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THIS TECHNICAL APPENDIX presents supplementary material. Appendix B dis-
cusses identification of general utility functions that are not linear in income.
Appendix C discusses equilibrium bunching in hedonic models. Appendix D
provides details and derives asymptotic results for the estimators proposed in
the main paper. Appendix E presents some limited Monte Carlo evidence on
the performance of the estimators. Appendix F presents proofs of the theo-
rems in Appendix D.

APPENDIX B: IDENTIFICATION OF GENERAL UTILITY FUNCTIONS

Let utility take the form U∗(I� z�x�ε), where I = P(z)+R and R is nonwage
income. Assume that U∗

z = ∂U∗
∂z

< 0 and U∗
I = ∂U∗

∂I
> 0, and as in the main paper

assume that each worker has a unique interior optimum. Then the FOC of the
worker becomes

Pz(z) = −U∗
z (P(z)+R�z�x�ε)

U∗
I (P(z)+R�z�x�ε)

�

Under conditions analogous to those for the case where U∗
I ≡ 1, there exists a

function

z = s(x�R�ε)

satisfying the first and second order conditions. Under the further assumption
that U∗

IεPz +U∗
zε > 0, this function is monotonically increasing in ε. So we can

recover it as we do in the case where U∗
I ≡ 1�
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Now define

m̃(I� z�x�ε)= −U∗
z (I� z�x�ε)

U∗
I (I� z�x�ε)

�

As in the case where U∗
I = 1, we need a dimension reduction to identify m.

Suppose the function m̃ can be written as

m(I�q�ε)�

where q is a known function of z and x ∈ X̃1 ⊂ R. Then we can iden-
tify m on the set Q = {(t1� t2� t3) ∈ R2 × Ẽ | for some (x�R) ∈ X̃1 × R� t1 =
R+ P(s(x�R�ε)) and t2 = q(s(x�R�ε)�x)}.

To see this, fix numbers (t1� t2� t3) ∈ Q. Since s can be identified as argued in
the main text, we can find R∗ and x∗ such that

q(s(x∗�R∗� t3)�x∗)= t2

and

P(s(x∗�R∗� t3))+R∗ = t1�

Then

m(t1� t2� t3)= Pz(s(x
∗�R∗� t3))�

which shows that m(t1� t2� t3) is identified.
In summary, the conditions for identifying the ratio of U∗

z to U∗
I are analo-

gous to those required to identify marginal utility when U∗
I = 1.

APPENDIX C: BUNCHING

Bunching in hedonic equilibrium arises when a positive measure of sellers
or buyers (workers and firms) “bunch” and choose the same job type z ∈ Z̃.
When there is bunching, the equilibrium distribution of z has mass points.

Given a point zb ∈ int(Z̃), it is only possible that a positive measure of agents
will bunch at zb if the set

B(zb)= {(x�ε)� (y�η) | Γz(zb� y�η)= Uz(zb�x�ε)}
has positive measure. For example, if (xb� εb� yb�ηb) ∈ B(zb) and the distribu-
tions of (x�ε) and (y�η) have mass points at (xb� εb) and (yb�ηb), then it is
possible to have bunching at zb in equilibrium. Alternatively, when (x�ε) and
(y�η) are continuously distributed, the set B(zb) cannot have positive measure
if Γzη > 0 and Uzε < 0. This single-crossing condition rules out bunching and
implies that (z�x� y) are continuously distributed on their respective domains.

Other examples of bunching can be generated either on the boundary of Z̃
when positive masses of agents are at corner solutions or on the interior of Z̃ if
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we relax the single-crossing condition. The next two subsections give examples
of each of these possibilities.

C.1. Bunching on the Boundary

Let Z̃ = [0�1] and let Π0 = V0 = 0 so that reservation profits and utilities
are zero. Suppose that each firm chooses z to maximize zαη − P(z), where
α= 0�5 and Fη(η)= η for η ∈ [0�1], and suppose that each worker maximizes
P(z) − zε, where Fε(ε) = ε−0�5α

1�5α−0�5α for ε ∈ [α2 � 3α
2 ]. The first and second order

conditions (SOC) for the firm are

FOC αzα−1η− Pz(z) = 0�(C.1a)

SOC α(α− 1)zα−2η− Pzz(z) < 0�(C.1b)

which implies that for those firms at an interior optimum,

η(z) = Pz(z)z
1−α

α
�(C.2)

The first and second order conditions for the workers are

FOC Pz(z)− εzε−1 = 0�(C.3a)

SOC Pzz(z)− ε(ε− 1)zε−2 < 0�(C.3b)

For any interior equilibrium, we cannot have ε < α. To see this, from the sec-
ond order condition for the firm we obtain, after substituting (C.1a) into (C.1b)
and collecting terms,

(α− 1) <
zPzz(z)

Pz(z)
�

From the second order conditions for the workers we obtain

Pzz(z) < ε(ε− 1)zε−2�

which is the same as

zPzz(z) < ε(ε− 1)zε−1�

Using the rewritten first order condition (C.3a), we can substitute Pz(z) for
εzε−1 to obtain

zPzz(z)

Pz(z)
< ε− 1�

Thus ε > α is required to produce an interior solution.
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In equilibrium, exactly half of all workers and firms choose the corner solu-
tion z = 0. The rest sort positively on the heterogeneity parameters (η�ε) and
locate at interior optima. Each of the most productive firms is at an interior
optimum (i.e., each of those firms with η > α = 1

2 ) and each of the high elas-
ticity workers (the ones with low disutility of effort) participates at an interior
(ε > α = 1

2 ). Since we assume that z ≤ 1, the high elasticity persons are the
ones who have the least disutility of work.

Since there is positive assortative matching,

η(ε)= F−1
η (Fε(ε))� ε ∈

[
α�

3α
2

]
�

Using our specific functional forms for the distributions, we obtain

η(ε)=
ε− α

2
α

= ε

α
− 1

2
� ε ∈

[
α�

3α
2

]
�(C.4)

Then using first order conditions (C.1a) and (C.3a), we obtain

εzε−1 = αηzα−1�

Substituting η(ε) in this expression, we obtain

z =
(

1 − α

2ε

)1/(ε−α)

� ε ∈
[
α�

3α
2

]
�(C.5)

This is the equilibrium demand function. The matching supply function can be
calculated by using (C.4) to substitute out for ε in (C.5). As a consequence,
the interval with positive density of demand and supply is Z = [0� ( 2

3)
4]. No

closed form solution for the price function exists, but we can characterize the
marginal price function using (C.3a) and (C.5); in particular, as ε → α, z → 0
and Pz(z) becomes arbitrarily large. This is an equilibrium because the supply
density equals the demand density at each interior z. Consumers and firms not
at the boundary are each at an interior optimum in this interval.

C.2. Bunching on the Interior

The previous section gives conditions that produce bunching on the bound-
ary of the space of feasible attributes. In equilibrium, a positive fraction of
agents do not have an interior optimum. Bunching on the interior occurs when
a positive fraction of both workers and firms have an optimum at a single point
in the interior of Z̃. To produce bunching at zb, the set of workers who satisfy

Pz(zb)−Uz(zb�x�ε)= 0
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and the set of firms that satisfy

Γz(zb� y�η)− Pz(zb)= 0

must both have positive measure. If Uz and Γz are differentiable and the distri-
butions of (x�ε) and (y�η) are absolutely continuous with respect to Lebesgue
measure, this can only happen at zb if the set

B(zb)= {(y�η�x�ε) | Γz(zb� y�η)= Uz(zb�x�ε)}
has dimension nx + ny + 2. The set of agents who choose zb in equilibrium
is a subset of B(zb). If B(zb) has dimension less than nx + ny + 2, then it has
measure zero and the set of agents who choose zb has measure zero.

An alternative way to see this is to note that if there is bunching at zb in
equilibrium, then

zb = d(y�η)= s(x�ε)

for sets of (y�η) and (x�ε) of equal and positive measure. This means that

∂d(y�η)

∂y
= ∂d(y�η)

∂η
= 0�

∂s(x�ε)

∂x
= ∂s(x�ε)

∂ε
= 0

for {(y�η�x�ε) | zb = d(y�η)= s(x�ε)}.
To see how interior bunching might arise, consider the following example.

Let y measure managerial skill or quality and let the distribution of manager
skill be given by the distribution function Fy such that y is a continuous random
variable. Let z measure hours of work on a job. A manager of type y has a
production function that is quadratic in z:

Γ =

⎧⎪⎨⎪⎩
Γ0 + Γ1(y)z + Γ4(y)z

2� y ∈ [y0� y1)

Γ0 + Γ2(y)z + Γ4(y)z
2� y ∈ [y1� y2)

Γ0 + Γ3(y)z + Γ4(y)z
2� y ∈ [y2� y3]

⎫⎪⎬⎪⎭ �

where Γ4(y) < 1 for all y�

Γ1(y)= (−25Fy(y)
2 + 10Fy(y)+ 1)(1 − Γ4(y))�(C.6)

Γ2(y)= 2(1 − Γ4(y))�

Γ3(y)= (25Fy(y)
2 − 40Fy(y)+ 18)(1 − Γ4(y))�

and y0 = F−1
y (0), y1 = F−1

y (0�2), y2 = F−1
y (0�8), and y3 = F−1

y (1). Assuming
that Fy is twice continuously differentiable, this production function is twice
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continuously differentiable in all arguments and is quadratic in z. Over the rel-
evant range of z, managers of higher quality have higher marginal productivity.

On the worker side, let x measure disutility from work and let the distribu-
tion of worker types have distribution function Fx such that x is a continuous
random variable. Suppose utility for a worker with characteristic x is

U =

⎧⎪⎨⎪⎩
U0 +U1(x)z +U4(x)z

2� x ∈ [x0�x1)

U0 +U2(x)z +U4(x)z
2� x ∈ [x1�x2)

U0 +U3(x)z +U4(x)z
2� x ∈ [x2�x3]

⎫⎪⎬⎪⎭ �

where 1 <U4(x) for all x�

U1(x) = (−25Fx(x)
2 + 10Fx(x)+ 1)(1 −U4(x))�(C.7)

U2(x) = 2(1 −U4(x))�

U3(x) = (25Fx(x)
2 − 40Fx(x)+ 18)(1 −U4(x))�

and x0 = F−1
x (0), x1 = F−1

x (0�2), x2 = F−1
x (0�8), and x3 = F−1

x (1). As with firms,
this utility function is quadratic in z and twice continuously differentiable. Over
the relevant range of z, workers with higher values of x have lower marginal
disutility of work.

This example generalizes the seminal Tinbergen (1956) normal-quadratic
hedonic model. The equilibrium price function in this economy can be shown
to be

P(z) = p0 + z2�

When y is uniformly distributed so that Fy(y) = y for y ∈ [0�1], the demand
function is as shown in Figure 1. For y in the interval [0�2�0�8], the first order

FIGURE 1.—Demand for hours of work.
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condition for the firm is

2(1 − Γ4(y))+ 2Γ4(y)z = 2z

or

1 − Γ4(y)= (1 − Γ4(y))z�

so z = 1 is optimal for all y in this interval ( ∂d(y)

∂y
= 0 in this interval). Similarly,

for x in the interval [0�2�0�8], the first order condition for the worker is

2(1 −U4(x))+ 2U4(x)z = 2z

and again z = 1 is optimal for all x in the interval.
In this example, 60% of the managers and 60% of the workers choose to

bunch at z = 1. Tangency conditions for two managers with particular values
of y in the interval [0�2�0�8] are shown in Figure 2. Both indifference curves
shown in the figure are tangent to the hedonic price at z = 1� The two indif-
ference curves have different curvatures at this point. In fact, there is a full
cluster of indifference curves with positive probability mass that are tangent to
the price function at z = 1�

Over all intervals of y , the demand for z by firms of type y is

z(y)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−25

2
Fy(y)

2 + 5Fy(y)+ 1
2
� y ∈ [y0� y1)

1� y ∈ [y1� y2)

25
2
Fy(y)

2 − 20Fy(y)+ 9� y ∈ [y2� y3]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ �

FIGURE 2.—Equilibrium bunching: tangency to hedonic price.
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The supply function is similar. All managers with skill less than y1 (20% of the
population) employ part-time workers (z < 1). All managers with skill greater
than y1 and less than y2 (60% of the population) employ full-time workers
(z = 1), and all managers with skills greater than y2 employ workers who work
overtime (z > 1). Similarly, 60% of the workforce bunch at z = 1 or at full-time
work. In this model, those choosing z = 1 are the mediocre managers and the
mediocre workers.2

Such bunching is a knife-edge phenomenon. Any perturbation of the price
function (so that the term in z is not quadratic or does not have a unitary
coefficient) will break the bunching. So will choice of a more general coefficient
on the linear term of the quadratic technologies.

APPENDIX D: ESTIMATION

We describe how to use the identification theorems from Section 3 in the
main paper to develop consistent estimators for the underlying functions and
distributions. We focus on models satisfying the conditions of Theorem 3.3 be-
cause of its generality. We assume that all the conditions made in the main
paper are satisfied, and, for simplicity, that X̃3 is empty while X̃1� X̃2 ⊂ R. In
Section D.2, we show how to alter the argument to define a consistent esti-
mator for a model satisfying the conditions of Theorem 3.1 when X̃2 is empty
while X̃1 ⊂ R. Estimators for models satisfying conditions in Theorem 3.2 can
be defined analogously.

To focus on the properties of the estimator for the structural function and
to keep the notation simple, we assume that Pz(z) is known. In practice, Pz(z)
can be estimated by nonparametric kernel regression. If the dimension of x
in the function m is strictly larger than that of z + 2, the rate of convergence
of the estimator for P(z) may be made faster than the rate for the structural
function m. Hence, the variance due to the estimation of Pz(z) would not affect
the asymptotic distribution of the estimator for m� To simplify notation, we do
not carry x3 in our equations below.

2In this example, the bunching point z = 1 is determined for exogenous technological reasons.
Such a bunching point could also emerge endogenously due to social coordination. For example,
suppose that the production function were as above, but utility depended on E(z), the average
level of z in the market. In particular, in the previous example, replace (C.7) with

U1(x) = (
25[1 − 2E(z)]Fx(x)

2 − 10[1 − 2E(z)]Fx(x)+ 1
)
(1 −U4(x))�

U2(x) = 2E(z)(1 −U4(x))�

U3(x) = (
25[3 − 2E(z)]Fx(x)

2 − 40[3 − 2E(z)]Fx(x)+ 6[8 − 5E(z)])(1 −U4(x))�

In this case, equilibrium bunching again emerges with 60% of the population choosing z =E(z) =
1� In this example, E(z) = 1, so in a single cross section, the model in the text and this model are
indistinguishable.
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Suppose that the available data are {Zi�Xi}, i = 1� � � � �N , and that P(z) is
known. Let f (z�x) and F(z�x) denote, respectively, the joint probability den-
sity function (p.d.f.) and cumulative distribution function (c.d.f.) of (Z�X)� Let
f̂ (z�x) and F̂(z�x) denote the corresponding kernel estimators. Let f̂Z|X=x(z)

and F̂Z|X=x(z) denote the kernel estimators of, respectively, the conditional
p.d.f. and the conditional c.d.f. of Z given X = x� In this notation,

f̂ (z�x)= 1
Nσnx+1

N

N∑
i=1

K

(
z −Zi

σN

�
x1 −Xi

1

σN

� � � � �
xnx −Xi

nx

σN

)
�

F̂(z�x)=
∫ z

−∞

∫ x

−∞
f̂ (s� t)ds dt�

f̂Z|X=x(z)= f̂ (z�x)∫ ∞

−∞
f̂ (s�x)ds

�

F̂Z|X=x(z) =

∫ z

−∞
f̂ (s�x)ds∫ ∞

−∞
f̂ (s�x)ds

�

where K : Rnx+1 → R is a kernel function and σN is the bandwidth. For any t

and x, F̂−1
Z|X=x(t) will denote the set of values of Z for which F̂Z|X=x(z) = t.

When the projection of the kernel function K onto Z is positive for all z ∈ Zs,
F̂(z�x) is uniquely determined for all z and each value of x.3

D.1. Case 1

Theorem 3.3 assumes that the marginal utility function is weakly separable
into two functions that depend one on x1 and the other on x2; that is,

Uz(z�x1�x2� ε)= m(q1(z�x1)�q2(x2� ε))�

where m is strictly increasing in its second argument, q1 : R2 → R and q2 : R2 →
R are known functions, and q2 is strictly decreasing in its second argument.
Following the conditions of Theorem 3.3, normalize the value of the function m
at one point (z�x1�α) by requiring that

m(q1(z�x1)�α)= Pz(z)�

3Zs is the support of the mapping s(x�ε) in equilibrium.
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Define s(x1�x2� ε) to be the solution to the workers’ FOC. As noted in the
proof of Theorem 3.3, from the assumed structure of separability, we can write

s(x1�x2� ε)= v(x1� q2(x2� ε))

for some unknown function v that satisfies the property that

v(x1�α)= z�

Since s is strictly increasing in ε, v is strictly decreasing in its second argument.
For any e, let x2 be such that q2(x2� e) = α� From Matzkin (2003), it follows

that

F̂ε(e) = F̂Z|X=(x1�x2)(z)�

Further, for any x̃1� x̃2� ẽ,

v̂(x̃1� q2(x̃2� ẽ)) = F̂−1
Z|X=(x̃1�x̃2)

(F̂ε(̃e))�

This defines an estimator for v�
Let (t1� t2) be arbitrary points with t2 ∈ [ql

2� q
u
2 ] and t1 ∈ Q̃(t2)� To obtain an

estimator for m(t1� t2), first calculate x̂∗
1, the value that satisfies

q1(̂v(x̂
∗
1� t2)� x̂

∗
1)= t1�

Define m̂(t1� t2) by

m̂(t1� t2)= Pz(̂v(x̂
∗
1� t2))�(D.1)

Theorem D.1 establishes the asymptotic properties of this estimator for the
case where the function q1(z�x1) = zx1 and the function q2(x2� ε) = x2 −ε� We
offer this analysis as a prototype for a broad class of estimators� Similar results
can be obtained for other specifications of the functions q1 and q2. Note that in
this case, nx = 2� Let B(t�ξ) denote the neighborhood centered at t and with
radius ξ > 0�

Given (t1� t2), let x∗
2 and e∗ be such that x∗

2 −e∗ = t2 and x∗
2 ∈ X̃2. Let x∗

1 solve

q1(v(x
∗
1� t2)�x

∗
1)= t1

and let x2 = α+ e� Define x∗ = (x∗
1�x

∗
2). We assume that (x∗

1�x
∗
2) 	= (x1�x2).

We make the following assumptions:

ASSUMPTION A.1: The sequence {Zi�Xi}, i = 1� � � � �N is independent and
identically distributed (i.i.d.).

ASSUMPTION A.2: f (z�x) has compact support, which includes Z̃ × X̃ ⊂
R1+nx , and is continuously differentiable of order s′ ≥ 4.
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ASSUMPTION A.3: The kernel function K is differentiable of order s̃, the
derivatives of K of order s̃ are Lipschitz, and K vanishes outside a compact
set, integrates to 1, and is of order s′′, where s̃ + s′′ + 1 ≤ s′�

ASSUMPTION A.4: As N → ∞�σN → 0, ln(N)/Nσnx+1
N → 0,

√
Nσnx

N → ∞,√
Nσnx+2s′′

N → 0, and
√
Nσnx

N (
√

ln(N)/(Nσnx+7
N )+ σs′′

N )2 → 0�

ASSUMPTION A.5: x∗
1 	= 0; 0 < f(x∗)� f (x) < ∞; there exist δ�ξ > 0 such

that ∀(x′
1�x

′
2) ∈ B((x∗

1�x
∗
2)�ξ), ∀̃z ∈ B(v(x∗

1� t2)�ξ), f (x
′
1�x

′
2) ≥ δ and f (̃z�x′

1�
x′

2) ≥ δ; there exist δ′� ξ′ > 0 such that ∀(x′
1�x

′
2) ∈ B((x1�x2)�ξ

′), ∀̃z ∈
B(v(x1�α)�ξ

′), f (x′
1�x

′
2) ≥ δ′ and f (̃z�x′

1�x
′
2) ≥ δ′; and on all x in a neigh-

borhood of x∗, dFZ|X=x(t1/x1)/dx1 is bounded away from 0.

ASSUMPTION A.6: t1 	= 0 and it belongs to the interior of the support of
q1(v(x1� t2)�x1)�

Assumptions A.1, A.3, and A.4 are standard conditions on the data, the ker-
nel, and the bandwidth when the estimators are functionals of kernel estima-
tors for the distributions of the observed variables.4 They imply no further eco-
nomic restrictions on the model. In contrast, Assumptions A.2 and A.5 impose
restrictions on the structural parameters. Since

f (z�x)= fε(̃s(z�x))fx(x)
∂̃s(z�x)

∂z
�

where s̃(z�x) is the inverse supply function, Assumption A.2 will hold if we
assume both fx and fε satisfy the stated conditions on their respective domains
and if s̃(z�x) is continuously differentiable of order s′ + 1� This requires U
and P to be continuously differentiable of order s′ + 2� We will assume that
these conditions hold.5 Assumption A.5 will hold if the densities fx and fε are
bounded away from zero on Z̃× X̃ and if the marginal utility function has non-
trivial dependence on x� In any case, if there is concern that Assumption A.2 or
Assumption A.5 may not be satisfied, since these are conditions on the density
of observables, they can be tested�

The consistency and asymptotic normality of F̂ε and v̂ under Assump-
tions A.1–A.5 follow from Theorems 1 and 2 in Matzkin (2003). Let

∫
K(x)2 =∫

(
∫
K(s�x)ds)2 dx, where s ∈ R� Define C by

C =
(
Pzz

(
t1

x∗
1

))2(
t1

(x∗
1)

2

)2[dFZ|X=(x∗
1�x

∗
2)

(
t1

x∗
1

)
dx1

]−2

�

4See Aït-Sahalia (1994), Newey (1994), or Matzkin (2003).
5Conditions ensuring the differentiability of P are not available. See Ma, Trudinger, and Wang

(2005), Loeper (2009), or Kim and McCann (2008) for recent results on smoothness of optimal
maps in transportation problems.
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THEOREM D.1: Suppose that Assumptions A.1–A.6 are satisfied. Then m̂(t1�
t2) converges in probability to m(t1� t2) and√

Nσ2
N(m̂(t1� t2)−m(t1� t2))→N(0� Vm) in distribution�

where

Vm = C

{∫
K(x)2

}(
1

f (x)
+ 1

f (x∗)

)(
FZ|X=x(z)

(
1 − FZ|X=x(z)

))
�

See Appendix F for the proof.

D.2. Case 2

We next consider the situation where the assumptions of Theorem 3.1 are
satisfied. In this case, x ∈ R and we assume that for some unknown function m,

Uz(z�x�ε)=m(q(z�x)�ε)�

where q : R2 → R is a known function. We assume that Fε, the strictly increasing
distribution of ε, is known� Then, as argued in the proof of Theorem 3.1, the
derived supply function satisfies

s(x� e)= F−1
Z|X=x(Fε(e))�

This can be estimated by

ŝ(x� e) = F̂−1
Z|X=x(Fε(e))�

where F̂Z|X=x is calculated as shown in the beginning of this section. Next, to
estimate m(t1� t2) at specified values t1� t2, let x̂ be such that

q(̂s(x̂� t2)� x̂)= t1�

Then

m̂(t1� t2)= Pz(̂s(x̂� t2))�(D.2)

Theorem D.2 establishes the asymptotic properties of this estimator for the
case where the function q(z�x) = zx and Pz is known. This analysis serves as
a prototype for more general cases. The assumptions of the theorem are very
similar to those of Theorem D.1. Note that in this case, nx = 1�

Let x∗ be the value of x satisfying q(s(x∗� t2)�x∗) = t1. In place of Assump-
tions A.5–A.6, we make the following assumptions:
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ASSUMPTION A.5′: x∗ 	= 0; 0 < f(x∗); there exist δ�ξ > 0 such that ∀x ∈
B(x∗� ξ)� ∀̃z ∈ B(s(x� t2)�ξ), f (x) ≥ δ and f (̃z�x)≥ δ, and for all x in a neigh-
borhood of x∗� dFZ|X=x(t1/x)/dx 	= 0.

ASSUMPTION A.6′: t1 	= 0 and it belongs to the interior of the support of
q(s(x� t2)�x).

The consistency and asymptotic normality of ŝ follow from Theorems 1
and 2 in Matzkin (2003).

THEOREM D.2: Suppose that Assumptions A.1–A.4, and A.5′ and A.6′ are
satisfied. Then m̂(t1� t2) converges in probability to m(t1� t2) and√

NσN(m̂(t1� t2)−m(t1� t2))→ N(0� Vm′) in distribution�

where

Vm′ = C

{∫
K(x)2

}(
1

f (x∗)

)(
Fε(t2)(1 − Fε(t2))

)
and

C =
[
Pzz

(
t1

x∗

)]2(
t1

x∗2

)2[
dFZ|X=x∗(t1/x

∗)
dx

]−2

�

See Appendix F for the proof.
The analysis for an estimator based on Theorem 3.2 is similar and for the

sake of brevity is omitted. We next present some Monte Carlo evidence on the
performance of these estimators.

APPENDIX E: PERFORMANCE OF THE ESTIMATORS

We present some limited Monte Carlo experiments that illustrate the per-
formance of the estimation techniques presented in Appendix D. To obtain
these results, we simulate data from a hedonic model using a range of para-
meter values. For each set of parameter values tested, we simulate 100 data
sets, each with 500 observations. Then we estimate the marginal utility func-
tion using each of the data sets. We discuss the results of these simulations and
present graphs which display the median estimates (across the 100 data sets)
as well as the 5th and 95th percentile estimates. These results indicate that
the techniques developed for estimating the nonadditive hedonic model work
quite well.
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E.1. Model

For workers, we assume that marginal utility is given by Uz(z�x�ε) =
m(q(z�x)�ε), where q(z�x) = zx and m(q�ε) = βBqβ−1ε−δ. For firms, we as-
sume marginal productivity is given by Γ (z� y�η) = Azαη� We assume that
x ∼ U[xL�xH], ε ∼ U[εL�εH], and η ∼ U[ηL�ηH]. We assume that marginal
utility depends on the known observable scale q = zx and generate data from
this model to estimate the function m� Parameter values used in our simula-
tions are presented in Table I.

The baseline values in Table I are chosen to avoid numerical difficulties with
parameter values near zero and to demonstrate the properties of the model.
The alternative parameter values were chosen to examine the dependence
of outcomes on model parameters. We examine the impact of variations in
(xU�β�δ). The parameter xU affects the variance (and mean) of the observable
variables and the size of the equilibrium support of (zx�ε). The parameters
(β�δ) affect the degree of nonlinearity in the hedonic equilibrium, the shape
of the hedonic pricing function, and, most importantly, the shape of the equi-
librium support of (zx�ε)� The features of the model and the equilibrium that
have the most significant impact on the performance of the estimators are the
relative variance of observables and unobserved variables and the equilibrium
support of (zx�ε). As one would expect, increased variance of observables rel-
ative to unobservables reduces the sampling error of the estimator. Also, the
estimator performs well on the interior of the support of (zx�ε), but less well
near the boundary of the support where there are fewer observations.

The parameters (xL�εL�εU�ηL�ηU) have impacts that are qualitatively sim-
ilar to the impacts of xU� The parameter xL affects the mean and variance
of x and the equilibrium support of (zx�ε). The parameters (εL�εU) affect
the mean and variance of ε and the equilibrium support of (zx�ε). Increases

TABLE I

BASELINE PARAMETER VALUES AND ALTERNATIVE VALUES

Parameter Name Baseline Values Feasible Values Alternative Values

xL 1.0 xL > 0 n.a.∗

xU 2.0 xU > xL 3.0
εL 1.0 εL > 0 n.a.
εU 2.0 εU > εL n.a.
ηL 1.0 ηL > 0 n.a.
ηU 2.0 ηU > ηL n.a.
α 0.25 0 <α<β n.a.
β 0.50 β 	= 1 0.75
δ 1.0 δ > 0 2.0
A 1.0 A> 0 n.a.
B 1.0 B > 0 n.a.

∗n.a. = not applicable because the specification in the column “Feasible Values” is maintained.
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in the variance of ε reduce the precision of the estimates. The parameters
(ηL�ηU) affect the equilibrium support of (zx�ε). For the sake of brevity, we
do not report results for alternative values of α and for values of β> 1� These
parameters affect the shape of the support of (zx�ε). In particular, when α< 1
and β> 1, the support of (zx�ε) is confined to a very small region.6

E.2. Estimation Results

We use the procedure described in Section D.2 to estimate the supply func-
tion z = s(x�ε). To estimate the model, we assume that q(z�x) = zx and
ε∼ U[εL�εU ]. Under this assumption, we can compare the estimated values of
m(q�ε) with the true value. We estimate the marginal utility function m(q�ε)
for a selected set of values of q and ε in the relevant domain. The domain
on which m is identified is both model-dependent and data-dependent. We il-
lustrate this in our simulation results. The figures display the median values
(across the 100 data sets) of our estimation results as well as the 5th and 95th
percentiles.

Figure 3 presents results for the baseline model. The top two panels display
the true function m(q�ε) and the median of the estimates of that function.
While m is well defined for all positive values of q and ε, the function is only
identified on the funnel-shaped region underneath the graph in the figure. The
limits of the region of identification are determined by the model. In particu-
lar, they are determined by the assumption that (x�ε�η) are each uniformly
distributed. The shape of the region is determined in equilibrium and depends
strongly on the supports of (x�ε�η) and on the curvature parameters (α�β�δ).

The figure shows that the median of the estimates of m are very accurate.
The two functions in the top two panels are nearly identical. The bottom two
panels show the estimated values of m for fixed values of ε and q, respectively.
In these panels, the solid lines depict the true value of m(q�ε), the dashed lines
depict the median of the estimated values, the circles depict the 5th percentile
estimates, and the plus signs depict the 95th percentile estimates. The solid
lines and the dashed lines are indistinguishable. The 5th and 95th percentile
values are also very close to the true values except near the boundaries of the
supports. In the bottom left panel, the value of ε is fixed at 1.5. For this value
of ε, the value of m(q�ε) is accurately estimated for all values of q ∈ [2�24].
The value of the function cannot be estimated for larger values of q� For other
values of ε, the range of values of q that produce accurate estimates is differ-
ent. In the bottom right panel, the variable q is fixed at 4.9564. For this value of
q, m(q�ε) is accurately estimated for values of ε ranging from about 1.3 to 1.9.

Figure 4 illustrates similar results when xU is increased from 2.0 to 3.0. The
precision of the estimates increases and the size of the region on which the
function is identified increases. In Figure 3, the scale of the q axis ranges

6These results are available from the authors upon request.
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FIGURE 3.—Simulation results: baseline parameter values. The upper left panel plots the true
values of m(q�ε), where q = zx. The upper right panel plots the median of the estimates of
m(q�ε) (sample size 500; 100 Monte Carlo replications). The supports of the graphs indicate the
equilibrium region on which the function m is identified. The lower left panel plots the true and
estimated values of m(q�ε) when ε = 1�5� The lower right panel plots the true and estimated
values of m(q�ε) when q = 4�9564� The solid lines plot the true function values, the dashed lines
plot the medians of the estimated values, the circles plot the 95th percentile estimates, and the
plus symbols plot the 5th percentile estimates. True baseline parameter values are given in Table I.

from 0 to 60. In contrast, in Figure 4, the q axis scale ranges from 0 to 150.
In both Figures 3 and 4, the function m is accurately estimated for all values
of ε ∈ [1�2�1�8] when q is small. However, when q is large, the interval in the ε
dimension within which m can be accurately estimated is smaller.

Figure 5 illustrates the impact of increasing β to 0.75. This change has a dra-
matic impact on the support of (zx�ε) and hence on the region on which m is
identified. The scale of the q axis in Figure 5 ranges from 0 to 2.5. Within this
range, m can be estimated accurately, but the equilibrium provides no informa-
tion about the model for values of q outside this region. As β approaches 1, the
performance of the estimator deteriorates. In the limiting case where β = 1, x
does not affect marginal utility.

Finally, Figure 6 illustrates the impact of increasing δ to 2.0. This change
drastically increases the equilibrium support of z and hence of (zx�ε). Notice
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FIGURE 4.—Simulation results: xU = 3�0. The upper left panel plots the true values of m(q�ε),
where q = zx. The upper right panel plots the median of the estimates of m(q�ε) (sample
size 500; 100 Monte Carlo replications). The supports of the graphs indicate the equilibrium
region on which the function m is identified. The lower left panel plots the true and estimated
values of m(q�ε) when ε = 1�5� The lower right panel plots the true and estimated values of
m(q�ε) when q = 10�4758� The solid lines plot the true function values, the dashed lines plot
the medians of the estimated values, the circles plot the 95th percentile estimates, and the plus
symbols plot the 5th percentile estimates. All true parameter values except xU are identical to
the baseline parameter values� This case used the value xU = 3�0�

that the scale of the q axis in Figure 6 ranges from 0 to 500. The upper right
panel of Figure 6 shows that the median of the estimates of m is very similar
to the true value of m (depicted in the upper left panel). The lower left panel
shows that when ε = 1�5, the value of m is accurately estimated for values of q
ranging from 10 to 80. Similarly, the lower right shows that the value of m is
accurately estimated when q = 25�07 for all values of ε ranging from 1.4 to 1.7.

These figures illustrate that the estimator performs well in the interior of the
support of (zx�ε). Remember that we estimate the supply function z = s(x�ε)
and then use the estimated function, the marginal price function Pz(z), and
knowledge of the index structure Uz(z�x�ε) = m(q�ε), where q = zx, to es-
timate m� Crucial determinants of the performance of the estimator of m
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FIGURE 5.—Simulation results: β= 0�75. The upper left panel plots the true values of m(q�ε),
where q = zx. The upper right panel plots the median of the estimates of m(q�ε) (sample
size 500; 100 Monte Carlo replications). The supports of the graphs indicate the equilibrium
region on which the function m is identified. The lower left panel plots the true and estimated
values of m(q�ε) when ε = 1�5� The lower right panel plots the true and estimated values of
m(q�ε) when q = 0�9888. The solid lines plot the true function values, the dashed lines plot the
medians of the estimated values, the circles plot the 95th percentile estimates, and the plus sym-
bols plot the 5th percentile estimates. All true parameter values except β are identical to the
baseline parameter values� This case used the value β = 0�75�

are the relative variance of observables and unobservables and the equilib-
rium support of (zx�ε). In applications, since researchers must first estimate
z = s(x�ε), the first stage estimate can be used to construct a residual for each
observation and to estimate the joint density of (zx�ε). This joint density pro-
vides information as to the region in (zx�ε) where many observations are avail-
able and where it is possible to estimate m accurately.

APPENDIX F: PROOFS

PROOF OF THEOREM D.1: We apply the delta method developed in Newey
(1994). Let F(z�x) denote the c.d.f. of the vector of observable variables
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FIGURE 6.—Simulation results: δ = 2�0. The upper left panel plots the true values of m(q�ε),
where q = zx. The upper right panel plots the median of the estimates of m(q�ε) (sample
size 500; 100 Monte Carlo replications). The supports of the graphs indicate the equilibrium
region on which the function m is identified. The lower left panel plots the true and estimated
values of m(q�ε) when ε = 1�5� The lower right panel plots the true and estimated values of
m(q�ε) when q = 25�0741� The solid lines plot the true function values, the dashed lines plot
the medians of the estimated values, the circles plot the 95th percentile estimates, and the plus
symbols plot the 5th percentile estimates. All true parameter values except δ are identical to the
baseline parameter values. This case used the value δ = 2�0�

(Z�X), let f (z�x) denote its p.d.f., let f (x) denote the marginal p.d.f. of X ,
and let FZ|X=x denote the conditional c.d.f. of Z given X = x� Recall that
Z̃ × X̃ is the compact support of (Z�X). Let L = 3 be the dimension of
Z̃× X̃ . For any function G : RL → R, define g(z�x) = ∂LG(z�x)/∂z ∂x, g(x) =∫ ∞

−∞ g(s�x)ds�GZ|X=x(z
′) = (

∫ z′
−∞ g(s�x)ds)/g(x), and G̃Z(z�x) = ∫ z

−∞ g(s�

x)ds = ∫ ∞
−∞ 1[s ≤ z]g(s�x)ds, where 1[·] = 1 if [·] is true and equals zero oth-

erwise. Let C denote a compact set in RL that strictly includes Z̃ × X̃� Let
B denote the set of all functions G : RL → R such that g(z�x) has bounded,
continuous derivatives up to order 3 and vanishes outside C . Let B̃ denote
the set of all functions G̃Z that are derived from some G in B. Since there
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is a 1–1 relationship between functions in B and functions in B̃� we can de-
fine a functional on B or on B̃ without altering its definition. Let ‖G‖ de-
note the maximum of the sup norms of g(z�x) and its derivatives up to third
order. If H ∈ B, there exists ρ1 > 0 such that if ‖H‖ ≤ ρ1, then for some
0 < a�b < ∞� all x in a neighborhood of (x∗

1�x
∗
2), and all z̃ ∈ B(v(x1� t2)� ξ),

|h(x)| ≤ a‖H‖, | ∫ z̃
h(s�x)ds| ≤ a‖H‖, f (x) + h(x) ≥ b|f (x)|� and f (̃z�x) +

h(̃z�x)≥ b|f (̃z�x)|� Let x= (x1�x2)�
We first derive the asymptotic behavior of x̂∗

1, defined as the value of x1 that,
given v̂, satisfies

q1(̂v(x̂
∗
1� t2)� x̂

∗
1)= t1�

Recall that x∗
2 = t2 + e∗ and

v̂(x1� t2)= F̂−1
Z|X=(x1�x

∗
2)

(
F̂Z|X=x(z)

)
�

Hence, x̂∗
1 satisfies

F̂−1
Z|X=(x̂∗

1�x
∗
2)

(
F̂Z|X=x(z)

) · x̂∗
1 = t1

or

F̂Z|X=x(z)= F̂Z|X=(x̂∗
1�x

∗
2)

(
t1

x̂∗
1

)
�

Analogously, the population value x∗
1 satisfies

FZ|X=x(z)= FZ|X=(x∗
1�x

∗
2)

(
t1

x∗
1

)
�

Define the functional ρ(G�x1) on B × X̃1 by

ρ(G�x1)=GZ|X=x(z)−GZ|X=(x1�x
∗
2)

(
t1

x1

)
�

For any x1 in a small enough neighborhood of x∗
1, any G in a small enough

neighborhood of F , any H such that ‖H‖ is small enough, and any �x1 such
that |�x1| is small enough,

ρ(G+H�x1)− ρ(G�x1)

=

∫ z

−∞
(g(s�x)+ h(s�x))ds

(g(x)+ h(x))
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−

∫ z

−∞
g(s�x)ds

g(x)

−
[∫ (t1/x1)

−∞
(g(s�x1�x

∗
2)+ h(s�x1�x

∗
2))ds

(g(x1�x
∗
2)+ h(x1�x

∗
2))

−

∫ (t1/x1)

−∞
g(s�x1�x

∗
2)ds

g(x1�x
∗
2)

]

=
g(x)

∫ z

−∞
h(s�x)ds

g(x)(g(x)+ h(x))
−

h(x)

∫ z

−∞
g(s�x)ds

g(x)(g(x)+ h(x))

−
[ g(x1�x

∗
2)

∫ (t1/x1)

−∞
h(s�x1�x

∗
2)ds

g(x1�x
∗
2)(g(x1�x

∗
2)+ h(x1�x

∗
2))

−
h(x1�x

∗
2)

∫ (t1/x1)

−∞
g(s�x1�x

∗
2)ds

g(x1�x
∗
2)(g(x1�x

∗
2)+ h(x1�x

∗
2))

]

=

∫ z

−∞
h(s�x)ds − h(x)GZ|X=x(z)

g(x)

−

∫ (t1/x1)

−∞
h(s�x1�x

∗
2)ds − h(x1�x

∗
2)GZ|X=(x1�x

∗
2)
(t1/x1)

g(x1�x
∗
2)

−

∫ z

−∞
h(s�x)ds − h(x)GZ|X=x(z)

g(x)

h(x)

g(x)+ h(x)

+

[∫ (t1/x1)

−∞
h(s�x1�x

∗
2)ds − h(x1�x

∗
2)GZ|X=(x1�x

∗
2)
(t1/x1)

]
g(x1�x

∗
2)

× h(x1�x
∗
2)

g(x1�x
∗
2)+ h(x1�x

∗
2)
�
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Define

DFρ(G�x1;H)

=

∫ z

−∞
h(s�x)ds − h(x)GZ|X=x(z)

g(x)

−

∫ (t1/x1)

−∞
h(s�x1�x

∗
2)ds − h(x1�x

∗
2)GZ|X=(x1�x

∗
2)
(t1/x1)

g(x1�x
∗
2)

and

RFρ(G�x1;H) = −
[∫ z

−∞
h(s�x)ds − h(x)GZ|X=x(z)

g(x)

]
h(x)

g(x)+ h(x)

+
[∫ (t1/x1)

−∞
h(s�x1�x

∗
2)ds − h(x1�x

∗
2)GZ|X=(x1�x

∗
2)
(t1/x1)

g(x1�x
∗
2)

]

× h(x1�x
∗
2)

g(x1�x
∗
2)+ h(x1�x

∗
2)
�

Then, for some a1 < ∞, and all (G�x) in the small neighborhood of (F�x∗), as
described, we have that

|DFρ(G�x1;H)| ≤ a1‖H‖� |RFρ(G�x1;H)| ≤ a1‖H‖2

and

ρ(G+H�x1)− ρ(G�x1)=DFρ(G�x1;H)+RFρ(G�x1;H)�

It follows that DFρ(G�x1;H) is the Fréchet derivative of ρ with respect to F
when F =G. Also, for such (G�x) as described above,

ρ(G�x1 +�x1)− ρ(G�x1)

= −GZ|X=(x1+�x1�x
∗
2)

(
t1

x1 +�x1

)
+GZ|X=(x1�x

∗
2)

(
t1

x1

)

= −

∫ t1/(x1+�x1)

−∞
g(s�x1 +�x1�x

∗
2)ds

g(x1 +�x1�x
∗
2)

+

∫ t1/x1

−∞
g(s�x1�x

∗
2)ds

g(x1�x
∗
2)
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= −

∫ t1/(x1+�x1)

−∞

(
g(s�x1�x

∗
2)+ ∂g(s�x1�x

∗
2)

∂x1
�x1 +Rg�1

)
ds

g(x1 +�x1�x
∗
2)

+

∫ t1/x1

−∞
g(s�x1�x

∗
2)ds

g(x1�x
∗
2)

�

where the last equality follows by Taylor’s theorem with |Rg�1| ≤ a2|�x1|2 for
some a2 < ∞ which depends on (g�x1�x

∗
2). Again using Taylor’s theorem, it

follows that for some a3 < ∞, which depends on (g�x1�x
∗
2), and for Rg�2 and

Rg�3 with |Rg�2| ≤ a3|�x1|2 and |Rg�3| ≤ a3|�x1|2,

ρ(G�x1 +�x1)− ρ(G�x1)

= −
[∫ t1/x1

−∞

(
g(s�x1�x

∗
2)

+ ∂g(s�x1�x
∗
2)

∂x1
�x1 +Rg�1

)
ds

]
g(x1�x

∗
2)/

(g(x1 +�x1�x
∗
2)g(x1�x

∗
2))

−
[
g

(
t1

x1
�x1�x

∗
2

)(−t1

x2
1

)
�x1

+
∂g

(
t1

x1
�x1�x

∗
2

)
∂x1

(−t1

x2
1

)
(�x1)

2 +Rg�3

]
g(x1�x

∗
2)/

(g(x1 +�x1�x
∗
2)g(x1�x

∗
2))

+

[∫ t1/x1

−∞
g(s�x1�x

∗
2)ds

][
g(x1�x

∗
2)+ ∂g(x1�x

∗
2)

∂x1
�x1 +Rg�2

]
g(x1 +�x1�x

∗
2)g(x1�x

∗
2)

�

Hence,

ρ(G�x1 +�x1)− ρ(G�x1)

= −
[
g(x1�x

∗
2)

∫ t1/x1

−∞
g(s�x1�x

∗
2)ds

+ g(x1�x
∗
2)

∫ t1/x1

−∞

∂g(s�x1�x
∗
2)

∂x1
ds�x1

]
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(g(x1 +�x1�x

∗
2)g(x1�x

∗
2))

−

[∫ t1/x1

−∞
Rg�1 ds

]
g(x1�x

∗
2)

g(x1 +�x1�x
∗
2)g(x1�x

∗
2)

−

[
g(x1�x

∗
2)g

(
t1

x1
�x1�x

∗
2

)(−t1

x2
1

)
�x1

]
g(x1 +�x1�x

∗
2)g(x1�x

∗
2)

−

[∂g(
t1

x1
�x1�x

∗
2

)
∂x1

(−t1

x2
1

)
(�x1)

2 +Rg�3

]
g(x1�x

∗
2)

g(x1 +�x1�x
∗
2)g(x1�x

∗
2)

+
[
g(x1�x

∗
2)

[∫ t1/x1

−∞
g(s�x1�x

∗
2)ds

]
+ ∂g(x1�x

∗
2)

∂x1

[∫ t1/x1

−∞
g(s�x1�x

∗
2)ds

]
�x1

]
/
(g(x1 +�x1�x

∗
2)g(x1�x

∗
2))

+

[∫ t1/x1

−∞
g(s�x1�x

∗
2)ds

]
[Rg�2]

g(x1 +�x1�x
∗
2)g(x1�x

∗
2)

�

Let

Dx1ρ(G�x1;�x1)

= −

∫ t1/x1

−∞

∂g(s�x1�x
∗
2)

∂x1
ds�x1

g(x1�x
∗
2)

−
g

(
t1

x1
�x1�x

∗
2

)(−t1

x2
1

)
�x1

g(x1�x
∗
2)

+
∂g(x1�x

∗
2)

∂x1

[∫ t1/x1

−∞
g(s�x1�x

∗
2)ds

]
�x1

g(x1�x
∗
2)

2

and

Rx1ρ(G�x1;�x1)

= −Dx1ρ(G�x1;�x1)

[
g(x1 +�x1�x

∗
2)− g(x1�x

∗
2)

g(x1 +�x1�x
∗
2)

]
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−

[∫ t1/x1

−∞
Rg�1 ds

]
g(x1�x

∗
2)

g(x1 +�x1�x
∗
2)g(x1�x

∗
2)

−

[∂g(
t1

x1
�x1�x

∗
2

)
∂x1

(−t1

x2
1

)
(�x1)

2 +Rg�3

]
g(x1�x

∗
2)

g(x1 +�x1�x
∗
2)g(x1�x

∗
2)

+

[∫ t1/x1

−∞
g(s�x1�x

∗
2)ds

]
[Rg�2]

g(x1 +�x1�x
∗
2)g(x1�x

∗
2)

�

Then, for some a4 <∞, and all (G�x1) in a neighborhood of (F�x∗
1)

|Dx1ρ(G�x1;�x1)| ≤ a4|�x1|� |Rx1ρ(G�x1;�x1)| ≤ a4|�x1|2

and

ρ(G�x1 +�x1)− ρ(G�x1)= Dx1ρ(G�x1;�x1)+Rx1ρ(G�x1;�x1)�

It follows that Dx1ρ(G�x1;�x1) is the Fréchet derivative of ρ with respect to x1

at (G�x1)�
In a similar way, one can show that each of the Fréchet derivatives

DFρ(G�x1;H) and Dx1ρ(G�x1;�x1) is itself Fréchet differentiable with
respect to G and x1� and, moreover, our assumptions imply that these
Fréchet derivatives are continuous and uniformly bounded on a neighbor-
hood of (F�x∗

1). Since ρ(F�x∗
1) = 0 and, by our assumptions, the continuous

Dx1ρ(G�x;�x1) is invertible in such neighborhood, it follows by the Implicit
Function Theorem of Hildebrandt and Graves (1927) (see Zeidler (1991, p.
150)), that there exists a unique functional κ(G) on a neighborhood of F such
that for all G in that neighborhood,

ρ(G�κ(G))= 0�

Moreover, since ρ is a C2 map, κ is also a C2 map on such a neighborhood. For
any G in the neighborhood of F , the Fréchet derivative DFκ(G;H) of κ at G
in the direction H satisfies

Dx1ρ(G�κ(G);DFκ(G;H))= −DFρ(G�κ(G);H)�

Hence, since

Dx1ρ(G�x1;�x1) = −
[dGZ|X=(x1�x

∗
2)

(
t1

x1

)
dx1

]
�x1�
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the Fréchet derivative of κ is given by

DFκ(G;H)=
[dGZ|X=(κ(G)�x∗

2)

(
t1

κ(G)

)
dx1

]−1[
DFρ(G�κ(G);H)

]
�

In particular,

DFκ(F;H)=
[dFZ|X=(x∗

1�x
∗
2)

(
t1

x∗
1

)
dx1

]−1

[DFρ(F�x
∗
1;H)]�

The uniform boundedness of the second and first order Fréchet derivatives of ρ
in a neighborhood of (F�x∗

1) implies by Taylor’s theorem in Banach spaces that
the remainder RFκ(F;H)= κ(F +H)− κ(F)−DFκ(F;H) satisfies

|RFκ(F;H)| ≤ c‖H‖2

for some c < ∞� Letting H = F̂ − F , it follows by our assumptions and the
Delta method in Newey (1994) that√

Nσ2
N(x̂

∗
1 − x∗

1)=
√
Nσ2

N(κ(F̂)− κ(F))→N(0� Vx̂)�

where

Vx̂ =
[dFZ|X=(x∗

1�x
∗
2)

(
t1

x∗
1

)
dx1

]−2{∫
K(x)2

}

×
(

1
f (x)

+ 1
f (x∗)

)(
FZ|X=x(z)

(
1 − FZ|X=x(z)

))
�

Since

m̂(t1� t2) = Pz(̂v(x̂
∗
1� t2))

= Pz

(
t1

x̂∗
1

)
�

it follows by the standard Delta method that√
Nσ2

N(m̂(t1� t2)−m(t1� t2))→N(0� Vm)�

where

Vm = C

{∫
K(x)2

}(
1

f (x)
+ 1

f (x∗)

)(
FZ|X=x(z)

(
1 − FZ|X=x(z)

))
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and

C =
(
Pzz

(
t1

x∗
1

))2(
t1

(x∗
1)

2

)2
[dFZ|X=(x∗

1�x
∗
2)

(
t1

x∗
1

)
dx1

]−2

�

Q.E.D.

PROOF OF THEOREM D.2: The method of proof is very similar to that of
Theorem D.1. The only difference is that F̂Z|X=x(z) and FZ|X=x(z) in the proof
of Theorem D.1 are now replaced by Fε(t2)� Following the same steps as in the
proof of Theorem D.1, it is then easy to show that√

NσN(m̂(t1� t2)−m(t1� t2))→ N(0� Vm′)�

where

Vm′ = C

{∫
K(x)2

}(
1

f (x∗)

)(
Fε(t2)(1 − Fε(t2))

)
and C is as in the proof of Theorem D.1.

Q.E.D.
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