b−1/2

n +K2

(
H̃−1((−∞�h]))bn/n

+ op
(
b−1/2
n + bn/n

)
uniformly in |h| ≥ μ�

If we combine the information from the three terms, we deduce the expres-
sion

P
(
Γ

SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h)
=K1

(
H̃−1((−∞�h]))b−1/2

n +K2

(
H̃−1((−∞�h]))bn/n

+ op
(
b−1/2
n + bn/n

)
uniformly in |h| ≥ μ�

By arguments in Corollary A.1, c∞(1 − α) > 0 and, therefore, ∃η′ > 0 such
that [c∞(1−α)−η′� c∞(1−α)+η′] ⊆ {h′ ∈ R : |h′| ≥ μ}� By the definition ofK1

and by properties of the function H̃, K1(H̃
−1((−∞�h])) is continuous ∀h ∈

{h′ ∈ R : |h′| ≥ μ}� Since K1(H̃
−1((−∞� c∞(1 − α)])) > 0� then, by continuity,

∃C1 > 0 and ∃η ∈ (0�η′) such that

inf
[c∞(1−α)−η�c∞(1−α)+η]

K1

(
H̃−1((−∞�h]))≥ C1�

By Lemma A.11, ∃C2 > 0 such that

inf
[c∞(1−α)−η�c∞(1−α)+η]

K2

(
H̃−1((−∞�h]))≥ C2�

Finally, let εn be defined as

εn = sup
[c∞(1−α)−η�c∞(1−α)+η]

∣∣∣∣∣∣∣

(
P
(
Γ

SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h))
− (
K1

(
H̃−1((−∞�h]))b−1/2

n

+K2

(
H̃−1((−∞�h]))bn/n)

∣∣∣∣∣∣∣ �

By definition, εn = op(b−1/2
n + bn/n)�
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Define C = min{C1�C2}/2> 0 and consider the derivation

P
(

inf
h∈[c∞(1−α)−η�c∞(1−α)+η]

∣∣P(Γ SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h)∣∣
≥ C(b−1/2

n + bn/n
))

≥ P
(

inf
{h∈[c∞(1−α)−η�c∞(1−α)+η]}

∣∣∣∣ K1

(
H̃−1((−∞�h]))b−1/2

n

+K2

(
H̃−1((−∞�h]))bn/n

∣∣∣∣+ εn
≥ C(b−1/2

n + bn/n
))

≥ P(εn ≥ −C(b−1/2
n + bn/n

))
�

Since εn = op(b−1/2
n +bn/n)� the right-hand side converges to 1. This concludes

the proof. Q.E.D.

LEMMA A.13: Assume Assumptions B1–B4 and CF. For any μL and μH such
that (μL�μH) ⊂ (μ�1)� let hL and hH be such that P(H̃(ϑ) ≤ hL) = μL and
P(H̃(ϑ)≤ hH)= μH , where H̃ is the function defined in Theorem A.1 and ϑ∼
N(0� Iρ). If (1 − α) ∈ (μL�μH)� then limn→+∞P(ĉ

SS1
bn�n
(1 − α) ∈ (hL�hH))= 1.

The proof follows from Lemma A.10 and the arguments used in Corol-
lary A.2.

The conclusion of this section is the following theorem, which establishes
that, under certain conditions, b−1/2

n + bn/n is the exact rate of convergence of
the error in the coverage probability for Subsampling 1.

THEOREM A.11: Assume Assumptions B1–B4 and CF, and that the distrib-
ution of the vector {{1[X = xk]Yj}Jj=1}Kk=1 is absolutely continuous with respect
to Lebesgue measure. Moreover, assume that K1(H̃

−1((−∞� c∞(1 − α)])) > 0�
whereK1 is the function defined in Lemma A.9, H̃ is the function defined in Theo-
rem A.1, and, for ϑ∼N(0� Iρ)� c∞(1−α) is defined by P(H̃(ϑ)≤ c∞(1−α))=
(1 − α). If ΘI �= ∅ and (1 − α) ∈ [0�72�1)� then ∃C > 0 and ∃N ∈ N such that,
∀n≥N , ∣∣P(ΘI ⊂ CSS1

bn�n
(1 − α))− (1 − α)∣∣>C(b−1/2

n + bn/n
)
�

PROOF: By Lemmas A.12 and A.13, ∀ε > 0� ∃η > 0� ∃C > 0, and ∃N1 ∈ N
such that, ∀n≥N1,

P
(

inf
h∈[c∞(1−α)−η�c∞(1−α)+η]

∣∣P(Γ SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h)∣∣
≥ 2C

(
b−1/2
n + bn/n

))
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≥ 1 − ε/2�
P
(
ĉ

SS1
bn�n
(1 − α) /∈ [c∞(1 − α)−η�c∞(1 − α)+η])≤ ε/2�

Therefore, we have the derivation

1 − ε/2 ≤ P
(

inf
h∈[c∞(1−α)−η�c∞(1−α)+η]

∣∣P(Γ SS1
bn�n

≤ h|Xn

)− P(Γn ≤ h)∣∣
≥ 2C

(
b−1/2
n + bn/n

))

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P
(∣∣P(Γ SS1

bn�n
≤ ĉSS1

bn�n
(1 − α)|Xn

)− P(Γn ≤ ĉSS1
bn�n
(1 − α))∣∣

≥ 2C
(
b−1/2
n + bn/n

))
+ P(ĉSS1

bn�n
(1 − α) /∈ [c∞(1 − α)−η�c∞(1 − α)+η])

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ P
(∣∣qSS1

bn�n
(1 − α)− P(ΘI ⊂ ĈSS1

bn�n
(1 − α))∣∣

≥ 2C
(
b−1/2
n + bn/n

))+ ε/2�

where qSS1
bn�n
(1 − α) = P(Γ SS1

bn�n
≤ ĉSS1

bn�n
(1 − α)|Xn) and P(ΘI ⊂ ĈSS1

bn�n
(1 − α)) =

P(Γn ≤ ĉSS1
bn�n
(1 −α))� From this derivation, we deduce that, ∀ε > 0� ∃C > 0 and

∃N1 ∈ N such that, ∀n≥N1,

P
(∣∣P(ΘI ⊂ ĈSS1

bn�n
(1 − α))− qSS1

bn�n
(1 − α)∣∣≥ 2C

(
b−1/2
n + bn/n

))
≥ 1 − ε�

By the result in Theorem A.9 and since α ∈ (0�0�5)� {qSS1
bn�n
(1 − α) > 0}

w.p.a.1. By properties of the function H̃� ∀h > 0� the function P(Γ SS1
bn�n

≤ h|Xn)

is a piecewise constant function. Since the distribution of {{1[X = xk]Yj}Jj=1}Kk=1
is absolutely continuous with respect to Lebesgue measure, then, for any full
rank matrix B� the distribution of Z that satisfies BZ = {{1[X = xk](Yj −
E(Yj|xk))}Jj=1}Kk=1 is also absolutely continuous with respect to the Lebesgue
measure. As a consequence, for any two different subsamples of size bn from
the sample, the value of ESS

bn�n
(Z) will not coincide a.s. and so ∀h> 0� the max-

imum jump size of the function P(Γ SS1
bn�n

≤ h|Xn) is the mutiplicative inverse of
the number of subsamples in the sample. By this argument,

P
(∣∣qSS1

bn�n
(1 − α)− (1 − α)∣∣≤ n−1/2

)≥ 1

[(
bn
n

)−1

≤ n−1/2

]
�

By properties of the combinatorial formula, there existsN2 such that, ∀n≥N2�
the right-hand side equals 1.
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Finally, there exists N3 such that, ∀n ≥ N3� 2C(b−1/2
n + bn/n) − n−1/2 ≥

C(b−1/2
n + bn/n)�

Combining all the findings, consider the following derivation. For every
ε > 0� ∃C > 0, and ∃N = max{N1�N2�N3} such that, ∀n≥N�

1 − ε ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P
({∣∣P(ΘI ⊂ ĈSS1

bn�n
(1 − α))− qSS1

bn�n
(1 − α)∣∣

≥ 2C
(
b−1/2
n + bn/n

)})
+ P({∣∣qSS1

bn�n
(1 − α)− (1 − α)∣∣≤ n−1/2

})− 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ P

⎛
⎜⎜⎜⎝

{∣∣P(ΘI ⊂ ĈSS1
bn�n
(1 − α))− qSS1

bn�n
(1 − α)∣∣

≥ 2C
(
b−1/2
n + bn/n

)}
∩ {∣∣qSS1

bn�n
(1 − α)− (1 − α)∣∣≤ n−1/2

}

⎞
⎟⎟⎟⎠

≤ P
⎛
⎜⎝
⎧⎪⎨
⎪⎩

∣∣P(ΘI ⊂ ĈSS1
bn�n
(1 − α))− qSS1

bn�n
(1 − α)∣∣

− ∣∣qSS1
bn�n
(1 − α)− (1 − α)∣∣

≥ 2C
(
b−1/2
n + bn/n

)− n−1/2 ≥ C(b−1/2
n + bn/n

)
⎫⎪⎬
⎪⎭
⎞
⎟⎠

≤ P
(∣∣P(ΘI ⊂ ĈSS1

bn�n
(1 − α))− (1 − α)∣∣≥ C(b−1/2

n + bn/n
))
�

Since the event inside the probability is nonrandom, then it must occur
∀n≥N . Q.E.D.

SUBSAMPLING 2: The procedure is as follows.
Step 1. Choose {bn}+∞

n=1 to be a positive sequence such that bn → +∞ and
bn/n= o(1) at polynomial rates. Choose {τn}+∞

n=1 to be a positive sequence such
that for some γ > 0� (ln lnbn)β/2+γτn

√
bn/n= o(1) a.s. and

√
ln lnn/τn = o(1)

a.s.
Step 2. Estimate the identified set with

Θ̂I(τn)=
{
θ ∈Θ :

{
En(mj(Z�θ))≤ τn/

√
n
}J
j=1

}
�

Step 3. Repeat the following procedure for s = 1�2� � � � � S: Construct a
subsample of size bn by sampling randomly without replacement from the
data. Denote these observations by {ZSS

i }bni=1 and, for every j = 1�2� � � � � J� let
ESS
bn�n
(mj(Z�θ))= b−1

n

∑bn
i=1mj(Z

SS
i � θ)� Compute

Γ
SS2
bn�n

=
⎧⎨
⎩

sup
θ∈Θ̂I (τn)

G
({[√

bn
(
ESS
bn�n
(mj(Z�θ))

)]
+
}J
j=1

)
� if Θ̂I(τn) �= ∅,

0� if Θ̂I(τn)= ∅.
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Step 4. Let ĉSS2
bn�n
(1 − α) be the (1 − α) quantile of the distribution of Γ SS2

bn�n
�

simulated with arbitrary accuracy in the previous step. The (1 − α) confidence
set for the identified set is given by

Ĉ
SS2
bn�n
(1 − α)= {

θ ∈Θ :G
({[√

nEn(mj(Z�θ))
]
+
}J
j=1

)≤ ĉSS2
bn�n
(1 − α)}�

Some comments are in order. Notice how the conditions over the sequences
{bn}+∞

n=1 and {τn}+∞
n=1 in Step 1 are stronger than those required for Subsam-

pling 1. As we soon show, under Assumptions A1–A4 and CF′,3 these re-
quirements are sufficient to deduce the consistency in level of Subsampling 2.
In particular, to make the restrictions on the sequence {τn}+∞

n=1 possible, it
is important to satisfy the polynomial requirements on the rate of growth
of the sequence {bn}+∞

n=1. To see why, note that if bn = n/√ln lnn (so that
bn/n= o(1) at a subpolynomial rate), there would be a contradiction between
(ln lnbn)β/2+γτn

√
bn/n= o(1) and

√
ln lnn/τn = o(1)� Furthermore, since this

procedure has no recentering term in Step 3, it is not possible to define a ver-
sion of this procedure that is specialized for the conditionally separable model.

The following lemma is an intermediate result regarding empirical processes
created from subsampled observations.

LEMMA A.14: For any positive sequence {γn}+∞
n=1 such that

√
ln lnbn/γn =

o(1)�

lim
n→+∞

P∗
(

sup
θ∈Θ

max
j=1�����J

∣∣√bn(ESS
bn�n
(mj(Z�θ))− En(mj(Z�θ))

)∣∣≤ γn|Xn

)
= 1 a.s.

PROOF: For any (θ� j) ∈ Θ × {1� � � � � J}� let vSS
bn�n
(mj�θ) = √

bn(E
SS
bn�n
(mj(Z�

θ)) − En(mj(Z�θ)))� By elementary derivations, it suffices to show that,
∀j = 1� � � � � J� limn→+∞ P∗(supθ∈Θ |vSS

bn�n
(mj�θ)| ≤ γn|Xn)= 1 a.s.

For any δ > 0� the compactness of Θ implies that there exists a finite collec-
tion of parameters of Θ� denoted by {θl}Ll=1� such that, ∀θ ∈Θ� ∃l ∈ {1� � � � �L}
that satisfies ‖θl − θ‖< δ� Therefore,

sup
θ∈Θ

∣∣vSS
bn�n
(mj�θ)

∣∣ ≤ max
l≤L

sup
{θ∈Θ:‖θl−θ‖≤δ}

∣∣vSS
bn�n
(mj�θ)− vSS

bn�n

(
mj�θl

)∣∣
+ max

l≤L

∣∣vSS
bn�n

(
mj�θl

)∣∣
≤ max

θ∈Θ
sup

{θ′∈Θ:‖θ′−θ‖≤δ}

∣∣vSS
bn�n
(mj�θ)− vSS

bn�n
(mj�θ′)

∣∣
+ max

l≤L

∣∣vSS
bn�n

(
mj�θl

)∣∣�
3If we replace Assumption CF′ by Assumption CF, then the conditions on the sequence {τn}+∞

n=1

can be replaced by τn
√
bn/n= o(1) a.s. and

√
ln lnn/τn = o(1) a.s.
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It then follows that, ∀ε > 0�

P∗
(

sup
θ∈Θ

∣∣vSS
bn�n
(mj�θ)

∣∣≤ γn|Xn

)

≥

⎧⎪⎪⎨
⎪⎪⎩
P∗
(

max
θ∈Θ

sup
{θ′∈Θ:‖θ′−θ‖≤δ}

∣∣vSS
bn�n
(mj�θ)− vSS

bn�n
(mj�θ′)

∣∣≤ ε|Xn

)

+
L∑
l=1

P∗(∣∣vSS
bn�n
(mj�θl )

∣∣≤ γn/2|Xn

)−L

⎫⎪⎪⎬
⎪⎪⎭ �

Thus, it suffices to show that, ∀j = 1� � � � � J, the following two statements hold:

∀θ ∈Θ� lim
n→+∞

P∗(∣∣vSS
bn�n
(mj�θ)

∣∣≤ γn/2|Xn

)= 1 a.s.�

lim
n→+∞

P∗
(

max
θ∈Θ

sup
{θ′∈Θ:‖θ′−θ‖≤δ}

∣∣vSS
bn�n
(mj�θ)− vSS

bn�n
(mj�θ′)

∣∣≤ ε|Xn

)
= 1 a.s.

We begin with the first statement. For any (j� θ) ∈ {1� � � � � J} ×Θ and con-
ditioning on the sample, b−1/2

n vSS
bn�n
(mj�θ) is the zero-mean average of ran-

dom variables sampled without replacement from the observations in the
sample. Following Joag-Dev and Proschan (1983), random sampling without
replacement produces negatively associated random variables. By Shao and
Su (1999), a random sample of negatively associated random variables sat-
isfies the LIL. By the LIL and

√
ln lnbn/γn = o(1)� it follows that, ∀(j� θ) ∈

{1� � � � � J} ×Θ,

lim inf
{∣∣vSS

bn�n
(mj�θ)

∣∣≤ γn/2|Xn

}
a.s.

which implies the first statement.
To show the second statement, we use Markov’s inequality and arguments in

the proof of Theorem 3.6.13 in van der Vaart and Wellner (1996). Q.E.D.

The following theorem is the representation result for the subsampling pro-
cedure under consideration.

THEOREM A.12: (i) Assume Assumptions A1–A4, CF′, and ΘI �= ∅. Then
Γ

SS2
bn�n

=H(vSS
bn�n
(mθ))+ δSS2

bn�n
� where the following conditions hold:

(a) For any ε > 0� limn→+∞ P∗(|δSS2
bn�n

|> ε|Xn)= 0 a.s.
(b) {vSS

bn�n
(mθ)|Xn} :Ωn → l∞J (Θ) is an empirical process that converges weakly

to the same Gaussian process as in Theorem A.1 i.o.p.
(c) H : l∞J (Θ)→ R is the same function as in Theorem A.1.

(ii) Let ρ denote the rank of the variance–covariance matrix of the vector
{{1[X = xk]Yj}Jj=1}Kk=1� If we assume Assumptions B1–B4 and CF, and ΘI �= ∅,
then, Γ SS2

bn�n
= H̃(√bn(ESS

bn�n
(Z)− En(Z)))+ δ̃SS2

bn�n
� where the following conditions

hold:
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(a) For some sequence {εn}+∞
n=1 such that εn = O(τn

√
bn/n)�

√
bnP(|δ̃SS2

bn�n
| >

εn|Xn)= o(1) a.s.
(b) {(ESS

bn�n
(Z)− En(Z))|Xn} :Ωn → Rρ is a zero-mean sample average of bn

observations sampled without replacement from a distribution with variance–
covariance matrix V̂ �Moreover, this distribution has finite third moments a.s. and
‖V̂ − Iρ‖ ≤Op(n−1/2).

(c) H̃ : Rρ → R is the same function as in Theorem A.1.
(iii) Assume Assumptions A1–A4 and CF′, andΘI = ∅. Then lim inf{P(Γ SS2

bn�n
=

0|Xn)= 1} a.s.

PROOF: (i) Let δSS2
bn�n

be defined as

δ
SS2
bn�n

= sup
θ∈Θ̂I (τn)

G
({[√

bnE
SS
bn�n
(mj(Z�θ))

]
+
}J
j=1

)−H(
vSS
bn�n
(mθ)

)
�

where H is the function defined in Theorem A.1 and, ∀(θ� j) ∈Θ× {1� � � � � J}�
ESS
bn�n
(mj(Z�θ)) = b−1

n

∑bn
i=1mj(Z

SS
i � θ), v

SS
bn�n
(mj�θ) = √

bn(E
SS
bn�n
(mj(Z�θ)) −

En(mj(Z�θ))), and vSS
bn�n
(mθ) = {vSS

bn�n
(mj�θ)}Jj=1� The empirical process

vSS
bn�n
(mθ) and the function H satisfy all the requirements of the theorem, so

it suffices to show that, ∀ε > 0� P∗(|δSS2
bn�n

|> ε|Xn)= o(1) a.s. This is the objec-
tive of the rest of this part.

For any ε≥ 0� letΘI(ε)= {θ ∈Θ : {En(mj(Z�θ))≤ ε}Jj=1}, and for any γ > 0�
let An be the event

An =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
sup
θ∈Θ

max
j=1�����J

∣∣vSS
bn�n
(mj�θ)

∣∣≤ (ln lnbn)1/2+γ/β
}

∩
{

sup
θ∈Θ

max
j=1�����J

|vn(mj�θ)| ≤ τn
}

∩ {ΘI ⊆ Θ̂I(τn)⊆ΘI(τn
√
bn)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
�

where β is the degree of homogeneity of the function G in Assumption CF′.
Fix ε > 0 and consider the derivation

P∗(∣∣δSS2
bn�n

∣∣> ε|Xn

)
= P∗({∣∣δSS2

bn�n

∣∣> ε}∩An|Xn

)+ P∗({∣∣δSS2
bn�n

∣∣> ε}∩ {An}c|Xn

)
≤ P∗({∣∣δSS2

bn�n

∣∣> ε}∩An|Xn

)+ P∗({An}c|Xn)�

By the LIL and Lemmas 2.1 and A.14, it follows that P∗({An}c|Xn) = o(1)
a.s. To complete the proof of part (i), it suffices to show that P∗(|δSS2

bn�n
| >

ε|Xn ∩An)= o(1) a.s. The strategy to complete this step is to define two ran-
dom variables, ηLn and ηHn � and show that, conditionally on {Xn ∩ An}, they
(eventually) constitute lower and upper bounds of δSS2

bn�n
� respectively, and that
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they satisfy P∗(ηLn <−ε|Xn ∩An)= o(1) a.s. and P∗(ηHn > ε|Xn ∩An)= o(1)
a.s.

Step 1. Upper bound. Define ηHn as

ηHn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
θ∈ΘI(τn

√
bn/n)

G
({[
vSS
bn�n
(mj�θ)+ τn

√
bn/n

]
+

× 1
[
E(mj(Z�θ))≥ −1/ lnbn

]}J
j=1

)
− sup
θ∈ΘI
G
({[
vSS
bn�n
(mj�θ)

]
+1
[
E(mj(Z�θ))= 0

]}J
j=1

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
�

We now show that, conditionally onAn� ∃N ∈ N such that, ∀n≥N� δSS
bn�n

≤ ηHn �
For any θ ∈ Θ̂I(τn)� consider the derivation

[√
bnE

SS
bn�n
(mj(Z�θ))

]
+

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
vSS
bn�n
(mj�θ)+

√
bn/n

√
nEn(mj(Z�θ))

]
+

× 1
[
E(mj(Z�θ))≥ −1/ lnbn

]
+ [
vSS
bn�n
(mj�θ)+

√
bn/nvn(mj�θ)+

√
bnE(mj(Z�θ))

]
+

× 1
[
E(mj(Z�θ))≤ −1/ lnbn

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤

⎧⎪⎨
⎪⎩
[
vSS
bn�n
(mj�θ)+ τn

√
bn/n

]
+1
[
E(mj(Z�θ))≥ −1/ lnbn

]
+ [
vSS
bn�n
(mj�θ)+

√
bn/nτn − √

bn/ lnbn
]
+

× 1
[
E(mj(Z�θ))≤ −1/ lnbn

]
⎫⎪⎬
⎪⎭ �

Conditionally on An and since τn
√
bn/n = o(1), ∃N ∈ N such that, ∀n ≥ N ,

{vSS
bn�n
(mj�θ)+ τn

√
bn/n− √

bn/ lnbn < 0}� Thus, ∃N ∈ N such that, ∀n≥N ,

sup
θ∈Θ̂I (τn)

G
({[√

bnE
SS
bn�n
(mj(Z�θ))

]
+
}J
j=1

)

≤ sup
θ∈Θ̂I (τn)

G
({[
vSS
bn�n
(mj�θ)+ τn

√
bn/n

]
+

× 1
[
E(mj(Z�θ))≥ −1/ lnbn

]}J
j=1

)
�

Finally, to complete the step, notice that, conditional on An� Θ̂I(τn) ⊆
ΘI(τn

√
bn/n)� From this, it follows that, conditionally on An� ∃N ∈ N such

that, ∀n≥N� δSS
bn�n

≤ ηHn �
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The next step is to show that P∗(ηHn > ε|Xn ∩An) = o(1) a.s. Notice that
ηHn = ηH1

n +ηH2
n +ηH3

n � where ηH1
n , ηH2

n , and ηH3
n are defined as

ηH1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
θ∈ΘI(τn

√
bn/n)

G
({[
vSS
bn�n
(mj�θ)+ τn

√
bn/n

]
+

× 1
[
E(mj(Z�θ))≥ −1/ lnbn

]}J
j=1

)
− sup
θ∈ΘI
G
({[
vSS
bn�n
(mj�θ)+ τn

√
bn/n

]
+

× 1
[
E(mj(Z�θ))≥ −1/ lnbn

]}J
j=1

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
�

ηH2
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
θ∈ΘI
G
({[
vSS
bn�n
(mj�θ)+ τn

√
bn/n

]
+

× 1
[
E(mj(Z�θ))≥ −1/ lnbn

]}J
j=1

)
− sup
θ∈ΘI
G
({[
vSS
bn�n
(mj�θ)+ τn

√
bn/n

]
+

× 1
[
E(mj(Z�θ))= 0

]}J
j=1

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
�

ηH3
n =

⎧⎪⎨
⎪⎩

sup
θ∈ΘI
G
({[
vSS
bn�n
(mj�θ)+ τn

√
bn/n

]
+1
[
E(mj(Z�θ))= 0

]}J
j=1

)
− sup
θ∈ΘI
G
({[
vSS
bn�n
(mj�θ)

]
+1
[
E(mj(Z�θ))= 0

]}J
j=1

)
⎫⎪⎬
⎪⎭ �

It is then sufficient to show that, ∀i = 1�2�3� P∗(|ηHin |> ε/3|Xn ∩An)= o(1)
a.s. We only do this for i= 3� because the arguments for i= 1�2 are identical
to those used in the proof of Theorem A.3. To prove the argument for i = 3�
notice that

|ηH3
n | ≤ sup

θ∈Θ
sup
s∈{0�1}J

∣∣∣G({[vSS
bn�n
(mj�θ)+ τn

√
bn/n

]
+sj

}J
j=1

)

−G({[vSS
bn�n
(mj�θ)

]
+sj

}J
j=1

)∣∣∣�
Conditionally on An� we know that {‖vSS

bn�n
(mj�θ)‖ < (ln lnbn)1/2+γ} and since

(ln lnbn)β/2+γτn
√
bn/n = o(1) a.s., it is sufficient to show that ∃K > 0� such

that, ∀δ ∈ (0�1) and ∀B > 1�

sup
{x∈RJ :‖x‖<B}

sup
{y∈RJ :‖x−y‖≤δ}

sup
s∈{0�1}J

∣∣G({[xj]+sj}Jj=1

)−G({[yj]+sj}Jj=1

)∣∣
≤ δBβK�

In particular, we will show the result for K = 3βG({1}Jj=1)� To this end, fix
δ ∈ (0�1) and B > 1, and make arbitrary choices of s ∈ {0�1}J� x ∈ {x′ ∈ RJ :
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‖x′‖<B}, and y ∈ {y ′ ∈ RJ :‖x− y ′‖ ≤ δ}. To complete the proof, it suffices to
verify that∣∣G({[xj]+sj}Jj=1

)−G({[yj]+sj}Jj=1

)∣∣≤ δBβ3βG({1}Jj=1)�

If y = x� this inequality is trivially satisfied, so we assume that y �= x� In
this case, we set w = y + (y − x)/‖y − x‖� and so {‖w‖ ≤ 3B} and y =
x/(1 + ‖y − x‖)+ w‖y − x‖/(1 + ‖y − x‖)� By properties inherited from G�
the function G({[xj]+sj}Jj=1) : RJ → R+ is nonnegative, weakly convex, weakly
increasing, and homogeneous of degree β. Therefore, consider the derivation

G
({[yj]+sj}Jj=1

)−G({[xj]+sj}Jj=1

)
≤ 1

1 + ‖y − x‖G
({[xj]+sj}Jj=1

)+ ‖y − x‖
1 + ‖y − x‖G

({[wj]+sj}Jj=1

)
−G({[xj]+sj}Jj=1

)
≤ ‖y − x‖(G({[wj]+sj}Jj=1

)−G({[xj]+sj}Jj=1

))
≤ (

3βG({1}Jj=1)
)
δBβ�

The step is completed by reversing the roles of x and y�
Step 2. Lower bound. Define

ηLn =

⎧⎪⎨
⎪⎩

sup
θ∈ΘI
G
({[
vSS
bn�n
(mj�θ)− τn

√
bn/n

]
+1
[
E(mj(Z�θ))= 0

]}J
j=1

)
− sup
θ∈ΘI
G
({[
vSS
bn�n
(mj�θ)

]
+1
[
E(mj(Z�θ))= 0

]}J
j=1

)
⎫⎪⎬
⎪⎭ �

We now show that, conditionally on An� δSS
bn�n

≥ ηLn � First, notice that, condi-
tionally on An� ΘI ⊆ Θ̂I(τn)� Second, ∀θ ∈ΘI� consider the derivation

[√
bnE

SS
bn�n
(mj(Z�θ))

]
+

= [
vSS
bn�n
(mj�θ)+ vn(mj(Z�θ))

√
bn/n+ √

nE(mj(Z�θ))
]
+

≥ [
vSS
bn�n
(mj�θ)+ vn(mj(Z�θ))

√
bn/n

]
+1
[
E(mj(Z�θ))= 0

]
≥ [
vSS
bn�n
(mj�θ)− τn

√
bn/n

]
+1
[
E(mj(Z�θ))= 0

]
�

The combination of these two implies the result.
To complete this step, we need to show that P∗(ηLn > ε|Xn ∩An)= o(1) a.s.

This follows from the arguments used in the previous step.
(ii) By applying arguments used in the proof of Theorem A.3, it follows that

Γ
SS2
bn�n

= H̃(√bn(ESS
bn�n
(Z) − En(Z))) + δ̃SS2

bn�n
, where H̃ and {ESS

bn�n
(Z) − En(Z)}



BOOTSTRAP INFERENCE IN PARTIALLY IDENTIFIED MODELS 59

are the terms required by the theorem. To complete this part, it suffices to
show that ∃C > 0 such that

√
bnP(|δ̃SS2

bn�n
|>Cτn

√
bn/n|Xn)= o(1) a.s.

For every ε≥ 0� letΘI(ε)= {θ ∈Θ : {{pk(E(Yj|xk)−Mj(θ�xk))≤ ε}Jj=1}Kk=1}�
let the sequence {εn}+∞

n=1 be such that (τn/
√
n)ε−1

n = o(1) and εn = o(1) a.s., and
let An be defined as

An =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{{∣∣√np̂k(En(Yj|xk)− E(Yj|xk))
∣∣≤ τn}Jj=1

}K
k=1

∩ {ΘI ⊆ Θ̂I(τn)⊆ΘI(εn)} ∩ {p̂k > pL/2}Kk=1

∩ {|√bn(p̂SS
k − p̂k)|< b3/8

n

}K
k=1

∩ {p̂SS
k > pL/2}Kk=1

∩ {{∣∣√bnp̂SS
k

(
ESS
bn�n
(Yj|xk)− En(Yj|xk)

)∣∣< b3/8
n

}J
j=1

}K
k=1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
�

For every C > 0� consider the derivation

P
(∣∣δ̃SS2

bn�n

∣∣>Cτn√bn/n|Xn

)
=
{

P
({∣∣δ̃SS2

bn�n

∣∣>Cτn√bn/n}∩An|Xn

)
+ P({∣∣δ̃SS2

bn�n

∣∣>Cτn√bn/n}∩ {An}c|Xn

)
}

≤ P(∣∣δ̃SS2
bn�n

∣∣>Cτn√bn/n|Xn ∩An
)+ P({An}c|Xn)�

Thus, it suffices to show that the two terms on the right-hand side are o(1) a.s.
Step 1. Show that

√
bnP({An}c|Xn) = o(1) a.s. By elementary properties, it

follows that

√
bnP({An}c|Xn)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
bnP

⎛
⎜⎝
⎧⎪⎨
⎪⎩
{∣∣√np̂k(En(Yj|xk)− E(Yj|xk))

∣∣≤ τn}
∩ {ΘI ⊆ Θ̂I(τn)⊆ΘI(εn)}

∩ {p̂k > pL/2}Kk=1

⎫⎪⎬
⎪⎭
c ∣∣∣∣Xn

⎞
⎟⎠

+
J∑
j=1

K∑
k=1

P
(|√bnp̂SS

k

(
ESS
bn�n
(Yj|xk)− En(Yj|xk)

)∣∣≥ b3/8
n |Xn

)

+
K∑
k=1

√
bnP

(|√bn(p̂SS
k − p̂k)| ≥ b3/8

n |Xn

)

+
K∑
k=1

√
bnP(p̂

SS
k ≤ pL/2|Xn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
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By the LIL and Lemma 2.1, it follows that

lim inf

⎧⎪⎨
⎪⎩P

⎛
⎜⎝
⎧⎪⎨
⎪⎩
{∣∣√np̂k(En(Yj|xk)− E(Yj|xk))

∣∣≤ τn}
∩ {ΘI ⊆ Θ̂I(τn)⊆ΘI(εn)}

∩ {p̂k > pL/2}Kk=1

⎫⎪⎬
⎪⎭
c ∣∣∣∣Xn

⎞
⎟⎠= 0

⎫⎪⎬
⎪⎭
a.s.

By Shao and Su (1999), ∀(j�k) ∈ {1� � � � � J}×{1� � � � �K}� E(√bnp̂SS
k (E

SS
bn�n
(Yj|

xk)− En(Yj|xk))2|Xn) is bounded by the same expression except that the sam-
pling is done with replacement (as in the bootstrap) rather than without re-
placement (as in subsampling). By the SLLN, this alternative bound is finite
a.s. Therefore, by Markov’s inequality, we deduce that, ∀(j�k) ∈ {1� � � � � J} ×
{1� � � � �K}�√bnP(|

√
bnp̂

SS
k (E

SS
bn�n
(Yj|xk)−En(Yj|xk))| ≥ b3/8

n |Xn)= o(1) a.s. By
a similar argument, ∀k ∈ {1� � � � �K}� it follows that

√
bnP(

√
bn|p̂SS

k − p̂k| ≥
b3/8
n |Xn) = o(1) a.s., which, in turn, also implies that

√
bnP(p̂

SS
k ≤ pL/2|Xn) =

o(1) a.s. The combination of these findings completes this step.
Step 2. Show that

√
bnP(|δ̃SS

bn�n
|> Cτn

√
bn/n|Xn ∩An)= o(1) a.s. The strat-

egy to complete this step is to define two random variables, ηLn and ηHn � and
show that, conditionally on {Xn ∩An}, they (eventually) constitute lower and
upper bounds of Γ SS2

bn�n
� respectively, and that they satisfy

max

{
ηHn − H̃(√

bn
(
ESS
bn�n
(Z)− En(Z)

))
�

H̃
(√
bn
(
ESS
bn�n
(Z)− En(Z)

))−ηLn

}
<Cτn

√
bn/n�

Step 2.1. Upper bound. Define

ηHn = sup
θ∈ΘI
G

⎛
⎜⎜⎝
⎧⎪⎨
⎪⎩
⎧⎪⎨
⎪⎩

[√
bnp̂

SS
k

(
ESS
bn�n
(Yj|xk)− En(Yj|xk)

)
+ τn

√
bn/n

]
+

× 1
[
pk(E(Yj|xk)−Mj(θ�xk))= 0

]
⎫⎪⎬
⎪⎭
J

j=1

⎫⎪⎬
⎪⎭
K

k=1

⎞
⎟⎟⎠ �

We now show that, conditional on {Xn ∩ An}� ∃N ∈ N such that, ∀n ≥ N�
Γ

SS2
bn�n

≤ ηHn a.s. To show this, notice that

Γ
SS2
bn�n

= sup
θ∈Θ̂I (τn)

G
({{[[√

bnp̂
SS
k

(
ESS
bn�n
(Yj|xk)−Mj(θ�xk)

)]
+

× 1
[
p̂k(En(Yj|xk)−Mj(θ�xk))≥ −1/ lnbn

]
+ [√

bnp̂
SS
k

(
ESS
bn�n
(Yj|xk)−Mj(θ�xk)

)]
+

× 1
[
p̂k(En(Yj|xk)−Mj(θ�xk)) <−1/ lnbn

]]
+

}J
j=1

})
�
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Conditioning on An and on {p̂k(En(Yj|xk) − Mj(θ�xk)) < −1/ lnbn}, then
{√bnp̂SS

k (E
SS
bn�n
(Yj|xk) − Mj(θ�xk)) ≤ b3/8

n − (pL/2)
√
bn/ lnbn} and ∃N ∈ N

such that, ∀n ≥ N� {b3/8
n − (pL/2)

√
bn/ lnbn < 0}� Also, conditionally on An,

{|√bnp̂SS
k (En(Yj|xk) − Mj(θ�xk))| ≤ τn

√
bn/n}� Thus, conditionally on An�

∃N ∈ N such that, ∀n≥N�
Γ

SS2
bn�n

≤ sup
θ∈Θ̂I (τn)

G
({{[[√

bnp̂
SS
k

(
ESS
bn�n
(Yj|xk)− En(Yj|xk)

)+ τn
√
bn/n

]
+

× 1
[
p̂k(En(Yj|xk)−Mj(θ�xk))≥ −(lnbn)−1]]

+

}J
j=1

}K
k=1

)
By applying arguments used in the proof of Theorem A.3 (ii)(c) to the right-

hand side of the previous inequality, it follows that, conditionally on {Xn∩An}�
∃N ∈ N such that, ∀n≥N , Γ SS2

bn�n
≤ ηHn a.s.

Step 2.2. Lower bound. Define

ηLn = sup
θ∈ΘI
G

⎛
⎜⎜⎝
⎧⎪⎨
⎪⎩
⎧⎪⎨
⎪⎩

[√
bnp̂

SS
k

(
ESS
bn�n
(Yj|xk)− En(Yj|xk)

)
− τn

√
bn/n

]
+

× 1
[
pk(E(Yj|xk)−Mj(θ�xk))= 0

]
⎫⎪⎬
⎪⎭
J

j=1

⎫⎪⎬
⎪⎭
K

k=1

⎞
⎟⎟⎠ �

Analogous arguments to those used for the upper bound imply that, condi-
tional on {Xn ∩An}� ∃N ∈ N such that, ∀n≥N , Γ SS2

bn�n
≥ ηLn a.s.

Step 2.3. Use the bounds. Let us denote Γ̃ SS2
bn�n

= H̃(√bn(ESS
bn�n
(Z)− En(Z)))�

By Steps 2.1 and 2.2, it follows that, conditionally on {Xn ∩ An}� ∃N ∈ N

such that, ∀n≥N� δ̃SS
bn�n

≤ max{ηHn − Γ̃ SS2
bn�n
� Γ̃

SS2
bn�n

− ηLn } a.s. By Assumption CF,
∀x ∈ RJ and ∀ε > 0� ∃C > 0 such that ‖G(x+ ε)−G(x)‖ ≤ Cε. Therefore, it
follows that max{ηHn − Γ̃ SS2

bn�n
� Γ̃

SS2
bn�n

−ηLn } ≤ Cτn
√
bn/n. This concludes the part.

(iii) This follows from the same arguments used in the proof of Theo-
rem A.3. Q.E.D.

As a consequence of the representation result, we can establish the consis-
tency in level of this subsampling approximation.

THEOREM A.13 —Consistency in Level—Subsampling 2: Assume Assump-
tions A1–A4 and CF. If ΘI �= ∅, then, ∀α ∈ (0�0�5)�

lim
n→∞

P
(
ΘI ⊆ ĈSS2

bn�n
(1 − α))= (1 − α)�

The proof of the theorem follows from arguments used in the proof of The-
orem 2.1.

In the remainder of this section, we use the representation result and
Lemma A.9 to establish an upper bound in the error of this subsampling ap-
proximation.
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LEMMA A.15: Assume Assumptions B1–B4 and CF, and that the distribution
of the vector {{1[X = xk]Yj}Jj=1}Kk=1 is strongly nonlattice.

(i) If ΘI �= ∅, then, ∀μ> 0,

sup
|h|≥μ

∣∣P(Γ SS2
bn�n

≤ h|Xn

)− P(Γn ≤ h)| ≤Op
(
b−1/2
n + τn

√
bn/n

)
�

(ii) If ΘI = ∅, then

P
(

lim inf
{

sup
h∈R

∣∣P(Γ SS2
bn�n

≤ h|Xn

)− P(Γn ≤ h)∣∣= 0
})

= 1�

PROOF: The argument in this proof is exactly the same as that used in
Lemma A.10. The only difference is that the sequence {εn}+∞

n=1 that satis-
fied εn = O(n−1/2) is replaced by a positive sequence {εn}+∞

n=1 that satisfies
εn = O(τn

√
bn/n) and so

√
bnP(|δ̃SS2

bn�n
| > εn|Xn) = o(1) a.s. After this substi-

tution, sup|h|≥μ ΦIρ(H̃
−1((h− εn�h+ εn]))=Op(τn

√
bn/n) and, thus, this term

becomes one of the leading terms of the approximation. Q.E.D.

The next step is to establish the rate of convergence of the approximation
of the quantiles along the lines of Corollary A.3. We skip the formulation be-
cause it is identical to that in the corollary, except for the rate, which is now
Op(b

−1/2
n + τn

√
bn/n)� Once this result is obtained, we can provide an upper

bound on the rate of convergence of the error in the coverage probability for
this subsampling approximation.

THEOREM A.14—ECP—Subsampling 2: Assume Assumptions B1–B4 and CF,
and that the distribution of the vector {{1[X = xk]Yj}Jj=1}Kk=1 is strongly nonlattice.
If ΘI �= ∅, then, ∀α ∈ (0�0�5)�∣∣P(ΘI ⊆ ĈSS2

bn�n
(1 − α))− (1 − α)∣∣=O(b−1/2

n + τn
√
bn/n

)
�

The proof of the theorem follows arguments used in the proof of Theo-
rem 2.2.

Theorem A.14 describes the coverage properties of Subsampling 2 when
ΘI �= ∅� In the case when ΘI = ∅� the confidence sets constructed using Sub-
sampling 2 present the same coverage properties as those shown for the boot-
strap in Lemma A.7.

The subsampling size that minimizes the upper bound on the rate of
convergence of the error in the coverage probability of Subsampling 2 is
bn =O(√n/τn), which produces an upper bound on the rate of convergence
of order τ1/2

n n
−1/4� As a consequence, the minimum upper bound on the rate of

convergence of the error in the coverage probability of Subsampling 2 is larger
than the minimum upper bound on the rate of convergence of the error in the
coverage probability of Subsampling 1.
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Moreover, the next lemma provides conditions under which the rate ob-
tained in Theorem A.14 is not just an upper bound, but the exact rate of con-
vergence of the error in coverage probability of Subsampling 2. Since this rate
is worse than the upper bound on the rate of convergence of the error in cov-
erage probability of Subsampling 1, we deduce that, in certain situations, infer-
ence based on Subsampling 1 is eventually more precise than inference based
on Subsampling 2.

LEMMA A.16: Suppose that the identified set is given by ΘI = {θ ∈Θ : E(Y)−
θ ≤ 0}� where Y has a distribution that is continuous with respect to Lebesgue
measure and E((Y − E(Y))3) < 0� For any α ∈ (0�0�5), ∃C > 0 and ∃N ∈ N�
such that, ∀n≥N�∣∣P(ΘI ⊆ CSS2

bn�n
(1 − α))− (1 − α)∣∣>C(b−1/2

n + τn
√
bn/n

)
�

PROOF: The statistic of interest is given by Γn = [√n(En(Y) − E(Y))]+.
Thus, for any h ≥ 0� P(Γn ≤ h) = P(

√
n(En(Y) − E(Y)) ≤ h) and, by the

Berry–Esseén theorem, P(Γn ≤ h) =Φ(h)+ o(bn−1/2) uniformly in h ≥ 0� By
direct computation, Γ SS2

bn�n
= [√bn(ESS

bn�n
(Y)− En(Y))+ τn

√
bn/n]+�

For any h ≥ 0 and any nonnegative sequence {an}+∞
n=1 such that an = o(1)�

Lemma A.9 implies the derivation

P
([√
bn
(
ESS
bn�n
(Y)− En(Y)

)+ an
]
+ ≤ h|Xn

)
= P(√bn(ESS

bn�n
(Y)− En(Y)

)≤ h− an|Xn

)
=Φ(h− an)+ K̃1(h− an)b−1/2

n + K̃2(h− an)bn/n
+ op

(
b−1/2
n + bn/n

)
uniformly in h≥ 0� where, ∀s ∈ R� K̃1(s) and K̃2(s) are the univariate versions
of the functions K1(s) and K2(s) defined in Lemma A.9, which are given by

K̃1(s)= E
(
(Y − E(Y))3/3!)(s2/

√
2π)exp(−s2/2)�

K̃2(s)=Φ(h)+ s/
√

2π exp(−s2/2)�

Since an = o(1)� a Taylor expansion combined with properties of the func-
tions K̃1, K̃2� Φ, and φ implies that

K̃1(h− an)b−1/2
n + K̃2(h− an)bn/n

= K̃1(h)b
−1/2
n + K̃2(h)bn/n+ o(b−1/2

n + bn/n
)
�

Φ(h− an)=Φ(h)− anφ(h)+ o(an)
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and both hold uniformly in h ∈ R� Therefore, it follows that

P
([√
bn
(
ESS
bn�n
(Y)− En(Y)

)+ an
]
+ ≤ h|Xn

)
= P(Γn ≤ h)− anφ(h)+ o(an)+ K̃1(h)b

−1/2
n + K̃2(h)bn/n

+ op
(
b−1/2
n + bn/n

)
uniformly in h≥ 0� If we apply the previous result to an = τn

√
bn/n, we deduce

that

P
(
Γ

SS2
bn�n

≤ h|Xn

) = P(Γn ≤ h)− τn
√
bn/nφ(h)+ K̃1(h)b

−1/2
n

+ op
(
b−1/2
n + τn

√
bn/n

)
uniformly in h≥ 0� With this asymptotic representation, we can follow the ar-
guments used in the proof of Theorem A.11 to complete the proof. Q.E.D.

To conclude, the following lemma shows that the confidence sets constructed
using Subsampling 2 present very desirable coverage properties when ΘI = ∅.

LEMMA A.17: Assume Assumptions A1–A4 and CF′, and ΘI = ∅� Then,
∀α ∈ (0�1),

P
(
lim inf

{
C

SS2
bn�n
(1 − α)= Θ̂I(0)

})= 1�

The proof follows the arguments used in Lemma A.7.

A.6.2. Asymptotic Approximation

We consider the following asymptotic approximation to perform inference.
Step 1. Choose {τn}+∞

n=1 to be a positive sequence such that τn/
√
n= o(1) a.s.

and
√

ln lnn/τn = o(1) a.s.
Step 2. Estimate the identified set with

Θ̂I(τn)=
{
θ ∈Θ :

{
En(mj(Z�θ))≤ τn/

√
n
}J
j=1

}
�

Step 3. Repeat the following procedure for s = 1�2� � � � � S� Draw a standard
normal random sample of size n� denoted by {ζi}ni=1� and construct the stochas-
tic process ϑ̂ :Ωn → l∞J (Θ)�

ϑ̂(θ)= n−1
n∑
i=1

ζi
(
m(Zi�θ)− En(m(Z�θ))

)
�
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where {Zi}ni=1 = Xn. Compute

Γ AA
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
θ∈Θ̂I (τn)

G
({[
ϑ̂j(θ)

]
+ × 1

[∣∣En(mj(Z�θ))∣∣≤ τn/√n]}Jj=1

)
�

if Θ̂I(τn) �= ∅�
0� if Θ̂I(τn)= ∅�

Step 4. Let ĉAA
n (1 − α) be the (1 − α) quantile of the distribution of Γ AA

n �
simulated with arbitrary accuracy in the previous step. The (1 − α) confidence
set for the identified set is given by

ĈAA
n (1 − α)=

{
θ ∈Θ :G

({[√
nEn(mj(Z�θ))

]
+
}J
j=1

)≤ ĉAA
n (1 − α)

}
�

If the model is conditionally separable, we can choose to use an asymp-
totic approximation specialized for this framework. In this case, the Gaussian
process in Step 3 is replaced by a zero-mean normal vector, denoted by
ϑ̂ :Ωn → RJ� with variance–covariance matrix Ψ̂ given by

Ψ̂ = En
[({{

1(X = xk)[Yj − En(Yj|xk)]
}J
j=1

}K
k=1

)
× ({{

1(X = xk)[Yj − En(Yj|xk)]
}J
j=1

}K
k=1

)′]
�

As usual, we first establish a representation result for our asymptotic approx-
imation.

THEOREM A.15: (i) Assume Assumptions A1–A4 and CF′, and ΘI �= ∅. Then
Γ AA
n =H(ϑ̂)+ δAA

n � where the following conditions hold:
(a) For any ε > 0� limn→+∞ P∗(|δAA

n |> ε|Xn)= 0 a.s.
(b) {ϑ̂(θ)|Xn} :Ωn → l∞J (Θ) is a stochastic process that converges weakly to

the same Gaussian process as in Theorem A.1 i.p.
(c) H : l∞J (Θ)→ R is the same function as in Theorem A.1.

(ii) Let ρ denote the rank of the variance–covariance matrix of the vector
{{1[X = xk]Yj}Jj=1}Kk=1� If we assume Assumptions B1–B4 and CF, ΘI �= ∅, and
we choose the asymptotic approximation procedure to be the one specialized for
the conditionally separable model, then, Γ AA

n = H̃(ϑ̃)+ δ̃AA
n � where the following

conditions hold:
(a) P(δ̃AA

n = 0|Xn)= 1[δ̃AA
n = 0] a.s. and lim inf{δ̃AA

n = 0} a.s.
(b) {ϑ̃|Xn} :Ωn → Rρ is a zero-mean normally distributed vector with vari-

ance–covariance matrix V̂ . Moreover, this distribution has finite third moments
a.s. and ‖V̂ − Iρ‖ ≤Op(n−1/2).

(c) H̃ : Rρ → R is the same function as in Theorem A.1.
(iii) Assume Assumptions A1–A4 and CF′, andΘI = ∅. Then lim inf{P(Γ AA

n =
0|Xn)= 1} a.s.
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PROOF: This proof follows the proof of Theorem A.3 very closely. The only
main difference to point out occurs in the proof of part (i).

(i) In the proof of Theorem A.3, we used the CLT for bootstrapped empirical
processes applied to a P-Donsker class. In this proof, this step is replaced with
the argument in Remark 4.2 of CHT. Q.E.D.

We now establish the consistency of the asymptotic approximation.

THEOREM A.16—Consistency of Asymptotic Approximation Excluding
Zero: Assume Assumptions A1–A4 and CF′.

(i) If ΘI �= ∅, then, ∀μ> 0 and ∀ε > 0�

lim
n→+∞

P∗
(

sup
|h|≥μ

∣∣∣P(Γ AA
n ≤ h|Xn)− lim

m→+∞
P(Γm ≤ h)

∣∣∣≤ ε)= 1�

(ii) If ΘI = ∅, then

P
(

lim inf
{

sup
h∈R

∣∣∣P(Γ AA
n ≤ h|Xn)− lim

m→+∞
P(Γm ≤ h)

∣∣∣= 0
})

= 1�

The proof of the theorem follows from arguments used in the proof of The-
orem A.5.

With the consistency of the approximation, we can establish the consistency
in level of the inference based on the asymptotic approximation. The theorem
(Theorem 2.5) is formulated in the main text. The proof of Theorem 2.5 follows
the arguments in the proof of Theorem 2.1.

We now deduce the rate of convergence of the asymptotic approximation.

THEOREM A.17—Rate of Convergence—Asymptotic Approximation: As-
sume Assumptions B1–B4 and CF.

(i) If ΘI �= ∅, then

sup
|h|≥μ

|P(Γ AA
n ≤ h|Xn)− P(Γn ≤ h)| ≤Op

(
n−1/2

)
�

(ii) If ΘI = ∅, then

P
(

lim inf
{

sup
h∈R

|P(Γ AA
n ≤ h|Xn)− P(Γn ≤ h)| = 0

})
= 1�

The proof of the theorem follows from arguments in the proof of Theo-
rem A.7.

Based on the rate of convergence, we can establish the upper bound on
the rate of convergence of the error in the coverage probability. This theo-
rem (Theorem 2.6) is formulated in the main text. The proof of Theorem 2.6
follows the arguments used in the proof of Theorem 2.2.

Theorem 2.6 describes the coverage properties of the asymptotic approxi-
mation whenΘI �= ∅� In the case whenΘI = ∅� the confidence sets constructed
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using the asymptotic approximation present the same coverage properties as
shown for the bootstrap in Lemma A.7.

A.7. Monte Carlo Simulations

To evaluate the finite sample behavior of the different inferential methods,
we consider two sets of Monte Carlo simulations.

In the first set of simulations, we propose two abstract partially identified
models that represent relatively simple subsets of the real line. These designs
are purposely chosen so that the proposed bootstrap procedure provides con-
sistent inference in level and the naive bootstrap described in Section A.2.5
does not. Within these designs, we perform an extensive study to understand
how changes in the numerous parameters of the simulations affect the results.

The second set of Monte Carlo simulations are performed in a well known
econometric model, namely, a probit model with missing data. This constitutes
a more realistic framework where we can compare the performance of the
inferential procedures considered in the paper.

A.7.1. Abstract Partially Identified Models

We consider the two designs

Design 1: ΘI = {θ ∈Θ : E(Y1)≤ θ≤ E(Y2)}�
Design 2: ΘI = {

θ ∈Θ : {E(Y1)≤ θ∩ E(Y2)≤ θ}
}
�

where, in particular, E(Y1)= 0 and E(Y2)= 0�
The data are an i.i.d. sample of size n from a distribution that is denoted

by F� To implement our inference, we use the criterion function Q(θ) =∑2
j=1[E(mj(Z�θ))]+� which satisfies Assumption CF. Each number presented

in the tables is the result of 10,000 Monte Carlo simulations. In each simula-
tion, the distribution of the bootstrap, subsampling and asymptotic approxima-
tion are approximated from (the same) 200 Monte Carlo draws.4 To implement
any of our inferential procedures, we need to specify the distribution F� the
sample size n and the sequence {τn}+∞

n=1. Finally, the subsampling procedures
also require the choice of the subsampling size sequence {bn}+∞

n=1� Table I shows
all the values used for each of these parameters.

We briefly comment on some of the choices for our parameters. We con-
sider four different bivariate distributions F . In the first three distributions,
we use normal random vectors with zero, positive, and negative correlation.
This distribution has finite moments of all orders and thus satisfies the mo-
ment assumptions required by the conditionally separable model. The fourth
bivariate distribution produces independent pairs of Student t-distributed ran-
dom variables with 3 degrees of freedom. This distribution has infinite fourth

4We have also approximated these distributions using 500 and 1000 Monte Carlo draws, but
they produced very similar results.
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TABLE I

MONTE CARLO DESIGNS

Parameter Values Used

F F1 : (Y1�Y2)∼N(0� I2),
F2 : (Y1�Y2)∼N(0� (1�0�5;0�5�1))
F3 : (Y1�Y2)∼N(0� (1�−0�5;−0�5�1))
F4 :Y1 ∼ t3�Y2 ∼ t3�Y1 ⊥ Y2

n 100� 1000

τn 0� ln lnn� lnn� n1/8� n1/4

bn {20�33�50} for n= 100
{200�333�500} for n= 1000

absolute moment, violating Assumption B4. In this case, we are interested in
understanding the effect of fat tails on our coverage results.

We conduct simulations with a relatively small sample size (n = 100) and
relatively big sample size (n= 1000). For each value of the sample size, we let
the sequence τn vary among five different values. According to our theoreti-
cal results, choosing τn = 0 will, in general, not produce consistent inference
in level. All other proposed choices for τn� that is, ln lnn� lnn� n1/8, and n1/4

should result in consistent inference in level.
Our tables present the percentage of times that our confidence sets cover the

identified set when the desired coverage level is 95%. The columns in the table
represent each of the approximation schemes: B denotes bootstrap, AA de-
notes asymptotic approximation, SS1(bn) denotes Subsampling 1 with subsam-
pling size equal to bn, and SS2(bn) denotes Subsampling 2 with subsampling
size equal to bn.

DESIGN 1: In this design, the identified set is given byΘI = {θ ∈Θ : {E(Y1)≤
θ≤ E(Y2)}}� where E(Y1)= E(Y2)= 0. Thus, ΘI = {0}� Conducting inference
in this design is challenging because the identified set is nonempty but has an
empty interior.

Table II provides the simulation results with the smaller sample size. Be-
fore analyzing each approximation scheme separately, we note that all of them
suffer from severe undercoverage when τn = 0� The reason for this undercov-
erage lies in the peculiar structure of the design. Even though the identified set
is nonempty, the analogy principle estimator of the identified set, that is, the
estimator of the identified set with τn = 0� is empty with positive probability.
Thus, any inferential procedure that uses τn = 0 will severely undercover the
identified set.

We now turn to the analysis of each approximation method for positive levels
of τn. We begin with subsampling schemes. Relative to the rest of the methods,
Subsampling 1 seems to produce undercoverage and Subsampling 2 seems to
produce overcoverage. The undercoverage of Subsampling 1 holds for all of
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TABLE II

RESULTS OF FIRST MONTE CARLO DESIGN WITH n= 100;
EMPIRICAL COVERAGE FOR (1 − α)= 95%

F τn B AA SS1(20) SS1(33) SS1(50) SS2(20) SS2(33) SS2(50)

F1 0 50.2% 50.2% 48.8% 49.4% 49.9% 50.0% 50.3% 50.4%
ln lnn 94.1% 94.0% 83.2% 88.2% 91.1% 98.1% 98.1% 98.0%
lnn 94.1% 94.0% 83.2% 88.2% 91.1% 100% 99.9% 99.7%
n1/4 94.1% 94.0% 83.2% 88.2% 91.1% 99.2% 99.2% 99.0%
n1/8 94.1% 94.0% 83.2% 88.2% 91.1% 100% 99.7% 99.3%

F2 0 49.1% 49.2% 46.0% 47.5% 48.4% 48.0% 49.2% 49.9%
ln lnn 92.8% 93.2% 80.0% 86.4% 89.8% 98.6% 98.6% 98.2%
lnn 92.8% 93.2% 80.0% 86.4% 89.8% 100% 100% 100%
n1/4 92.8% 93.2% 80.0% 86.4% 89.8% 99.1% 99.1% 98.7%
n1/8 92.8% 93.2% 80.0% 86.4% 89.8% 100% 99.9% 99.7%

F3 0 50.5% 50.5% 50.3% 50.4% 50.5% 50.5% 50.5% 50.5%
ln lnn 94.7% 94.5% 86.9% 90.8% 92.6% 96.6% 96.6% 96.6%
lnn 94.8% 94.6% 86.9% 90.8% 92.6% 100% 99.9% 99.6%
n1/4 94.8% 94.6% 86.9% 90.8% 92.6% 98.1% 98.1% 98.1%
n1/8 94.8% 94.6% 86.9% 90.8% 92.6% 100% 99.9% 99.6%

F4 0 48.7% 48.8% 47.2% 48.1% 48.3% 48.7% 49.1% 49.2%
ln lnn 89.0% 89.0% 81.8% 86.4% 87.9% 89.7% 89.9% 89.9%
lnn 94.0% 93.9% 82.4% 88.5% 91.4% 99.9% 99.7% 99.4%
n1/4 91.1% 91.2% 82.1% 87.3% 89.5% 92.4% 92.6% 92.6%
n1/8 93.9% 93.8% 82.4% 88.5% 91.4% 99.4% 99.4% 99.1%

the distributions and seems to become worse as we decrease the subsampling
size. The empirical coverage for Subsampling 1 is relatively insensitive to the
particular value of τn� This is expected, because the effect of the choice of τn
in this subsampling procedure is limited to the estimation of the identified set
and to the indicator functions in the criterion function. As long as the value
of τn is such that the estimated identified set is nonempty and the appropriate
indicator functions are turned on or off, the particular value of the statistic is
insensitive to this parameter.

Except for the relatively low values of τn� Subsampling 2 suffers from a se-
vere overcoverage of the identified set, which gets worse as τn increases. This
can be explained by our analysis in Section A.2.5. Given that Subsampling 2
has no recentering term, the expression τn

√
bn/n appears in the subsampling

criterion function. This term has no asymptotic effect, but in small samples, it
causes the criterion function of Subsampling 2 to be larger than desired.

Relative to the subsampling approximations, the bootstrap and the asymp-
totic approximation produce a coverage frequency that is closer to the desired
coverage level. Moreover, both procedures produce an approximation of simi-
lar quality, which appears to be in line with our analysis regarding the rates of
convergence. In this design, both procedures seem to be slightly undercovering
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TABLE III

RESULTS OF FIRST MONTE CARLO DESIGN WITH n= 1000;
EMPIRICAL COVERAGE FOR (1 − α)= 95%

F τn B AA SS1(200) SS1(333) SS1(500) SS2(200) SS2(333) SS2(500)

F1 0 50.5% 50.5% 70.7% 76.4% 79.8% 100% 100% 100%
ln lnn 94.2% 94.4% 84.6% 89.6% 92.1% 99.9% 99.9% 100%
lnn 94.2% 94.4% 84.6% 89.6% 92.1% 100% 100% 99.9%
n1/4 94.2% 94.4% 84.6% 89.6% 92.1% 100% 100% 100%
n1/8 94.2% 94.4% 84.6% 89.6% 92.1% 100% 99.9% 99.7%

F2 0 47.5% 47.4% 71.4% 78.0% 82.0% 100% 100% 100%
ln lnn 93.2% 93.0% 93.0% 96.6% 98.1% 99.1% 99.8% 100%
lnn 93.2% 93.0% 93.0% 96.6% 98.1% 100% 100% 100%
n1/4 93.2% 93.0% 93.0% 96.6% 98.1% 99.4% 99.6% 99.9%
n1/8 93.2% 93.0% 93.0% 96.6% 98.1% 100% 100% 100%

F3 0 50.8% 50.8% 71.8% 75.7% 78.5% 100% 100% 100%
ln lnn 94.7% 94.5% 78.5% 82.3% 85.2% 100% 100% 100%
lnn 94.7% 94.5% 78.5% 82.3% 85.2% 100% 99.9% 99.8%
n1/4 94.7% 94.5% 78.5% 82.3% 85.2% 100% 100% 100%
n1/8 95.1% 95.5% 78.5% 82.3% 85.2% 100% 99.9% 99.7%

F4 0 50.0% 50.0% 69.8% 75.1% 78.6% 100% 100% 100%
ln lnn 93.5% 93.3% 84.7% 89.2% 91.8% 99.8% 100% 100%
lnn 94.8% 94.7% 84.8% 89.3% 92.3% 100% 99.9% 99.9%
n1/4 94.6% 94.5% 84.8% 89.3% 92.2% 99.8% 100% 100%
n1/8 94.8% 94.7% 84.8% 89.3% 92.3% 100% 99.9% 100%

the identified set. We rationalize this in the following way. The identified set
is defined by two moment inequalities that are binding. Our inferential proce-
dures need to learn this structure from the sample. If sampling error introduces
a mistake in the number of sample moment inequalities that are considered to
be binding, this can only result in underestimation of this number. As a result,
there is a tendency to undercover the identified set. Also, as expected, the cov-
erage results of both procedures are relatively insensitive to the value of τn�
This has the same explanation as in the case of Subsampling 1.

Table III presents the results of the first design with the larger sample size.
The results of these simulations are similar to those with smaller sample size.
Once again, all inferential procedures with τn = 0 have undercoverage prob-
lems for exactly the same reasons as before. For positive levels of τn, Subsam-
pling 1 produces undercoverage, Subsampling 2 produces overcoverage, and
our bootstrap and our asymptotic approximation still produce better results
than any of the subsampling schemes, with a slight tendency to undercover.
According to our results, it appears that increasing the sample size from 100 to
1000 does not change the quality of any of the approximations.
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TABLE IV

RESULTS OF SECOND MONTE CARLO DESIGN WITH n= 100;
EMPIRICAL COVERAGE FOR (1 − α)= 95%

F τn B AA SS1(20) SS1(33) SS1(50) SS2(20) SS2(33) SS2(50)

F1 0 84.5% 84.5% 71.7% 77.3% 80.6% 75.3% 81.7% 86.4%
ln lnn 94.3% 94.3% 85.2% 89.6% 91.9% 97.6% 97.9% 97.6%
lnn 95.3% 95.2% 86.0% 90.4% 92.8% 100% 100% 100%
n1/4 94.8% 94.8% 85.7% 90.1% 92.5% 98.7% 98.5% 98.2%
n1/8 95.3% 95.2% 86.0% 90.4% 92.8% 100% 100% 99.9%

F2 0 81.3% 81.5% 71.4% 75.6% 78.2% 78.2% 83.9% 88.3%
ln lnn 94.5% 94.2% 86.6% 89.8% 92.3% 97.7% 97.8% 97.6%
lnn 94.5% 94.3% 86.7% 89.8% 92.3% 100% 100% 100%
n1/4 94.5% 94.2% 86.7% 89.8% 92.3% 98.6% 98.5% 98.4%
n1/8 94.5% 94.3% 86.7% 89.8% 92.3% 100% 100% 99.8%

F3 0 86.1% 86.4% 71.0% 77.3% 81.4% 72.4% 79.3% 84.1%
ln lnn 92.3% 92.2% 80.9% 86.4% 89.4% 97.3% 97.0% 96.8%
lnn 94.8% 94.5% 81.8% 88.1% 91.2% 100% 100% 100%
n1/4 93.5% 93.4% 81.6% 87.5% 90.6% 98.1% 98.0% 97.7%
n1/8 94.8% 94.5% 81.8% 88.1% 91.2% 99.9% 99.9% 99.8%

F4 0 84.9% 84.1% 70.5% 77.2% 81.6% 74.0% 81.9% 87.2%
ln lnn 91.2% 90.9% 80.1% 85.5% 88.4% 92.9% 94.4% 95.3%
lnn 94.9% 94.6% 85.1% 90.4% 92.7% 99.9% 99.9% 99.8%
n1/4 92.0% 91.6% 81.4% 86.7% 89.5% 94.1% 95.5% 96.2%
n1/8 94.6% 94.3% 84.8% 90.0% 92.5% 98.8% 98.9% 98.8%

DESIGN 2: In this design, the identified set is given byΘI = {θ ∈Θ : {E(Y1)≤
θ} ∩ {E(Y2)≤ θ}}, where E(Y1)= E(Y2)= 0. Thus, ΘI = [0�+∞)� Therefore,
the identified set is nonempty and has nonempty interior. This design imposes
a challenge in the sense that two moment inequalities are binding in the pop-
ulation, but for all of the sampling distributions we consider, at most one of
these inequalities will be binding in the sample a.s.

Table IV provides the simulation results for our smaller sample size. The re-
sults are similar to those obtained in the first design. When τn = 0� all of the
inferential procedures produce extreme undercoverage. This is expected, be-
cause if we set τn = 0, a moment inequality will be considered to be binding
if and only if it is satisfied with equality in the sample. Therefore, with proba-
bility 1, the sample moment inequalities will never be simultaneously binding
even though there is a point in the identified set for which their population ana-
logues are simultaneously binding. As explained in Section A.2.5, this problem
is related to the inconsistency of the bootstrap in the boundary of the parame-
ter space, which was studied by Andrews (2000).

For positive values of τn, Subsampling 1 tends to undercover the identified
set and Subsampling 2 tends to overcover the identified set. In the case of
Subsampling 1, the undercoverage error is smaller than that found in the pre-
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TABLE V

RESULTS OF SECOND MONTE CARLO DESIGN WITH n= 1000;
EMPIRICAL COVERAGE FOR (1 − α)= 95%

F τn B AA SS1(200) SS1(333) SS1(500) SS2(200) SS2(333) SS2(500)

F1 0 82.4% 82.6% 69.9% 75.1% 78.3% 73.2% 79.9% 84.1%
ln lnn 93.6% 93.6% 84.0% 88.3% 90.8% 98.8% 98.5% 98.4%
lnn 94.2% 94.2% 84.2% 88.6% 91.3% 100% 100% 100%
n1/4 94.2% 94.2% 84.2% 88.6% 91.3% 99.5% 99.4% 99.1%
n1/8 94.2% 94.2% 84.2% 88.6% 91.3% 100% 100% 100%

F2 0 82.1% 82.0% 73.0% 76.5% 79.0% 79.7% 85.6% 89.1%
ln lnn 94.8% 94.8% 87.3% 90.9% 92.7% 99.2% 99.0% 98.6%
lnn 94.8% 94.8% 87.3% 90.9% 92.7% 100% 100% 100%
n1/4 94.8% 94.8% 87.3% 90.9% 92.7% 99.5% 99.5% 99.4%
n1/8 94.8% 94.8% 87.3% 90.9% 92.7% 100% 100% 100%

F3 0 86.2% 86.8% 70.6% 77.8% 81.4% 72.2% 79.8% 84.3%
ln lnn 93.9% 93.9% 81.7% 87.9% 91.0% 98.7% 98.4% 98.0%
lnn 94.5% 94.6% 81.8% 88.3% 91.5% 100% 100% 100%
n1/4 94.5% 94.6% 81.8% 88.2% 91.4% 99.6% 99.4% 99.0%
n1/8 94.5% 94.6% 81.8% 88.3% 91.5% 100% 100% 100%

F4 0 84.4% 84.3% 71.4% 76.8% 81.1% 75.1% 82.0% 86.7%
ln lnn 91.9% 91.8% 82.8% 87.0% 89.7% 94.2% 95.4% 95.9%
lnn 94.7% 94.7% 85.6% 90.0% 92.5% 100% 100% 100%
n1/4 93.2% 93.2% 84.3% 88.6% 91.2% 96.5% 97.0% 97.0%
n1/8 94.7% 94.7% 85.6% 90.0% 92.5% 100% 100% 99.8%

vious design. Our bootstrap and our asymptotic approximation present a very
good finite sample performance, which is much better than the performance
obtained with any of the subsampling procedures.

Table V presents the results of the second design with the larger sample size.
Once again, the results of this simulations are similar to those obtained with the
smaller sample size. For the same reasons as before, all simulations with τn = 0
have undercoverage problems. The coverage results for positive levels of τn are
similar to those obtained in Table IV. Subsampling 1 produces undercoverage
and Subsampling 2 produces overcoverage. Increasing the sample size does not
seem to improve the quality of the subsampling approximations. Our bootstrap
and our asymptotic approximation still produce very accurate results that are
better than any of the subsampling schemes.

A.7.2. Probit Model With Missing Data

For our second set of simulations, consider a binary choice model with miss-
ing data. Suppose that we are interested in the decision of individuals between
two mutually exclusive and exhaustive choices: choice 0 or choice 1. Let Y de-
note this choice, which is assumed to be generated by Y = 1[Xβ≥ ε], whereX
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is a vector of observable explanatory variables with support denoted by SX , ε is
an unobservable explanatory variable, and β denotes the parameters of inter-
est. Assume that ε∼N(0�1) independent of X� which implies that we adopt
the probit model. Therefore, P(Y = 1|X = x)= E(Y |X = x)=Φ(xβ).

Suppose that the covariates are observed for every respondent, but for some
respondents, we do not observe the choice. Denote by W the variable that
takes value 1 if the choice is observed and 0 otherwise. The identified set is
given by

ΘI = {
β ∈Θ :

{
E(YW |x)≤Φ(xβ)≤ E(YW + (1 −W )|x)}

x∈SX
}
�

We consider four Monte Carlo designs, which differ in the definition of SX
and in the value of {E(YW |x)�E(W |x)}x∈SX � These designs are described in
Table VI.

For all simulations, we sample n = 600 observations, with 100 observations
for the first covariate, 200 observations for the second covariate, and 300 ob-
servations for the third covariate. For each value of the covariate, we sample
{Y |X} and {W |X} independently from a Bernoulli distribution with the mean
specified by Table VI.

To implement our inference, we use the criterion function Q(θ) =∑J

j=1[E(mj(Z�θ))]+� which satisfies Assumption CF. Each number presented
in the tables is the result of 1000 Monte Carlo simulations. In each simulation,
the distributions of the bootstrap, subsampling, and asymptotic approximation
are approximated from (the same) 200 Monte Carlo draws.

To implement any of the inferential procedures, we need to specify the
sequence {τn}+∞

n=1. For all of the procedures, we conducted simulations with
τn = ln lnn and τn = lnn, and we obtained similar results. From this experi-
ence, we conjecture that the results are relatively robust to the choice of the

TABLE VI

MONTE CARLO DESIGNS

Covariate Values

x1 = (1�0) x2 = (0�1) x3 = (1�1)
Design 1 E(YW |x) Φ(−0�5) Φ(−0�5) Φ(−0�5)

E(W |x) 2Φ(−0�5) 2Φ(−0�5) 2Φ(−0�5)

x1 = (1�0) x2 = (0�1) x3 = (1�1)
Design 2 E(YW |x) Φ(−0�5) Φ(−0�5) Φ(−1)

E(W |x) 2Φ(−0�5) 2Φ(−0�5) Φ(−1)+Φ(−0�5)

x1 = (1�0) x2 = (0�1) x3 = (−1�0)
Design 3 E(YW |x) Φ(−0�5) Φ(−0�5) Φ(−0�5)

E(W |x) Φ(−0�5)+Φ(0) 2Φ(−0�5) Φ(−0�5)+Φ(0)
x1 = (1�0) x2 = (0�1) x3 = (−1�0)

Design 4 E(YW |x) Φ(−0�5) Φ(−0�5) Φ(−0�5)
E(W |x) Φ(−0�5)+Φ(0�1) 2Φ(−0�5) Φ(−0�5)+Φ(0�1)
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FIGURE 1.—Identified set for the first Monte Carlo design.

sequence {τn}+∞
n=1� For the sake of brevity, our tables only report results for

τn = ln lnn� The subsampling procedures also require specifying the subsam-
pling size sequence {bn}+∞

n=1. For the sake of brevity, we show the results for
bn = 300 and bn = 200; the results for other choices of subsampling size pro-
duced qualitatively similar results.

DESIGN 1: The identified set is characterized by a pair of moment inequal-
ities for each of the three covariate values. Combining these restrictions, the
identified set is as depicted in Figure 1.

The distinctive characteristic of this design is that the identified set has non-
empty interior everywhere and that the boundaries of the identified set are
defined by, at most, two constraints satisfied with equality. As a consequence,
in this particular case, we can obtain consistent inference using bootstrap, sub-
sampling, or asymptotic approximation even if we set τn = 0.

Table VII presents the empirical coverage for each inferential procedure.
All of the subsampling procedures exhibit a mediocre finite sample behavior.
Subsampling 1 undercovers the identified set and Subsampling 2 overcovers
the identified set. The analysis of Section A.2.5 explains that the overcoverage
of Subsampling 2 could be a consequence of what we refer to as the expansion
problem. The bootstrap and the asymptotic approximation proposed in this
paper achieve a very satisfactory performance.

DESIGN 2: The identified set in this design is described in Figure 2. As in
the previous design, the identified set has nonempty interior everywhere. The
difference with respect to the previous design is that there is one point in the
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TABLE VII

RESULTS OF THE FIRST MONTE CARLO DESIGN

Empirical Coverage for Different Values of (1 − α)
Procedure 75% 90% 95% 99%

Subsampling 1 (bn = 300) 47.4% 66.3% 75.9% 87.9%
Subsampling 1 (bn = 200) 57.7% 77.5% 85.9% 94.7%
Subsampling 2 (bn = 300) 100% 100% 100% 100%
Subsampling 2 (bn = 200) 99.8% 100% 100% 100%
Our bootstrap 74.9% 89.8% 95.4% 99.0%
Our asymptotic approximation 74.2% 89.5% 95.0% 98.6%

identified set, namely the point (β1�β2)= (−0�5�−0�5)� where one of the re-
strictions, β1 +β2 ≥ −1� is both irrelevant and satisfied with equality.

The results are presented in Table VIII. The subsampling procedures have
a mediocre finite sample behavior: Subsampling 1 suffers from undercoverage
and Subsampling 2 suffers from overcoverage. Our bootstrap and our asymp-
totic approximation exhibit a satisfactory performance.

DESIGN 3: Figure 3 describes the identified set in this design. This design
differs from the previous two in that the identified set has empty interior and
the analogy principle estimator of the identified set is empty with positive prob-
ability. This illustrates why we need to artificially expand the analogy principle

FIGURE 2.—Identified set for the second Monte Carlo design.
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TABLE VIII

RESULTS OF THE SECOND MONTE CARLO DESIGN

Empirical Coverage for Different Values of (1 − α)
Procedure 75% 90% 95% 99%

Subsampling 1 (bn = 200) 43.4% 64.3% 73.3% 88.3%
Subsampling 1 (bn = 300) 55.6% 74.7% 84.3% 93.8%
Subsampling 2 (bn = 200) 99.9% 100% 100% 100%
Subsampling 2 (bn = 300) 99.7% 99.9% 99.9% 100%
Our bootstrap 75.5% 91.6% 95.9% 99.0%
Our asymptotic approximation 75.0% 91.8% 95.4% 99.0%

estimator to generate an estimator of the identified set that is adequate for the
purpose of inference.

The results are given in Table IX. As usual, the subsampling procedures have
a mediocre finite sample behavior: Subsampling 1 suffers from undercoverage
and Subsampling 2 suffers from overcoverage. Our bootstrap and our asymp-
totic approximation procedures produce a satisfactory finite sample perfor-
mance.

DESIGN 4: In this case, the identified set is empty or, equivalently, the model
is misspecified. Since the identified set is empty, the empirical coverage is triv-
ially 100%. Therefore, in this design, we compare the relative sizes of the con-
fidence sets for different inferential methods. To achieve this task, we need
to define a measure of size of the confidence sets generated by the different

FIGURE 3.—Identified set for the third Monte Carlo design.
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TABLE IX

RESULTS OF THE THIRD MONTE CARLO DESIGN

Empirical Coverage for Different Values of (1 − α)
Procedure 75% 90% 95% 99%

Subsampling 1 (bn = 200) 58.5% 74.8% 82.5% 90.7%
Subsampling 1 (bn = 300) 66.3% 81.0% 88.5% 95.8%
Subsampling 2 (bn = 200) 99.5% 99.5% 99.5% 99.5%
Subsampling 2 (bn = 300) 99.3% 99.5% 99.5% 99.5%
Our bootstrap 76.7% 90.1% 95.1% 98.6%
Our asymptotic approximation 76.4% 90.6% 94.9% 98.7%

inferential methods. For any confidence set Cn ⊆Θ� we consider the function

Π(Cn)=

⎧⎪⎪⎨
⎪⎪⎩

sup
θ∈Cn

{
J∑
j=1

[√
nEn(mj(Z�θ))

]
+

}
� if Cn �= ∅,

0� if Cn = ∅.

It is not hard to show that the function Π constitutes a metric for confidence
sets generated by the criterion function approach.

Table X presents the average value of Π for each of the inferential proce-
dures. Not surprisingly, the relative sizes of these confidence sets are in line
with the results obtained in the previous designs. Subsampling 1 produces con-
fidence sets that are relatively small and Subsampling 2 produces confidence
sets that are relatively big. Our bootstrap procedure and our asymptotic ap-
proximation generate confidence sets in between these two.

TABLE X

RESULTS OF THE FOURTH MONTE CARLO DESIGN

Average Π-Size of Confidence Set
for Different Values of (1 − α)

Procedure 75% 90% 95% 99%

Subsampling 1 (bn = 200) 0.38 0.53 0.62 0.78
Subsampling 1 (bn = 300) 0.44 0.61 0.71 0.90
Subsampling 2 (bn = 200) 1.34 1.50 1.60 1.77
Subsampling 2 (bn = 300) 1.21 1.40 1.51 1.71
Our bootstrap 0.54 0.74 0.87 1.11
Our asymptotic approximation 0.54 0.75 0.88 1.11
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