SUPPLEMENT TO "REPEATED GAMES WHERE THE PAYOFFS AND MONITORING STRUCTURE ARE UNKNOWN" (*Econometrica*, Vol. 78, No. 5, September 2010, 1673–1710)

BY DREW FUDENBERG AND YUICHI YAMAMOTO

S.1. PROOF OF THEOREM 1

THEOREM 1: If a subset W of $\mathbf{R}^{I \times |\Omega|}$ is bounded and ex post self-generating with respect to δ , then $W \subseteq E(\delta)$.

PROOF: Let $v \in W$. We will construct a PPXE that yields v. Since $v \in B(\delta, W)$, there exist a profile α and a function $w: Y \to W$ such that (α, v) is expost enforced by w. Set the action profile in period one to be $s|_{h^0} = \alpha$ and for each $h^1 = y^1 \in Y$, set $v|_{h^1} = w(h^1) \in W$. The play in later periods is determined recursively, using $v|_{h^t}$ as a state variable. Specifically, for each $t \ge 2$ and for each $h^{t-1} = (y^{\tau})_{\tau=1}^{t-1} \in H^{t-1}$, given a $v|_{h^{t-1}} \in W$, let $\alpha|_{h^{t-1}}$ and $w|_{h^{t-1}}: Y \to W$ be such that $(\alpha|_{h^{t-1}}, v|_{h^{t-1}})$ is expost enforced by $w|_{h^{t-1}}$. Then set the action profile after history h^{t-1} to be $s|_{h^{t-1}} = \alpha|_{h^{t-1}}$ and for each $y^t \in Y$, set $v|_{h^t = (h^{t-1}, v^t)} = w|_{h^{t-1}}(y^t) \in W$.

Because W is bounded and $\delta \in (0, 1)$, payoffs are continuous at infinity, so finite approximations show that the specified strategy profile $s \in S$ generates v as an average payoff, and its continuation strategy $s|_{h^t}$ yields $v|_{h^t}$ for each $h^t \in H^t$. Also, by construction, nobody wants to deviate at any moment of time, given any state $\omega \in \Omega$. Because payoffs are continuous at infinity, the one-shot deviation principle applies, and we conclude that s is a PPXE, as desired. *Q.E.D.*

S.2. PROOF OF THEOREM 2

THEOREM 2: If a subset W of $\mathbf{R}^{I \times |\Omega|}$ is compact, convex, and locally expost generating, then there is $\overline{\delta} \in (0, 1)$ such that $W \subseteq E(\delta)$ for all $\delta \in (\overline{\delta}, 1)$.

PROOF: Suppose that W is locally ex post generating. Since $\{U_v\}_{v \in W}$ is an open cover of the compact set W, there is a subcover $\{U_{v^m}\}_m$ of W. Let $\overline{\delta} = \max_m \delta_{v^m}$. Choose $u \in W$ arbitrarily and let U_{v^m} be such that $u \in U_{v^m}$. Since $W \cap U_{v^m} \subseteq B(\delta_{v^m}, W)$, there exist α_u and $w_u : Y \to W$ such that (α_u, u) is ex post enforced by w_u for δ_{v^m} . Given a $\delta \in (\overline{\delta}, 1)$, let

$$w(y) = \frac{\delta - \delta_u}{\delta(1 - \delta_u)} u + \frac{\delta_u(1 - \delta)}{\delta(1 - \delta_u)} w_u(y)$$

for all $y \in Y$. Then it is straightforward that (α_u, u) is enforced by $(w(y))_{y \in Y}$ for δ . Also, $w(y) \in W$ for all $y \in Y$, since u and w(y) are in W and W is convex. Therefore, $u \in B(\delta, W)$, meaning that $W \subseteq B(\delta, W)$ for all $\delta \in (\overline{\delta}, 1)$. (Recall

© 2010 The Econometric Society

that *u* and δ are arbitrarily chosen from *W* and $(\overline{\delta}, 1)$.) Then, from Theorem 1, $W \subseteq E(\delta)$ for $\delta \in (\overline{\delta}, 1)$, as desired. *Q.E.D.*

S.3. PROOF OF LEMMA 2

LEMMA 2: For every $\delta \in (0, 1)$, $E(\delta) \subseteq E^*(\delta) \subseteq Q$, where $E^*(\delta)$ is the convex hull of $E(\delta)$.

PROOF: It is obvious that $E(\delta) \subseteq E^*(\delta)$. Suppose $E^*(\delta) \not\subseteq Q$. Then, since the score is a linear function, there is $v \in E(\delta)$ and λ such that $\lambda \cdot v > k^*(\lambda)$. In particular, since $E(\delta)$ is compact, there exist $v^* \in E(\delta)$ and λ such that $\lambda \cdot v^* > k^*(\lambda)$ and $\lambda \cdot v^* \ge \lambda \cdot \tilde{v}$ for all $\tilde{v} \in E^*(\delta)$. By definition, v^* is enforced by $(w(y))_{y \in Y}$ such that $w(y) \in E(\delta) \subseteq E^*(\delta) \subseteq H(\lambda, \lambda \cdot v^*)$ for all $y \in Y$. But this implies that $k^*(\lambda)$ is not the maximum score for direction λ , a contradiction. Q.E.D.

S.4. PROOF OF LEMMA 3

LEMMA 3: For any smooth set W in the interior of Q, there is $\overline{\delta} \in (0, 1)$ such that $W \subseteq E(\delta)$ for $\delta \in (\overline{\delta}, 1)$.

PROOF: Since W is bounded, it suffices to show that it is also locally expost generating, that is, for each $v \in W$, there exist $\delta_v \in (0, 1)$ and an open neighborhood U_v of v such that $W \cap U_v \subseteq B(\delta_v, W)$.

First, consider $v \in bd W$. Let λ be normal to W at v and let $k = \lambda \cdot v$. Since $W \subset Q \subseteq H^*(\lambda)$, there exist α , \tilde{v} , and $(\tilde{w}(y))_{y \in Y}$ such that $\lambda \cdot \tilde{v} > \lambda \cdot v = k$, (α, \tilde{v}) is enforced using continuation payoffs $(\tilde{w}(y))_{y \in Y}$ for some $\tilde{\delta} \in (0, 1)$, and $\tilde{w}(y) \in H(\lambda, \lambda \cdot \tilde{v})$ for all $y \in Y$. For each $\delta \in (\tilde{\delta}, 1)$ and $y \in Y$, let

$$w(y,\delta) = \frac{\delta - \tilde{\delta}}{\delta(1 - \tilde{\delta})}v + \frac{\tilde{\delta}(1 - \delta)}{\delta(1 - \tilde{\delta})} \bigg(\tilde{w}(y) + \frac{v - \tilde{v}}{\tilde{\delta}}\bigg).$$

By construction, (α, v) is enforced by $(w(y, \delta))_{y \in Y}$ for δ , and there is $\kappa > 0$ such that $|w(y, \delta) - v| < \kappa(1 - \delta)$. Also, since $\lambda \cdot \tilde{v} > \lambda \cdot v = k$ and $\tilde{w}(y) \in H(\lambda, \lambda \cdot \tilde{v})$ for all $y \in Y$, there is $\varepsilon > 0$ such that $\tilde{w}(y) - \frac{v - \tilde{v}}{\delta}$ is in $H(\lambda, k - \varepsilon)$ for all $y \in Y$, thereby

$$w(y, \delta) \in H\left(\lambda, k - \frac{\tilde{\delta}(1-\delta)}{\delta(1-\tilde{\delta})}\varepsilon\right)$$

for all $y \in Y$. Then, as in the proof of FL's Theorem 3.1, it follows from the smoothness of W that $w(y, \delta) \in \operatorname{int} W$ for sufficiently large δ , that is, (α, v) is enforced with respect to int W. To enforce u in the neighborhood of v, use α and a translate of $(w(y, \delta))_{y \in Y}$.

Next, consider $v \in \operatorname{int} W$. Choose λ arbitrarily, and let α and $(w(y, \delta))_{y \in Y}$ be as in the above argument. By construction, (α, v) is enforced by $(w(y, \delta))_{y \in Y}$. Also, $w(y, \delta) \in \operatorname{int} W$ for sufficiently large δ , since $|w(y, \delta) - v| < \kappa(1 - \delta)$ for some $\kappa > 0$ and $v \in \operatorname{int} W$. Thus, (α, v) is enforced with respect to int W when δ is close to 1. To enforce u in the neighborhood of v, use α and a translate of $(w(y, \delta))_{y \in Y}$, as before. Q.E.D.

S.5. ALTERNATE PROOF OF LEMMA 6

LEMMA 6: Suppose that a profile α has statewise full rank for (i, ω) and $(j, \tilde{\omega})$ satisfying $\omega \neq \tilde{\omega}$, and that α has individual full rank for all players and states. Then $k^*(\alpha, \lambda) = \infty$ for direction λ such that $\lambda_i^{\omega} \neq 0$ and $\lambda_i^{\tilde{\omega}} \neq 0$.

PROOF: Let (i, ω) and $(j, \tilde{\omega})$ be such that $\lambda_i^{\omega} \neq 0$, $\lambda_j^{\tilde{\omega}} \neq 0$, and $\tilde{\omega} \neq \omega$. Let α be a profile that has statewise full rank for all (i, ω) and $(j, \tilde{\omega})$ satisfying $\omega \neq \tilde{\omega}$.

First, we claim that for every K > 0, there exist $z_i^{\omega} = (z_i^{\omega}(y))_{y \in Y}$ and $z_j^{\tilde{\omega}} = (z_i^{\tilde{\omega}}(y))_{y \in Y}$ such that

(S1)
$$\pi^{\omega}(a_i, \alpha_{-i}) \cdot z_i^{\omega} = \frac{K}{\delta \lambda_i^{\omega}}$$

for all $a_i \in A_i$,

(S2)
$$\pi^{\tilde{\omega}}(a_j, \alpha_{-j}) \cdot z_j^{\tilde{\omega}} = 0$$

for all $a_i \in A_i$, and

(S3)
$$\lambda_i^{\omega} z_i^{\omega}(y) + \lambda_i^{\tilde{\omega}} z_i^{\tilde{\omega}}(y) = 0$$

for all $y \in Y$. To prove that this system of equations indeed has a solution, eliminate (S3) by solving for $z_j^{\tilde{\omega}}(y)$. Then there remain $|A_i| + |A_j|$ linear equations, and its coefficient matrix is $\Pi_{(i,\omega)(j,\tilde{\omega})}(\alpha)$. Since statewise full rank implies that this coefficient matrix has rank $|A_i| + |A_j|$, we can solve the system.

Next, for each $(l, \overline{\omega}) \in \mathbf{I} \times \Omega$, we choose $(\tilde{w}_l^{\overline{\omega}}(y))_{y \in Y}$ so that

(S4)
$$(1-\delta)g_l^{\overline{\omega}}(a_l,\alpha_{-l}) + \delta\pi^{\overline{\omega}}(a_l,\alpha_{-l}) \cdot \tilde{w}_l^{\overline{\omega}} = 0$$

for all $a_l \in A_l$. Note that this system has a solution, since α has individual full rank. Intuitively, continuation payoffs $\tilde{w}^{\overline{\alpha}}$ are chosen so that players are indifferent over all actions and their payoffs are zero.

Let $K > \max_{y \in Y} \lambda \cdot \tilde{w}(y)$, and choose $(z_i^{\omega}(y))_{y \in Y}$ and $(z_j^{\tilde{\omega}}(y))_{y \in Y}$ to satisfy (S1)–(S3). Then let

$$w_{l}^{\overline{\omega}}(y) = \begin{cases} \tilde{w}_{i}^{\omega}(y) + z_{i}^{\omega}(y), & \text{if } (l, \overline{\omega}) = (i, \omega), \\ \tilde{w}_{j}^{\tilde{\omega}}(y) + z_{j}^{\tilde{\omega}}(y), & \text{if } (l, \overline{\omega}) = (j, \tilde{\omega}), \\ \tilde{w}_{l}^{\overline{\omega}}(y), & \text{otherwise} \end{cases}$$

for each $y \in Y$. Also, let

$$v_l^{\overline{\omega}} = \begin{cases} \frac{K}{\lambda_i^{\omega}}, & \text{if } (l, \overline{\omega}) = (i, \omega), \\ 0, & \text{otherwise.} \end{cases}$$

We claim that this (v, w) satisfies constraints (i) through (iii) in LP Average. It follows from (S4) that constraints (i) and (ii) are satisfied for all $(l, \overline{\omega}) \in (\mathbf{I} \times \Omega) \setminus \{(i, \omega), (j, \tilde{\omega})\}$. Also, using (S1) and (S4), we obtain

$$\begin{aligned} (1-\delta)g_i^{\omega}(a_i,\alpha_{-i}) + \delta\pi^{\omega}(a_i,\alpha_{-i}) \cdot w_i^{\omega} \\ &= (1-\delta)g_i^{\omega}(a_i,\alpha_{-i}) + \delta\pi^{\omega}(a_i,\alpha_{-i}) \cdot (\tilde{w}_i^{\omega} + z_i^{\omega}) \\ &= \frac{K}{\lambda_i^{\omega}} \end{aligned}$$

for all $a_i \in A_i$. This shows that (v, w) satisfies constraints (i) and (ii) for (i, ω) . Likewise, from (S2) and (S4), (v, w) satisfies constraints (i) and (ii) for $(j, \tilde{\omega})$. Furthermore, using (S3) and $K > \max_{y \in Y} \lambda \cdot \tilde{w}(y)$,

$$\begin{split} \lambda \cdot w(y) &= \lambda \cdot \tilde{w}(y) + \lambda_i^{\omega} z_i^{\omega}(y) + \lambda_j^{\bar{\omega}} z_j^{\bar{\omega}}(y) \\ &= \lambda \cdot \tilde{w}(y) < K = \lambda \cdot v \end{split}$$

for all $y \in Y$, and hence constraint (iii) holds.

Therefore, $k^*(\alpha, \lambda) \ge \lambda \cdot v = K$. Since *K* can be arbitrarily large, we conclude $k^*(\alpha, \lambda) = \infty$. Q.E.D.

Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A.; dfudenberg@harvard.edu

and

Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A.; yamamot@fas.harvard.edu.

Manuscript received May, 2009; final revision received May, 2010.