Econometrica Supplementary Material

SUPPLEMENT TO "CONTINUOUS IMPLEMENTATION" (*Econometrica*, Vol. 80, No. 4, July 2012, 1605–1637)

BY MARION OURY AND OLIVIER TERCIEUX

BELOW WE PROVIDE THE PROOF of Theorem 4, which is omitted in the main text.

PROOF OF THE "IF PART" OF THEOREM 4: Assume that $f: \overline{T} \to A$ is rationalizable implementable by a finite mechanism $\mathcal{M} = (M, g)$, that is, that, for all $\overline{t} \in \overline{T}, m \in R(\overline{t}|\mathcal{M}, \overline{T}) \Rightarrow g(m) = f(\overline{t})$.

We first recall the following well known lemma.

LEMMA 1—Dekel, Fudenberg, and Morris (2006): Fix any model $\mathcal{T} = (T, \kappa)$ such that $\overline{\mathcal{T}} \subset \mathcal{T}$ and any finite mechanism \mathcal{M} . (i) For any $\overline{t} \in \overline{T}$ and any sequence $\{t[n]\}_{n=0}^{\infty}$ in T, if $t[n] \to_P \overline{t}$, then, for n large enough, we have $R(t[n]|\mathcal{M}, \mathcal{T}) \subset R(\overline{t}|\mathcal{M}, \mathcal{T})$. (ii) For any type $t \in T$, $R(t|\mathcal{M}, \mathcal{T})$ is nonempty.

Now pick any model $\mathcal{T} = (T, \kappa)$ such that $\overline{\mathcal{T}} \subset \mathcal{T}$. We show that there exists an equilibrium that continuously implements f on $\overline{\mathcal{T}}$. For each player i and each type $\overline{t}_i \in \overline{T}_i$, fix some $m_i(\overline{t}_i) \in R_i(\overline{t}_i | \mathcal{M}, \overline{\mathcal{T}})$ and restrict the space of strategies of player i by assuming that $\sigma_i(\overline{t}_i) = m_i(\overline{t}_i)$ for each type $\overline{t}_i \in \overline{T}_i$. Because M is finite and T is countable, standard arguments¹ show that there exists a Bayes Nash equilibrium in $U(\mathcal{M}, \mathcal{T})$. Let us first establish that σ is a Bayes Nash equilibrium in $U(\mathcal{M}, \mathcal{T})$. It is clear by construction that, for each $i \in \mathcal{I}$ and $t_i \notin \overline{T}_i$,

$$m_i \in \operatorname{Supp}(\sigma_i(t_i)) \Rightarrow m_i \in BR_i(\pi_i(\cdot|t_i, \sigma_{-i})|\mathcal{M}).$$

Now fix a player $i \in \mathcal{I}$ and a type $\bar{t}_i \in \bar{T}_i$. Since $\bar{\mathcal{T}} \subset \mathcal{T}$ is a model (and hence, $\kappa(\bar{t}_i)$ takes its support in $\Theta \times \bar{T}_{-i}$), it is easily checked that, by construction of σ , $\pi_i(m_{-i}|\bar{t}_i, \sigma_{-i}) > 0 \Rightarrow m_{-i} \in R_{-i}(\bar{t}_{-i}|\mathcal{M}, \bar{\mathcal{T}})$ for some $\bar{t}_{-i} \in \bar{T}_{-i}$. Hence, by a well known argument, $BR_i(\pi_i(\cdot|\bar{t}_i, \sigma_{-i})|\mathcal{M}) \subset R_i(\bar{t}_i|\mathcal{M}, \bar{\mathcal{T}})$. Since $g(R(\bar{t}|\mathcal{M}, \bar{\mathcal{T}})) = \{f(\bar{t})\}$, we have, for all $\tilde{m}_i \in R_i(\bar{t}_i|\mathcal{M}, \bar{\mathcal{T}})$,

$$\sum_{\substack{(\theta,m_{-i})\in\Theta\times M_{-i}\\ =\sum_{\theta,\bar{\iota}_{-i}}\bar{\kappa}(\bar{t}_i)[\theta,\bar{t}_{-i}]u_i(f(\bar{t}_i,\bar{t}_{-i}),\theta),} \pi_i(\theta,m_{-i}),\theta)$$

¹The existence of a Bayes Nash equilibrium can be proved using Kakutani–Fan–Glicksberg's fixed point theorem. The space of strategy profiles is compact in the product topology. Using the fact that $u_i: A \times \Theta \to \mathbb{R}$ is bounded, all the desired properties of the best-response correspondence (in particular upper hemicontinuity) can be established.

© 2012 The Econometric Society

DOI: 10.3982/ECTA8577

and so $BR_i(\pi_i(\cdot|\bar{t}_i, \sigma_{-i})|\mathcal{M}) = R_i(\bar{t}_i|\mathcal{M}, \mathcal{T})$. Hence we must have $m_i(\bar{t}_i) = \sigma_i(\bar{t}_i) \in BR_i(\pi_i(\cdot|\bar{t}_i, \sigma_{-i})|\mathcal{M})$. Thus, σ is a Bayes Nash equilibrium in $U(\mathcal{M}, \mathcal{T})$ and $\sigma_{|\bar{T}}$ is a pure Nash equilibrium in $U(\mathcal{M}, \bar{T})$. Now, pick any sequence $\{t[n]\}_{n=0}^{\infty}$ in T, such that $t[n] \to_P \bar{t}$. It is clear that, for each n: Supp $(\sigma(t[n])) \subset R(t[n] \mid \mathcal{M}, \mathcal{T})$. In addition, for n large enough, we know by Lemma 1 that $R(t[n] \mid \mathcal{M}, \mathcal{T}) \subset R(\bar{t} \mid \mathcal{M}, \bar{T})$. Then, for n large enough, Supp $(\sigma(t[n])) \subset R(\bar{t} \mid \mathcal{M}, \bar{T})$ and so, $(g \circ \sigma)(t[n]) = f(\bar{t})$ as claimed. Q.E.D.

PROOF OF THE "ONLY IF PART" OF THEOREM 4: We show that a social choice function $f: \overline{T} \to A$ is continuously implementable by a countable² mechanism \mathcal{M} only if it is rationalizable implementable by some mechanism $\mathcal{M}' \subset \mathcal{M}$ (i.e., $M'_i \subset M_i$ for each *i* and $g' = g_{|\mathcal{M}'}$).

Since f is continuously implementable, there exists a mechanism $\mathcal{M} = (M, g)$ such that, for any model $\mathcal{T} = (T, \kappa)$ satisfying $\overline{\mathcal{T}} \subset \mathcal{T}$, there is a Bayes Nash equilibrium σ in the induced game $U(\mathcal{M}, \mathcal{T})$ where, for each $\overline{t} \in \overline{T}$, (i) $\sigma(\overline{t})$ is pure, and (ii) for any sequence $t[n] \rightarrow_P \overline{t}$ where, for each $n: t[n] \in T$, we have $(g \circ \sigma)(t[n]) \rightarrow f(\overline{t})$. We let *C* be the set of pure Bayes Nash equilibria of $U(\mathcal{M}, \overline{\mathcal{T}})$. Note that because \overline{T} is finite and *M* is countable, *C* is countable. For each $\overline{\sigma} \in C$, we build the set of message profiles $M(\overline{\sigma})$ in the following way.

For each player *i* and each positive integer ℓ , we define inductively $M_i^{\ell}(\bar{\sigma})$. First, we set $M_i^0(\bar{\sigma}) = \bar{\sigma}_i(\bar{T}_i)$. Then, for each $\ell \ge 1$,

$$M_i^{\ell+1}(\bar{\sigma}) = BR_i \big(\Delta(\Theta \times \{\tilde{\theta}^0\} \times M_{-i}^{\ell}(\bar{\sigma})) \mid \mathcal{M} \big).$$

Recall that in the model $\overline{\mathcal{T}} = (\overline{T}, \overline{\kappa}), \max g_{\overline{\theta}} \overline{\kappa}(\overline{t}_i)[\overline{\theta}^0] = 1$, for each $i \in \mathcal{I}$ and $\overline{t}_i \in \overline{T}_i$. Since $\overline{\sigma}$ is an equilibrium in $U(\mathcal{M}, \overline{T}), M_i^0(\overline{\sigma}) = \overline{\sigma}_i(\overline{T}_i) \subset BR_i(\Delta(\Theta \times \{\overline{\theta}^0\} \times M_{-i}^0(\overline{\sigma})) \mid \mathcal{M}) = M_i^1(\overline{\sigma})$. Consequently, it is clear that, for each $\ell, M_i^\ell(\overline{\sigma}) \subset M_i^{\ell+1}(\overline{\sigma})$. Finally, set $M_i(\overline{\sigma}) = \lim_{\ell \to +\infty} M_i^\ell(\overline{\sigma}) = \bigcup_{\ell \in \mathbb{N}} M_i^\ell(\overline{\sigma})$. In the sequel, for each $\overline{\sigma} \in C$, we will note by $\mathcal{M}(\overline{\sigma})$ the mechanism $(M(\overline{\sigma}), g_{|M(\overline{\sigma})})$.

A first interesting property of the family of sets $\{M(\bar{\sigma})\}_{\bar{\sigma}\in C}$ is that there is a model \mathcal{T} , satisfying $\bar{\mathcal{T}} \subset \mathcal{T}$, for which any equilibrium σ in $U(\mathcal{M}, \mathcal{T})$ has full range in $M(\sigma_{|\bar{\mathcal{T}}})$, that is, each message profile in $M(\sigma_{|\bar{\mathcal{T}}})$ is played under σ at some profile of types in the model \mathcal{T} . More precisely, Proposition 1 is the first step of the proof of the only if part of Theorem 4.

PROPOSITION 1: There exists a model $\mathcal{T} = (T, \kappa)$ such that, for any $\bar{\sigma} \in C$ and $m \in M(\bar{\sigma})$, there exists $t[\bar{\sigma}, m] \in T$ such that $\sigma(t[\bar{\sigma}, m]) = m$ for any equilibrium σ in $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{|\bar{T}} = \bar{\sigma}$.

²As already mentioned, the only if part of the theorem holds beyond finite mechanisms.

PROOF: We build the model $\mathcal{T} = (T, \kappa)$ as follows. For each equilibrium $\bar{\sigma} \in C$, player *i*, and integer ℓ , we define inductively $t_i[\bar{\sigma}, \ell, m_i]$ for each $m_i \in I$ $M_i^{\ell}(\bar{\sigma})$ and set

$$T_i = \bigcup_{\bar{\sigma} \in C} \bigcup_{\ell=1}^{\infty} \bigcup_{m_i \in M_i^{\ell}(\bar{\sigma})} t_i[\bar{\sigma}, \ell, m_i] \cup \bar{T}_i.$$

Note that T_i is countable. In the sequel, we fix an arbitrary $\bar{\sigma} \in C$. This equilibrium $\bar{\sigma}$ is sometimes omitted in our notations.

For each $\ell \geq 1$ and $m_i \in M_i^{\ell}(\bar{\sigma})$, we know that there exists $\pi_i^{\ell,m_i} \in \Delta(\Theta \times I)$ $\{\tilde{\theta}^0\} \times M_{-i}^{\ell-1}(\bar{\sigma})$ such that $m_i \in BR_i(\pi_i^{\ell,m_i} \mid \mathcal{M})$. Thus we can build $\hat{\pi}_i^{\ell,m_i} \in \mathcal{M}$ $\Delta(\Theta \times \tilde{\Theta} \times M^{\ell-1}_{-i}(\bar{\sigma}))$ such that

$$\operatorname{marg}_{\Theta \times M_{-i}^{\ell-1}(\tilde{\sigma})} \hat{\pi}_{i}^{\ell,m_{i}} = \operatorname{marg}_{\Theta \times M_{-i}^{\ell-1}(\tilde{\sigma})} \pi_{i}^{\ell,m_{i}},$$

while $\operatorname{marg}_{\bar{\Theta}} \hat{\pi}_i^{\ell,m_i} = \delta_{\bar{\theta}^{m_i}}$. Note that $BR_i(\hat{\pi}_i^{\ell,m_i} | \mathcal{M}) = \{m_i\}$. In the sequel, for each player *i* and message $m_i \in M_i^0(\bar{\sigma})$, we pick one type denoted $t_i[\bar{\sigma}, 0, m_i]$ in \bar{T}_i satisfying $\bar{\sigma}_i(t_i[\bar{\sigma}, 0, m_i]) = m_i$. This is well defined because, by construction, $M_i^{\bar{0}}(\bar{\sigma}) = \bar{\sigma}_i(\bar{T}_i)$. Now, for each $\ell \ge 1$ and $m_i \in M_i^{\ell}(\bar{\sigma})$, we define inductively $t_i[\bar{\sigma}, \ell, m_i]$ by³

$$\kappa(t_{i}[\bar{\sigma}, \ell, m_{i}])[\theta, \bar{\theta}, t_{-i}] = \begin{cases} 0, & \text{if } t_{-i} \neq t_{-i}[\bar{\sigma}, \ell - 1, m_{-i}] \\ & \text{for each } m_{-i} \in M_{-i}^{\ell-1}(\bar{\sigma}), \\ \hat{\pi}_{i}^{\ell, m_{i}}(\theta, \tilde{\theta}, m_{-i}), & \text{if } t_{-i} = t_{-i}[\bar{\sigma}, \ell - 1, m_{-i}] \\ & \text{for some } m_{-i} \in M_{-i}^{\ell-1}(\bar{\sigma}). \end{cases}$$

This probability measure is well defined since $\hat{\pi}_i^{\ell,m_i}(\Theta \times \tilde{\Theta} \times M_{-i}^{\ell-1}(\bar{\sigma})) = 1.$

To complete the proof, we show that, for any equilibrium σ of $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{\bar{\tau}} = \bar{\sigma}$, we have

(S1)
$$\sigma_i(t_i[\bar{\sigma}, \ell, m_i]) = m_i$$

for each player *i*, integer ℓ , and message $m_i \in M_i^{\ell}(\bar{\sigma})$. The proof proceeds by induction on ℓ .

First note that, by construction of $t_i[\bar{\sigma}, 0, m_i]$, we must have, for any equilibrium σ of $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{|\bar{T}} = \bar{\sigma}$,

$$\sigma_i(t_i[\bar{\sigma}, 0, m_i]) = m_i,$$

³Here again, we abuse notation and write $t_{-i}[\bar{\sigma}, 0, m_{-i}]$ for $(t_j[\bar{\sigma}, 0, m_j])_{j \neq i}$. Similarly, $t[\bar{\sigma}, 0, m]$ stands for $(t_i[\bar{\sigma}, 0, m_i])_{i \in \mathcal{I}}$. Similar abuses will be used throughout this proof.

for each player *i* and message $m_i \in M_i^0(\bar{\sigma})$. Now, assume that Equation (S1) is satisfied at rank $\ell - 1$ and let us prove that it is also satisfied at rank ℓ . Fix any $m_i \in M_i^\ell(\bar{\sigma})$ and any equilibrium σ of $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{|\bar{T}} = \bar{\sigma}$. Note that $\operatorname{Supp}(\sigma_i(t_i[\bar{\sigma}, \ell, m_i])) \subset BR_i(\pi_i | \mathcal{M})$, where $\pi_i \in \Delta(\Theta \times \tilde{\Theta} \times M_{-i})$ is such that

$$\pi_i(\theta, \tilde{\theta}, m_{-i}) = \sum_{t_{-i}} \kappa(t_i[\bar{\sigma}, \ell, m_i])[\theta, \tilde{\theta}, t_{-i}]\sigma_{-i}(m_{-i} \mid t_{-i}).$$

In addition, by the inductive hypothesis and the fact that σ is an equilibrium of $U(\mathcal{M}, \mathcal{T})$ satisfying $\sigma_{|\bar{T}} = \bar{\sigma}$, we have $\sigma_{-i}(m_{-i} \mid t_{-i}[\bar{\sigma}, \ell - 1, m_{-i}]) = 1$ for any $m_{-i} \in M_{-i}^{\ell-1}(\bar{\sigma})$. Hence, by construction of $\kappa(t_i[\bar{\sigma}, \ell, m_i])$, we have

$$\pi_i(\theta, \tilde{\theta}, m_{-i}) = \sum_{t_{-i}} \kappa(t_i[\bar{\sigma}, \ell, m_i])[\theta, \tilde{\theta}, t_{-i}]\sigma_{-i}(m_{-i} \mid t_{-i})$$
$$= \kappa(t_i[\bar{\sigma}, \ell, m_i])[\theta, \tilde{\theta}, t_{-i}[\bar{\sigma}, \ell - 1, m_{-i}]]$$
$$= \hat{\pi}_i^{\ell, m_i}(\theta, \tilde{\theta}, m_{-i}).$$

We get that $\operatorname{Supp}(\sigma_i(t_i[\bar{\sigma}, \ell, m_i])) \subset BR_i(\pi_i \mid \mathcal{M}) = BR_i(\hat{\pi}_i^{\ell, m_i} \mid \mathcal{M}) = \{m_i\}$ as claimed. *Q.E.D.*

We now give a first insight on the second step of the proof. First notice that, by construction, each $M(\bar{\sigma})$ satisfies the following closure property: taking any belief $\pi_i \in \Delta(\Theta \times \{\tilde{\theta}^0\} \times M_{-i}(\bar{\sigma}))$ such that $BR_i(\pi_i \mid \mathcal{M}) \neq \emptyset$, we must have $BR_i(\pi_i \mid \mathcal{M}) \subset M_i(\bar{\sigma})$ and hence, $BR_i(\pi_i \mid \mathcal{M}) = BR_i(\pi_i \mid \mathcal{M}(\bar{\sigma}))$.

Now pick a type $\bar{t}_i \in \bar{T}_i$ and a message $m_i \in R_i^1(\bar{t}_i | \mathcal{M}(\bar{\sigma}), \bar{T})$; it is possible to add a type $t_i^{m_i}$ to the model \mathcal{T} defined in Proposition 1 satisfying the following two properties.⁴ First, $h_i^1(t_i^{m_i})$ is arbitrarily close to $h_i^1(\bar{t}_i)$; second, for any equilibrium σ with $\sigma_{|\bar{T}} = \bar{\sigma}, \sigma_i(t_i^{m_i}) = m_i$. Indeed, by definition of $R_i^1(\bar{t}_i | \mathcal{M}(\bar{\sigma}), \bar{T})$, there exists a belief $\pi_i^{m_i} \in \Delta(\Theta^* \times T_{-i} \times M_{-i}(\bar{\sigma}))$, where marg $_{\Theta^*} \pi_i^{m_i} = \text{marg}_{\Theta^*} \bar{\kappa}(\bar{t}_i)$ and such that $m_i \in BR_i(\text{marg}_{\Theta^* \times M_{-i}(\bar{\sigma})} \pi_i^{m_i} | \mathcal{M}(\bar{\sigma}))$. Using our assumption on cost of messages, we can slightly perturb $\pi_i^{m_i}$ so that m_i becomes a unique best reply. So let us assume for simplicity that $\{m_i\} = BR_i(\text{marg}_{\Theta^* \times M_{-i}(\bar{\sigma})} \pi_i^{m_i} | \mathcal{M}(\bar{\sigma}))$. We can define the type $t_i^{m_i}$ assigning probability $\text{marg}_{\Theta^* \times M_{-i}(\bar{\sigma})} \pi_i^{m_i}(\Theta^*, m_{-i})$ to $(\theta^*, t_{-i}[\bar{\sigma}, m_{-i}])$, where $t_{-i}[\bar{\sigma}, m_{-i}]$ is defined as in Proposition 1 (i.e., $t_{-i}[\bar{\sigma}, m_{-i}]$ plays m_{-i} under any equilibrium σ in $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{|\bar{T}} = \bar{\sigma}$). Now pick any equilibrium σ in $U(\mathcal{M}, \mathcal{T} \cup \{t_i^{m_i}\})$

⁴In this section, for any mechanism \mathcal{M} , we use the standard notation where $R_i^{\ell}(\bar{t}_i \mid \mathcal{M}, \bar{T})$ stands for the ℓ th round of elimination at type \bar{t}_i of messages that are not best responses (see, for instance, Dekel, Fudenberg, and Morris (2007)). Recall that, for any ℓ and \bar{t}_i , we have $R_i(\bar{t}_i \mid \mathcal{M}, \bar{T}) \subset R_i^{\ell}(\bar{t}_i \mid \mathcal{M}, \bar{T})$ (for additional details on the relationship between $R_i(\bar{t}_i \mid \mathcal{M}, \bar{T})$ and $R_i^{\ell}(\bar{t}_i \mid \mathcal{M}, \bar{T})$ when the set of messages is countably infinite, see Lipman (1994)).

such that $\sigma_{|\tilde{T}} = \bar{\sigma}$. By construction, $\operatorname{Supp}(\sigma_i(t_i^{m_i})) \subset BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_i^{m_i} | \mathcal{M})$ and so $BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}(\bar{\sigma})} \pi_i^{m_i} | \mathcal{M}) \neq \emptyset$. By the closure property described above, $BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_i^{m_i} | \mathcal{M}) = BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}(\bar{\sigma})} \pi_i^{m_i} | \mathcal{M}(\bar{\sigma}))$ and so we get that type $t_i^{m_i}$ plays m_i under the equilibrium σ and satisfies the desired property. Using a similar reasoning, we show inductively the following "contagion" result.

PROPOSITION 2: There exists a model $\hat{T} = (\hat{T}, \hat{\kappa})$ such that, for each equilibrium $\bar{\sigma} \in C$ and each player *i*, the following statement holds: For all $\bar{t}_i \in \bar{T}_i$ and $m_i \in R_i(\bar{t}_i | \mathcal{M}(\bar{\sigma}), \bar{T})$, there exists a sequence of types $\{\hat{t}_i[n]\}_{n=0}^{\infty}$ in \hat{T}_i such that (i) $\hat{t}_i[n] \rightarrow_P \bar{t}_i$, and (ii) $\sigma_i(\hat{t}_i[n]) = m_i$ for each integer *n* and equilibrium σ of $U(\mathcal{M}, \hat{T})$ satisfying $\sigma_{l\bar{T}} = \bar{\sigma}$.

PROOF: We again define the set \mathcal{E} by

$$\mathcal{E} := \bigcup_{q \in \mathbb{N}^*} \left\{ \frac{1}{q} \right\} \cup \{0\}.$$

We build the model $\hat{T} = (\hat{T}, \hat{\kappa})$ as follows. For each $\varepsilon \in \mathcal{E}$, $\ell \in \mathbb{N}^*$, $\bar{\sigma} \in C$, $\bar{t}_i \in \bar{T}_i$, and $m_i \in R_i^{\ell}(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$, we build inductively $\hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i]$ and set

$$\hat{T}_i = \bigcup_{\varepsilon \in \mathcal{E}} \bigcup_{\ell=1}^{\infty} \bigcup_{\bar{\sigma} \in C} \bigcup_{\bar{i}_i \in \bar{T}_i} \bigcup_{m_i \in R_i^{\ell}(\bar{i}_i | \mathcal{M}(\bar{\sigma}), \bar{T})} \hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i] \cup T_i,$$

where T_i is as defined in Proposition 1. Note that \hat{T}_i is countable. In the sequel, we fix an arbitrary $\bar{\sigma} \in C$. This equilibrium $\bar{\sigma}$ is sometimes omitted in our notations.

We know that, for each integer ℓ , player *i* of type $\bar{t}_i \in \bar{T}_i$, and message $m_i \in R_i^{\ell}(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$, there exists $\pi_{\bar{t}_i}^{\ell, m_i} \in \Delta(\Theta \times \bar{T}_{-i} \times M_{-i}(\bar{\sigma}))$ such that

$$\operatorname{marg}_{\theta \times \bar{T}_{-i}} \pi_{\bar{t}_{i}}^{\ell,m_{i}} = \bar{\kappa}(\bar{t}_{i}),$$

$$\operatorname{marg}_{\bar{T}_{-i} \times M_{-i}(\bar{\sigma})} \pi_{\bar{t}_{i}}^{\ell,m_{i}}(\bar{t}_{-i},m_{-i}) > 0 \quad \Rightarrow \quad m_{-i} \in R_{-i}^{\ell-1}(\bar{t}_{-i} \mid \mathcal{M}(\bar{\sigma}), \bar{T}),$$

and

$$m_i \in BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}(\bar{\sigma})} \pi_{\bar{t}_i}^{\ell, m_i} | \mathcal{M}(\bar{\sigma})).$$

For ease of exposition, we sometimes consider $\pi_{\bar{i}_i}^{\ell,m_i}$ as a measure over $\Theta \times \bar{T}_{-i} \times M_{-i}(\bar{\sigma})$ and sometimes as a measure over $\Theta^* \times \bar{T}_{-i} \times M_{-i}(\bar{\sigma})$ assigning probability 1 to $\{\tilde{\theta}^0\}$. Similar abuses will be used throughout the proof.

First, we let $\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i]$ be such that $\hat{\kappa}(\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i])$ satisfies the two conditions

(S2)
$$\operatorname{marg}_{\tilde{\theta}} \hat{\kappa}(\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i]) = \varepsilon \delta_{\tilde{\theta}^{m_i}} + (1 - \varepsilon) \delta_{\tilde{\theta}^0}$$

and

(S3)
$$\operatorname{marg}_{\Theta \times \hat{T}_{-i}} \hat{\kappa}(\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i]) = \pi_{\bar{t}_i}^{1, m_i} \circ (\tau_{-i}^{\varepsilon, 1})^{-1},$$

where $(\tau_{-i}^{\varepsilon,1})^{-1}$ stands for the preimage of the function $\tau_{-i}^{\varepsilon,1}: \Theta \times \overline{T}_{-i} \times M_{-i} \rightarrow \Theta \times \widehat{T}_{-i}$, defined by $\tau_{-i}^{\varepsilon,1}(\theta, \overline{t}_{-i}, m_{-i}) = (\theta, t_{-i}[\overline{\sigma}, m_{-i}])$, and $t_{-i}[\overline{\sigma}, m_{-i}] \in T_{-i}$ is the type profile defined in Proposition 1. Recall that $\sigma_{-i}(t_{-i}[\overline{\sigma}, m_{-i}]) = m_{-i}$ for any equilibrium σ in $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{|\tilde{T}} = \overline{\sigma}$. Now, for each $\ell \geq 2$, define $\hat{t}_i[\varepsilon, \ell, \overline{\sigma}, \overline{t}_i, m_i]$ inductively by

$$\operatorname{marg}_{\tilde{\Theta}} \hat{\kappa}(\hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i]) = \varepsilon \delta_{\tilde{\theta}^{m_i}} + (1 - \varepsilon) \delta_{\tilde{\theta}^0}$$

and

$$\operatorname{marg}_{\Theta \times \hat{T}_{-i}} \hat{\kappa}(\hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i]) = \pi_{\bar{t}_i}^{\ell, m_i} \circ (\tau_{-i}^{\varepsilon, \ell})^{-1},$$

where $(\tau_{-i}^{\varepsilon,\ell})^{-1}$ stands for the preimage of the function $\tau_{-i}^{\varepsilon,\ell}: \Theta \times \overline{T}_{-i} \times M_{-i} \to \Theta \times \widehat{T}_{-i}$, defined by $\tau_{-i}^{\varepsilon,\ell}(\theta, \overline{t}_{-i}, m_{-i}) = (\theta, \widehat{t}_{-i}[\varepsilon, \ell - 1, \overline{\sigma}, \overline{t}_{-i}, m_{-i}]).$

CLAIM 1: For each $\bar{t}_i \in \bar{T}_i$ and $m_i \in R_i(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$: $\hat{t}_i[\hat{\varepsilon}(\ell), \ell, \bar{\sigma}, \bar{t}_i, m_i] \rightarrow_P \bar{t}_i$ as $\ell \rightarrow \infty$ for some mapping $\hat{\varepsilon}$ taking values in $\mathcal{E} \setminus \{0\}$.

PROOF: In the sequel, we will denote by \bar{h} the (continuous) mapping that projects \bar{T} into T^* and, in a similar way, by \hat{h} the (continuous) mapping from \hat{T} to T^* .

For any $\bar{t}_i \in \bar{T}_i$, since⁵ for all $\ell \ge 1$ and all $m_i \in R_i^{\ell}(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{\mathcal{T}})$: $\hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i] \rightarrow \hat{t}_i[0, \ell, \bar{\sigma}, \bar{t}_i, m_i]$ as $\varepsilon \to 0$, by Lemma 2 in the main text, for all $\ell \ge 1$, for all $\ell' \ge 1$, and all $m_i \in R_i^{\ell'}(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{\mathcal{T}})$: $\hat{h}_i^{\ell}(\hat{t}_i[\varepsilon, \ell', \bar{\sigma}, \bar{t}_i, m_i]) \rightarrow \hat{h}_i^{\ell}(\hat{t}_i[0, \ell', \bar{\sigma}, \bar{t}_i, m_i])$ as $\varepsilon \to 0$.

⁵A type in \hat{T}_i is either in T_i —which is endowed with the discrete topology, say τ_{T_i} —or in $\hat{T}_i \setminus T_i$. Any point in $\hat{T}_i \setminus T_i$ is identified with an element of the set $\mathcal{E} \times \mathbb{N} \times C \times \tilde{T}_i \times M_i$, where $\mathbb{N}, C, \tilde{T}_i, M_i$ are all endowed with the discrete topology, while \mathcal{E} is endowed with the usual topology on \mathbb{R} induced on \mathcal{E} . Finally, $\mathcal{E} \times \mathbb{N} \times C \times \tilde{T}_i \times M_i$ is endowed with the product topology; call this topology $\tau_{\hat{T}_i \setminus T_i}$. The topology over \hat{T}_i is the coarsest topology that contains $\tau_{T_i} \cup \tau_{\hat{T}_i \setminus T_i}$. It can easily be checked that under such a topology, \hat{T} satisfies the conditions of Lemma 2 in the main text.

6

Let us now show that, for all $\ell \ge 1$ and $\ell' \ge \ell$: $\hat{h}_i^{\ell}(\hat{t}_i[0, \ell', \bar{\sigma}, \bar{t}_i, m_i]) = \bar{h}_i^{\ell}(\bar{t}_i)$ for all $\bar{t}_i \in \bar{T}_i$ and $m_i \in R_i^{\ell'}(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$. First notice that the first-order beliefs are equal, that is, for all $\ell' \ge 1$, $\bar{t}_i \in \bar{T}_i$, and $m_i \in R_i^{\ell'}(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$,

$$h_i^1(\hat{t}_i[0, \ell', \bar{\sigma}, \bar{t}_i, m_i]) = \operatorname{marg}_{\Theta} \hat{\kappa}(\hat{t}_i[0, \ell', \bar{\sigma}, \bar{t}_i, m_i])$$

= $\operatorname{marg}_{\Theta} \pi_{\bar{t}_i}^{\ell', m_i} \circ (\tau_{-i}^{0, \ell'})^{-1}$
= $\operatorname{marg}_{\Theta} \pi_{\bar{t}_i}^{\ell', m_i} = \operatorname{marg}_{\Theta} \bar{\kappa}(\bar{t}_i) = \bar{h}_i^1(\bar{t}_i)$

where the third and the fourth equalities are by definition of $\tau_{-i}^{0,\ell'}$ and $\pi_{\bar{t}_i}^{\ell',m_i}$, respectively. Now fix some $\ell \geq 2$ and let L be the set of all belief profiles of players other than i at order $\ell - 1$. Toward an induction, assume that, for all $\ell' \geq \ell - 1$: $\hat{h}_j^{\ell-1}(\hat{t}_j[0, \ell', \bar{\sigma}, \bar{t}_j, m_j]) = \bar{h}_j^{\ell-1}(\bar{t}_j)$ for each $j, \bar{t}_j \in \bar{T}_j$ and $m_j \in R_j^{\ell'}(\bar{t}_j \mid \mathcal{M}(\bar{\sigma}), \bar{T})$. Then for all $\ell' \geq \ell$: $\operatorname{proj}_{\Theta \times L} \circ (\operatorname{id}_{\Theta} \times \hat{h}_{-i}) \circ \tau_{-i}^{0,\ell'} = \overline{\operatorname{proj}}_{\Theta \times L} \circ (\operatorname{id}_{\Theta} \times \bar{h}_{-i} \times \operatorname{id}_{M_{-i}(\bar{\sigma})})$, where $\operatorname{id}_{\Theta}$ (resp. $\operatorname{id}_{M_{-i}(\bar{\sigma})}$) is the identity mapping from Θ to Θ (resp. from $M_{-i}(\bar{\sigma})$ to $M_{-i}(\bar{\sigma})$), while $\operatorname{proj}_{\Theta \times L}$ (resp. $\overline{\operatorname{proj}}_{\Theta \times L}$) is the projection mapping from $\Theta \times T^*$ to $\Theta \times L$ (resp. from $\Theta \times T^* \times M_{-i}(\bar{\sigma})$ to $\Theta \times L$); hence, for all $\ell' \geq \ell, \bar{t}_i \in \bar{T}_i$, and $m_i \in R_i^{\ell'}(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$,

$$\begin{aligned} \max_{\Theta \times L} \hat{\kappa}(\hat{t}_{i}[0, \ell', \bar{\sigma}, \bar{t}_{i}, m_{i}]) \circ (\mathrm{id}_{\Theta} \times \hat{h}_{-i})^{-1} \\ &= \max_{\Theta \times L} \pi_{\bar{t}_{i}}^{\ell', m_{i}} \circ (\tau_{-i}^{0, \ell'})^{-1} \circ (\mathrm{id}_{\Theta} \times \hat{h}_{-i})^{-1} \\ &= \pi_{\bar{t}_{i}}^{\ell', m_{i}} \circ (\tau_{-i}^{0, \ell'})^{-1} \circ (\mathrm{id}_{\Theta} \times \hat{h}_{-i})^{-1} \circ (\mathrm{proj}_{\Theta \times L})^{-1} \\ &= \pi_{\bar{t}_{i}}^{\ell', m_{i}} \circ (\mathrm{id}_{\Theta} \times \bar{h}_{-i} \times \mathrm{id}_{M_{-i}(\bar{\sigma})})^{-1} \circ (\overline{\mathrm{proj}}_{\Theta \times L})^{-1} \\ &= \max_{\Theta \times L} \pi_{\bar{t}_{i}}^{\ell', m_{i}} \circ (\mathrm{id}_{\Theta} \times \bar{h}_{-i} \times \mathrm{id}_{M_{-i}(\bar{\sigma})})^{-1} \\ &= \max_{\Theta \times L} \bar{\kappa}(\bar{t}_{i}) \circ (\mathrm{id}_{\Theta} \times \bar{h}_{-i})^{-1}. \end{aligned}$$

Therefore,

$$\begin{split} \hat{h}_{i}^{\ell}(\hat{t}_{i}[0,\ell',\bar{\sigma},\bar{t}_{i},m_{i}]) \\ &= \delta_{\hat{h}_{i}^{\ell-1}(\hat{t}_{i}[0,\ell',\bar{\sigma},\bar{t}_{i},m_{i}])} \times \operatorname{marg}_{\Theta \times L} \hat{\kappa}(\hat{t}_{i}[0,\ell',\bar{\sigma},\bar{t}_{i},m_{i}]) \circ (\operatorname{id}_{\Theta} \times \hat{h}_{-i})^{-1} \\ &= \delta_{\tilde{h}_{i}^{\ell-1}(\bar{t}_{i})} \times \operatorname{marg}_{\Theta \times L} \bar{\kappa}(\bar{t}_{i}) \circ (\operatorname{id}_{\Theta} \times \bar{h}_{-i})^{-1} = \bar{h}_{i}^{\ell}(\bar{t}_{i}), \end{split}$$

showing that $\hat{h}_i^{\ell}(\hat{t}_i[0, \ell', \bar{\sigma}, \bar{t}_i, m_i]) = \bar{h}_i^{\ell}(\bar{t}_i)$. Thus, we have proved that, for all $\ell \geq 1$, all $\ell' \geq \ell$: $\hat{h}_i^{\ell}(\hat{t}_i[0, \ell', \bar{\sigma}, \bar{t}_i, m_i]) = \bar{h}_i^{\ell}(\bar{t}_i)$ for any $\bar{t}_i \in \bar{T}_i$ and $m_i \in R_i^{\ell'}(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{\mathcal{T}})$, that is, $\hat{t}_i[0, \ell', \bar{\sigma}, \bar{t}_i, m_i] \to_P \bar{t}_i$ as $\ell' \to \infty$ for any $\bar{t}_i \in \bar{T}_i$ and $m_i \in R_i(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$. In addition, we know that, for all $\ell' \geq 1$ and all $m_i \in R_i(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$: $\hat{t}_i[\varepsilon, \ell', \bar{\sigma}, \bar{t}_i, m_i] \to_P \hat{t}_i[0, \ell', \bar{\sigma}, \bar{t}_i, m_i]$ as $\varepsilon \to 0$. Since T^* is a metrizable space, $\hat{t}_i[\hat{\varepsilon}(\ell'), \ell', \bar{\sigma}, \bar{t}_i, m_i] \to_P \bar{t}_i$ as $\ell' \to \infty$ for some function $\hat{\varepsilon} : \mathbb{N}^* \to \mathcal{E} \setminus \{0\}$ satisfying $\lim_{\ell \to \infty} \hat{\varepsilon}(\ell') = 0$. Q.E.D.

CLAIM 2: For each $\varepsilon \in \mathcal{E} \setminus \{0\}, \ell, \bar{t}_i \in \bar{T}_i$, and $m_i \in R_i(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$, we have $\sigma_i(\hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i]) = m_i$ for any equilibrium σ of $U(\mathcal{M}, \hat{T})$ satisfying $\sigma_{|\bar{T}} = \bar{\sigma}$.

PROOF: Fix a type $\bar{t}_i \in \bar{T}_i$ and an equilibrium σ of $U(\mathcal{M}, \hat{T})$ satisfying $\sigma_{|\bar{T}} = \bar{\sigma}$. We will show by induction on ℓ that, for all $\varepsilon \in \mathcal{E} \setminus \{0\}$ and $\ell \geq 1$: $\sigma_i(\hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i]) = m_i$ for all messages $m_i \in R_i^\ell(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$.

Recall that, by construction, for all $m_i \in M_i(\bar{\sigma})$, $t_i[\bar{\sigma}, m_i] \in T_i$ is the type in Proposition 1 such that $\sigma_i(t_i[\bar{\sigma}, m_i]) = m_i$. First, fix $\varepsilon \in \mathcal{E} \setminus \{0\}$ and $m_i \in R_i^1(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$ and let us prove that $\sigma_i(\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i]) = m_i$. For each $\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i]$, define the belief

$$\pi_i^{\varepsilon,1} = \hat{\kappa}(\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i]) \circ \gamma^{-1} \in \Delta(\Theta^* \times \hat{T}_{-i} \times M_{-i}),$$

where $\gamma: (\theta^*, t_{-i}[\bar{\sigma}, m_{-i}]) \mapsto (\theta^*, t_{-i}[\bar{\sigma}, m_{-i}], m_{-i})$. Note that by construction, $\pi_i^{\varepsilon,1}$ is the belief of type $\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i]$ on $\Theta^* \times \hat{T}_{-i} \times M_{-i}$ when he believes that m_{-i} is played at each $(\theta^*, t_{-i}[\bar{\sigma}, m_{-i}])$. Hence, for each $\varepsilon \ge 0$, $\pi_i^{\varepsilon,1}$ corresponds to beliefs of type $\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i]$ when the equilibrium σ is played. Now, by Equations (S2) and (S3), the belief $\pi_i^{0,1}$ of type $\hat{t}_i[0, 1, \bar{\sigma}, \bar{t}_i, m_i]$ satisfies

$$\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_i^{0,1} = \operatorname{marg}_{\Theta^* \times M_{-i}} \pi_{\overline{t}_i}^{1,m_i} \circ (\tau_{-i}^{0,1})^{-1} \circ (\gamma_{\Theta})^{-1}$$
$$= \operatorname{marg}_{\Theta^* \times M_{-i}} \pi_{\overline{t}_i}^{1,m_i},$$

where $\gamma_{\Theta} : (\theta, t_{-i}[\bar{\sigma}, m_{-i}]) \mapsto (\theta, \tilde{\theta}^0, t_{-i}[\bar{\sigma}, m_{-i}], m_{-i})$. Since $\operatorname{Supp}(\sigma_i(\hat{t}_i[0, 1, \bar{\sigma}, \tilde{t}_i, m_i])) \subset BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_i^{0,1} | \mathcal{M})$, we have $BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_{\tilde{t}_i}^{1,m_i} | \mathcal{M}) \neq \emptyset$. In addition, since $\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_{\tilde{t}_i}^{1,m_i}(\Theta \times \{\tilde{\theta}^0\} \times M_{-i}(\bar{\sigma})) = 1$, by construction of $M_i(\bar{\sigma})$ we have $BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_{\tilde{t}_i}^{1,m_i} | \mathcal{M}) \subset M_i(\bar{\sigma})$. Thus,

$$BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_{\bar{t}_i}^{1,m_i} | \mathcal{M}(\bar{\sigma})) = BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_{\bar{t}_i}^{1,m_i} | \mathcal{M}).$$

Recall that, by construction of $\pi_{\bar{i}_i}^{1,m_i}$, $m_i \in BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_{\bar{i}_i}^{1,m_i} | \mathcal{M}(\bar{\sigma}))$. Consequently,

$$m_i \in BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_i^{0,1} | \mathcal{M}).$$

In addition, we have

$$\operatorname{marg}_{\Theta \times M_{-i}} \pi_i^{\varepsilon,1} = \operatorname{marg}_{\Theta \times M_{-i}} \pi_i^{0,1}.$$

Hence, for $\varepsilon \in \mathcal{E} \setminus \{0\}$, by construction of $\pi_i^{\varepsilon,1}$, $\{m_i\} = BR_i(\operatorname{marg}_{\Theta^* \times M_{-i}} \pi_i^{\varepsilon,1} | \mathcal{M})$ and $\sigma_i(\hat{t}_i[\varepsilon, 1, \bar{\sigma}, \bar{t}_i, m_i]) = m_i$.

Now, for each $\ell \geq 2$, proceed by induction and assume that $\sigma_{-i}(\hat{t}_{-i}[\varepsilon, \ell - 1, \bar{\sigma}, \bar{t}_{-i}, m_{-i}]) = m_{-i}$ for any $\bar{t}_{-i} \in \bar{T}_{-i}, m_{-i} \in R_{-i}^{\ell-1}(\bar{t}_{-i} \mid \mathcal{M}(\bar{\sigma}), \bar{T})$, and $\varepsilon \in \mathcal{E} \setminus \{0\}$. Fix $\varepsilon \in \mathcal{E} \setminus \{0\}$ and $m_i \in R_i^{\ell}(\bar{t}_i \mid \mathcal{M}(\bar{\sigma}), \bar{T})$. For each $\hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i]$, define the belief

$$\pi_i^{\varepsilon,\ell} = \hat{\kappa}(\hat{t}_i[\varepsilon,\ell,\bar{\sigma},\bar{t}_i,m_i]) \circ \gamma_\ell^{-1} \in \Delta(\Theta^* \times \hat{T}_{-i} \times M_{-i}),$$

where $\gamma_{\ell}: (\theta^*, \hat{t}_{-i}[\varepsilon, \ell - 1, \bar{\sigma}, \bar{t}_{-i}, m_{-i}]) \mapsto (\theta^*, \hat{t}_{-i}[\varepsilon, \ell - 1, \bar{\sigma}, \bar{t}_{-i}, m_{-i}], m_{-i}).$ Note that, by construction, $\pi_i^{\varepsilon, \ell}$ is the belief of type $\hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i]$ on

Note that, by construction, $\pi_i^{s,c}$ is the belief of type $t_i[\varepsilon, \ell, \sigma, t_i, m_i]$ on $\Theta^* \times \hat{T}_{-i} \times M_{-i}$ when he believes that m_{-i} is played at each $(\theta^*, \hat{t}_{-i}[\varepsilon, \ell - 1, \bar{\sigma}, \bar{t}_{-i}, m_{-i}])$. Hence, by the induction hypothesis, for each $\varepsilon \ge 0$, $\pi_i^{s,\ell}$ corresponds to beliefs of type $\hat{t}_i[\varepsilon, \ell, \bar{\sigma}, \bar{t}_i, m_i]$ when the equilibrium σ is played. The end of the proof mimics the case $\ell = 1$. Q.E.D.

This completes the proof of Proposition 2. Q.E.D.

COMPLETION OF THE PROOF OF THE "ONLY IF PART" OF THEOREM 4: Pick $\hat{T} = (\hat{T}, \hat{\kappa})$ as defined in Proposition 2. By definition of continuous implementation, there exists an equilibrium σ in $U(\mathcal{M}, \hat{T})$ that continuously implements f, and point (i) in this definition ensures that $\sigma_{|\hat{T}}$ is a pure equilibrium. Now pick any $\bar{t} \in \bar{T}$ and $m \in R(\bar{t} \mid \mathcal{M}(\sigma_{|\hat{T}}), \bar{T})$; we show that $g_{|\mathcal{M}(\sigma_{|\hat{T}})}(m) = f(\bar{t})$, proving that the mechanism $\mathcal{M}(\sigma_{|\hat{T}})$ implements f in rationalizable messages. Applying Proposition 2, we know that there exists a sequence of types $\{\hat{t}[n]\}_{n=0}^{\infty}$ in \hat{T} such that (i) $\hat{t}[n] \rightarrow_P \bar{t}$ and (ii) $\sigma(\hat{t}[n]) = m$ for all n. By (i) and the fact that σ continuously implements f, we have $(g \circ \sigma)(\hat{t}[n]) \rightarrow f(\bar{t})$, while by (ii), we have $(g \circ \sigma)(\hat{t}[n]) = g(m)$ for all n. Hence, we must have $g(m) = f(\bar{t})$ and so $g_{|\mathcal{M}(\sigma_{|\tilde{T}})}(m) = f(\bar{t})$, as claimed.

REFERENCES

DEKEL, E., D. FUDENBERG, AND S. MORRIS (2006): "Topologies on Types," *Theoretical Economics*, 1, 275–309. [1]

(2007): "Interim Correlated Rationalizability," Theoretical Economics, 2, 15–40. [4]

LIPMAN, B. (1994): "A Note on the Implications of Common Knowledge of Rationality," *Games and Economic Behavior*, 6, 114–129. [4]

Théorie Éqonomique, Modélisation, Application, Université de Cergy-Pontoise, Cergy-Pontoise, France; marionoury@gmail.com

and

Paris School of Economics, 48 boulevard Jourdan, 75 014 Paris, France; tercieux@pse.ens.fr.

Manuscript received May, 2009; final revision received October, 2011.