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IN THIS SUPPLEMENT, we provide proofs of the lemmas and theorems as well
as a more detailed description of the Monte Carlo exercises.

A. PROOFS

PROOF OF LEMMA 1: Equation (3.3) implies that Vt(zt) can be written as

Vt(zt)=
J∑
j=1

∫
dojt(zt� εt)(A.1)

×
[
ujt(zt)+ εjt +β

Z∑
zt+1=1

Vt+1(zt+1)fjt(zt+1|zt)
]
g(εt)dεt

=
J∑
j=1

pjt(zt)

[
ujt(zt)+β

Z∑
zt+1=1

Vt+1(zt+1)fjt(zt+1|zt)
]

+
J∑
j=1

∫
dojt(zt� εt)εjtg(εt)dεt

=
J∑
j=1

pjt(zt)vjt(zt)+
J∑
j=1

∫
dojt(zt� εt)εktg(εt)dεt�

Subtracting vkt(zt) from both sides yields

Vt(zt)− vkt(zt)=
J∑
j=1

pjt(zt)vjt(zt)(A.2)

+
J∑
j=1

∫
dojt(zt� εt)εjtg(εt)dεt − vkt(zt)

=
J∑
j=1

pjt(zt)[vjt(zt)− vkt(zt)]

+
J∑
j=1

∫
dojt(zt� εt)εjtg(εt)dεt�
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From Proposition 1 of Hotz and Miller (1993, p. 501), there exists a mapping
ψ(1)k (p) for each j ∈ {1� � � � � J} such that

ψ(1)j [pt(zt)] = vjt(zt)− v1t(zt)�(A.3)

which implies

vjt(zt)− vkt(zt)=ψ(1)j [pt(zt)] −ψ(1)k [pt(zt)]�(A.4)

Hotz and Miller (1993) also proved that (A.3) implies the existence of a map-
ping ψ(2)j (p) for each j ∈ {1� � � � � J} such that

ψ(2)j [pt(zt)] =
∫
dojt(zt� εt)εjtg(εt)dεt�(A.5)

Substituting (A.4) and (A.5) into (A.2) completes the proof:

ψk[pt(zt)] ≡
J∑
j=1

pjt(zt)
{
ψ(1)j [pt(zt)] −ψ(1)k [pt(zt)]

}+
J∑
j=1

ψ(2)j [pt(zt)](A.6)

= Vt(zt)− vkt(zt)� Q.E.D.

PROOF OF THEOREM 1: The proof is by backward induction. We first estab-
lish that it holds when the time horizon is T and where the decision is made at
T ′ and when T ′ + 1 = T . We then show that if it holds for a generic T ′, where
1 < T ′ < T , then it also holds at T ′ − 1, completing the proof. Noting that
vkT (zT ) ≡ uk(zT ) for all k ∈ {1� � � � � J} and zT ∈ {1� � � � �Z}, including those in
the decision rule d∗

kT ′(zT ′� j), and noting that when T ′ + 1 = T , equation (3.6)
can be expressed as

vjT ′(zT ′)= ujT ′(zT ′)+β
Z∑

zT=1

J∑
k=1

[
ukT (zT )+ψk[pT(zT )]

]
(A.7)

× d∗
kT ′(zT�j)fjT ′(zT |zT ′)�

which establishes that the theorem holds for t = T − 1.
Setting T ′ such that 1< T ′ < T and assuming (3.8) holds implies

vjT ′(zT ′)= ujT ′(zT ′)+
T∑

τ=T ′+1

J∑
k=1

Z∑
zτ=1

βτ−T
′[
ukτ(zτ)+ψk[pτ(zτ)]

]
(A.8)

× d∗
kτ(zτ� j)κ

∗
τ−1(zτ|zT ′� j)�
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Moving back to T ′ − 1, equation (3.6) implies

vjT ′−1(zT ′−1)= ujT ′−1(zT ′−1)+
Z∑

zT ′ =1

J∑
k=1

[
vkT ′(zT ′)+ψk[pT ′(zT ′)]](A.9)

× κ∗
T ′−1(zT ′ |zT ′−1� j)�

Substituting for vkT ′(zT ′) in (A.9) with (A.8) completes the proof:

vjT ′−1(zT ′−1)= ujT ′−1(zT ′−1)(A.10)

+
T∑

τ=T ′

J∑
k=1

Z∑
zτ=1

βτ−T
′−1
[
ukτ(zτ)+ψk[pτ(zτ)]

]
× d∗

kτ(zτ� j)κ
∗
τ−1(zτ|zT ′−1� j)�

Now consider the infinite horizon problem. For t < T ′, we can express

vjt(zt)= ujt(zt)+
T ′∑

τ=t+1

J∑
k=1

Z∑
zτ=1

βτ−t
[
ukτ(zτ)+ψk[pτ(zτ)]

]
(A.11)

× d∗
kτ(zτ� j)κ

∗
τ−1(zτ|zt� j)

+
Z∑

zT ′+1=1

VT ′+1(zT ′+1)κ
∗
T ′(zT ′+1|zt� j)�

We can bound |VT ′+1(zT ′+1)| by V � which implies∣∣∣∣∣
J∑
k=1

Z∑
zT ′+1=1

VT ′+1(zT ′+1)κ
∗
T ′(zT ′+1|zt� j)

∣∣∣∣∣
≤

J∑
k=1

Z∑
zT ′+1=1

|VT ′+1(zT ′+1)|κ∗
T ′(zT ′+1|zt� j)

≤ V

since

Z∑
zT ′+1=1

κ∗
T ′(zT ′+1|zt� j)= 1 and κ∗

T ′(zT ′+1|zt� j)≥ 0 for all {zT ′+1� zt}�
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It now follows from (A.11) that for all T ′,∣∣∣∣∣vjt(zt)− ujt(zt)−
T ′∑

τ=t+1

J∑
k=1

Z∑
zτ=1

βτ−t
[
ukτ(zτ)+ψk[pτ(zτ)]

]
× d∗

kτ(zτ� j)κ
∗
τ−1(zτ|zt� j)

∣∣∣∣∣
≤ βT ′−t+1V �

Since β< 1� the term βT
′−t+1V → 0 as T ′ → ∞� proving the theorem. Q.E.D.

PROOF OF LEMMA 2: Define vj ≡ lnYj and let Gj(ε) ≡ ∂G(ε)/εj� Let
H ≡ H(ev1� ev2� � � � � evJ )� Since H(Y1�Y2� � � � �YJ) is homogeneous of degree 1
and, therefore, the partial derivative Hj(Y1�Y2� � � � �YJ) is homogeneous of de-
gree 0, we have

Gj(vj + εj − v1� � � � � vj + εj − vJ)

= Hj(e
v1� � � � � evJ )exp[−He−vj−εj ]e−v−εj �

From Theorem 1 of McFadden (1978, p. 80), integrating overGj(εt) yields the
conditional choice probability

pj =
∫
Gj(vj + εj − v1� � � � � εj� � � � � vj + εj − vJ) dεj(A.12)

= evj−v1 Hj[1� ev2−v1� � � � � evJ−v1]/H[1� ev2−v1� � � � � evJ−v1]
≡ φj(1� ev2−v1� � � � � evJ−v1)�

By Proposition 1 of Hotz and Miller (1993), we can invert the vector function⎛⎝ p2
���

pJ

⎞⎠=
⎛⎝φ2(1� ev2−v1� � � � � evJ−v1)

���

φJ(1� ev2−v1� � � � � evJ−v1)

⎞⎠
to make the vector of differences (vj − vJ) the subject of the equation. This is
given by ψ(1)j (p) from equation (A.3), implying that φ−1(p) is given by

φ−1
j (p)= exp

[
ψ(1)j (p)

]
�(A.13)

Noting that ψ(1)1 (p)= 0, we define φ−1
1 (p)= 1.
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The expected contribution of the disturbance from the jth choice is∫
djεk dG(ε)

=
∫
εjGj(vj + εj − v1� � � � � vj + εj − vJ) dεj

= Hj(e
v1� � � � � evJ )

∫
εj exp[−He−vj−εj ]e−εj dεj

= evj−v1 Hj(1� ev2−v1� � � � � ev
J
−v1)(γ− (vj − v1)+ ln H)/H�

Substituting the formula for pj and evaluating H at φ−1(p) implies that ψ(2)j (p)
from (A.5) can now be expressed as

ψ(2)j (p)= pj
[
γ− lnφ−1

j (p)+ ln H[1�φ−1
2 (p)� � � � �φ

−1
J (p)]

]
�(A.14)

Substituting (A.13) and (A.14) into the definition of ψj(p) given in equation
(A.6) yields

ψj(p)=
J∑
k=1

pk{lnφ−1
k (p)− lnφ−1

j (p)}

+
J∑
k=1

pk
(
γ− lnφ−1

k (p)+ ln H[1�φ−1
2 (p)� � � � �φ

−1
J (p)]

)
�

Simplifying the expression completes the proof:

ψj(p)= ln H[1�φ−1
2 (p)� � � � �φ

−1
J (p)] − lnφ−1

j (p)+ γ�(A.15) Q.E.D.

PROOF OF LEMMA 3: From (3.18),

H(Y1� � � � �YJ)= H0(Y1� � � � �YK)+
(∑
j∈J

Y 1/σ
j

)σ
�(A.16)

For all j ∈ J � the formula for φj(Y) for the nested logit components is:

φj(Y)= Y 1/σ
j

(∑
j∈J

Y 1/σ
j

)σ−1

H(Y1� � � � �YJ)
�
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Let φ−1(p) ≡ (φ−1
2 (p)� � � � �φ

−1
J (p)) denote the inverse of φ(Y) ≡ (φ1(Y)�

� � � �φJ−1(Y)). Then from (A.12),

pj ≡φj[φ−1(p)] = [φ−1
j (p)]1/σ

(∑
k∈J

[φ−1
k (p)]1/σ

)σ−1

H(1�φ−1
2 (p)� � � � �φ

−1
J (p))

�(A.17)

Summing over k ∈ J and taking the quotient yields

pj∑
k∈J

pk
= [φ−1

j (p)]1/σ∑
k∈J

[φ−1
k (p)]1/σ

�

which implies by direct verification that

φ−1
j (p)=Apσj �(A.18)

where A is unknown but greater than zero.
Substituting for φ−1

j (p) in (A.17) with (A.18), we obtain, for each choice
j ∈ J ,

pj =A1/σpj

(∑
k∈J

A1/σpk

)σ−1

H(1�φ−1
2 (p)� � � � �φ

−1
J (p))

=Apj

(∑
j∈J

pj

)σ−1

H(1�φ−1
2 (p)� � � � �φ

−1
J (p))

�

which implies

H(1�φ−1
2 (p)� � � � �φ

−1
J (p))=A

(∑
k∈J

pk

)(σ−1)

�(A.19)

We can now substitute (A.19) and (A.18) into the expression for ψj(p) given in
(A.15), completing the proof:

ψj(p)= ln
[
A

(∑
j∈J

pj

)(σ−1)]
− ln[Apσj ] + γ

= γ− σ ln(pj)− (1 − σ) ln
(∑
k∈J

pk

)
�

Q.E.D.
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PROOF OF THEOREM 2: (i) For convenience, we consolidate the structural
parameters into the vector λ ≡ (θ�π). Denote the true parameters and con-
ditional choice probabilities by λ0 and p0, respectively. Let l(λ� p) denote the
corresponding vector of likelihoods associated with each choice probability,
implying p0 = l(λ0�p0). For each N , define ΛN as the set of parameters solv-
ing (4.5) at p= p̂� where (θ̂� π̂� p̂) simultaneously satisfies (4.6):

ΛN ≡
{
λN :λN = arg max

λ

1
N

N∑
n=1

ln[L(dn�xn|xn1;λ�pN )]

where pN = l(λN �pN )

}
�

Also define the set of parameters that maximize the corresponding expected
log likelihood subject to the same constraint as

Λ1 ≡
{
λ1 :λ1 = arg max

λ

E
{
ln[L(dn�xn|xn1;λ�p1)]

}
where p1 = l(λ1�p1)

}
�

By definition, λ0 ∈Λ1 because (λ0�p0) solves

λ0 = arg max
λ

E
{
ln[L(dn�xn|xn1;λ�p0)]

}
where p0 = l(λ0�p0)�

Appealing to the continuity of L(dn�xn|xn1;λ�pN ) and p(λN )� the weak uni-
form law of large numbers implies the existence of a sequence λ̂N ∈ ΛN con-
verging to λ0� Now consider sequences λ̃N ∈ ΛN that converge to other ele-
ments in Λ1� say λ1 
= λ0� The assumption of identification implies that for all
λ1 
= λ0�

E
{
ln[L(dn�xn|xn1;λ0�p0)]

}
>E

{
ln[L(dn�xn|xn1;λ1�p1)]

}
�

By continuity and the law of large numbers,

1
N

N∑
n=1

ln[L(dn�xn|xn1; λ̂N � p̂N )]

>
1

N

N∑
n=1

ln[L(dn�xn|xn1; λ̃N � p̃N )] + op(1)�

This proves that choosing the element which maximizes the criterion function,
λ̂N � from the set of fixed points, ΛN � selects a weakly consistent estimator
for λ0�



8 P. ARCIDIACONO AND R. A. MILLER

(ii) For each t, define the joint distribution of (x� s), induced by the param-
eter vector (λ�p) and the data, as

PN t(x� s� λ̂� p̂)≡ 1
N

N∑
n=1

[
I(xnt = x)L̂nt(snt = s)

L̂n

]
�

By the law of large numbers, for each x, the X × S − 1 dimensional random
variable PN t(x� s� λ̂� p̂) converges in probability to

Pt(x� s� λ̂� p̂)≡ E
[
I(xnt = x)L̂nt(snt = s)

L̂n

]
�

Similarly, the joint distribution of (j�x� s) is defined at t as

PN t(j� x� s� λ̂� p̂)≡ 1
N

N∑
n=1

[
dnjtI(xnt = x)L̂nt(snt = s)

L̂n

]
�

which converges in probability to

Pt(j�x� s� λ̂� p̂)≡E
[
I(dnjt = 1)I(xnt = x)L̂nt(snt = s)

L̂n

]
�

Let PN (λ�p) denote the T × (J− 1)×X×S dimensional vector formed from
components PN t(j� x� s�λ�p)/PN t(x� s�λ�p) and let P(λ�p) denote the vec-
tor of corresponding limit points Pt(j�x� s�λ�p)/Pt(x� s�λ�p). Then the pa-
rameters that solve the fixed point characterized by (4.5) and (4.8) are elements
of the set defined by

Λ′
N ≡

{
λN : λN = arg max

λ

1
N

N∑
n=1

ln[L(dn�xn|xn1;λ�pN )]

where pN = PN (λN �pN )

}

and, similar to part (i), elements in Λ′
N converge weakly to elements in the set

Λ′
1 ≡

{
λ1 : λ1 = arg max

λ

E
{
ln[L(dn�xn|xn1;λ�p1)]

}
where p1 = P(λ1�p1)

}
�

Noting that (λ0�p0) ∈ Λ′
1, the arguments in part (i) can be repeated to com-

plete the proof that the fixed point solution in Λ′
N that achieves the highest

value of (4.4) is consistent. Q.E.D.
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A.1. Asymptotic Covariance Matrix

The asymptotic covariance matrix of our estimators is derived from Taylor
expansions of two sets of equations: the first order conditions of (4.5) for λ
and a set of equations that solve the conditional choice probability nuisance
parameter vector p� The first order conditions of (4.5) can be written as

1
N

N∑
n=1

Lλn(̂λ� p̂)= 0�(A.20)

where

Lλn(λ�p)≡ ∂[lnL(dn�xn|xn1;λ�p)]
∂λ

�

Since (̂λ� p̂) is consistent and Lλn(λ�p) is continuously differentiable, we can
expand (A.20) around (λ0�p0) to obtain

N−1/2
N∑
n=1

Lλn(λ0�p0)−Aλ

√
N (̂λ− λ0)−Ap

√
N (p̂−p0)= op(1)�(A.21)

where

Aλ ≡ lim
N →∞

[
1

N

N∑
n=1

∂Lλn(λ0�p0)

∂λ

]
�

Ap ≡ lim
N →∞

[
1

N

N∑
n=1

∂Lλn(λ0�p0)

∂p

]
�

The first estimator sets p̂ to solve (4.6) for each (j� t� x� s)� Stacking
ljt(x� s;λ�p) for each choice (j� t) (time indexed in the nonstationary case)
and each value (x� s) of state variables to form l(λ�p), the (J−1)×T ×X×S
vector function of the CCP parameters (λ�p), our estimator satisfies the
(J − 1)T × S additional parametric restrictions l(̂λ� p̂) = p̂� From the iden-
tity

0 = l(̂λ� p̂)− p̂= l(λ0�p0)−p0�

we expand the second equation to the first order and rearrange to obtain

(I − lp)
√

N (p̂−p0)− lλ
√

N (̂λ− λ0)= op(1)�(A.22)

where

lλ ≡ ∂l(λ0�p0)

∂λ
� lp ≡ ∂l(λ0�p0)

∂p
�
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Using (A.22), we substitute out
√

N (p̂−p0) in (A.21), which yields

√
N (̂λ− λ0)= (B′

1B1)
−1B′

1N
−1/2

N∑
n=1

Lλn(λ0�p0)+ op(1)�

where

B1 ≡Aλ +Ap(I − lp)−1lλ�

Appealing to the central limit theorem and using the fact that

Aλ ≡E[Lλn(λ0�p0)Lλn(λ0�p0)
′]�

the asymptotic covariance matrix for
√

N (̂λ− λ0) is thus

(B′
1B1)

−1B′
1AλB1(B1B

′
1)

−1�

In the second estimator, the condition that l(̂λ� p̂) = p̂ is replaced by the
(J − 1)T × S equalities in (4.8). Define

Qnjtxs(λ�p)≡ [pjt(x� s)− dnjt]I(x= xnt)Ln(snt = s)
Ln

�

where Ln ≡ L(dn�xn|xn1;λ�p), and Ln(snt = s) is given by (4.7) evaluated at
(λ�p). For each sample observation n, stackQnjtxs(λ�p) to form the (J−1)T×
S dimensional vector Qn(λ�p). In vector form, (4.8) can then be expressed as

1
N

N∑
n=1

Qn(̂λ� p̂)= 0�

We form the vector hn(λ�p), the expected outer product of hn(λ�p), and its
square derivative matrix:

hn(λ�p)≡
[
Lλn(λ�p)

Qn(λ�p)

]
� Ω=E[hn(λ0�p0)hn(λ0�p0)

′]�

Γ =E
[
∂hn(λ0�p0)

∂λ

∂hn(λ0�p0)

∂p

]
�

From Hansen (1982, Theorem 3.1) or Newey and McFadden (1994, Theo-
rem 6.1), it now follows that

√
N (̂λ−λ0) is asymptotically normally distributed

with mean zero and covariance matrix given by the top left square block of
Γ −1ΩΓ −1′ with dimension λ.
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B. ADDITIONAL INFORMATION ON THE MONTE CARLO EXERCISES

All simulations were conducted in Matlab version 7.5 on the Duke Eco-
nomics Department 64-bit batch cluster. The code was not parallelized. The
cluster and the operating system of Matlab ensure one processor is dedicated
to each Matlab job. All nonlinear optimization was done using Matlab’s canned
optimization routine fminunc, with the default values used to determine con-
vergence. No derivatives were used in the maximization routines for the struc-
tural parameters. Convergence for the EM algorithm was determined by com-
paring log likelihood values 25 iterations apart. The algorithm was stopped
when this difference was less than 10−7 for two successive iterations.

B.1. Optimal Stopping

This subsection provides further computational details about the optimal
stopping problem. We discuss the data generating process as well as updating
the conditional choice probabilities and the parameters governing the initial
conditions.

B.1.1. Data Creation

For the true parameter values and the transition matrix for mileages implied
by equation (7.2) and reported in the first column of Table I, we obtain the
value functions by backward recursion for every possible mileage, observed
permanent characteristic, unobserved state, and time. We draw permanent ob-
served and unobserved characteristics from discrete uniform distributions with
support 101 and 2, respectively, and start each bus at zero mileage. Given the
parameters of the utility function, the value function, and the permanent ob-
served and unobserved states, we calculate the probability of a replacement
occurring in the first period. We then draw from a standard uniform distribu-
tion. If the draw is less than the probability of replacement, the decision in the
first period is to replace. Otherwise we keep the engine. Conditional on the
replacement decision, we draw a mileage transition using equation (7.2). Con-
tinuing this way, decisions and mileage transitions are simulated for 30 periods.

B.1.2. The Likelihood

Conditional on the permanent observed state, the mileage, and the unob-
served state s, the likelihood of a particular decision at time t takes a logit
form. The likelihoods for the FIML and CCP cases are, respectively, given by

Lt(dt |xt� s;θ)=
(
d1t + d2t exp

[
u2(xt� s� θ)

+β
∑
xt+1

V (xt+1� s� θ)(f2(xt+1|xt)− f1(xt+1|xt))
])
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exp

[
u2(xt� s� θ)+β

∑
xt+1

V (xt+1� s� θ)

× (f2(xt+1|xt)− f1(xt+1|xt))
]

+ 1
)
�

Lt(dt|xt� s�p;θ)=
(
d1t + d2t exp

[
u2(xt� s� θ)

−β
∑
xt+1

ln[p1t+1(xt+1� s)]

× (f2(xt+1|xt)− f1(xt+1|xt))
])

/(
exp

[
u2(xt� s� θ)−β

∑
xt+1

ln[p1t+1(xt+1� s)]

× (f2(xt+1|xt)− f1(xt+1|xt))
]

+ 1
)
�

When s is unobserved, the log likelihood for a particular bus history is found by
first taking the product of the likelihoods over time, conditional on type, and
then summing across the types inside the logarithm. Thus in the FIML case,
the likelihood is1

L(dn|xn;θ�π)=
2∑
s=1

30∏
t=11

π(s|x1)Lt(dt |xt� s;θ)�

In the CCP case, Lt(dt|xt� s;θ) is replaced by Lt(dt|xt� s�p;θ).
B.1.3. Conditional Choice Probability Estimates

We approximate equation (5.9), the second estimator for the conditional
choice probabilities, with a flexible logit, where the dependent variable is d1t .
There are five cases:

Case 1. To obtain the estimates reported in column 4 of Table I (when s is
ignored), we estimate the CCP’s usingW1t ≡ (1�x1t � x

2
1t � x2�x

2
2�x1tx2) as regres-

sors in a logit.2

1Since we are taking products of potentially small probabilities, numerical issues can arise.
These can be solved by scaling up the Lt (dt |xt� s;θ�p) terms by a constant factor. However, in
neither of our Monte Carlos was this an issue.

2For a sufficiently large but finite sample, we can saturate the finite set of regressors with a
flexible logit that yields numerically identical estimates as the weighted bin estimator presented
in the text.
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Case 2. For the parameters reported in column 3, W1t is fully interacted with
W2t ≡ (1� s� t� st� t2� st2), which is 36 parameters to estimate in the logit gener-
ating the CCP’s. Since s is observed, this flexible logit is estimated once.

Case 3. When s is unobserved, the flexible logit described in the previous
case is estimated at each iteration of the EM algorithm; at the mth iteration,
the conditional probabilities of being in each observed state, q(m)s , are used to
weight the flexible logit.

Cases 4 and 5. For the last two columns, where there are aggregate effects,
we fully interact the first set of variables with the s, but not t and t2. Instead,
we include time dummies, but given the moderate sample size, we did not in-
teract them with the other variables. Hence the logits were estimated with 21
regressors: 12 combinations of x1t , x2, and s, as well as 9 time dummies.

B.1.4. Initial Conditions

Initial probabilities are specified as a flexible function of the first-period ob-
servables, denoted by W0. Included in W0 are the mileage at the first observed
time period for the bus, x11, and the permanent observed characteristic, x2.
The prior probability of being in unobserved state 2 during the first observed
period in the data, t = 1, given the data for n is

π(2|x1)= exp(W0δ)

1 + exp(W0δ)
�

At iteration m, we calculate the likelihood for each data point conditional on
the unobserved state. Under FIML,

L
(
dn� sn = s|xn;θ(m)

)=
30∏
t=11

π(s|x1)Lt

(
dt |xt� s;θ(m)

)
�

The iterate δ(m+1) solves

δ(m+1) = arg max
δ

N∑
n=1

ln

(
2∑
s=1

π(s|xn1)L
(
dn� sn = s|xn;θ(m)

))
�

In the CCP case, we replace Lt(dt|xt� s;θ(m)) with Lt(dt |xt� s�p(m);θ(m)) and
replace L(dn� sn = s|xn;θ(m)) with L(dn� sn = s|xn�p(m);θ(m)).3

B.1.5. Creation of Time-Varying Intercepts

In the case where the replacement costs varied over time (column 8 of Ta-
ble I), we created the data by drawing values for the intercept from a normal

3The saturation argument we mentioned in the previous footnote applies here too.
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distribution with standard deviation of 0.5. The value of θ0t+1, is set to 0�7θ0t

plus the value drawn at t + 1 from the normal distribution.

B.2. Entry/Exit

We now turn to the details of the Monte Carlo experiment for the dynamic
game. Again we describe the data creation as well as the variables used in
both the conditional choice probabilities and the reduced form controls for
the initial conditions problem.

B.2.1. Data Creation

The first step in creating the data is to obtain the probability of entering for
every state. Equation (7.8) gives the flow payoff for being in the market con-
ditional on the choices of the other firms. Note that the expected flow payoff
of entering depends on the probabilities of other firms entering. Given initial
guesses for the probability of exiting in each state, we form all the possible
combinations of the entry decisions of the other firms using equation (7.4).
We then substitute equations (7.4) and (7.8) into equation (7.5) to form the
expected flow payoff of staying in or entering the market in every state. Since
the transitions on the state variables conditional on the entry/exit decisions are
known, we have all the pieces to form equation (7.9). Given equation (7.9),
the Type 1 extreme value assumption implies that the probability of exiting is
1/(1 + exp(v(i)2 (xt� st)). We can then update the entry/exit probabilities used to
form equation (7.4). We then iterate on equations (7.4), (7.5), (7.9), and the
logit probability of exiting until a fixed point is reached.4

The observed permanent market characteristics and the initial unobserved
states were drawn from a discrete uniform distribution. We then began each
market with no incumbents and simulated the model forward. We then re-
moved the first 10 periods of data from the sample.

B.2.2. The Likelihood

We now derive the likelihood at time t for market n of the observed decisions
and price process given the data and the parameters. Note that xnt+1, which
includes the permanent market characteristic as well as the incumbency status
of each of the firms, is a deterministic function of xnt and ynt . The likelihood
contribution for the ith firm at time t conditional on unobserved state st is

l(i)
(
d(i)t � xt� st;θ�π

)= d1t + d2t exp[v(i)2 (xt� st�p�θ�π)]
1 + exp[v(i)2 (xt� st�p�θ�π)]

�

4Multiple equilibria may be a possibility. This issue did not cause any problems for this set of
Monte Carlo data.
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Denote E(yt)= α0 + α1x1 + α2st + α3
∑I

i=1 d
(i)
2t . Denoting n as the market, the

likelihood of the data in market n at time t conditional on st is

Lt(dnt� ynt|xnt� st;θ�α�π�p)(B.1)

=φ
(
ynt −E(ynt)

σ

) I∏
i=1

l(i)n
(
d(i)nt � xnt� st;θ�π

)
�

where φ(·) is the density function of the standard normal distribution and σ is
the standard deviation of ηt .

We can then substitute equation (B.1) into equation (4.3) to obtain the like-
lihood of the data for a particular market:

L(dn� yn�xn|xn1;θ�α�π�p)(B.2)

=
S∑

s1=1

S∑
s2=1

· · ·
S∑

sT =1

[
π(s1|xn1)L1(dn1� yn1|xn1� s1;θ�α�π�p)

×
(

T∏
t=2

π(st |st−1)Lt(dnt� ynt |xnt� st;θ�α�π�p)
)]
�

To clarify the number of calculations required to form the expression in
equation (B.2) for a particular market, we specify equation (B.2) using matrix
notation. Denote Ant as a 1 × S vector with components given by the likeli-
hood at t = 1 conditional on a particular unobserved states times the initial
probability of being in the unobserved state:

An1 = [π(1|xn1)L1(dn1� yn1|xn1�1;θ�α�π�p) · · ·(B.3)

π(S|xn1)L1(dn1� yn1|xn1� S;θ�α�π�p)]�
If T = 1, summing over the elements of An1 gives L(dn� yn�xn|xn1;θ�α�π�p).
For t > 1, we form an S × S matrix where the (i� j) element gives the proba-
bility of moving from st−1 = i to st = j times the likelihood contribution at t
conditional on being in unobserved state j:

Ant =
⎡⎣π(1|1)Lt(dnt� ynt |xnt�1;θ�α�π�p) · · ·

���
� � �

π(S|1)Lt(dnt� ynt|xnt�1;θ�α�π�p) · · ·
(B.4)

π(1|S)Lt(dnt� ynt|xnt� S;θ�α�π�p)
���

π(S|S)Lt(dnt� ynt|xnt� S;θ�α�π�p)

⎤⎦ �
Taking An1 times An2 gives a 1 × S vector of the joint likelihood of the data
and being in each of the unobserved states. We defineAn as the product ofAnt
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over T :

An =
T∏
t=1

Ant�

Then An is a row vector with S elements, with each element giving the joint
likelihood of the data and being in a particular unobserved state at T . To form
An, an S×S matrix is multiplied by a 1×S matrix T times. Let the sth element
be denoted by An(s). The likelihood for the nth market is then given by

L(dn� yn�xn|xn1;θ�α�π�p)=
S∑
s=1

An(s)�

B.2.3. Obtaining Conditional Choice Probabilities

Four sets of CCP’s are used in this Monte Carlo:
(i) When st is ignored (column 3 of Table II), we specify the conditional

probability of exiting at t + 1 as a flexible function of the observed variables,
W1ti (for the ith firm in a given market at time t). The variables included inW1ti

are combinations of the permanent market characteristic, x1, whether the firm
is active in period t, d(i)2t , and the number of firms in the market at t:

W1ti ≡
(

1�x1�x
2
1� d

(i)
2t �
∑
i′
d(i)2t �

(∑
i′
d(i)2t

)2)
�

We then estimate a logit on the probability of exiting using the variables in W1ti

as controls.
(ii) When st is observed (column 2), we add the variables inW2ti to the logit,

where

W2ti ≡
(
st� stx1� std

(i)
2t � st

∑
i′
d(i)2t

)
�

implying that 10 parameters govern the CCP’s.
(iii) When the conditional choice probabilities are updated with the data

(column 5) and when we use the two-stage method (column 6), we use the
variables in both W1t and W2t . In both these cases, the mth iteration uses the
conditional probabilities of being in each unobserved state, q(m)nst , as weights in
the logit estimation.

(iv) Finally, when the CCP’s are updated with the model (columns 4 and 7),
we update the probability of exiting using the logit formula for the likelihood:

p(i�m+1)
1t (x� s)= 1

1 + exp[v(i)2t (x� s�p
(m)� θ(m)�π(m+1))] �
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B.2.4. Initial Conditions

There is an initial conditions problem in the stationary equilibrium, because
the distribution of s1 depends on the the distribution of the observed states. We
estimate this distribution jointly with the other parameters of the model. Since
the unobserved state applies at the market level of aggregation, the relevant
endogenous variable is the lagged number of firms in the initial period. We
regress the lagged number of firms in the initial period on a flexible function
of the characteristics of the market—in this exercise, a constant, x1—and x2

1.
Denote the residual from this regression as ζ. We then approximate the initial
probability of being in unobserved state s for the nth market using a multino-
mial logit form:

π(s|xn1)= exp([1 ζn ]δs)∑
s

exp([1 ζn ]δs)
�

With δ1 set to zero, there are eight parameters to be estimated. We estimate
π(s|xn1) at each iteration using a similar procedure to Section B.1.4, now allow-
ing for the fact that the unobserved states follow a Markov transition. Despite
this additional complication, the algorithm is the same: calculate the likelihood
given each initial unobserved state and take it as a given when maximizing to
update δ.
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