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S.1. PROOF OF THEOREM 1

THEOREM 1: If a subset W of RI×|Ω| is bounded and ex post self-generating
with respect to δ, then W ⊆ E(δ).

PROOF: Let v ∈ W . We will construct a PPXE that yields v. Since v ∈
B(δ�W ), there exist a profile α and a function w :Y → W such that (α�v)
is ex post enforced by w. Set the action profile in period one to be s|h0 = α
and for each h1 = y1 ∈ Y , set v|h1 = w(h1) ∈ W . The play in later periods
is determined recursively, using v|ht as a state variable. Specifically, for each
t ≥ 2 and for each ht−1 = (yτ)t−1

τ=1 ∈ Ht−1, given a v|ht−1 ∈ W , let α|ht−1 and
w|ht−1 :Y → W be such that (α|ht−1� v|ht−1) is ex post enforced by w|ht−1 . Then
set the action profile after history ht−1 to be s|ht−1 = α|ht−1 and for each yt ∈ Y ,
set v|ht=(ht−1�yt ) = w|ht−1(yt) ∈ W .

Because W is bounded and δ ∈ (0�1), payoffs are continuous at infinity, so fi-
nite approximations show that the specified strategy profile s ∈ S generates v as
an average payoff, and its continuation strategy s|ht yields v|ht for each ht ∈Ht .
Also, by construction, nobody wants to deviate at any moment of time, given
any state ω ∈ Ω. Because payoffs are continuous at infinity, the one-shot devi-
ation principle applies, and we conclude that s is a PPXE, as desired. Q.E.D.

S.2. PROOF OF THEOREM 2

THEOREM 2: If a subset W of RI×|Ω| is compact, convex, and locally ex post
generating, then there is δ ∈ (0�1) such that W ⊆ E(δ) for all δ ∈ (δ�1).

PROOF: Suppose that W is locally ex post generating. Since {Uv}v∈W is an
open cover of the compact set W , there is a subcover {Uvm}m of W . Let δ =
maxm δvm . Choose u ∈ W arbitrarily and let Uvm be such that u ∈ Uvm . Since
W ∩ Uvm ⊆ B(δvm�W ), there exist αu and wu :Y → W such that (αu�u) is ex
post enforced by wu for δvm . Given a δ ∈ (δ�1), let

w(y)= δ− δu

δ(1 − δu)
u+ δu(1 − δ)

δ(1 − δu)
wu(y)

for all y ∈ Y . Then it is straightforward that (αu�u) is enforced by (w(y))y∈Y
for δ. Also, w(y) ∈W for all y ∈ Y , since u and w(y) are in W and W is convex.
Therefore, u ∈ B(δ�W ), meaning that W ⊆ B(δ�W ) for all δ ∈ (δ�1). (Recall

© 2010 The Econometric Society DOI: 10.3982/ECTA8565

http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA8565


2 D. FUDENBERG AND Y. YAMAMOTO

that u and δ are arbitrarily chosen from W and (δ�1).) Then, from Theorem 1,
W ⊆ E(δ) for δ ∈ (δ�1), as desired. Q.E.D.

S.3. PROOF OF LEMMA 2

LEMMA 2: For every δ ∈ (0�1), E(δ) ⊆ E∗(δ) ⊆ Q, where E∗(δ) is the convex
hull of E(δ).

PROOF: It is obvious that E(δ) ⊆ E∗(δ). Suppose E∗(δ) �⊆ Q. Then, since
the score is a linear function, there is v ∈ E(δ) and λ such that λ · v > k∗(λ).
In particular, since E(δ) is compact, there exist v∗ ∈ E(δ) and λ such that
λ · v∗ > k∗(λ) and λ · v∗ ≥ λ · ṽ for all ṽ ∈ E∗(δ). By definition, v∗ is enforced
by (w(y))y∈Y such that w(y) ∈ E(δ) ⊆ E∗(δ) ⊆ H(λ�λ · v∗) for all y ∈ Y . But
this implies that k∗(λ) is not the maximum score for direction λ, a contradic-
tion. Q.E.D.

S.4. PROOF OF LEMMA 3

LEMMA 3: For any smooth set W in the interior of Q, there is δ ∈ (0�1) such
that W ⊆ E(δ) for δ ∈ (δ�1).

PROOF: Since W is bounded, it suffices to show that it is also locally ex post
generating, that is, for each v ∈ W , there exist δv ∈ (0�1) and an open neigh-
borhood Uv of v such that W ∩Uv ⊆ B(δv�W ).

First, consider v ∈ bdW . Let λ be normal to W at v and let k = λ · v. Since
W ⊂ Q ⊆ H∗(λ), there exist α, ṽ, and (w̃(y))y∈Y such that λ · ṽ > λ · v = k,
(α� ṽ) is enforced using continuation payoffs (w̃(y))y∈Y for some δ̃ ∈ (0�1),
and w̃(y) ∈H(λ�λ · ṽ) for all y ∈ Y . For each δ ∈ (δ̃�1) and y ∈ Y , let

w(y�δ)= δ− δ̃

δ(1 − δ̃)
v + δ̃(1 − δ)

δ(1 − δ̃)

(
w̃(y)+ v− ṽ

δ̃

)
	

By construction, (α�v) is enforced by (w(y�δ))y∈Y for δ, and there is κ> 0 such
that |w(y�δ)−v|< κ(1−δ). Also, since λ · ṽ > λ ·v = k and w̃(y) ∈H(λ�λ · ṽ)
for all y ∈ Y , there is ε > 0 such that w̃(y)− v−ṽ

δ̃
is in H(λ�k− ε) for all y ∈ Y ,

thereby

w(y�δ) ∈ H

(
λ�k− δ̃(1 − δ)

δ(1 − δ̃)
ε

)

for all y ∈ Y . Then, as in the proof of FL’s Theorem 3.1, it follows from the
smoothness of W that w(y�δ) ∈ intW for sufficiently large δ, that is, (α�v) is
enforced with respect to intW . To enforce u in the neighborhood of v, use α
and a translate of (w(y�δ))y∈Y .
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Next, consider v ∈ intW . Choose λ arbitrarily, and let α and (w(y�δ))y∈Y be
as in the above argument. By construction, (α�v) is enforced by (w(y�δ))y∈Y .
Also, w(y�δ) ∈ intW for sufficiently large δ, since |w(y�δ)− v| < κ(1 − δ) for
some κ > 0 and v ∈ intW . Thus, (α�v) is enforced with respect to intW when δ
is close to 1. To enforce u in the neighborhood of v, use α and a translate of
(w(y�δ))y∈Y , as before. Q.E.D.

S.5. ALTERNATE PROOF OF LEMMA 6

LEMMA 6: Suppose that a profile α has statewise full rank for (i�ω) and (j� ω̃)
satisfying ω �= ω̃, and that α has individual full rank for all players and states.
Then k∗(α�λ) = ∞ for direction λ such that λω

i �= 0 and λω̃
j �= 0.

PROOF: Let (i�ω) and (j� ω̃) be such that λω
i �= 0, λω̃

j �= 0, and ω̃ �= ω. Let α
be a profile that has statewise full rank for all (i�ω) and (j� ω̃) satisfying ω �= ω̃.

First, we claim that for every K > 0, there exist zω
i = (zω

i (y))y∈Y and zω̃
j =

(zω̃
j (y))y∈Y such that

πω(ai�α−i) · zω
i = K

δλω
i

(S1)

for all ai ∈ Ai,

πω̃(aj�α−j) · zω̃
j = 0(S2)

for all aj ∈ Aj , and

λω
i z

ω
i (y)+ λω̃

j z
ω̃
j (y)= 0(S3)

for all y ∈ Y . To prove that this system of equations indeed has a solution, elim-
inate (S3) by solving for zω̃

j (y). Then there remain |Ai|+ |Aj| linear equations,
and its coefficient matrix is Π(i�ω)(j�ω̃)(α). Since statewise full rank implies that
this coefficient matrix has rank |Ai| + |Aj|, we can solve the system.

Next, for each (l�ω) ∈ I ×Ω, we choose (w̃ω
l (y))y∈Y so that

(1 − δ)gω
l (al�α−l)+ δπω(al�α−l) · w̃ω

l = 0(S4)

for all al ∈ Al. Note that this system has a solution, since α has individual full
rank. Intuitively, continuation payoffs w̃ω are chosen so that players are indif-
ferent over all actions and their payoffs are zero.

Let K > maxy∈Y λ · w̃(y), and choose (zω
i (y))y∈Y and (zω̃

j (y))y∈Y to satisfy
(S1)–(S3). Then let

wω
l (y)=

⎧⎨
⎩
w̃ω

i (y)+ zω
i (y)� if (l�ω) = (i�ω)�

w̃ω̃
j (y)+ zω̃

j (y)� if (l�ω) = (j� ω̃)�

w̃ω
l (y)� otherwise
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for each y ∈ Y . Also, let

vωl =
⎧⎨
⎩

K

λω
i

� if (l�ω) = (i�ω)�

0� otherwise	

We claim that this (v�w) satisfies constraints (i) through (iii) in LP Average.
It follows from (S4) that constraints (i) and (ii) are satisfied for all (l�ω) ∈
(I ×Ω) \ {(i�ω)� (j� ω̃)}. Also, using (S1) and (S4), we obtain

(1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) ·wω

i

= (1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) · (w̃ω

i + zω
i )

= K

λω
i

for all ai ∈ Ai. This shows that (v�w) satisfies constraints (i) and (ii) for (i�ω).
Likewise, from (S2) and (S4), (v�w) satisfies constraints (i) and (ii) for (j� ω̃).
Furthermore, using (S3) and K > maxy∈Y λ · w̃(y),

λ ·w(y) = λ · w̃(y)+ λω
i z

ω
i (y)+ λω̃

j z
ω̃
j (y)

= λ · w̃(y) < K = λ · v
for all y ∈ Y , and hence constraint (iii) holds.

Therefore, k∗(α�λ) ≥ λ ·v = K. Since K can be arbitrarily large, we conclude
k∗(α�λ) = ∞. Q.E.D.

Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A.;
dfudenberg@harvard.edu

and
Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A.;

yamamot@fas.harvard.edu.

Manuscript received May, 2009; final revision received May, 2010.

mailto:dfudenberg@harvard.edu
mailto:yamamot@fas.harvard.edu

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 2
	Proof of Lemma 3
	Alternate Proof of Lemma 6
	Author's Addresses

