SUPPLEMENT TO "CONTINUOUS IMPLEMENTATION"

(Econometrica, Vol. 80, No. 4, July 2012, 1605-1637)

By Marion Oury and Olivier Tercieux

BELOW WE PROVIDE THE PROOF of Theorem 4, which is omitted in the main text.

Proof of the "IF PART" of Theorem 4: Assume that $f: \bar{T} \rightarrow A$ is rationalizable implementable by a finite mechanism $\mathcal{M}=(M, g)$, that is, that, for all $\bar{t} \in \bar{T}, m \in R(\bar{t} \mid \mathcal{M}, \overline{\mathcal{T}}) \Rightarrow g(m)=f(\bar{t})$.

We first recall the following well known lemma.
Lemma 1—Dekel, Fudenberg, and Morris (2006): Fix any model $\mathcal{T}=$ (T, κ) such that $\overline{\mathcal{T}} \subset \mathcal{T}$ and any finite mechanism \mathcal{M}. (i) For any $\bar{t} \in \bar{T}$ and any sequence $\{t[n]\}_{n=0}^{\infty}$ in T, if $t[n] \rightarrow_{P} \bar{t}$, then, for n large enough, we have $R(t[n] \mid \mathcal{M}, \mathcal{T}) \subset R(\bar{t} \mid \mathcal{M}, \mathcal{T})$. (ii) For any type $t \in T, R(t \mid \mathcal{M}, \mathcal{T})$ is nonempty.

Now pick any model $\mathcal{T}=(T, \kappa)$ such that $\overline{\mathcal{T}} \subset \mathcal{T}$. We show that there exists an equilibrium that continuously implements f on $\overline{\mathcal{T}}$. For each player i and each type $\bar{t}_{i} \in \bar{T}_{i}$, fix some $m_{i}\left(\bar{t}_{i}\right) \in R_{i}\left(\bar{t}_{i} \mid \mathcal{M}, \overline{\mathcal{T}}\right)$ and restrict the space of strategies of player i by assuming that $\sigma_{i}\left(\bar{t}_{i}\right)=m_{i}\left(\bar{t}_{i}\right)$ for each type $\bar{t}_{i} \in \bar{T}_{i}$. Because M is finite and T is countable, standard arguments ${ }^{1}$ show that there exists a Bayes Nash equilibrium in $U(\mathcal{M}, \mathcal{T})$. Let us first establish that σ is a Bayes Nash equilibrium in $U(\mathcal{M}, \mathcal{T})$. It is clear by construction that, for each $i \in \mathcal{I}$ and $t_{i} \notin \bar{T}_{i}$,

$$
m_{i} \in \operatorname{Supp}\left(\sigma_{i}\left(t_{i}\right)\right) \quad \Rightarrow \quad m_{i} \in B R_{i}\left(\pi_{i}\left(\cdot \mid t_{i}, \sigma_{-i}\right) \mid \mathcal{M}\right)
$$

Now fix a player $i \in \mathcal{I}$ and a type $\bar{t}_{i} \in \bar{T}_{i}$. Since $\overline{\mathcal{T}} \subset \mathcal{T}$ is a model (and hence, $\kappa\left(\bar{t}_{i}\right)$ takes its support in $\left.\Theta \times \bar{T}_{-i}\right)$, it is easily checked that, by construction of σ, $\pi_{i}\left(m_{-i} \mid \bar{t}_{i}, \sigma_{-i}\right)>0 \Rightarrow m_{-i} \in R_{-i}\left(\bar{t}_{-i} \mid \mathcal{M}, \overline{\mathcal{T}}\right)$ for some $\bar{t}_{-i} \in \bar{T}_{-i}$. Hence, by a well known argument, $B R_{i}\left(\pi_{i}\left(\cdot \mid \bar{t}_{i}, \sigma_{-i}\right) \mid \mathcal{M}\right) \subset R_{i}\left(\bar{t}_{i} \mid \mathcal{M}, \overline{\mathcal{T}}\right)$. Since $g(R(\bar{t} \mid \mathcal{M}, \overline{\mathcal{T}}))=$ $\{f(\bar{t})\}$, we have, for all $\tilde{m}_{i} \in R_{i}\left(\bar{t}_{i} \mid \mathcal{M}, \overline{\mathcal{T}}\right)$,

$$
\begin{aligned}
& \sum_{\left(\theta, m_{-i}\right) \in \Theta \times M_{-i}} \pi_{i}\left(\theta, m_{-i} \mid \bar{t}_{i}, \sigma_{-i}\right)\left[u_{i}\left(g\left(\tilde{m}_{i}, m_{-i}\right), \theta\right)\right] \\
= & \sum_{\theta, \bar{t}_{-i}} \bar{\kappa}\left(\bar{t}_{i}\right)\left[\theta, \bar{t}_{-i}\right] u_{i}\left(f\left(\bar{t}_{i}, \bar{t}_{-i}\right), \theta\right),
\end{aligned}
$$

[^0]and so $B R_{i}\left(\pi_{i}\left(\cdot \mid \bar{t}_{i}, \sigma_{-i}\right) \mid \mathcal{M}\right)=R_{i}\left(\bar{t}_{i} \mid \mathcal{M}, \overline{\mathcal{T}}\right)$. Hence we must have $m_{i}\left(\bar{t}_{i}\right)=$ $\sigma_{i}\left(\bar{t}_{i}\right) \in B R_{i}\left(\pi_{i}\left(\cdot \mid \bar{t}_{i}, \sigma_{-i}\right) \mid \mathcal{M}\right)$. Thus, σ is a Bayes Nash equilibrium in $U(\mathcal{M}, \mathcal{T})$ and $\sigma_{\mid \bar{T}}$ is a pure Nash equilibrium in $U(\mathcal{M}, \overline{\mathcal{T}})$. Now, pick any sequence $\{t[n]\}_{n=0}^{\infty}$ in T, such that $t[n] \rightarrow_{P} \bar{t}$. It is clear that, for each $n: \operatorname{Supp}(\sigma(t[n])) \subset$ $R(t[n] \mid \mathcal{M}, \mathcal{T})$. In addition, for n large enough, we know by Lemma 1 that $R(t[n] \mid \mathcal{M}, \mathcal{T}) \subset R(\bar{t} \mid \mathcal{M}, \overline{\mathcal{T}})$. Then, for n large enough, $\operatorname{Supp}(\sigma(t[n])) \subset$ $R(\bar{t} \mid \mathcal{M}, \overline{\mathcal{T}})$ and so, $(g \circ \sigma)(t[n])=f(\bar{t})$ as claimed.
Q.E.D.

Proof of the "Only if part" of Theorem 4: We show that a social choice function $f: \bar{T} \rightarrow A$ is continuously implementable by a countable ${ }^{2}$ mechanism \mathcal{M} only if it is rationalizable implementable by some mechanism $\mathcal{M}^{\prime} \subset \mathcal{M}$ (i.e., $M_{i}^{\prime} \subset M_{i}$ for each i and $g^{\prime}=g_{\mid M^{\prime}}$).

Since f is continuously implementable, there exists a mechanism $\mathcal{M}=$ (M, g) such that, for any model $\mathcal{T}=(T, \kappa)$ satisfying $\overline{\mathcal{T}} \subset \mathcal{T}$, there is a Bayes Nash equilibrium σ in the induced game $U(\mathcal{M}, \mathcal{T})$ where, for each $\bar{t} \in \bar{T}$, (i) $\sigma(\bar{t})$ is pure, and (ii) for any sequence $t[n] \rightarrow_{P} \bar{t}$ where, for each n : $t[n] \in T$, we have $(g \circ \sigma)(t[n]) \rightarrow f(\bar{t})$. We let C be the set of pure Bayes Nash equilibria of $U(\mathcal{M}, \overline{\mathcal{T}})$. Note that because \bar{T} is finite and M is countable, C is countable. For each $\bar{\sigma} \in C$, we build the set of message profiles $M(\bar{\sigma})$ in the following way.

For each player i and each positive integer ℓ, we define inductively $M_{i}^{\ell}(\bar{\sigma})$. First, we set $M_{i}^{0}(\bar{\sigma})=\bar{\sigma}_{i}\left(\bar{T}_{i}\right)$. Then, for each $\ell \geq 1$,

$$
M_{i}^{\ell+1}(\bar{\sigma})=B R_{i}\left(\Delta\left(\Theta \times\left\{\tilde{\theta}^{0}\right\} \times M_{-i}^{\ell}(\bar{\sigma})\right) \mid \mathcal{M}\right)
$$

Recall that in the model $\overline{\mathcal{T}}=(\bar{T}, \bar{\kappa}), \operatorname{marg}_{\tilde{\Theta}} \bar{\kappa}\left(\bar{t}_{i}\right)\left[\tilde{\theta}^{0}\right]=1$, for each $i \in \mathcal{I}$ and $\bar{t}_{i} \in$ \bar{T}_{i}. Since $\bar{\sigma}$ is an equilibrium in $U(\mathcal{M}, \overline{\mathcal{T}}), M_{i}^{0}(\bar{\sigma})=\bar{\sigma}_{i}\left(\bar{T}_{i}\right) \subset B R_{i}\left(\Delta\left(\Theta \times\left\{\tilde{\theta}^{0}\right\} \times\right.\right.$ $\left.\left.M_{-i}^{0}(\bar{\sigma})\right) \mid \mathcal{M}\right)=M_{i}^{1}(\bar{\sigma})$. Consequently, it is clear that, for each $\ell, M_{i}^{\ell}(\bar{\sigma}) \subset$ $M_{i}^{\ell+1}(\bar{\sigma})$. Finally, set $M_{i}(\bar{\sigma})=\lim _{\ell \rightarrow+\infty} M_{i}^{\ell}(\bar{\sigma})=\bigcup_{\ell \in \mathbb{N}} M_{i}^{\ell}(\bar{\sigma})$. In the sequel, for each $\bar{\sigma} \in C$, we will note by $\mathcal{M}(\bar{\sigma})$ the mechanism $\left(M(\bar{\sigma}), g_{\mid M(\bar{\sigma})}\right)$.

A first interesting property of the family of sets $\{M(\bar{\sigma})\}_{\bar{\sigma} \in C}$ is that there is a model \mathcal{T}, satisfying $\overline{\mathcal{T}} \subset \mathcal{T}$, for which any equilibrium σ in $U(\mathcal{M}, \mathcal{T})$ has full range in $M\left(\sigma_{\mid \bar{T}}\right)$, that is, each message profile in $M\left(\sigma_{\mid \bar{T}}\right)$ is played under σ at some profile of types in the model \mathcal{T}. More precisely, Proposition 1 is the first step of the proof of the only if part of Theorem 4.

Proposition 1: There exists a model $\mathcal{T}=(T, \kappa)$ such that, for any $\bar{\sigma} \in C$ and $m \in M(\bar{\sigma})$, there exists $t[\bar{\sigma}, m] \in T$ such that $\sigma(t[\bar{\sigma}, m])=m$ for any equilibrium σ in $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{\mid \bar{T}}=\bar{\sigma}$.

[^1]Proof: We build the model $\mathcal{T}=(T, \kappa)$ as follows. For each equilibrium $\bar{\sigma} \in C$, player i, and integer ℓ, we define inductively $t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]$ for each $m_{i} \in$ $M_{i}^{\ell}(\bar{\sigma})$ and set

$$
T_{i}=\bigcup_{\bar{\sigma} \in C} \bigcup_{\ell=1}^{\infty} \bigcup_{m_{i} \in M_{i}^{\ell}(\bar{\sigma})} t_{i}\left[\bar{\sigma}, \ell, m_{i}\right] \cup \bar{T}_{i} .
$$

Note that T_{i} is countable. In the sequel, we fix an arbitrary $\bar{\sigma} \in C$. This equilibrium $\bar{\sigma}$ is sometimes omitted in our notations.

For each $\ell \geq 1$ and $m_{i} \in M_{i}^{\ell}(\bar{\sigma})$, we know that there exists $\pi_{i}^{\ell, m_{i}} \in \Delta(\Theta \times$ $\left.\left\{\tilde{\theta}^{0}\right\} \times M_{-i}^{\ell-1}(\bar{\sigma})\right)$ such that $m_{i} \in B R_{i}\left(\pi_{i}^{\ell, m_{i}} \mid \mathcal{M}\right)$. Thus we can build $\hat{\pi}_{i}^{\ell, m_{i}} \in$ $\Delta\left(\Theta \times \tilde{\Theta} \times M_{-i}^{\ell-1}(\bar{\sigma})\right)$ such that

$$
\operatorname{marg}_{\theta \times M_{-i}^{\ell-1}(\bar{\sigma})} \hat{\pi}_{i}^{\ell, m_{i}}=\operatorname{marg}_{\theta \times M_{-i}^{\ell-1}(\bar{\sigma})} \pi_{i}^{\ell, m_{i}}
$$

while $\operatorname{marg}_{\tilde{\Theta}} \hat{\pi}_{i}^{\ell, m_{i}}=\delta_{\tilde{\theta}^{m_{i}}}$. Note that $B R_{i}\left(\hat{\pi}_{i}^{\ell, m_{i}} \mid \mathcal{M}\right)=\left\{m_{i}\right\}$.
In the sequel, for each player i and message $m_{i} \in M_{i}^{0}(\bar{\sigma})$, we pick one type denoted $t_{i}\left[\bar{\sigma}, 0, m_{i}\right]$ in \bar{T}_{i} satisfying $\bar{\sigma}_{i}\left(t_{i}\left[\bar{\sigma}, 0, m_{i}\right]\right)=m_{i}$. This is well defined because, by construction, $M_{i}^{0}(\bar{\sigma})=\bar{\sigma}_{i}\left(\bar{T}_{i}\right)$. Now, for each $\ell \geq 1$ and $m_{i} \in M_{i}^{\ell}(\bar{\sigma})$, we define inductively $t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]$ by 3

$$
\begin{aligned}
& \kappa\left(t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]\right)\left[\theta, \tilde{\theta}, t_{-i}\right] \\
& \quad= \begin{cases}0, & \text { if } t_{-i} \neq t_{-i}\left[\bar{\sigma}, \ell-1, m_{-i}\right] \\
\hat{\pi}_{i}^{\ell, m_{i}}\left(\theta, \tilde{\theta}, m_{-i}\right), & \text { for each } m_{-i} \in M_{-i}^{\ell-1}(\bar{\sigma}), t_{-i}\left[\bar{\sigma}, \ell-1, m_{-i}\right] \\
& \text { for some } m_{-i} \in M_{-i}^{\ell-1}(\bar{\sigma})\end{cases}
\end{aligned}
$$

This probability measure is well defined since $\hat{\pi}_{i}^{\ell, m_{i}}\left(\Theta \times \tilde{\Theta} \times M_{-i}^{\ell-1}(\bar{\sigma})\right)=1$.
To complete the proof, we show that, for any equilibrium σ of $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{\mid \bar{T}}=\bar{\sigma}$, we have

$$
\begin{equation*}
\sigma_{i}\left(t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]\right)=m_{i} \tag{S1}
\end{equation*}
$$

for each player i, integer ℓ, and message $m_{i} \in M_{i}^{\ell}(\bar{\sigma})$. The proof proceeds by induction on ℓ.

First note that, by construction of $t_{i}\left[\bar{\sigma}, 0, m_{i}\right]$, we must have, for any equilibrium σ of $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{\mid \bar{T}}=\bar{\sigma}$,

$$
\sigma_{i}\left(t_{i}\left[\bar{\sigma}, 0, m_{i}\right]\right)=m_{i}
$$

[^2]for each player i and message $m_{i} \in M_{i}^{0}(\bar{\sigma})$. Now, assume that Equation (S1) is satisfied at rank $\ell-1$ and let us prove that it is also satisfied at rank ℓ. Fix any $m_{i} \in M_{i}^{\ell}(\bar{\sigma})$ and any equilibrium σ of $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{\mid \bar{T}}=\bar{\sigma}$. Note that $\operatorname{Supp}\left(\sigma_{i}\left(t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]\right)\right) \subset B R_{i}\left(\pi_{i} \mid \mathcal{M}\right)$, where $\pi_{i} \in \Delta\left(\Theta \times \tilde{\Theta} \times M_{-i}\right)$ is such that
$$
\pi_{i}\left(\theta, \tilde{\theta}, m_{-i}\right)=\sum_{t_{-i}} \kappa\left(t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]\right)\left[\theta, \tilde{\theta}, t_{-i}\right] \sigma_{-i}\left(m_{-i} \mid t_{-i}\right)
$$

In addition, by the inductive hypothesis and the fact that σ is an equilibrium of $U(\mathcal{M}, \mathcal{T})$ satisfying $\sigma_{\mid \bar{T}}=\bar{\sigma}$, we have $\sigma_{-i}\left(m_{-i} \mid t_{-i}\left[\bar{\sigma}, \ell-1, m_{-i}\right]\right)=1$ for any $m_{-i} \in M_{-i}^{\ell-1}(\bar{\sigma})$. Hence, by construction of $\kappa\left(t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]\right)$, we have

$$
\begin{aligned}
\pi_{i}\left(\theta, \tilde{\theta}, m_{-i}\right) & =\sum_{t_{-i}} \kappa\left(t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]\right)\left[\theta, \tilde{\theta}, t_{-i}\right] \sigma_{-i}\left(m_{-i} \mid t_{-i}\right) \\
& =\kappa\left(t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]\right)\left[\theta, \tilde{\theta}, t_{-i}\left[\bar{\sigma}, \ell-1, m_{-i}\right]\right] \\
& =\hat{\pi}_{i}^{\ell, m_{i}}\left(\theta, \tilde{\theta}, m_{-i}\right)
\end{aligned}
$$

We get that $\operatorname{Supp}\left(\sigma_{i}\left(t_{i}\left[\bar{\sigma}, \ell, m_{i}\right]\right)\right) \subset B R_{i}\left(\pi_{i} \mid \mathcal{M}\right)=B R_{i}\left(\hat{\pi}_{i}^{\ell, m_{i}} \mid \mathcal{M}\right)=\left\{m_{i}\right\}$ as claimed.

We now give a first insight on the second step of the proof. First notice that, by construction, each $M(\bar{\sigma})$ satisfies the following closure property: taking any belief $\pi_{i} \in \Delta\left(\Theta \times\left\{\tilde{\theta}^{0}\right\} \times M_{-i}(\bar{\sigma})\right)$ such that $B R_{i}\left(\pi_{i} \mid \mathcal{M}\right) \neq \emptyset$, we must have $B R_{i}\left(\pi_{i} \mid \mathcal{M}\right) \subset M_{i}(\bar{\sigma})$ and hence, $B R_{i}\left(\pi_{i} \mid \mathcal{M}\right)=B R_{i}\left(\pi_{i} \mid \mathcal{M}(\bar{\sigma})\right)$.

Now pick a type $\bar{t}_{i} \in \bar{T}_{i}$ and a message $m_{i} \in R_{i}^{1}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$; it is possible to add a type $t_{i}^{m_{i}}$ to the model \mathcal{T} defined in Proposition 1 satisfying the following two properties. ${ }^{4}$ First, $h_{i}^{1}\left(t_{i}^{m_{i}}\right)$ is arbitrarily close to $h_{i}^{1}\left(\bar{t}_{i}\right)$; second, for any equilibrium σ with $\sigma_{\mid \bar{T}}=\bar{\sigma}, \sigma_{i}\left(t_{i}^{m_{i}}\right)=m_{i}$. Indeed, by definition of $R_{i}^{1}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$, there exists a belief $\pi_{i}^{m_{i}} \in \Delta\left(\Theta^{*} \times T_{-i} \times M_{-i}(\bar{\sigma})\right)$, where $\operatorname{marg}_{\Theta^{*}} \pi_{i}^{m_{i}}=\operatorname{marg}_{\Theta^{*}} \bar{\kappa}\left(\bar{t}_{i}\right)$ and such that $m_{i} \in B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}(\bar{\sigma})} \pi_{i}^{m_{i}} \mid \mathcal{M}(\bar{\sigma})\right)$. Using our assumption on cost of messages, we can slightly perturb $\pi_{i}^{m_{i}}$ so that m_{i} becomes a unique best reply. So let us assume for simplicity that $\left\{m_{i}\right\}=$ $B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}(\bar{\sigma})} \pi_{i}^{m_{i}} \mid \mathcal{M}(\bar{\sigma})\right)$. We can define the type $t_{i}^{m_{i}}$ assigning probability $\operatorname{marg}_{\Theta^{*} \times M_{-i}(\bar{\sigma})} \pi_{i}^{m_{i}}\left(\theta^{*}, m_{-i}\right)$ to $\left(\theta^{*}, t_{-i}\left[\bar{\sigma}, m_{-i}\right]\right)$, where $t_{-i}\left[\bar{\sigma}, m_{-i}\right]$ is defined as in Proposition 1 (i.e., $t_{-i}\left[\bar{\sigma}, m_{-i}\right]$ plays m_{-i} under any equilibrium σ in $U(\mathcal{M}, \mathcal{T})$ such that $\left.\sigma_{\mid \bar{T}}=\bar{\sigma}\right)$. Now pick any equilibrium σ in $U\left(\mathcal{M}, \mathcal{T} \cup\left\{t_{i}^{m_{i}}\right\}\right)$

[^3]such that $\sigma_{\mid \bar{T}}=\bar{\sigma}$. By construction, $\operatorname{Supp}\left(\sigma_{i}\left(t_{i}^{m_{i}}\right)\right) \subset B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{i}^{m_{i}} \mid \mathcal{M}\right)$ and so $B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}(\bar{\sigma})} \pi_{i}^{m_{i}} \mid \mathcal{M}\right) \neq \emptyset$. By the closure property described above, $B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{i}^{m_{i}} \mid \mathcal{M}\right)=B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}(\bar{\sigma})} \pi_{i}^{m_{i}} \mid \mathcal{M}(\bar{\sigma})\right)$ and so we get that type $t_{i}^{m_{i}}$ plays m_{i} under the equilibrium σ and satisfies the desired property. Using a similar reasoning, we show inductively the following "contagion" result.

PROPOSITION 2: There exists a model $\hat{\mathcal{T}}=(\hat{T}, \hat{\kappa})$ such that, for each equilibrium $\bar{\sigma} \in C$ and each player i, the following statement holds: For all $\bar{t}_{i} \in \bar{T}_{i}$ and $m_{i} \in R_{i}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$, there exists a sequence of types $\left\{\hat{t}_{i}[n]\right\}_{n=0}^{\infty}$ in \hat{T}_{i} such that (i) $\hat{t}_{i}[n] \rightarrow_{P} \bar{t}_{i}$, and (ii) $\sigma_{i}\left(\hat{t}_{i}[n]\right)=m_{i}$ for each integer n and equilibrium σ of $U(\mathcal{M}, \hat{\mathcal{T}})$ satisfying $\sigma_{\mid \bar{T}}=\bar{\sigma}$.

Proof: We again define the set \mathcal{E} by

$$
\mathcal{E}:=\bigcup_{q \in \mathbb{N}^{*}}\left\{\frac{1}{q}\right\} \cup\{0\}
$$

We build the model $\hat{\mathcal{T}}=(\hat{T}, \hat{\kappa})$ as follows. For each $\varepsilon \in \mathcal{E}, \ell \in \mathbb{N}^{*}, \bar{\sigma} \in C$, $\bar{t}_{i} \in \bar{T}_{i}$, and $m_{i} \in R_{i}^{\ell}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$, we build inductively $\hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ and set

$$
\hat{T}_{i}=\bigcup_{\varepsilon \in \mathcal{E}} \bigcup_{\ell=1}^{\infty} \bigcup_{\bar{\sigma} \in C} \bigcup_{\bar{t}_{i} \in \bar{T}_{i}} \bigcup_{\left.m_{i} \in R_{i}^{(} \bar{T}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)} \hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right] \cup T_{i},
$$

where T_{i} is as defined in Proposition 1. Note that \hat{T}_{i} is countable. In the sequel, we fix an arbitrary $\bar{\sigma} \in C$. This equilibrium $\bar{\sigma}$ is sometimes omitted in our notations.

We know that, for each integer ℓ, player i of type $\bar{t}_{i} \in \bar{T}_{i}$, and message $m_{i} \in$ $R_{i}^{\ell}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$, there exists $\pi_{\bar{t}_{i}}^{\ell, m_{i}} \in \Delta\left(\Theta \times \bar{T}_{-i} \times M_{-i}(\bar{\sigma})\right)$ such that

$$
\begin{aligned}
& \operatorname{marg}_{\Theta \times \bar{T}_{-i}} \pi_{\bar{t}_{i}}^{\ell, m_{i}}=\bar{\kappa}\left(\bar{t}_{i}\right), \\
& \operatorname{marg}_{\bar{T}_{-i} \times M_{-i}(\bar{\sigma})} \pi_{\bar{t}_{i}}^{\ell, m_{i}}\left(\bar{t}_{-i}, m_{-i}\right)>0 \quad \Rightarrow \quad m_{-i} \in R_{-i}^{\ell-1}\left(\bar{t}_{-i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right),
\end{aligned}
$$

and

$$
m_{i} \in B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}(\bar{\sigma})} \pi_{\bar{t}_{i}}^{\ell, m_{i}} \mid \mathcal{M}(\bar{\sigma})\right)
$$

For ease of exposition, we sometimes consider $\pi_{\bar{t}_{i}}^{\ell, m_{i}}$ as a measure over $\Theta \times$ $\bar{T}_{-i} \times M_{-i}(\bar{\sigma})$ and sometimes as a measure over $\Theta^{*} \times \bar{T}_{-i} \times M_{-i}(\bar{\sigma})$ assigning probability 1 to $\left\{\tilde{\theta}^{0}\right\}$. Similar abuses will be used throughout the proof.

First, we let $\hat{t}_{i}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ be such that $\hat{\kappa}\left(\hat{t}_{i}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)$ satisfies the two conditions

$$
\begin{equation*}
\operatorname{marg}_{\tilde{\Theta}} \hat{\kappa}\left(\hat{t_{i}}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=\varepsilon \delta_{\tilde{\theta}^{m_{i}}}+(1-\varepsilon) \delta_{\tilde{\theta}^{0}} \tag{S2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{marg}_{\theta \times \hat{T}_{-i}} \hat{\kappa}\left(\hat{t}_{i}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=\pi_{\bar{t}_{i}}^{1, m_{i}} \circ\left(\tau_{-i}^{\varepsilon, 1}\right)^{-1} \tag{S3}
\end{equation*}
$$

where $\left(\tau_{-i}^{\varepsilon, 1}\right)^{-1}$ stands for the preimage of the function $\tau_{-i}^{\varepsilon, 1}: \Theta \times \bar{T}_{-i} \times M_{-i} \rightarrow$ $\Theta \times \hat{T}_{-i}$, defined by $\tau_{-i}^{\varepsilon, 1}\left(\theta, \bar{t}_{-i}, m_{-i}\right)=\left(\theta, t_{-i}\left[\bar{\sigma}, m_{-i}\right]\right)$, and $t_{-i}\left[\bar{\sigma}, m_{-i}\right] \in T_{-i}$ is the type profile defined in Proposition 1. Recall that $\sigma_{-i}\left(t_{-i}\left[\bar{\sigma}, m_{-i}\right]\right)=m_{-i}$ for any equilibrium σ in $U(\mathcal{M}, \mathcal{T})$ such that $\sigma_{\mid \bar{T}}=\bar{\sigma}$. Now, for each $\ell \geq 2$, define $\hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ inductively by

$$
\operatorname{marg}_{\tilde{\Theta}} \hat{\kappa}\left(\hat{t_{i}}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=\varepsilon \delta_{\tilde{\theta}^{m_{i}}}+(1-\varepsilon) \delta_{\tilde{\theta}^{0}}
$$

and

$$
\operatorname{marg}_{\Theta \times \hat{T}_{-i}} \hat{\kappa}\left(\hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=\pi_{\bar{t}_{i}}^{\ell, m_{i}} \circ\left(\tau_{-i}^{\varepsilon, \ell}\right)^{-1}
$$

where $\left(\tau_{-i}^{\varepsilon, \ell}\right)^{-1}$ stands for the preimage of the function $\tau_{-i}^{\varepsilon, \ell}: \Theta \times \bar{T}_{-i} \times M_{-i} \rightarrow$ $\Theta \times \hat{T}_{-i}$, defined by $\tau_{-i}^{\varepsilon, \ell}\left(\theta, \bar{t}_{-i}, m_{-i}\right)=\left(\theta, \hat{t}_{-i}\left[\varepsilon, \ell-1, \bar{\sigma}, \bar{t}_{-i}, m_{-i}\right]\right)$.

CLAIM 1: For each $\bar{t}_{i} \in \bar{T}_{i}$ and $m_{i} \in R_{i}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right): \hat{t}_{i}\left[\hat{\varepsilon}(\ell), \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right] \rightarrow_{P}$ \bar{t}_{i} as $\ell \rightarrow \infty$ for some mapping $\hat{\varepsilon}$ taking values in $\mathcal{E} \backslash\{0\}$.

Proof: In the sequel, we will denote by \bar{h} the (continuous) mapping that projects \bar{T} into T^{*} and, in a similar way, by \hat{h} the (continuous) mapping from \hat{T} to T^{*}.

For any $\bar{t}_{i} \in \bar{T}_{i}$, since ${ }^{5}$ for all $\ell \geq 1$ and all $m_{i} \in R_{i}^{\ell}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right): \hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}\right.$, $\left.m_{i}\right] \rightarrow \hat{t}_{i}\left[0, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ as $\varepsilon \rightarrow 0$, by Lemma 2 in the main text, for all $\ell \geq 1$, for all $\ell^{\prime} \geq 1$, and all $m_{i} \in R_{i}^{\ell^{\prime}}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right): \hat{h}_{i}^{\ell}\left(\hat{t}_{i}\left[\varepsilon, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right) \rightarrow$ $\hat{h}_{i}^{\ell}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)$ as $\varepsilon \rightarrow 0$.
${ }^{5}$ A type in \hat{T}_{i} is either in T_{i}-which is endowed with the discrete topology, say $\tau_{T_{i}}$-or in $\hat{T}_{i} \backslash T_{i}$. Any point in $\hat{T}_{i} \backslash T_{i}$ is identified with an element of the set $\mathcal{E} \times \mathbb{N} \times C \times \bar{T}_{i} \times M_{i}$, where $\mathbb{N}, C, \bar{T}_{i}, M_{i}$ are all endowed with the discrete topology, while \mathcal{E} is endowed with the usual topology on \mathbb{R} induced on \mathcal{E}. Finally, $\mathcal{E} \times \mathbb{N} \times C \times \bar{T}_{i} \times M_{i}$ is endowed with the product topology; call this topology $\tau_{\hat{T}_{i} \backslash T_{i}}$. The topology over \hat{T}_{i} is the coarsest topology that contains $\tau_{T_{i}} \cup \tau_{\hat{T}_{i} \mid T_{i}}$. It can easily be checked that under such a topology, $\hat{\mathcal{T}}$ satisfies the conditions of Lemma 2 in the main text.

Let us now show that, for all $\ell \geq 1$ and $\ell^{\prime} \geq \ell: \hat{h}_{i}^{\ell}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=\bar{h}_{i}^{\ell}\left(\bar{t}_{i}\right)$ for all $\bar{t}_{i} \in \bar{T}_{i}$ and $m_{i} \in R_{i}^{\ell^{\prime}}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$. First notice that the first-order beliefs are equal, that is, for all $\ell^{\prime} \geq 1, \bar{t}_{i} \in \bar{T}_{i}$, and $m_{i} \in R_{i}^{\ell^{\prime}}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$,

$$
\begin{aligned}
\hat{h}_{i}^{1}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right) & =\operatorname{marg}_{\Theta} \hat{\kappa}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right) \\
& =\operatorname{marg}_{\Theta} \pi_{\bar{t}_{i}, m_{i}}^{\ell_{i}} \circ\left(\tau_{-i}^{0, \ell^{\prime}}\right)^{-1} \\
& =\operatorname{marg}_{\Theta} \pi_{\bar{t}_{i}}^{\ell_{i}^{\prime}, m_{i}}=\operatorname{marg}_{\Theta} \bar{\kappa}\left(\bar{t}_{i}\right)=\bar{h}_{i}^{1}\left(\bar{t}_{i}\right),
\end{aligned}
$$

where the third and the fourth equalities are by definition of $\tau_{-i}^{0, \ell^{\prime}}$ and $\pi_{\bar{t}_{i}}^{\ell^{\prime}, m_{i}}$, respectively. Now fix some $\ell \geq 2$ and let L be the set of all belief profiles of players other than i at order $\ell-1$. Toward an induction, assume that, for all $\ell^{\prime} \geq \ell-1: \hat{h}_{j}^{\ell-1}\left(\hat{t}_{j}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{j}, m_{j}\right]\right)=\bar{h}_{j}^{\ell-1}\left(\bar{t}_{j}\right)$ for each $j, \bar{t}_{j} \in \bar{T}_{j}$ and $m_{j} \in R_{j}^{\ell^{\prime}}\left(\bar{t}_{j} \mid\right.$ $\mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}})$. Then for all $\ell^{\prime} \geq \ell: \operatorname{proj}_{\Theta \times L} \circ\left(\mathrm{id}_{\Theta} \times \hat{h}_{-i}\right) \circ \tau_{-i}^{0, \ell^{\prime}}=\overline{\operatorname{proj}}_{\Theta \times L} \circ\left(\mathrm{id}_{\Theta} \times\right.$ $\left.\bar{h}_{-i} \times \mathrm{id}_{M_{-i}(\bar{\sigma})}\right)$, where $\operatorname{id}_{\Theta}\left(\right.$ resp. $\left.\mathrm{id}_{M_{-i}(\bar{\sigma})}\right)$ is the identity mapping from Θ to Θ (resp. from $M_{-i}(\bar{\sigma})$ to $M_{-i}(\bar{\sigma})$), while $\operatorname{proj}_{\Theta \times L}\left(\right.$ resp. $\overline{\operatorname{proj}}_{\Theta \times L}$) is the projection mapping from $\Theta \times T^{*}$ to $\Theta \times L$ (resp. from $\Theta \times T^{*} \times M_{-i}(\bar{\sigma})$ to $\Theta \times L$); hence, for all $\ell^{\prime} \geq \ell, \bar{t}_{i} \in \bar{T}_{i}$, and $m_{i} \in R_{i}^{\ell^{\prime}}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$,

$$
\begin{aligned}
& \operatorname{marg}_{\Theta \times L} \hat{\kappa}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right) \circ\left(\operatorname{id}_{\Theta} \times \hat{h}_{-i}\right)^{-1} \\
& \quad=\operatorname{marg}_{\Theta \times L} \pi_{\bar{t}_{i}}^{\ell^{\prime} m_{i}} \circ\left(\tau_{-i}^{0, \ell^{\prime}}\right)^{-1} \circ\left(\operatorname{id}_{\Theta} \times \hat{h}_{-i}\right)^{-1} \\
& \quad=\pi_{\bar{t}_{i}}^{\ell^{\prime}, m_{i}} \circ\left(\tau_{-i}^{0, \ell^{\prime}}\right)^{-1} \circ\left(\operatorname{id}_{\Theta} \times \hat{h}_{-i}\right)^{-1} \circ\left(\operatorname{proj}_{\Theta \times L}\right)^{-1} \\
& \quad=\pi_{\bar{t}_{i} m_{i}}^{\ell^{\prime}, m_{i}} \circ\left(\operatorname{id}_{\Theta} \times \bar{h}_{-i} \times \operatorname{id}_{M_{-i}(\bar{\sigma} \sigma}\right)^{-1} \circ\left(\overline{\operatorname{proj}}_{\Theta \times L}\right)^{-1} \\
& \quad=\operatorname{marg}_{\Theta \times L} \pi_{\bar{t}_{i}}^{\ell^{\prime}, m_{i}} \circ\left(\operatorname{id}_{\Theta} \times \bar{h}_{-i} \times \operatorname{id}_{M_{-i}(\bar{\sigma})}\right)^{-1} \\
& \quad=\operatorname{marg}_{\Theta \times L} \bar{\kappa}\left(\bar{t}_{i}\right) \circ\left(\operatorname{id}_{\Theta} \times \bar{h}_{-i}\right)^{-1} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \hat{h}_{i}^{\ell}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right) \\
& \quad=\delta_{\hat{h}_{i}^{\ell-1}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)} \times \operatorname{marg}_{\Theta \times L} \hat{\kappa}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right) \circ\left(\operatorname{id}_{\Theta} \times \hat{h}_{-i}\right)^{-1} \\
& \quad=\delta_{\bar{h}_{i}^{\ell-1}\left(\overline{(}_{i}\right)} \times \operatorname{marg}_{\Theta \times L} \bar{\kappa}\left(\bar{t}_{i}\right) \circ\left(\operatorname{id}_{\Theta} \times \bar{h}_{-i}\right)^{-1}=\bar{h}_{i}^{\ell}\left(\bar{t}_{i}\right),
\end{aligned}
$$

showing that $\hat{h}_{i}^{\ell}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=\bar{h}_{i}^{\ell}\left(\bar{t}_{i}\right)$. Thus, we have proved that, for all $\ell \geq 1$, all $\ell^{\prime} \geq \ell: \hat{h}_{i}^{\ell}\left(\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=\bar{h}_{i}^{\ell}\left(\bar{t}_{i}\right)$ for any $\bar{t}_{i} \in \bar{T}_{i}$ and $m_{i} \in$ $R_{i}^{\ell^{\prime}}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$, that is, $\hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right] \rightarrow_{P} \bar{t}_{i}$ as $\ell^{\prime} \rightarrow \infty$ for any $\bar{t}_{i} \in \bar{T}_{i}$
and $m_{i} \in R_{i}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$. In addition, we know that, for all $\ell^{\prime} \geq 1$ and all $m_{i} \in R_{i}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right): \hat{t}_{i}\left[\varepsilon, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right] \rightarrow_{P} \hat{t}_{i}\left[0, \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ as $\varepsilon \rightarrow 0$. Since T^{*} is a metrizable space, $\hat{t}_{i}\left[\hat{\varepsilon}\left(\ell^{\prime}\right), \ell^{\prime}, \bar{\sigma}, \bar{t}_{i}, m_{i}\right] \rightarrow_{P} \bar{t}_{i}$ as $\ell^{\prime} \rightarrow \infty$ for some function $\hat{\varepsilon}: \mathbb{N}^{*} \rightarrow \mathcal{E} \backslash\{0\}$ satisfying $\lim _{\ell^{\prime} \rightarrow \infty} \hat{\varepsilon}\left(\ell^{\prime}\right)=0$.
Q.E.D.

CLAIM 2: For each $\varepsilon \in \mathcal{E} \backslash\{0\}, \ell, \bar{t}_{i} \in \bar{T}_{i}$, and $m_{i} \in R_{i}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$, we have $\sigma_{i}\left(\hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=m_{i}$ for any equilibrium σ of $U(\mathcal{M}, \hat{\mathcal{T}})$ satisfying $\sigma_{\mid \bar{T}}=\bar{\sigma}$.

Proof: Fix a type $\bar{t}_{i} \in \bar{T}_{i}$ and an equilibrium σ of $U(\mathcal{M}, \hat{\mathcal{T}})$ satisfying $\sigma_{\bar{T}}=\bar{\sigma}$. We will show by induction on ℓ that, for all $\varepsilon \in \mathcal{E} \backslash\{0\}$ and $\ell \geq 1$: $\sigma_{i}\left(\hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=m_{i}$ for all messages $m_{i} \in R_{i}^{\ell}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$.

Recall that, by construction, for all $m_{i} \in M_{i}(\bar{\sigma}), t_{i}\left[\bar{\sigma}, m_{i}\right] \in T_{i}$ is the type in Proposition 1 such that $\sigma_{i}\left(t_{i}\left[\bar{\sigma}, m_{i}\right]\right)=m_{i}$. First, fix $\varepsilon \in \mathcal{E} \backslash\{0\}$ and $m_{i} \in$ $R_{i}^{1}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$ and let us prove that $\sigma_{i}\left(\hat{t}_{i}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=m_{i}$. For each $\hat{t}_{i}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$, define the belief

$$
\pi_{i}^{\varepsilon, 1}=\hat{\kappa}\left(\hat{t_{i}}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right) \circ \gamma^{-1} \in \Delta\left(\Theta^{*} \times \hat{T}_{-i} \times M_{-i}\right),
$$

where $\gamma:\left(\theta^{*}, t_{-i}\left[\bar{\sigma}, m_{-i}\right]\right) \mapsto\left(\theta^{*}, t_{-i}\left[\bar{\sigma}, m_{-i}\right], m_{-i}\right)$. Note that by construction, $\pi_{i}^{\varepsilon, 1}$ is the belief of type $\hat{t}_{i}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ on $\Theta^{*} \times \hat{T}_{-i} \times M_{-i}$ when he believes that m_{-i} is played at each $\left(\theta^{*}, t_{-i}\left[\bar{\sigma}, m_{-i}\right]\right)$. Hence, for each $\varepsilon \geq 0, \pi_{i}^{\varepsilon, 1}$ corresponds to beliefs of type $\hat{t}_{i}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ when the equilibrium σ is played. Now, by Equations (S2) and (S3), the belief $\pi_{i}^{0,1}$ of type $\hat{t}_{i}\left[0,1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ satisfies

$$
\begin{aligned}
\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{i}^{0,1} & =\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{\bar{t}_{i}}^{1, m_{i}} \circ\left(\tau_{-i}^{0,1}\right)^{-1} \circ\left(\gamma_{\Theta}\right)^{-1} \\
& =\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{\bar{t}_{i}}^{1, m_{i}}
\end{aligned}
$$

where $\gamma_{\theta}:\left(\theta, t_{-i}\left[\bar{\sigma}, m_{-i}\right]\right) \mapsto\left(\theta, \tilde{\theta}^{0}, t_{-i}\left[\bar{\sigma}, m_{-i}\right], m_{-i}\right)$. Since $\operatorname{Supp}\left(\sigma_{i}\left(\hat{t}_{i}[0,1, \bar{\sigma}\right.\right.$, $\left.\left.\left.\bar{t}_{i}, m_{i}\right]\right)\right) \subset B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{i}^{0,1} \mid \mathcal{M}\right)$, we have $B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{\bar{t}_{i}}^{1, m_{i}} \mid \mathcal{M}\right) \neq \emptyset$. In addition, since $\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{\bar{t}_{i}}^{1, m_{i}}\left(\Theta \times\left\{\tilde{\theta}^{0}\right\} \times M_{-i}(\bar{\sigma})\right)=1$, by construction of $M_{i}(\bar{\sigma})$ we have $B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{\bar{t}_{i}}^{1, m_{i}} \mid \mathcal{M}\right) \subset M_{i}(\bar{\sigma})$. Thus,

$$
B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{\bar{t}_{i}}^{1, m_{i}} \mid \mathcal{M}(\bar{\sigma})\right)=B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{\bar{t}_{i}}^{1, m_{i}} \mid \mathcal{M}\right) .
$$

Recall that, by construction of $\pi_{\bar{t}_{i}}^{1, m_{i}}, m_{i} \in B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{\bar{t}_{i}}^{1, m_{i}} \mid \mathcal{M}(\bar{\sigma})\right)$. Consequently,

$$
m_{i} \in B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{i}^{0,1} \mid \mathcal{M}\right)
$$

In addition, we have

$$
\operatorname{marg}_{\Theta \times M_{-i}} \pi_{i}^{\varepsilon, 1}=\operatorname{marg}_{\Theta \times M_{-i}} \pi_{i}^{0,1}
$$

Hence, for $\varepsilon \in \mathcal{E} \backslash\{0\}$, by construction of $\pi_{i}^{\varepsilon, 1},\left\{m_{i}\right\}=B R_{i}\left(\operatorname{marg}_{\Theta^{*} \times M_{-i}} \pi_{i}^{\varepsilon, 1} \mid\right.$ $\mathcal{M})$ and $\sigma_{i}\left(\hat{t_{i}}\left[\varepsilon, 1, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right)=m_{i}$.

Now, for each $\ell \geq 2$, proceed by induction and assume that $\sigma_{-i}\left(\hat{t}_{-i}[\varepsilon, \ell-\right.$ $\left.\left.1, \bar{\sigma}, \bar{t}_{-i}, m_{-i}\right]\right)=m_{-i}$ for any $\bar{t}_{-i} \in \bar{T}_{-i}, m_{-i} \in R_{-i}^{\ell-1}\left(\bar{t}_{-i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$, and $\varepsilon \in \mathcal{E} \backslash$ $\{0\}$. Fix $\varepsilon \in \mathcal{E} \backslash\{0\}$ and $m_{i} \in R_{i}^{\ell}\left(\bar{t}_{i} \mid \mathcal{M}(\bar{\sigma}), \overline{\mathcal{T}}\right)$. For each $\hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$, define the belief

$$
\pi_{i}^{\varepsilon, \ell}=\hat{\kappa}\left(\hat{t_{i}}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]\right) \circ \gamma_{\ell}^{-1} \in \Delta\left(\Theta^{*} \times \hat{T}_{-i} \times M_{-i}\right)
$$

where $\gamma_{\ell}:\left(\theta^{*}, \hat{t}_{-i}\left[\varepsilon, \ell-1, \bar{\sigma}, \bar{t}_{-i}, m_{-i}\right]\right) \mapsto\left(\theta^{*}, \hat{t}_{-i}\left[\varepsilon, \ell-1, \bar{\sigma}, \bar{t}_{-i}, m_{-i}\right], m_{-i}\right)$.
Note that, by construction, $\pi_{i}^{\varepsilon, \ell}$ is the belief of type $\hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ on $\Theta^{*} \times \hat{T}_{-i} \times M_{-i}$ when he believes that m_{-i} is played at each $\left(\theta^{*}, \hat{t}_{-i}[\varepsilon, \ell-\right.$ $\left.1, \bar{\sigma}, \bar{t}_{-i}, m_{-i}\right]$. Hence, by the induction hypothesis, for each $\varepsilon \geq 0, \pi_{i}^{\varepsilon, \ell}$ corresponds to beliefs of type $\hat{t}_{i}\left[\varepsilon, \ell, \bar{\sigma}, \bar{t}_{i}, m_{i}\right]$ when the equilibrium σ is played. The end of the proof mimics the case $\ell=1$.
Q.E.D.

This completes the proof of Proposition 2.
Q.E.D.

Completion of the Proof of the "Only if part" of Theorem 4: Pick $\hat{\mathcal{T}}=(\hat{T}, \hat{\kappa})$ as defined in Proposition 2. By definition of continuous implementation, there exists an equilibrium σ in $U(\mathcal{M}, \hat{\mathcal{T}})$ that continuously implements f, and point (i) in this definition ensures that $\sigma_{\mid \bar{T}}$ is a pure equilibrium. Now pick any $\bar{t} \in \bar{T}$ and $m \in R\left(\bar{t} \mid \mathcal{M}\left(\sigma_{\mid \bar{T}}\right), \overline{\mathcal{T}}\right)$; we show that $g_{\mid M\left(\sigma_{\mid \bar{T})}\right.}(m)=f(\bar{t})$, proving that the mechanism $\mathcal{M}\left(\sigma_{\mid \bar{T}}\right)$ implements f in rationalizable messages. Applying Proposition 2, we know that there exists a sequence of types $\{\hat{t}[n]\}_{n=0}^{\infty}$ in \hat{T} such that (i) $\hat{t}[n] \rightarrow_{P} \bar{t}$ and (ii) $\sigma(\hat{t}[n])=m$ for all n. By (i) and the fact that σ continuously implements f, we have $(g \circ \sigma)(\hat{t}[n]) \rightarrow f(\bar{t})$, while by (ii), we have $(g \circ \sigma)(\hat{t}[n])=g(m)$ for all n. Hence, we must have $g(m)=f(\bar{t})$ and so $g_{\mid M\left(\sigma_{\mid \bar{T}}\right)}(m)=f(\bar{t})$, as claimed.
Q.E.D.

REFERENCES

Dekel, E., D. Fudenberg, and S. Morris (2006): "Topologies on Types," Theoretical Economics, 1, 275-309. [1]
-_ (2007): "Interim Correlated Rationalizability," Theoretical Economics, 2, 15-40. [4]
Lipman, B. (1994): "A Note on the Implications of Common Knowledge of Rationality," Games and Economic Behavior, 6, 114-129. [4]

Théorie Éqonomique, Modélisation, Application, Université de Cergy-Pontoise, Cergy-Pontoise, France; marionoury@gmail.com
and
Paris School of Economics, 48 boulevard Jourdan, 75014 Paris, France; tercieux@pse.ens.fr.

Manuscript received May, 2009; final revision received October, 2011.

[^0]: ${ }^{1}$ The existence of a Bayes Nash equilibrium can be proved using Kakutani-Fan-Glicksberg's fixed point theorem. The space of strategy profiles is compact in the product topology. Using the fact that $u_{i}: A \times \Theta \rightarrow \mathbb{R}$ is bounded, all the desired properties of the best-response correspondence (in particular upper hemicontinuity) can be established.

[^1]: ${ }^{2}$ As already mentioned, the only if part of the theorem holds beyond finite mechanisms.

[^2]: ${ }^{3}$ Here again, we abuse notation and write $t_{-i}\left[\bar{\sigma}, 0, m_{-i}\right]$ for $\left(t_{j}\left[\bar{\sigma}, 0, m_{j}\right]\right)_{j \neq i}$. Similarly, $t[\bar{\sigma}, 0, m]$ stands for $\left(t_{i}\left[\bar{\sigma}, 0, m_{i}\right]\right)_{i \in \mathcal{I}}$. Similar abuses will be used throughout this proof.

[^3]: ${ }^{4}$ In this section, for any mechanism \mathcal{M}, we use the standard notation where $R_{i}^{\ell}\left(\bar{t}_{i} \mid \mathcal{M}, \overline{\mathcal{T}}\right)$ stands for the ℓ th round of elimination at type \bar{t}_{i} of messages that are not best responses (see, for instance, Dekel, Fudenberg, and Morris (2007)). Recall that, for any ℓ and \bar{t}_{i}, we have $R_{i}\left(\bar{t}_{i} \mid\right.$ $\mathcal{M}, \overline{\mathcal{T}}) \subset R_{i}^{\ell}\left(\bar{t}_{i} \mid \mathcal{M}, \overline{\mathcal{T}}\right)$ (for additional details on the relationship between $R_{i}\left(\bar{t}_{i} \mid \mathcal{M}, \overline{\mathcal{T}}\right)$ and $R_{i}^{\ell}\left(\bar{t}_{i} \mid \mathcal{M}, \overline{\mathcal{T}}\right)$ when the set of messages is countably infinite, see Lipman (1994)).

