SUPPLEMENT TO "REPEATED GAMES WHERE THE PAYOFFS AND MONITORING STRUCTURE ARE UNKNOWN"
 (Econometrica, Vol. 78, No. 5, September 2010, 1673-1710)

By Drew Fudenberg and Yuichi Yamamoto

S.1. PROOF OF THEOREM 1

THEOREM 1: If a subset W of $\mathbf{R}^{I \times|\Omega|}$ is bounded and ex post self-generating with respect to δ, then $W \subseteq E(\delta)$.

Proof: Let $v \in W$. We will construct a PPXE that yields v. Since $v \in$ $B(\delta, W)$, there exist a profile α and a function $w: Y \rightarrow W$ such that (α, v) is ex post enforced by w. Set the action profile in period one to be $\left.s\right|_{h^{0}}=\alpha$ and for each $h^{1}=y^{1} \in Y$, set $\left.v\right|_{h^{1}}=w\left(h^{1}\right) \in W$. The play in later periods is determined recursively, using $\left.v\right|_{h^{t}}$ as a state variable. Specifically, for each $t \geq 2$ and for each $h^{t-1}=\left(y^{\tau}\right)_{\tau=1}^{t-1} \in H^{t-1}$, given a $\left.v\right|_{h^{t-1}} \in W$, let $\left.\alpha\right|_{h^{t-1}}$ and $\left.w\right|_{h^{t-1}}: Y \rightarrow W$ be such that $\left(\left.\alpha\right|_{h^{t-1}},\left.v\right|_{h^{t-1}}\right)$ is ex post enforced by $\left.w\right|_{h^{t-1}}$. Then set the action profile after history h^{t-1} to be $\left.s\right|_{h^{t-1}}=\left.\alpha\right|_{h^{t-1}}$ and for each $y^{t} \in Y$, set $\left.v\right|_{h^{t}=\left(h^{t-1}, y^{t}\right)}=\left.w\right|_{h^{t-1}}\left(y^{t}\right) \in W$.

Because W is bounded and $\delta \in(0,1)$, payoffs are continuous at infinity, so finite approximations show that the specified strategy profile $s \in S$ generates v as an average payoff, and its continuation strategy $\left.s\right|_{h^{t}}$ yields $\left.v\right|_{h^{t}}$ for each $h^{t} \in H^{t}$. Also, by construction, nobody wants to deviate at any moment of time, given any state $\omega \in \Omega$. Because payoffs are continuous at infinity, the one-shot deviation principle applies, and we conclude that s is a PPXE, as desired. Q.E.D.

S.2. PROOF OF THEOREM 2

THEOREM 2: If a subset W of $\mathbf{R}^{I \times|\Omega|}$ is compact, convex, and locally ex post generating, then there is $\bar{\delta} \in(0,1)$ such that $W \subseteq E(\delta)$ for all $\delta \in(\bar{\delta}, 1)$.

Proof: Suppose that W is locally ex post generating. Since $\left\{U_{v}\right\}_{v \in W}$ is an open cover of the compact set W, there is a subcover $\left\{U_{v^{m}}\right\}_{m}$ of W. Let $\bar{\delta}=$ $\max _{m} \delta_{v^{m}}$. Choose $u \in W$ arbitrarily and let $U_{v^{m}}$ be such that $u \in U_{v^{m}}$. Since $W \cap U_{v^{m}} \subseteq B\left(\delta_{v^{m}}, W\right)$, there exist α_{u} and $w_{u}: Y \rightarrow W$ such that $\left(\alpha_{u}, u\right)$ is ex post enforced by w_{u} for $\delta_{v^{m}}$. Given a $\delta \in(\bar{\delta}, 1)$, let

$$
w(y)=\frac{\delta-\delta_{u}}{\delta\left(1-\delta_{u}\right)} u+\frac{\delta_{u}(1-\delta)}{\delta\left(1-\delta_{u}\right)} w_{u}(y)
$$

for all $y \in Y$. Then it is straightforward that $\left(\alpha_{u}, u\right)$ is enforced by $(w(y))_{y \in Y}$ for δ. Also, $w(y) \in W$ for all $y \in Y$, since u and $w(y)$ are in W and W is convex. Therefore, $u \in B(\delta, W)$, meaning that $W \subseteq B(\delta, W)$ for all $\delta \in(\bar{\delta}, 1)$. (Recall
that u and δ are arbitrarily chosen from W and $(\bar{\delta}, 1)$.$) Then, from Theorem 1,$ $W \subseteq E(\delta)$ for $\delta \in(\bar{\delta}, 1)$, as desired.
Q.E.D.

S.3. PROOF OF LEMMA 2

LEMMA 2: For every $\delta \in(0,1), E(\delta) \subseteq E^{*}(\delta) \subseteq Q$, where $E^{*}(\delta)$ is the convex hull of $E(\delta)$.

Proof: It is obvious that $E(\delta) \subseteq E^{*}(\delta)$. Suppose $E^{*}(\delta) \nsubseteq Q$. Then, since the score is a linear function, there is $v \in E(\delta)$ and λ such that $\lambda \cdot v>k^{*}(\lambda)$. In particular, since $E(\delta)$ is compact, there exist $v^{*} \in E(\delta)$ and λ such that $\lambda \cdot v^{*}>k^{*}(\lambda)$ and $\lambda \cdot v^{*} \geq \lambda \cdot \tilde{v}$ for all $\tilde{v} \in E^{*}(\delta)$. By definition, v^{*} is enforced by $(w(y))_{y \in Y}$ such that $w(y) \in E(\delta) \subseteq E^{*}(\delta) \subseteq H\left(\lambda, \lambda \cdot v^{*}\right)$ for all $y \in Y$. But this implies that $k^{*}(\lambda)$ is not the maximum score for direction λ, a contradiction.
Q.E.D.

S.4. PROOF OF LEMMA 3

Lemma 3: For any smooth set W in the interior of Q, there is $\bar{\delta} \in(0,1)$ such that $W \subseteq E(\delta)$ for $\delta \in(\bar{\delta}, 1)$.

Proof: Since W is bounded, it suffices to show that it is also locally ex post generating, that is, for each $v \in W$, there exist $\delta_{v} \in(0,1)$ and an open neighborhood U_{v} of v such that $W \cap U_{v} \subseteq B\left(\delta_{v}, W\right)$.

First, consider $v \in \operatorname{bd} W$. Let λ be normal to W at v and let $k=\lambda \cdot v$. Since $W \subset Q \subseteq H^{*}(\lambda)$, there exist α, \tilde{v}, and $(\tilde{w}(y))_{y \in Y}$ such that $\lambda \cdot \tilde{v}>\lambda \cdot v=k$, (α, \tilde{v}) is enforced using continuation payoffs $(\tilde{w}(y))_{y \in Y}$ for some $\tilde{\delta} \in(0,1)$, and $\tilde{w}(y) \in H(\lambda, \lambda \cdot \tilde{v})$ for all $y \in Y$. For each $\delta \in(\tilde{\delta}, 1)$ and $y \in Y$, let

$$
w(y, \delta)=\frac{\delta-\tilde{\delta}}{\delta(1-\tilde{\delta})} v+\frac{\tilde{\delta}(1-\delta)}{\delta(1-\tilde{\delta})}\left(\tilde{w}(y)+\frac{v-\tilde{v}}{\tilde{\delta}}\right)
$$

By construction, (α, v) is enforced by $(w(y, \delta))_{y \in Y}$ for δ, and there is $\kappa>0$ such that $|w(y, \delta)-v|<\kappa(1-\delta)$. Also, since $\lambda \cdot \tilde{v}>\lambda \cdot v=k$ and $\tilde{w}(y) \in H(\lambda, \lambda \cdot \tilde{v})$ for all $y \in Y$, there is $\varepsilon>0$ such that $\tilde{w}(y)-\frac{v-\tilde{v}}{\tilde{\delta}}$ is in $H(\lambda, k-\varepsilon)$ for all $y \in Y$, thereby

$$
w(y, \delta) \in H\left(\lambda, k-\frac{\tilde{\delta}(1-\delta)}{\delta(1-\tilde{\delta})} \varepsilon\right)
$$

for all $y \in Y$. Then, as in the proof of FL's Theorem 3.1, it follows from the smoothness of W that $w(y, \delta) \in \operatorname{int} W$ for sufficiently large δ, that is, (α, v) is enforced with respect to int W. To enforce u in the neighborhood of v, use α and a translate of $(w(y, \delta))_{y \in Y}$.

Next, consider $v \in \operatorname{int} W$. Choose λ arbitrarily, and let α and $(w(y, \delta))_{y \in Y}$ be as in the above argument. By construction, (α, v) is enforced by $(w(y, \delta))_{y \in Y}$. Also, $w(y, \delta) \in \operatorname{int} W$ for sufficiently large δ, since $|w(y, \delta)-v|<\kappa(1-\delta)$ for some $\kappa>0$ and $v \in \operatorname{int} W$. Thus, (α, v) is enforced with respect to int W when δ is close to 1 . To enforce u in the neighborhood of v, use α and a translate of $(w(y, \delta))_{y \in Y}$, as before.
Q.E.D.

S.5. ALTERNATE PROOF OF LEMMA 6

Lemma 6: Suppose that a profile α has statewise full rank for (i, ω) and ($j, \tilde{\omega}$) satisfying $\omega \neq \tilde{\omega}$, and that α has individual full rank for all players and states. Then $k^{*}(\alpha, \lambda)=\infty$ for direction λ such that $\lambda_{i}^{\omega} \neq 0$ and $\lambda_{j}^{\tilde{\omega}} \neq 0$.
$\operatorname{Proof}:$ Let (i, ω) and $(j, \tilde{\omega})$ be such that $\lambda_{i}^{\omega} \neq 0, \lambda_{j}^{\tilde{\omega}} \neq 0$, and $\tilde{\omega} \neq \omega$. Let α be a profile that has statewise full rank for all (i, ω) and $(j, \tilde{\omega})$ satisfying $\omega \neq \tilde{\omega}$.

First, we claim that for every $K>0$, there exist $z_{i}^{\omega}=\left(z_{i}^{\omega}(y)\right)_{y \in Y}$ and $z_{j}^{\tilde{\omega}}=$ $\left(z_{j}^{\tilde{\omega}}(y)\right)_{y \in Y}$ such that
(S1) $\quad \pi^{\omega}\left(a_{i}, \alpha_{-i}\right) \cdot z_{i}^{\omega}=\frac{K}{\delta \lambda_{i}^{\omega}}$
for all $a_{i} \in A_{i}$,

$$
\begin{equation*}
\pi^{\tilde{\omega}}\left(a_{j}, \alpha_{-j}\right) \cdot z_{j}^{\tilde{\omega}}=0 \tag{S2}
\end{equation*}
$$

for all $a_{j} \in A_{j}$, and

$$
\begin{equation*}
\lambda_{i}^{\omega} z_{i}^{\omega}(y)+\lambda_{j}^{\tilde{\omega}} z_{j}^{\tilde{\omega}}(y)=0 \tag{S3}
\end{equation*}
$$

for all $y \in Y$. To prove that this system of equations indeed has a solution, eliminate (S3) by solving for $z_{j}^{\tilde{\omega}}(y)$. Then there remain $\left|A_{i}\right|+\left|A_{j}\right|$ linear equations, and its coefficient matrix is $\Pi_{(i, \omega)(j, \tilde{\omega})}(\alpha)$. Since statewise full rank implies that this coefficient matrix has rank $\left|A_{i}\right|+\left|A_{j}\right|$, we can solve the system.

Next, for each $(l, \bar{\omega}) \in \mathbf{I} \times \Omega$, we choose $\left(\tilde{w}_{l}^{\bar{\omega}}(y)\right)_{y \in Y}$ so that

$$
\begin{equation*}
(1-\delta) g_{l}^{\bar{\omega}}\left(a_{l}, \alpha_{-l}\right)+\delta \pi^{\bar{\omega}}\left(a_{l}, \alpha_{-l}\right) \cdot \tilde{w}_{l}^{\bar{\omega}}=0 \tag{S4}
\end{equation*}
$$

for all $a_{l} \in A_{l}$. Note that this system has a solution, since α has individual full rank. Intuitively, continuation payoffs $\tilde{w}^{\bar{\omega}}$ are chosen so that players are indifferent over all actions and their payoffs are zero.

Let $K>\max _{y \in Y} \lambda \cdot \tilde{w}(y)$, and choose $\left(z_{i}^{\omega}(y)\right)_{y \in Y}$ and $\left(z_{j}^{\tilde{\omega}}(y)\right)_{y \in Y}$ to satisfy (S1)-(S3). Then let

$$
w_{l}^{\bar{\omega}}(y)= \begin{cases}\tilde{w}_{i}^{\omega}(y)+z_{i}^{\omega}(y), & \text { if }(l, \bar{\omega})=(i, \omega) \\ \tilde{w}_{j}^{\tilde{\omega}}(y)+z_{j}^{\tilde{\omega}}(y), & \text { if }(l, \bar{\omega})=(j, \tilde{\omega}) \\ \tilde{w}_{l}^{\bar{\omega}}(y), & \text { otherwise }\end{cases}
$$

for each $y \in Y$. Also, let

$$
v_{l}^{\bar{\omega}}= \begin{cases}\frac{K}{\lambda_{i}^{\omega}}, & \text { if }(l, \bar{\omega})=(i, \omega) \\ 0, & \text { otherwise }\end{cases}
$$

We claim that this (v, w) satisfies constraints (i) through (iii) in LP Average. It follows from (S4) that constraints (i) and (ii) are satisfied for all $(l, \bar{\omega}) \in$ $(\mathbf{I} \times \Omega) \backslash\{(i, \omega),(j, \tilde{\omega})\}$. Also, using (S1) and (S4), we obtain

$$
\begin{aligned}
(1 & -\delta) g_{i}^{\omega}\left(a_{i}, \alpha_{-i}\right)+\delta \pi^{\omega}\left(a_{i}, \alpha_{-i}\right) \cdot w_{i}^{\omega} \\
& =(1-\delta) g_{i}^{\omega}\left(a_{i}, \alpha_{-i}\right)+\delta \pi^{\omega}\left(a_{i}, \alpha_{-i}\right) \cdot\left(\tilde{w}_{i}^{\omega}+z_{i}^{\omega}\right) \\
& =\frac{K}{\lambda_{i}^{\omega}}
\end{aligned}
$$

for all $a_{i} \in A_{i}$. This shows that (v, w) satisfies constraints (i) and (ii) for (i, ω). Likewise, from (S2) and (S4), (v, w) satisfies constraints (i) and (ii) for ($j, \tilde{\omega}$). Furthermore, using (S3) and $K>\max _{y \in Y} \lambda \cdot \tilde{w}(y)$,

$$
\begin{aligned}
\lambda \cdot w(y) & =\lambda \cdot \tilde{w}(y)+\lambda_{i}^{\omega} z_{i}^{\omega}(y)+\lambda_{j}^{\tilde{\omega}} z_{j}^{\tilde{\omega}}(y) \\
& =\lambda \cdot \tilde{w}(y)<K=\lambda \cdot v
\end{aligned}
$$

for all $y \in Y$, and hence constraint (iii) holds.
Therefore, $k^{*}(\alpha, \lambda) \geq \lambda \cdot v=K$. Since K can be arbitrarily large, we conclude $k^{*}(\alpha, \lambda)=\infty$.
Q.E.D.

Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A.; dfudenberg@harvard.edu and
Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A.; yamamot@fas.harvard.edu.

Manuscript received May, 2009; final revision received May, 2010.

