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1 Introduction

This appendix contains tables of critical values, proofs, algebraic derivations, detailed

description of econometric methods and additional empirical results. If the reader is

primarily interested in the derivations and empirical results, the description of the

computation algorithms can be skipped. Equations in this document are numbered

with the suffix ‘S–’. Equations without suffix refer to the main paper.

2 Tables of critical values for generalized S tests

Asymptotic critical values for the generalized and stability S tests, qLL-S, qLL-S̃, exp-

S, exp-S̃, ave-S, ave-S̃, defined in Section 2 of the paper, are obtained by simulation

from the distributions given in Theorems 1, 2 and 6 of the paper. k denotes the number

of moment conditions and pζ denotes the number of strongly identified parameters that

have been concentrated out. The critical values are computed using 50,000 draws of

Brownian motion processes and 50,000 independent draws from the appropriate χ2

distribution. We use 4,000 points to approximate the Brownian motion process. The

trimming parameter for computing the ave– and exp–S tests is 15%.

2



Statistic: qLL-S exp-S ave-S

k \pζ = 0 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 8.59 9.99 13.03 2.43 3.10 4.68 4.16 5.31 8.14
2 15.32 17.10 20.78 4.15 4.98 6.77 7.14 8.60 12.00
3 21.76 23.82 28.02 5.73 6.66 8.80 9.95 11.63 15.37
4 27.98 30.31 34.79 7.24 8.26 10.50 12.52 14.35 18.28
5 34.21 36.56 41.81 8.65 9.80 12.27 15.09 17.08 21.61
6 40.12 42.75 48.03 10.05 11.23 13.78 17.57 19.60 24.16
7 46.10 48.95 54.90 11.42 12.70 15.33 20.00 22.29 26.91
8 52.16 55.23 61.17 12.74 14.08 16.82 22.39 24.67 29.50
9 58.09 61.30 67.68 14.06 15.47 18.35 24.73 27.21 32.23

10 64.09 67.24 73.80 15.42 16.86 19.85 27.13 29.80 35.11

Table 1: Asymptotic critical values for generalized S tests.
Derived from Theorems 1 and 2 in the paper, with c̃ = c̄ = c, and c = 10,∞ and
0 for qLL/exp/ave-S, resp. Computed using 50,000 draws of k-dimensional Brownian
motion and 50,000 draws of χ2(k − pζ), where k is the number of moment conditions
and pζ is the number of estimated parameters under the null.
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Statistic: qLL-S exp-S ave-S

k \pζ = 1 10% 5% 1% 10% 5% 1% 10% 5% 1%

2 14.03 15.74 19.14 3.38 4.12 5.84 5.51 6.74 9.63
3 20.56 22.51 26.69 5.01 5.91 7.83 8.42 9.93 13.26
4 26.81 28.97 33.70 6.57 7.54 9.70 11.10 12.81 16.62
5 33.00 35.35 40.26 8.03 9.10 11.52 13.79 15.63 19.86
6 39.10 41.71 46.92 9.38 10.53 12.99 16.20 18.19 22.43
7 45.12 47.75 53.71 10.77 11.99 14.48 18.63 20.78 25.39
8 51.05 53.97 59.86 12.17 13.45 16.10 21.15 23.42 28.17
9 57.02 60.10 66.11 13.48 14.85 17.78 23.55 25.92 31.01

10 62.87 66.17 72.70 14.82 16.26 19.13 25.95 28.43 33.67

Table 2: Asymptotic critical values for generalized S tests. See Table 1 for details.

Statistic: qLL-S exp-S ave-S

k \pζ=2 10% 5% 1% 10% 5% 1% 10% 5% 1%

3 19.36 21.21 25.19 4.29 5.10 6.95 6.84 8.16 11.06
4 25.67 27.81 32.14 5.86 6.82 8.79 9.66 11.23 14.62
5 31.87 34.25 39.03 7.31 8.33 10.55 12.31 14.03 17.83
6 37.91 40.43 45.50 8.76 9.89 12.29 14.86 16.80 20.86
7 44.09 46.75 52.15 10.13 11.34 13.85 17.36 19.40 23.70
8 49.86 52.86 58.94 11.51 12.78 15.36 19.84 22.03 26.56
9 56.06 59.07 65.24 12.86 14.18 16.95 22.26 24.55 29.47

10 61.95 65.13 71.64 14.22 15.56 18.39 24.65 27.10 32.00

Table 3: Asymptotic critical values for generalized S tests. See Table 1 for details.
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Statistic: qLL-S exp-S ave-S

k \pζ=3 10% 5% 1% 10% 5% 1% 10% 5% 1%

4 24.47 26.54 30.81 5.15 6.02 7.94 8.14 9.49 12.59
5 30.79 32.99 37.47 6.62 7.58 9.74 10.84 12.43 15.92
6 36.84 39.23 44.35 8.13 9.22 11.52 13.55 15.38 19.46
7 42.93 45.57 50.94 9.47 10.63 13.06 15.99 17.92 22.16
8 48.92 51.71 57.52 10.83 12.07 14.62 18.40 20.52 25.03
9 54.89 57.93 64.01 12.28 13.54 16.24 21.02 23.24 27.90

10 60.87 63.87 70.08 13.60 14.95 17.75 23.38 25.69 30.56

Table 4: Asymptotic critical values for generalized S tests. See Table 1 for details.

Statistic: qLL-S exp-S ave-S

k \pζ=4 10% 5% 1% 10% 5% 1% 10% 5% 1%

5 29.63 31.81 36.51 5.92 6.85 8.88 9.35 10.75 13.88
6 35.74 38.08 43.18 7.41 8.45 10.60 12.08 13.73 17.20
7 41.78 44.34 49.72 8.85 9.95 12.35 14.63 16.44 20.41
8 47.89 50.59 56.27 10.26 11.46 13.95 17.19 19.17 23.35
9 53.80 56.78 62.65 11.59 12.86 15.45 19.61 21.76 26.33

10 59.79 62.87 69.11 12.96 14.30 16.99 22.05 24.33 29.13

Table 5: Asymptotic critical values for generalized S tests. See Table 1 for details.

Statistic: qLL-S exp-S ave-S

k \pζ=5 10% 5% 1% 10% 5% 1% 10% 5% 1%

6 34.59 36.90 41.64 6.74 7.67 9.74 10.62 12.05 15.18
7 40.70 43.19 48.45 8.15 9.25 11.60 13.21 14.92 18.66
8 46.72 49.39 54.95 9.61 10.76 13.11 15.84 17.72 21.72
9 52.70 55.51 61.45 10.97 12.21 14.76 18.32 20.32 24.79

10 58.71 61.67 67.81 12.35 13.65 16.34 20.83 23.02 27.67

Table 6: Asymptotic critical values for generalized S tests. See Table 1 for details.
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Statistic: qLL-S̃ exp-S̃ ave-S̃

k 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 7.17 8.36 11.10 1.50 2.03 3.35 2.15 2.85 4.59
2 12.79 14.30 17.58 2.54 3.20 4.72 3.69 4.58 6.52
3 18.14 19.95 23.51 3.50 4.23 5.96 5.15 6.16 8.33
4 23.33 25.28 29.19 4.43 5.22 7.03 6.55 7.65 10.01
5 28.47 30.63 34.93 5.21 6.08 8.02 7.80 8.98 11.59
6 33.48 35.78 40.46 6.04 6.96 8.92 9.11 10.39 13.01
7 38.49 40.85 45.77 6.82 7.78 9.84 10.29 11.61 14.48
8 43.47 46.02 51.30 7.62 8.60 10.78 11.56 12.96 15.88
9 48.39 51.07 56.56 8.39 9.41 11.61 12.81 14.23 17.27

10 53.39 56.05 61.80 9.13 10.23 12.60 14.00 15.51 18.74

Table 7: Asymptotic critical values for stability component of generalized S tests.
Derived from Theorems 1 and 2 in the paper, with c̃ = 10,∞ and 0 for qLL/exp/ave-
S̃, resp. Computed using 50,000 draws of k dimensional Brownian motion, where k
denotes the number of moment conditions.

3 Proofs of theorems

Proof of Theorem 1
∑k

i=1 v̂
′
i (Me −Gc) v̂i ⇒ ψc follows from the consistency of

V̂ff (θ0) and the FCLT on F·T (θ0) by Lemma 6 of Elliott and Mueller (2006). Indepen-

dence of ψk and ψc follows from the asymptotic independence between
√
T V̂ff (θ0)−1/2

FT (θ0) and [Ik ⊗ (Me −Gc)] v̂, where v̂ = (v′1, . . . , v
′
k)
′, which is a direct consequence

of Assumption 2 under H0. (26) then follows from the continuous mapping theorem.

Finally, asymptotic efficiency follows from Mueller (2011, Theorem 1).

Proof of Theorem 2 By Assumption 2, under H0, V
−1/2
X XT (1) ⇒ W (1) and

ST (θ0) = XT (1)′ V −1
X XT (1) + op (1)⇒ ψk. Also,

S̃T (θ0, τ) = XT (τ)′
V −1
X

τ
XT (τ) + [XT (1)−XT (τ)]′

V −1
X

1− τ
[XT (1)−XT (τ)]

−XT (1)′ V −1
X XT (1) + op (1)

=
[XT (τ)− τXT (1)]′ V −1

X [XT (τ)− τXT (1)]

τ (1− τ)
+ op (1)
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and V
−1/2
X [XT (τ)− τXT (1)]⇒ W̃ (τ) , which is independent ofW (1) and S̃T (θ0, τ)⇒

ψ̃k (τ) . By the Neyman-Pearson lemma, the test function

1

{
c̄

1 + c̄
W (1)′W (1) + 2 log

∫
ς

exp

[
1

2

c̃

1 + c̃

W̃ (τ)′ W̃ (τ)

τ (1− τ)

]
dντ > cv

}

maximizes WAP in the limiting problem H0 : dX (s) = V
1/2
X dW (s) against H1 :

dX (s) = m (θ, s) + V
1/2
X dW (s) and it is continuous at almost all realizations of W .

Asymptotic efficiency then follows from Mueller (2011, Theorem 1).

Proof of Lemma 1 The proof is analogous to Andrews, Moreira, and Stock (2006,

Lemma 2). Parts 1 and 2 follow from the fact that Z (s) is nonstochastic and V is Gaus-

sian. For part 3 note that, for every s1, s2, Z (s1)′ Y b0 and Z (s2)′ Y Ω−1A0 are jointly

normal, and their covariance is cov
(
Z (s1)′ Y b0, Z (s2)′ Y Ω−1A0

)
=
∑T

t=1 Zt (s1)′ Zt (s2)

cov (Ytb0, YtΩ
−1A0) =

∑T
t=1 Zt (s1)′ Zt (s2) b′0ΩΩ−1A0 = 0.

Proof of Theorem 3 Since the random functions F (·) and D (·) are independent

of each other, by Lemma 1, and τ̂ only depends on D (·) by (32), it follows that τ̂

is also independent of F (·) . Therefore, under H0, Lemma 1 part 1 implies that the

(conditional) distribution of F (τ̂) is Gaussian with zero mean and variance matrix

Ik. Part 1 follows immediately. For part 2, note that conditional on D (τ̂) and τ̂ ,

D (τ̂)′ F (τ̂) is Gaussian with mean zero and variance D (τ̂)′D (τ̂), and the matrix

D (τ̂)′D (τ̂) is invertible with probability 1. Parts 3 and 4 follow from the fact that

JKLM (τ̂) = F (τ̂)′D⊥ (τ̂)
[
D⊥ (τ̂)′D⊥ (τ̂)

]−1
D⊥ (τ̂)′ F (τ̂) , where D⊥ (τ̂) is a 2k ×

(2k − p) matrix which is the orthogonal complement of D (τ̂) , i.e., D⊥ (τ̂)′D (τ̂) = 0,

so D⊥ (τ̂)′ F (τ̂) and D (τ̂)′ F (τ̂) are independent conditionally on D (τ̂) and τ̂ . Part 5

now follows by combining the above results using the continuous mapping theorem.

Proof of Theorem 4 Assumption 3 yields the asymptotic counterpart of Lemma 1

for the linear model with fixed instruments and known variance. The asymptotic inde-

pendence of DT (θ0, ·) and F·T (θ0) implies that τ̂0 will be asymptotically independent

of F·T (θ0) as well, and so, conditional on τ̂0, (τ̂0T )−1/2 F 1
T (θ0, τ̂0) and ((1− τ̂0)T )−1/2

F 2
T (θ0, τ̂0) are jointly asymptotically Gaussian and independent with zero mean and

variance Vff . This establishes that split-ST (θ0, τ̂0)
d→ χ2(2k). The remaining results
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follow by direct analogy with the proof of Theorem 3.

Proof of Theorem 5 First, by Assumptions 7 (b) and 8 (a) we have T−1/2FsT (θ0) =

Op (1) and V̂ i
qf (θ0, s) = Op (1), V̂ i

ff (θ0, s) = Op (1) uniformly in s ∈ [0, 1] , respectively.

Hence,

vec
[
Di
T (θ0, s)

]
= vec

[
Qi
T (θ0, s)

]
+ op (T ) (S–1)

uniformly in s ∈ [0, 1] . Next, consider the two cases in Assumption 8 in turn.

The case of no (large) breaks: Assumption 8 (c). Assumption 7 implies

X∗ = J ′V −1
ff X (1) and VX∗ = J ′V −1

ff J . Equation (S–1) and Assumption 7 (c) imply

T−1
i Di

T (θ0, τ̂0)
p→ J for both i = 1, 2. Moreover, by Assumption 8 (b) and Slutsky’s

theorem we have 1
Ti
Di
T (θ0, τ̂0)′ V̂ i

ff (θ0, τ̂0)−1 p→ J ′V −1
ff , i = 1, 2 and V̂X∗

p→ VX∗ , since

|τ̂0| ≤ 1. Finally, since T−1/2F i
T (θ0, s) is uniformly bounded, X∗T =

∑2
i=1

DiT (θ0,τ̂0)′

T i

V̂ i
ff (θ0, τ̂0)−1 F iT (θ0,τ̂0)√

T
= J ′V −1

ff
1√
T
FT (θ0) + op (1)

d→ X∗ by Assumption 7 (b) and the

continuous mapping theorem.

The case of a large break: Assumption 8 (d). Assumption 7 implies X∗ =

J ′1V
−1
ff X (τ) + J ′2V

−1
ff [X (1)−X (τ)] and VX∗ = τJ ′1V

−1
ff J1 + (1− τ) J ′2V

−1
ff J2.

First, we show that T−1/2 [F i
T (θ0, τ̂0)− F i

T (θ0, τ)] = op (1) , i = 1, 2. Observe that

‖F i
T (θ0, τ̂0)− F i

T (θ0, τ)‖ =
∥∥∥∑n

j=1 ft0+j (θ0)
∥∥∥ ≤ ∑n

j=1 ‖ft0+j (θ0)‖ , t0 = [min (τ, τ̂0)T ]

and n = [|τ̂0 − τ |T ] . So, we need to show that for all η, δ > 0, there exist T ∗ such

that for all T ≥ T ∗, Pr
(
T−1/2

∑n
j=1 ‖ft0+j (θ0)‖ > δ

)
< η. By Assumption 8 (d.iii),

T−1/2
∑N

j=1 ‖ft0+j (θ0)‖ = op (1) for any fixed N < ∞, i.e., for every δ > 0 there exist

T ∗1 large enough such that Pr
(
T−1/2

∑N
j=1 ‖ft0+j (θ0)‖ > δ

)
< η/2 for all T ≥ T ∗1 . By

Assumption 8 (d.ii), there exist N <∞ and T ∗2 large enough such that Pr (n > N) <

η/2 for all T ≥ T ∗2 . Hence,

Pr

(
T−1/2

n∑
j=1

‖ft0+j (θ0)‖ > δ

)
= Pr

(
T−1/2

n∑
j=1

‖ft0+j (θ0)‖ > δ|n ≤ N

)
Pr (n ≤ N)

+ Pr

(
T−1/2

n∑
j=1

‖ft0+j (θ0)‖ > δ|n > N

)
Pr (n > N)

≤ Pr

(
T−1/2

N∑
j=1

‖ft0+j (θ0)‖ > δ

)
+ Pr (n > N) < η

8



for all T ≥ T ∗ = max (T ∗1 , T
∗
2 ).

Similar arguments can be used to establish T−1 [Di
T (θ0, τ̂0)−Di

T (θ0, τ)] = op (1),

i = 1, 2. By (S–1), T−1 ‖Di
T (θ0, τ̂0)−Di

T (θ0, τ)‖ = T−1 ‖Qi
T (θ0, τ̂0)−Qi

T (θ0, τ)‖ +

op (1), so the result follows by Assumption 8 (d) (ii) and (iv) substituting qt0+j (θ0) for

ft0+j (θ0) in the previous argument. Finally, Assumption 7 (c) yields

T−1
i Di

T (θ0, τ̂0) = Ji + op (1) , i = 1, 2. (S–2)

Combining (S–2) with Assumption 8 (b) yields V̂X∗
p→ VX∗ using Slutsky’s theorem.

X∗T
d→ X∗ follows from (S–2), Assumption 7 (b) and the continuous mapping theorem.

Proof of Theorem 6 Let X̂∗T (s) = T−1/2W1/2
T

∑[sT ]
t=1 ft

(
θ0, ζ̂0

)
and X∗T (s) = T−1/2

V
−1/2
ff

∑[sT ]
t=1 ft (θ0, ζ0). Assumption 9 (i) implies X∗T (s)⇒ W (s), while Assumptions 9

(ii) and (iii) imply X̂∗T (1) ⇒ MW (1) and X̂∗T (s) ⇒ W (s) − sPW (1) , where M =

Ik − P, and P = V
−1/2
ff Γ

(
Γ′V −1

ff Γ
)−1

Γ′V
−1/2
ff . Hence, X̂∗T (s) − sX̂∗T (1) ⇒ W (s) −

sW (1) = W̃ (s). This is the same as the distribution of the statistic X∗T (s)− sX∗T (1)

that does not involve estimation of any nuisance parameters ζ. Hence, the asymptotic

distribution of the stability component of the gen-S statistics, which only involves

X̂∗T (s)−sX̂∗T (1) , is the same as in Theorems 1 and 2. On the other hand, ST

(
θ0, ζ̂0

)
=

X̂∗T (1)′ X̂∗T (1) ⇒ W (1)′MW (1) ∼ χ2(k − pζ). Moreover, X̂∗T (s) − sX̂∗T (1) converges

to a Brownian Bridge W̃ (s), which is independent of W (1), showing that ST

(
θ0, ζ̂0

)
and gen-S̃ c̃T

(
θ0, ζ̂0

)
are asymptotically independent.

Proof of Theorem 7 In the derivation of the split-sample statistics, DT (θ0, ·) and

F·T (θ0) are replaced with their counterparts that use ft

(
θ0, ζ̂0

)
instead of ft (θ0) in

their definition. Denote these by DT

(
θ0, ζ̂0, ·

)
and F·T

(
θ0, ζ̂0

)
. Under assumption 10,

DT

(
θ0, ζ̂0, ·

)
and F·T

(
θ0, ζ̂0

)
are asymptotically independent, and since τ̂0 only de-

pends on DT

(
θ0, ζ̂0, ·

)
, it will be asymptotically independent of F·T

(
θ0, ζ̂0

)
, so we can

condition on τ̂0 to obtain the distribution of split-ST

(
θ0, ζ̂0, τ̂0

)
=
∑2

i=1 T
−1
i F i

T

(
θ0, ζ̂0, τ̂0

)′
V̂ i
ff

(
θ0, ζ̂0, τ̂0

)−1

F i
T

(
θ0, ζ̂0, τ̂0

)
.Now, F 1

T

(
θ0, ζ̂0, τ̂0

)
= Fτ̂T

(
θ0, ζ̂0

)
, and V̂ 1

ff

(
θ0, ζ̂0, τ̂0

)
p→ Vff , and τ̂0 ⇒ τ̂∞, where τ̂∞ is independent of Wf (·). Thus, V̂ 1

ff

(
θ0, ζ̂0, τ̂0

)−1/2

F 1
T

(
θ0, ζ̂0, τ̂0

)
⇒ Wf (τ̂∞) − τ̂∞PWf (1) = W̃f (τ̂∞) + τ̂∞MWf (1) , where W̃f (·) is a

9



Brownian Bridge. Similarly, since F 2
T

(
θ0, ζ̂0, τ̂0

)
= FT

(
θ0, ζ̂0

)
−Fτ̂T

(
θ0, ζ̂0

)
, V̂ 2

ff

(
θ0, ζ̂0, τ̂0

)−1/2

F 2
T

(
θ0, ζ̂0, τ̂0

)
d→ MWf (1)− [Wf (τ̂∞)− τ̂∞PWf (1)] = (1− τ̂∞)MWf (1)− W̃f (τ̂∞) .

So,

split-ST

(
θ0, ζ̂0, τ̂0

)
d→ [W̃f (τ̂∞)+τ̂∞MWf (1)]

′
[W̃f (τ̂∞)+τ̂∞MWf (1)]

τ̂∞

+
[(1−τ̂∞)MWf (1)−W̃f (τ̂∞)]

′
[(1−τ̂∞)MWf (1)−W̃f (τ̂∞)]

1−τ̂∞

=
W̃f (τ̂∞)′W̃f (τ̂∞)

τ̂∞(1−τ̂∞)
+Wf (1)′MWf (1) .

The first result follows by noting that Wf (1) and [τ̂∞ (1− τ̂∞)]−1/2 W̃f (τ̂∞) are in-

dependent standard normal vectors of dimension k, and M is idempotent with rank

k − pζ . The remaining results can be established analogously.

4 Testing general hypotheses

Let g : Θ→ <r, where r ≤ p = dim θ, and consider the problem of testing

H0 : g (θ) = 0 against H1 : g (θ) 6= 0. (S–3)

If the function g is injective (one-to-one), then this can be done using the methods in

the paper by setting θ0 = g−1 (0).

If g is not injective, then define Θ0 = {θ ∈ Θ : g (θ) = 0} , such that (S–3) is equiv-

alent to H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0. This can be tested using any of the tests in

the paper by the projection method. Specifically, an η-level test can be obtained by

performing η-level tests for θ = θ0 for all points θ0 ∈ Θ0, and rejecting the hypothesis

if all those tests reject. In practice, since all the tests in the paper have a rejection

region of the form T(θ0) >crit, where T(·) is the test statistic, the projection test can

be performed simply by minθ∈Θ0T(θ) >crit. Since T(·) is smooth, this minimization

problem can be solved using faster numerical algorithms than simple grid search over

Θ0.

An alternative to the projection method is the following. Suppose r < p, and there

exists a partition of θ =
(
θ1
θ2

)
, with dim θ1 = r, such that the function h (θ) =

(
g(θ)
θ2

)
is injective, and let h−1 (·, ·) denote the inverse of h. Then, let ϕ = g (θ) and ζ = θ2,

so that θ = h−1 (ϕ, ζ) . If one is prepared to assume that ζ is strongly identified, and

Assumptions 9 or 10 hold, then (S–3) can be tested by reparameterizing the problem

into ϕ, ζ, and testing ϕ = 0 concentrating out the strongly-identified parameter ζ, as

10



described in Subsection 3.5 of the paper. In practice, this can be done without explicit

reparameterization as follows. Obtain the restricted estimator θ̂0 by minimizing an

efficient (full-sample) GMM criterion function subject to the restriction g
(
θ̂0

)
= 0,

evaluate all the test statistics at θ̂0, and use the critical values given in Theorems 6

and 7, with pζ = p− r.

5 Comparison to Rossi (2005)

In this section, we discuss in some detail the connection of our ave-S test to the Mean-

Wald∗T test proposed by Rossi (2005) – the connection between the exp-S test and

her Exp-Wald test is analogous. First, we demonstrate, using the linear IV example,

that the statistics are not equivalent in general, although they are in the case of just-

identified models. The intuition is that the Anderson-Rubin statistic is equivalent to

the LM and LR statistics in just-identified models. Second, we show that the ave-S test

in the original testing problem corresponds to Rossi’s (2005) Mean-Wald∗T test applied

to some auxiliary regression.

In the linear IV example, our methods are based on a specification of the form:

y1,t = Y2,tθ + ut, (S–4)

Y2,t = ZtΠt + V2,t, t = 1, ..., T (S–5)

where (y1,t, Y2,t) is a 1× (1 + p) random vector, ut is a (structural) error, θ ∈ <p is the

unknown structural parameter vector, Zt ∈ R1×k is the observed vector of instrumental

variables, V2,t ∈ R1×p is a (reduced-form) error vector, and Πt ∈ Rk×p, t = 1, ..., T is a

sequence of unknown parameters. We are interested in testing

H0 : θ = θ0, against H1 : θ 6= θ0.

Our ave-S test in this model is based on the statistic

ave-ST (θ0) = ST (θ0) +

∫
ς

S̃T (θ0, s) dνs

=
1

T
FT (θ0)′ V̂ff (θ0)−1 FT (θ0) +

∫
ς

F̃sT (θ0)′ V̂ff (θ0)−1 F̃sT (θ0)

Ts (1− s)
dνs. (S–6)

where νs is Uniform over s ∈ ς ⊂ (0, 1) , and its asymptotic distribution under H0 is

11



given by

ave-ST (θ0)⇒ ψk +

∫
ς

W̃k (s)′ W̃k (s)

s (1− s)
dνs,

where ψk ∼ χ2(k) and W̃k (·) is a k-dimensional standard Brownian Bridge process

that is independent of ψk (see Theorem 2 in the paper).

Rossi’s (2005) approach can be described using the specification

y1,t = Y2,tθt,T + ut, (S–7)

Y2,t = ZtΠ + V2,t, t = 1, ..., T. (S–8)

Π is assumed to be constant over t, and it is also assumed to be of full rank, see Rossi

(2005, Assumption 4). We specialize Rossi (2005, Assumption 7) to H0 : θt,T = θ0 for

all t, T , and Rossi (2005, Assumption 2) to a single break in all parameters at some

point τ :

HAT : θt,T = θ0 +
1√
T

[
θ1 + 1{s≥τ}θ2

]
,

where θ1, θ2 ∈ <p and τ ∈ (0, 1).

The Mean-Wald test in Rossi (2005, eq. 26), with the uniform weights over the

break dates used in (S–6) is given by

Mean-Wald∗T = LM1 +

∫
ς

LM2 (s) dνs (S–9)

where

LM1 =
FT (θ0)′ Σ̂−1/2P

M̂
Σ̂−1/2FT (θ0)

T
, (S–10)

LM2 (s) =
F̃sT (θ0)′ Σ̂−1/2P

M̂
Σ̂−1/2F̃sT (θ0)

Ts (1− s)
, (S–11)

M̂ = Σ̂−1/2QT (θ0) , and Σ̂ = V̂ff (θ0) . It follows from Rossi (2005, Proposition 2(b))

that

Mean-Wald∗T ⇒ ψp +

∫
ς

W̃ (s)′ W̃ (s)

s (1− s)
dνs,

where ψp ∼ χ2(p) and W̃ (·) is a p × 1 standard Brownian Bridge process that is

independent of ψp. It is evident that the Mean-Wald∗T statistic in (S–9) is generally
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different from ave-ST (θ0) statistic given in (S–6) above. The Mean-Wald∗T statistic

involves a projection of the moment vectors FT (θ0) and F̃sT (θ0) onto the space spanned

by the Jacobian of the moment conditions, while the ave-ST (θ0) statistic uses the full

vectors FT (θ0) and F̃sT (θ0). An exception occurs when the model is just-identified,

i.e., k = p, in which case, since M̂ is a square matrix and P
M̂

= Ik, ave-ST (θ0) =Mean-

Wald∗T . This is intuitive because in this case the Jacobian of the moment conditions

plays no role in the construction of the statistics, so the different assumptions about

the first-stage regression have no impact on the statistics. This is exactly analogous

to the fact that the Anderson-Rubin test is equivalent to the LM and LR tests in a

just-identified model.1 Finally, even when the break date is assumed to be known,

i.e., the support ς of νs contains a single point, and identification is strong, the Mean-

Wald∗T test is different from the split-KLM/CLR tests. To see this, observe that the

strong-instrument asymptotic distribution of the Mean-Wald∗T statistic under the null

is χ2(2p), while that of the split-KLM and CLR statistics is χ2(p).

Now, consider the Mean-Wald∗T test for the null hypothesis H∗0 : δt = 0 in the

following auxiliary regression model

y0,t = Ztδt + u0,t, (S–12)

where y0,t ≡ y1,t − Y2,tθ0, against time-varying alternatives, e.g., the local alternatives

H∗AT : δt = 1√
T

(
δ1 + δ21{t≥[τT ]}

)
, τ ∈ ς in Rossi (2005, Assumption 2). Denote the

moment function for this problem by gt (δt) = Z ′t (y0,t − Ztδt) , to distinguish it from

ft (θ) in the original model. Note that this auxiliary model is just-identified (the

number of parameters in δ is equal to the number of instruments), and the variance

of the moment conditions is identical to Vff under the null (since gt (0) = ft (θ0)). It

follows that P
M̂

= Ik and Σ̂ can be chosen as V̂ff (θ0) in (S–10) and (S–11), so that the

Mean-Wald∗T statistic in (S–9) coincides with ave-ST (θ0) in (S–6). In other words, the

Mean-Wald∗T (S–9) for testing H∗0 in the auxiliary regression (S–12) is identical to the

ave-ST statistic (S–6) in the original model. The same connection holds for our exp-S

statistic and the Exp-Wald∗T statistic of Rossi’s (2005). This is entirely analogous to

the fact that the Anderson and Rubin (1949) statistic for testing H0 : θ = θ0 against

H1 : θ 6= θ0 in the canonical IV regression model, which is obtained from (S–4) and

1In the just-identified case, the Anderson-Rubin test is also equivalent to the modified Wald test
of Wang and Zivot (1998), where the variance of the structural shock is computed under the null, see
Dufour (2003, p. 795).
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(S–5) when we assume Πt = Π for all t and the errors are Gaussian and homoskedastic,

is the same as the F statistic for testing the exclusion restrictions H∗0 : δ = 0 against

H∗1 : δ 6= 0 in the auxiliary regression y0,t = Ztδ + u0,t, see Dufour (2003, p. 789).

The above connection between the ave-S test and Rossi’s (2005) Mean-Wald test

in some auxiliary regression holds more generally for any model specified in terms of

the moment conditions (1) in the paper, for which Assumptions 1 and 2 hold. The

auxiliary regression is the local level model

yt = µt + et

where yt = ft (θ0) , µt = E [ft (θ0)] and et = ft (θ0) − µt. The null hypothesis in the

auxiliary regression is H∗0 : µt = 0 against a single-break alternative.

6 Derivation of the solution in Example RS

The model given by (7) and (8) in the paper is:

yt = βE [yt+1|It] + γxt + ut (S–13)

xt = ρxt−1 + (1− ρ)ϕyt + εt. (S–14)

A solution to the model is given by

yt = α1xt−1 + vyt (S–15)

xt = ρ1xt−1 + vxt , (S–16)

where α1, ρ1 will be obtained later using the method of undetermined coefficients. The

conditions for existence and uniqueness of a stable solution can be checked using the

method of Blanchard and Kahn (1980). Equations (S–13) and (S–14) can be written

in the Blanchard and Kahn (1980) canonical form as

E [Yt+1|It] = AYt + Zt,
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where Yt = (yt, xt−1)′, A = B−1C,

B =

(
β γ

0 1

)
, C =

(
1 0

(1− ρ)ϕ ρ

)
, Zt =

(
−1 0

0 1

)(
ut

εt

)
,

(B is invertible because we assume β 6= 0 – if β = 0, the solution is trivial). Since there

is one predetermined and one nonpredetermined variable in Yt, existence of a stable

solution requires that at least one of the eigenvalues of A should lie inside the unit

circle. Determinacy (uniqueness) requires that the other root should lie outside the

unit circle. The eigenvalues of A are the same as the roots λ1, λ2 of the determinantal

equation

det (C − λB) = ρ− (1 + βρ− γϕ (1− ρ))λ+ βλ2 = 0. (S–17)

Since λ1λ2 = ρ
β
and λ1 + λ2 = 1+βρ−γϕ(1−ρ)

β
, it follows that for ρ, β ∈ [0, 1] , γ ≥ 0, and

ϕ ≤ 0, the roots are real and non-negative, and the smallest root is

λ1 =
1 + βρ− γϕ (1− ρ)−

√
(1 + βρ− γϕ (1− ρ))2 − 4βρ

2β
. (S–18)

Since λ1 is increasing in ϕ, and λ1 = ρ < 1 at ϕ = 0, the root λ1 is stable, and a stable

solution exists. Moreover,

λ2 =
1 + βρ− γϕ (1− ρ) +

√
(1 + βρ− γϕ (1− ρ))2 − 4βρ

2β

is decreasing in ϕ, and λ2 = β−1 > 1 at ϕ = 0, so the solution is determinate for all

ϕ ≤ 0.

We can then determine α1, ρ1, v
y
t and vxt by the method of undetermined coefficients.

Using (S–15) to substitute for E [yt+1|It] in (S–13) and re-arranging yields

yt = (βα1 + γ)xt + ut, (S–19)

and substituting for xt from (S–16) yields the equations

yt = (βα1 + γ) ρ1︸ ︷︷ ︸
α1

xt−1 + ut + (βα1 + γ) vxt︸ ︷︷ ︸
vyt

. (S–20)
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So, since β, ρ1 < 1,

α1 =
γρ1

1− βρ1

. (S–21)

Substituting for yt into (S–14) using (S–15) and re-arranging yields

xt = ρxt−1 + (1− ρ)ϕ (α1xt−1 + vyt ) + εt

= (ρ+ (1− ρ)ϕα1)︸ ︷︷ ︸
ρ1

xt−1 + (1− ρ)ϕvyt + εt︸ ︷︷ ︸
vxt

. (S–22)

Upon substituting for α1 from (S–21), the first term yields a quadratic equation for ρ1,

which is the same as (S–17) above. Hence, the smallest root corresponds to

ρ1 = λ1,

where λ1 is given by (S–18). Substituting for ρ1 in (S–21) yields the solution for α1.

Finally, substituting for vyt into (S–22) using (S–20) and re-arranging yields

vxt =
εt + (1− ρ)ϕut

1− (1− ρ)ϕ (βα1 + γ)
, .

and using (S–20) yields

vyt = ut + (βα1 + γ) vxt =
ut + (βα1 + γ) εt

1− (1− ρ)ϕ (βα1 + γ)
.

7 Supplementary material for empirical section

7.1 The baseline new Keynesian Phillips curve

The baseline model is given by:

πt − %πt−1 = βE (πt+1 − %πt|It) + λm̂ct + εt, (S–23)

where:

λ = (1−α)(1−βα)
α

υ, υ = a(µ−1)
(µ−a)

.

πt is inflation, a is the labor elasticity of a Cobb-Douglas production function (the

average labor share), µ is the desired mark-up under flexible prices, β is a discount
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factor, % is the fraction of prices that are indexed to past inflation when they cannot

be optimally reset, α is the probability that a price will be fixed in a given period. m̂ct

is the log deviation of real marginal costs from their steady state and εt is a cost-push

(e.g., mark-up) shock. We shall proxy real marginal costs using the labor share, see

below.

We impose the restriction β = 1, so the NKPC can be written as:

%∆πt = κ+ E (∆πt+1|It) +
(1− α)2

α
x̃t + εt, (S–24)

and x̃t = υxt, where xt = ln St
a

, St is the labor share, and υ is calibrated to 0.25, using

a = 2
3

and µ = 1.2. The constant κ is equal to λ lnµ, and captures the steady-state

value of real marginal costs − lnµ, see Woodford (2003) or Gaĺı (2008).

The moment condition used for the derivation of the tests has the form E [Z ′tεt] = 0

where εt is a scalar residual function,

εt = %∆πt −∆πt+1 −
(1− α)2

α
x̃t︸ ︷︷ ︸

Ytb

− κ︸︷︷︸
Xtc

, (S–25)

and Zt is a 1× kz vector of instruments. The row vector Yt is (∆πt,∆πt+1, x̃t) , Xt = 1

and b =
(
%,−1,− (1−α)2

α

)′
. In all of our empirical results, the set of instruments Zt

includes a constant, two lags of the change in inflation and three lags of the forcing

variable.

7.1.1 Data

We measure inflation as πt = ln
(

Pt
Pt−1

)
where Pt is the GDP implicit price deflator

(Index numbers, 2005=100. Seasonally adjusted). This series was obtained from the

Bureau of Economic Analysis website, Table 1.1.9.

Our measure of real marginal costs is St
a

where St is the labor share. This is based

on a Cobb-Douglas production function with constant returns to scale where MPL =

a×APL. This series, measured in levels, was obtained directly from the Bureau of Labor

Statistic, Labor and Productivity Division. It is not the PRS85006173 labor share index

series, which is publicly available, although they are almost perfectly correlated. The

parameter a, the average labor share coefficient in the Cobb-Douglas function, is set

to 2
3

in all cases.
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7.1.2 Computational details

In this subsection, we describe in detail the computation of the various test statistics

used in the paper. In the following exposition, Z and X are T×kz and T×kx matrices,

respectively. We use Ik to denote the k × k identity matrix, and Ma =I−a (a′a)−1 a′ is

a projection matrix. The vector of tested parameters is θ which has p elements.

Computation of S and CLR statistics In matrix notation, the empirical moments

derived from equation (S–25) are:

Z ′ε = Z ′ (Y b−Xc)

where Y, Z,X and ε are matrices consisting of the T stacked rows of Yt, Zt, Xt and εt,

respectively. Under the null assumption H0 : θ = (α, %) = (α0, %0) = θ0, b = b (θ0) is

fixed. We define V̂ff , the estimator asymptotic variance of 1√
T
Z ′ (Y b−Xc), as:

V̂ff = (b′ ⊗ Ikz) Σ̂ (b⊗ Ikz) (S–26)

where Σ̂, the full sample HAC estimator, is:

Σ̂ = A

[
Γ̂0 +

T∑
j=1

ωj

(
Γ̂j + Γ̂′j

)]
A′, (S–27)

Γ̂j =

[
1

T

T∑
t=j+1

ŵtŵ
′
t

]
,

where ŵt is the ‘pre-whitened’ vec(Z ′tŶt), i.e., the residuals from a VAR(1) with coef-

ficient matrix A, Ŷt is the tth-row of the matrix MXY , ωj is the Bartlett kernel with[
4 (T/100)2/9

]
as the lag truncation parameter,2 and A is the ‘recoloring’ matrix. This

procedure for estimating Var
(

1√
T
Z ′ (Y b−Xc)

)
is equivalent to using {vec(Z ′tε̂t)}

T
t=1

as the empirical moments where:

ε̂ = Y b−Xĉ1 = MXY b,

2
[
4 (T/100)

2/9
]

means the largest integer smaller than 4 (T/100)
2/9

, which is 4 lags when using

the sample is 1966q1 to 2010q4.
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and ĉ1 is the first-step estimator ĉ1 = (X ′X)−1X ′Y b.

We estimate c by minimizing the following objective function:

ĉ2 = arg min
c

1

T
(Y b−Xc)′ ZV̂ −1

ff Z
′ (Y b−Xc) (S–28)

i.e.,

ĉ2 =
(
X ′ZV̂ −1

ff Z
′X
)−1

X ′ZV̂ −1
ff Z

′Y b

Under our maintained assumptions, the two-step estimator ĉ2 is
√
T -consistent with

asymptotic distribution:

√
T (ĉ2 − c)

a
=
(
Γ′ZXV

−1
ff ΓZX

)−1
Γ′ZXV

− 1
2

ff ξ

where plimT→+∞
1
T

(Z ′X) = ΓZX , plimT→+∞ V̂ff = Vff , a positive definite matrix,

V
− 1

2
ff is the symmetric square root matrix of V −1

ff , and ξ is a kz × 1 standard normal

random vector.

Substituting ĉ2 back into the objective function in (S–28) we derive:

b′Y ′ZV̂
− 1

2
ff M

V̂
− 1

2
ff Γ̂ZX

V̂
− 1

2
ff Z

′Y b

where Γ̂ZX = Z′X
T

. Let L is a kz × (kz − kx) matrix such that:

LL′ = M
V̂
− 1

2
ff Γ̂ZX

and L′L = I(kz−kx),

The S statistic is:

ST (θ0) =
1

T
b′Y ′ZV̂

− 1
2

ff L︸ ︷︷ ︸
ξ̂T

L′V̂
− 1

2
ff Z

′Y b︸ ︷︷ ︸
ξ̂T

.

Let ∇θ0b = ∂b
∂θ

∣∣
θ=θ0

, and define the (kz − kx)× p Jacobian matrix q̂T = q̂T (θ0) as:

q̂T = L′V̂
− 1

2
ff Z

′Y∇θ0b
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The estimator of the variance-covariance matrix of T−
1
2

(
ξ̂T , vec (q̂T )

)
are:

V̂ξξ = I(kz−kx)

V̂qξ =
(
∇θ0b

′ ⊗ L′V̂ −
1
2

ff

)
Σ̂
(
b⊗ V̂ −

1
2

ff L
)

= V̂ ′ξq

V̂qq =
(
∇θ0b

′ ⊗ L′V̂ −
1
2

ff

)
Σ̂
(
∇θ0b⊗ V̂

− 1
2

ff L
)

We compute the D̂T statistic, which is a (kz − kx)× p matrix, as:

D̂T =
1

T
mat

(
vec (q̂T )− V̂qξ ξ̂T

)
where mat is the inverse of the vec operator, such that vec(mat (x)) = x. The KLM,

JKLM and CLR statistics are computed as:

KLMT (θ0) = 1
T
ξ̂′T D̂T

(
D̂′T D̂T

)−1

D̂′T ξ̂T

JKLMT (θ0) = ST (θ0)−KLMT (θ0)

CLRT (θ0) = 1
2

{
ST (θ0)− rk(θ0)×

√
[ST (θ0) + rk(θ0)]2 − 4JKLMT (θ0)rk(θ0)

}
(S–29)

where rk(θ0) is a rank statistic, which is function of D̂T and its variance matrix V̂qq.ξ =

V̂qq − V̂qξV̂ −1
ξξ V̂

′
qξ. The results are based on Kleibergen and Paap (2006) rank test.

Computation of the qLL-S statistic In the algorithm for computing the qLL-S

statistic, we use the following T × T matrices and T × 1 vector:

∆D =



1 0 · · · · · · 0

−1 1 0 · · · ...

0
. . . . . . . . .

...
...

. . . −1 1 0

0 · · · 0 −1 1


, R =



1 0 · · · · · · 0

r 1 0 · · · ...

r2 . . . . . . . . .
...

...
. . . r 1 0

rT−1 · · · r2 r 1


, and rT =



r

r2

...

...

rT


where r = 1− 10

T
. The ∆D matrix is a first difference operator, while R is the cumulative

product operator matrix. Let Ê be the following T × kz matrix:

Ê = [ε̂, . . . , ε̂] (S–30)
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where ε̂ = Y b−Xĉ2. The qLL-S̃ statistic, which is the stability part of the qLL-S test,

is obtained using the following steps:

1. Compute first the T × kz matrices

F̂ =
(
Ê � Z

)
V̂
− 1

2
ff , and Ĥ = R∆DF̂ (S–31)

where � denotes the direct product (element-by-element multiplication);

2. Estimate the T × kz matrix Ĝ = MrT Ĥ, the OLS residuals of the following

regression:

Ĥ = rTdG +G,

where dG is a 1× kz row vector of parameters, and compute

TSSRĜ =
kz∑
i=1

T∑
t=1

(ĝi,t)
2 ,

where ĝi,t is the (t, i) element of the matrix Ĝ.

3. Compute the T × kz matrix N̂ = MιT F̂ , the OLS residuals of the following

regression:

F̂ = ιTdN +N

where ιT is a T × 1 vector of ones and dN is a 1 × kz row vector of parameters.

Calculate

TSSRN̂ =
k∑
i=1

T∑
t=1

(n̂i,t)
2 ,

where n̂i,t is the (t, i) element of the matrix N̂ .

The qLL-S̃ statistic under H0 is:

qLL-S̃T (θ0) = TSSRN̂ − r × TSSRĜ.

The qLL-S test is defined as:

qLL-ST (θ0) = qLL-S̃T (θ0) +
10

11
ST (θ0) .
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Computation of ave-S and exp-S statistics Partition Z =
[
Z ′1 Z ′2

]′
where Z1

and Z2 are, respectively, [sT ]× kz and T − [sT ]× kz matrices, s ∈ (0, 1), and [sT ] is

the largest integer lower than sT . We define the split-sample moment condition as:

Z
′
(Y b−Xc)︸ ︷︷ ︸

ε

where Z is the T × 2kz ‘split-sample’ instruments matrix:

Z = Z (s) =

[
Z1 0

0 Z2

]
(S–32)

Similar to equation (S–26), we define V̂s, the estimator of the asymptotic variance of

Var
(

1√
T
Z
′
(Y b−Xc)

)
, as:

V̂ff,s = (b′ ⊗ I2kz) Σ̂s (b′ ⊗ I2kz) (S–33)

where Σ̂s is the HAC estimator of the asymptotic variance of 1√
T

vec
(
Z
′
Y
)
, which is

computed as:

Σ̂s = PR

(
sΣ̂1 0

0 (1− s) Σ̂2

)
PC

where, for i = 1, 2, Σ̂i is an estimator of the asymptotic variance of T
− 1

2
i vec (Z ′iYi),

T1 = [sT ] and T2 = T − [sT ]. PR and PC are permutation matrices such that:

Var

[
1√
T

vec
(
Z
′
Y
)]

= PR Var

[
1√
T

vec
(
Z ′1Y1 Z ′2Y2

)]
PC (S–34)

Under the assumptions of the model, plim
Ti→+∞

Σ̂i = plim
T→+∞

Σ̂ = Σ. So we estimate Σ̂s as:

Σ̂s = PR

(
sΣ̂ 0

0 (1− s) Σ̂

)
PC (S–35)

where Σ̂ is defined in equation (S–27).

The estimator of the strongly identified parameter is the minimizer of the split-
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sample objective function:

ĉs = arg min
c

1

T
(Y b−Xc)′ ZV̂ −1

ff,sZ
′
(Y b−Xc) (S–36)

i.e.,

ĉs =
(
X ′ZV̂ −1

ff,sZ
′
X
)−1

X ′ZV̂ −1
ff,sZ

′
Y b

(ĉs is asymptotically equivalent to ĉ2 defined earlier). Substituting ĉs into the split-

sample objective function we derive:

b′Y ′ZV̂
− 1

2
ff,sM

V̂
− 1

2
ff,sΓ̂ZX

V̂
− 1

2
ff,sZ

′
Y b

where Γ̂ZX = Z
′
X
T

. Similar to the derivation of the weak instruments of Subsection

7.1.2, we define L̄ matrix such that:

L̄L̄′ = M
V̂
− 1

2
ff,sΓ̂ZX

, and L̄′L̄ = I(2kz−kx).

The split-sample S statistic under H0 : θ = θ0 at a fixed date s is

S(θ0; s) =
1

T
(Y b)′ ZV̂

− 1
2

ff,sL︸ ︷︷ ︸̂̄ξT
L
′
V̂
− 1

2
ff,sZ

′
Y b︸ ︷︷ ︸̂̄ξT
.

The average and exponential S statistics are defined as:

ave -ST (θ0) =
1

tu − tl + 1

tu∑
tb=tl

S(θ0,
tb
T

)

exp -ST (θ0) = log

(
1

tu − tl + 1

tu∑
τ=tl

exp

[
−.5× S(θ0,

tb
T

)

])

where tl = [.15T ], and tu = [.85T ]. The stability parts of the ave-S and exp-S statistics

are computed, respectively, as

ave -S̃T (θ0) = ave -ST (θ0)− ST (θ0)

exp -S̃T (θ0) = exp -ST (θ0)− ST (θ0).
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Computation of split-sample statistics Define the (2kz − kx)×p Jacobian matrix̂̄qT as: ̂̄qT = L̄′V̂
− 1

2
ff,sZ

′
Y∇θ0b

The estimators of the variance-covariance matrix of T−
1
2

(̂̄ξT , vec
(̂̄qT )) are:

V̂ξ̄ξ̄ = I(2kz−kx)

V̂q̄ξ̄ =
(
∇θ0b

′ ⊗ L̄′V̂ −
1
2

ff,s

)
Σ̂s

(
b⊗ V̂ −

1
2

ff,sL̄
)

= V̂ ′ξ̄q̄

V̂q̄q̄ =
(
∇θ0b

′ ⊗ L̄′V̂ −
1
2

ff,s

)
Σ̂s

(
∇θ0b⊗ V̂

− 1
2

ff,sL̄
)

We compute the D̂T statistic and its variance matrix as, respectively:

D̂T =
1

T
mat

(
vec
(̂̄qT )− V̂q̄ξ̄̂̄ξT) , and V̂q̄q̄.ξ̄ = V̂q̄q̄ − V̂q̄ξ̄V̂ ′q̄ξ̄.

The estimate of the break date t̂b is the solution of the following maximization problem:

t̂b = arg max
tb∈[tl,tu]

vec
(
D̂T

)′
V̂ −1
q̄q̄.ξ̄

vec
(
D̂T

)
.

The split-sample KLM, JKLM and CLR statistics are computed using the formulas

given in (S–29), with ̂̄ξT and D̂T in place of ξ̂T and D̂T , and the rk(θ0) statistic

evaluated using the split sample instruments Z = Z (ŝ), where ŝ = t̂b
T

.

7.1.3 Empirical results

Confidence sets at the 90% and 95% level for the deep structural parameters (α, %) in

(S–24) are constructed by inverting the various weak-identification robust tests, and

they are plotted in Figures 1-3 for the sample 1966q1-2010q4 and Figures 4-6 for the

sample 1984q1-2010q4.

24



S ave-S

0.9

0.9

0.95

0.95

%

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.9

0.9

0.95

0.95

%

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

exp-S qLL-S

0.
9

0.
95

%

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.9 0.95

%

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: 90% and 95% S and qLL/exp/ave-S confidence sets for α and % in the NKPC:

%∆πt = E (∆πt+1|It) + (1−α)2

α
x̃t + κ + εt, x̃t is 0.25 times the log of the labor share.

Instruments: constant, two lags of ∆π and three lags of x̃t. Period: 1966q1-2010q4.
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Figure 2: 90% and 95% S, split-S, CLR and split-CLR confidence sets for α and %

in the NKPC: %∆πt = E (∆πt+1|It) + (1−α)2

α
x̃t + κ + εt, x̃t is 0.25 times the log of

the labor share. Instruments: constant, two lags of ∆π and three lags of x̃t. Period:
1966q1-2010q4.
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Figure 3: 90% and 95% S and qLL/exp/ave-S̃ confidence sets for α and % in the NKPC:

%∆πt = E (∆πt+1|It) + (1−α)2

α
x̃t + κ + εt, x̃t is 0.25 times the log of the labor share.

Instruments: constant, two lags of ∆π and three lags of x̃t. Period: 1966q1-2010q4.
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Figure 4: 90% and 95% S and qLL/exp/ave-S confidence sets for α and % in the NKPC:

%∆πt = E (∆πt+1|It) + (1−α)2

α
x̃t + κ + εt, x̃t is 0.25 times the log of the labor share.

Instruments: constant, two lags of ∆π and three lags of x̃t. Period: 1984q1-2010q4.
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Figure 5: 90% and 95% S, split-S, CLR and split-CLR confidence sets for α and %

in the NKPC: %∆πt = E (∆πt+1|It) + (1−α)2

α
x̃t + κ + εt, x̃t is 0.25 times the log of

the labor share. Instruments: constant, two lags of ∆π and three lags of x̃t. Period:
1984q1-2010q4.
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Figure 6: 90% and 95% S and qLL/exp/ave-S̃ confidence sets for α and % in the NKPC:

%∆πt = E (∆πt+1|It) + (1−α)2

α
x̃t + κ + εt, x̃t is 0.25 times the log of the labor share.

Instruments: constant, two lags of ∆π and three lags of x̃t. Period: 1984q1-2010q4.
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7.2 The NKPC with Autocorrelated Errors

Suppose the error term εt in (S–24) follows

εt = φεt−1 + vt,

where vt satisfies E (vt|It−1) = 0. Lagging equation (S–24) by one period, multiplying

by φ and subtracting from (S–24) yields:

% (∆πt − φ∆πt−1) = (1− φ)κ+ E (∆πt+1|It)− φE (∆πt|It−1)

+
(1− α)2

α
(x̃t − φx̃t−1) + vt. (S–37)

Define νt = εt−φεt−1, where εt is given in (S–25). Equation (S–37) and E (vt|It−1) = 0

imply E (νt|It−1) = 0. The unconditional moment conditions are E [Z ′tνt] = 0. The

structural parameter vector includes φ and the confidence sets are three-dimensional

(the constant is unrestricted and concentrated out as before).

7.2.1 Computational details

The empirical moment condition is 1
T

∑T
t=1 Ztνt, where νt = εt − φεt−1 is:

νt =

(
%∆πt −∆πt+1 −

(1− α)2

α
x̃t − κ

)
︸ ︷︷ ︸

εt

−φ

(
%∆πt−1 −∆πt −

(1− α)2

α
x̃t−1 − κ

)
︸ ︷︷ ︸

εt−1

= % (∆πt − φ∆πt−1)− (∆πt+1 − φ∆πt)−
(1− α)2

α
(x̃t − φx̃t−1)︸ ︷︷ ︸

Yt(φ)b

− (1− φ)κ︸ ︷︷ ︸
Xtc

By defining Yt (φ) as (∆πt − φ∆πt−1,∆πt+1 − φ∆πt, x̃t − φx̃t−1) , Xt = 1 and b =(
%,−1,− (1−α)2

α

)′
, we rewrite the empirical moments as Z ′ (Y (φ) b−Xc). Let θ̄ =

(%, α, φ)′ = (θ′, φ)′ The Jacobian of the moment condition after concentrating out c is

Z ′
(
Y (φ) Y1

)
∇θ̄0b where ∇θ̄0b =

(
∇θ0b 0

0 −b

)
, ∇θ0b is the derivative of b with

respect to “deep” parameters % and α , see Subsection 7.1.2, and Y1 is the lagged

values of matrix Y . By using b̄ = (b, 0) in place of b and ∇θ̄0b in place of ∇θ0b and(
Y (φ) Y1

)
in place of Y , we compute the weak instruments, the generalized and

split-sample tests following the same steps as described in Subsection 7.1.2.
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7.2.2 Empirical results

Three dimensional 95%-level confidence sets for (α, %, φ) in (S–37) are constructed by

inverting the various weak-identification robust tests, and they are plotted in Figures

7, 8 and 9 for the sample 1966q1-2010q4, and Figures 10 and 11 for the sample 1984q1-

2010q4. Table 8 provides the proportion of volume of the 95% confidence region relative

to volume of the parallelepiped, and Table 9 provides the point estimates of the struc-

tural parameters. The point estimates correspond to the values that minimize the S

statistic.

S ave-S

exp-S qLL-S

Figure 7: 95% S and qLL/exp/ave-S confidence sets for (α, %, φ) in the NKPC with
autocorrelated errors. Instruments: constant, two lags of ∆π and three lags of x̃t.
Period: 1966q1-2010q4.
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S ave-S̃

exp-S̃ qLL-S̃

Figure 8: 95%-level S and qLL/exp/ave-S̃ confidence sets for (α, %, φ) in the NKPC
with autocorrelated errors. Instruments: constant, two lags of ∆π and three lags of x̃t.
Period: 1966q1-2010q4.

33



S split-S

CLR split-CLR

Figure 9: 95%-level S, split-S, CLR and split-CLR confidence sets for (α, %, φ) in the
NKPC with autocorrelated errors. Instruments: constant, two lags of ∆π and three
lags of x̃t. Period: 1966q1-2010q4.

7.3 The NKPC with Trend Inflation

This section describes how to deal with potentially time-varying trend inflation in the

NKPC, using the model of Cogley and Sbordone (2008). The idea is to treat variation

in trend inflation as relatively moderate in the sense of Stock and Watson (1998), i.e.,
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S ave-S

exp-S qLL-S

Figure 10: 95%-level S and qLL/exp/ave-S confidence sets for (α, %, φ) in the NKPC
with autocorrelated errors. Instruments: constant, two lags of ∆π and three lags of x̃t.
Period: 1984q1-2010q4.
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S ave-S̃

exp-S̃ qLL-S̃

Figure 11: 95%-level S and qLL/exp/ave-S̃ confidence sets for (α, %, φ) in the NKPC
with autocorrelated errors. Instruments: constant, two lags of ∆π and three lags of x̃t.
Period: 1984q1-2010q4.
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S split-S

CLR split-CLR

Figure 12: 95%-level S, split-S, CLR and split-CLR confidence sets for (α, %, φ) in the
NKPC with autocorrelated errors. Instruments: constant, two lags of ∆π and three
lags of x̃t. Period: 1984q1-2010q4.
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1966q1 - 2010q4 1984q1 - 2010q4

Confidence Regions 95% 90% 95% 90%

S 17.55 14.10 18.95 15.08
CLR 15.92 12.15 18.03 13.77
ave-S 13.19 11.30 16.88 14.55
exp-S 9.66 7.71 13.71 11.59
qLL-S 11.14 9.49 10.60 8.79

ave-S̃ 20.33 17.50 30.99 26.73

exp-S̃ 13.71 10.57 21.05 15.84

qLL-S̃ 15.94 13.71 14.27 11.23
split-S 11.46 8.39 15.45 10.99

split-CLR 10.75 8.09 11.77 8.63

Table 8: Volume of Confidence Regions as a proportion of the Volume of the Paral-
lelepiped (α, %, φ) ∈ [0.01, 0.99]× [0, 1]× [−0.99, 0.99]

1966q1 - 2010q4 1984q1 - 2010q4
α % φ α % φ

0.85 0.27 0.00 0.89 0.29 -0.25

Table 9: Point estimates - New Keynesian Phillips Curve with Autoregressive Errors
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Op

(
T−1/2

)
. This is the type of ‘partial instability’ discussed in Li and Mueller (2009).

7.3.1 The model of Cogley and Sbordone (2008)

Cogley and Sbordone (2008) obtain a log-linear approximation of the firms’ optimizing

conditions around a time-varying trend inflation. The necessary steps are given in

the Appendix of their paper. We rewrite Cogley and Sbordone (2008, Eqs. (7), (46)

and (47)) translated to our notation that are sufficient to write down a NKPC with

time-varying trend inflation:

π̂t − %π̂t−1 = λtm̂ct + βt [E (π̂t+1|It)− %π̂t]− %∆π̄t + γtD̂t + εt (CS 46)

D̂t = ϕ1tE
[
r̂t,t+1 + ∆ŷt+1 + (µ− 1)−1 (π̂t+1 − %π̂t) + D̂t+1|It

]
, (CS 47)

(1− α)(a−µ)/a µmct =
(

1− αΠ
(1−ρ)/(µ−1)

t

)(a−µ)/a 1− αΠ
(1−%)µ/(aµ−a)

t

1− αΠ
(1−%)(µ−1)

t

, (CS 7)

where π̄t = ln Πt, Πt is gross trend inflation, rt,t+1 = πt+1 − it ≈ lnRt,t+1, Rt,t+1 =(
Pt+1

Pt

)
× 1

1+it
, it is the nominal interest rate, ∆yt+1 = ∆ ln (Yt+1) and Yt is real output.

Hatted variables indicate stationary log-deviations of variables from their steady state

or trend, i.e., π̂t = πt − π̄t, m̂ct = ln (mct) − ln (mct) and r̂t,t+1 + ∆ŷt+1 = rt,t+1 +

∆yt+1− lnRt,t+1
Yt+1

Yt
. The term Rt,t+1

Yt+1

Yt
is the effective discount factor from period t

to t+1, whose steady-state value Rt,t+1
Yt+1

Yt
was denoted by β in the canonical constant-

parameter NKPC. We maintain the assumption β = 1 that we used earlier, which

implies that r̂t,t+1 + ∆ŷt+1 = rt,t+1 + ∆yt+1 in (CS 47). The time-varying parameters

λt, βt, γt and ϕ1t are functions of π̄t, and they are given by

λt = χt (1− ϕ2t) βt = Π
(1−%)
υ

t γt = χt

(
Π

(1−%)
υ

t − 1

)

χt = υ

(
1−αΠ

(1−%)
(µ−1)
t

αΠ

(1−%)
(µ−1)
t

)
ϕ1t = αΠ

(1−%)
(µ−1)

t ϕ2t = ϕ1tΠ
(1−%)
υ

t .

(S–38)

Algebraic manipulations of equations (CS 46) and (CS 47), similar to those in

Cogley and Sbordone (2008, Appendix A), yield the specification (39) in the paper,
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with

ζt = λt/∆t ρt = %/∆t b1t = βt+γt(1−%ϕ1t)ϕ1t/(µ−1)
∆t

b2t = γt(1−%ϕ1t)/(µ−1)
∆t

b3t = γtϕ1t/∆t ∆t = 1 + %
(
βt + γtϕ1t

µ−1

)
.

When the true model is given by equations (CS 46), (CS 47) and (S–38), the

baseline specification (S–24) is misspecified in two ways. First, it omits the term

D̂t, which involves an infinite stream of future inflation, real interest rates and real

output growth. Since these variables are correlated with predetermined instruments,

this would lead to a violation of the identifying restrictions E (Z ′tεt) = 0, so the usual

full-sample S test will have power against it. Second, the coefficients of the model are

time-varying. So, the stability S tests will have power against this time-variation in the

parameters, while the generalized (joint full-sample and stability) S tests have power

against both types of misspecification.

7.3.2 A specification with moderate instability in trend inflation

To correct for these two sources of misspecification, it suffices to consider a specification

of the model where trend inflation is within a
√
T neighborhood of zero, because the S

tests are consistent for larger instabilities. There is both a theoretical and an empirical

motivation for focusing on the neighborhood of zero as opposed to some unknown pos-

itive trend inflation. The theoretical motivation is that this approach can be justified

by full indexation of non-optimally reset prices to any perfectly predictable long-run

inflation target, as in Yun (1996), which is reasonable. The empirical motivation is

that the resulting confidence sets are actually very large, so this assumption is not at

odds with the data, and relaxing it will most likely make confidence sets even larger. In

any case, it is conceptually straightforward to consider deviations from some unknown

trend inflation π̄, at the cost of more complicated algebra and an additional unknown

parameter (π̄).

A general representation of a log-linear approximation of the coefficients in (S–38)

around zero trend inflation, Π = 1, is:

ςt = ς + ςπ̄π̄t + o (π̄t) .
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The intercept and slope of this approximation for each of the coefficients in (S–38) is:

λ = (1−α)2

α
υ β = 1 γ = 0

λπ̄ = − (1−α)
α

(1− %) (a+αµ)
(µ−a)

βπ̄ = (1−%)
υ

γπ̄ = (1−α)(1−%)
α

χ = (1−α)
α

υ ϕ1 = α ϕ2 = α

χπ̄ = − (1−%)
α(µ−1)

υ ϕ1π̄ = α (1−%)
(µ−1)

ϕ2π̄ = αµ(1−%)
(µ−1)a

From eq. (CS 7), we have:

lnmct = − lnµ−
(
µ− a
a

)
ln

1− αΠ
(1−%)
(µ−1)

t

1− α

+ ln

1− αΠ
µ(1−%)
(µ−1)a

t

1− αΠ
(1−%)
(µ−1)

t


Note that:

∂mct

∂Πt

∣∣∣∣
Π=1

=

(
µ− a
a

) α
(

(1−%)
µ−1

)
(1− α)

−
αµ(1−%)

(µ−1)a

(1− α)
+

α (1−%)
(µ−1)

(1− α)

=
α (1− %)

1− α

[
(µ− a)

a (µ− 1)
− µ

(µ− 1) a
+

1

(µ− 1)

]
= 0

Therefore,

lnmct = − lnµ+ op (π̄t) .

Ignoring terms of order smaller than π̄t, using π̂t = πt − π̄t, ∆π̄t+1 = op (π̄t) and

r̂t,t+1 + ∆ŷt+1 = rt,t+1 + ∆yt+1 (which follows from the assumption β = 1), equation

(CS 46) can be written as:

πt − %πt−1 = λm̂ct + E (πt+1|It)− %πt
+ π̄t

[
λπ̄m̂ct + βπ̄E (πt+1 − %πt|It) + γπ̄D̄t

]
+ εt, (S–39)

where:

D̄t = α
[
E (rt,t+1 + ∆yt+1|It) + (µ− 1)−1E (πt+1 − %πt|It) + E

(
D̄t+1|It

)]
. (S–40)

Next, we need to remove the infinite terms in D̄t from the above equation. Lead
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(S–39) one period to get

πt+1 − %πt = λm̂ct+1 + E (πt+2 − %πt+1|It+1)

+ π̄t+1

[
λπ̄m̂ct+1 + βπ̄E (πt+2 − %πt+1|It+1) + γπ̄D̄t+1

]
+ εt+1

Take expectations conditional on It, and use the fact that terms in ∆π̄t+1 are negligible

to get:

E (πt+1|It)− %πt = λE (m̂ct+1|It) + E (πt+2 − %πt+1|It)

+ π̄tE
[
λπ̄m̂ct+1 + βπ̄ (πt+2 − %πt+1) + γπ̄D̄t+1|It

]
(S–41)

Multiply (S–41) by α, subtract from (S–39) and use (S–40) to substitute for D̄t −
αE
(
D̄t+1|It

)
to get

πt − %πt−1 = λm̂ct + E (πt+1 − %πt|It) + αE [πt+1 − %πt − (πt+2 − %πt+1)− λm̂ct+1|It]

+ π̄t {λπ̄ [m̂ct − αE (m̂ct+1|It)] + βπ̄E [(πt+1 − %πt)− α (πt+2 − %πt+1) |It]

+ γπ̄αE
[
(rt,t+1 + ∆yt+1) + (µ− 1)−1 (πt+1 − %πt) |It

]}
+ εt.

Collecting the constant and all the terms in π̄t, and substituting xt + lnµ for m̂ct,

where xt = ln St
a

as before, the above can be written more compactly as:

%∆πt = E (∆πt+1|It) +
(1− α)2

α
υ xt + κ

+ αE

(
%∆πt+1 −∆πt+2 −

(1− α)2

α
υxt+1 − κ|It

)
+$t (θ) π̄t + εt. (S–42)

where κ = (1−α)2

α
υ lnµ, υ = a(µ−1)

µ−a , and

$t (θ) = (1− α)λπ̄ lnµ+ λπ̄xt + βπ̄ (πt+1 − %πt)

− α [λπ̄xt+1 + δπ̄ (πt+2 − %πt+1)]

+ αγπ̄
[
(rt,t+1 + ∆yt+1) + (µ− 1)−1 (πt+1 − %πt)

]
. (S–43)

If we impose π̄t = 0, then E
(
%∆πt+1 −∆πt+2 − (1−α)2

α
υxt+1 − κ|It

)
= 0 and equation

(S–42) collapses to the NKPC in (S–24).
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We are interested in making inference about the structural parameter vector θ =

(α, %, µ)′. As before, we calibrate the output elasticity to hours of work in the produc-

tion function to a = 2
3
. The admissible ranges for each of the structural parameter are:

α ∈ (0, 1), % ∈ [0, 1], and µ ∈ (1,+∞).

Let ηπt+1 = πt+1 −E (πt+1|It) and ηxt+1 = xt+1 −E (xt+1|It) . Then, substituting for

the expectations terms in Equation (S–39), we can define the residual function

ut ≡ εt − αεt+1 −$t (θ) π̄t = εt − ηπt+1 − α

(
%ηπt+1 − ηπt+2 −

(1− α)2

α
υηxt+1

)
, (S–44)

where εt and $t (θ) are defined in equations (S–25) and (S–43), respectively. The

assumption E (εt|It−1) = 0 yields E [ut|It] = 0, from which we can obtain unconditional

moment restrictions of the form:

E [Z ′tut] = E [ft (θ)− gt (θ) π̄t] = 0, where

ft (θ) = Z ′t (εt − αεt+1) , and gt (θ) = Z ′t$t (θ) .
(S–45)

7.3.3 Implications of time-varying trend inflation when it is ignored

We now ask what happens when we do inference using the sample moments T−1/2∑[sT ]
t=1 ft (θ) , where ft (θ) is defined in (S–45), i.e., ignoring the term gt (θ) π̄t that is

unobserved. This depends on the behavior of T−1/2
∑[sT ]

t=1 gt (θ) π̄t, which we show is

not negligible in general for moderate instability in π̄t.

The model’s residual ut, defined in (S–44) satisfies E (ut|It−1) = 0 and is at most

MA(2). We assume throughout that the instruments Zt are asymptotically mse station-

ary (Hansen (2000)), which does not contradict the existence of moderate time-varying

trend inflation, and var(Z ′tut) = Vff is finite and consistently estimable and the partial

sum process T−1/2
∑[sT ]

t=1 Z
′
tut satisfies a FCLT.

Now, notice that $t (θ) in (S–43) can be written as Yπ̄,tlπ̄, where Yπ̄,t is a row

vector of data, defined in (S–47), and lπ̄ is a corresponding column vector of functions

of the structural parameters θ, given in (S–48). Let ΓZYπ̄ = plimT−1
∑T

t=1 Z
′
tYπ̄,t, and

suppose T−1
∑[sT ]

t=1 Z
′
tYπ̄,t

p→ sΓZYπ̄ (which needs to hold uniformly in s for Yπ̄,t to be

‘asymptotically mse stationary’). Suppose also that π̄t = 1√
T
h
(
t
T

)
, where h (·) is a

43



cadlag function with at most a finite number of discontinuities. Then,

1√
T

T∑
t=1

ft (θ) =
1√
T

T∑
t=1

Z ′tut +
1√
T

T∑
t=1

Z ′t$t (θ) π̄t

d→ V
1/2
ff ξ + ΓZYπ̄ lπ̄

∫ 1

0

h (r) dr,

where ξ is a standard normal vector and the convergence of the second term follows

from Li and Mueller (2009, Lemma 4). Hence, ignoring the terms involving π̄t violates

the condition that the full-sample moment vector has mean zero under the null, which

is necessary for size control of the full-sample tests. Moreover, the full-sample S test

has power against this type of misspecification. If the convergence T−1
∑[sT ]

t=1 Z
′
tYπ̄,t

p→
sΓZYπ̄ is uniform in s ∈ [0, 1], then the above argument extends to the weak convergence

of the partial sums: 1√
T

∑[sT ]
t=1 ft (θ)⇒ V

1/2
ff W (s) + ΓZYπ̄ lπ̄

∫ s
0
h (r) dr, where W (·) is a

multivariate standard Wiener process. So our stability and generalized tests also have

power against this misspecification.

7.3.4 Correcting for time-varying trend inflation

We can eliminate the effect of the trend inflation on the tests by recentering the moment

conditions to make them orthogonal to the space spanned by the vector V
− 1

2
ff ΓZYπ̄ lπ̄.

Given consistent estimators of V̂ff and Γ̂ZYπ̄ of Vff and ΓZYπ̄ , resp., this can be done by

premultiplying 1√
T
V̂
− 1

2
ff

∑[sT ]
t=1 ft (θ0) with the orthogonal projection matrix M

V̂
−1/2
ff Γ̂ZYπ̄lπ̄

defined in (S–49) below. Note that this orthogonalization depends on the null value of

the structural parameters θ0, so it has to be repeated for each value of θ0 ∈ Θ.

7.3.5 Identification fails when α→ 0

We will show that when α gets small, the terms ft (θ) and gt (θ) in the moment condi-

tions (S–45) become collinear. Hence, orthogonalizing the sample moments
∑T

t=1 ft (θ)

to T−1
∑T

t=1 gt (θ) leads to sample moment conditions that are exactly zero over the

full sample for all θ such that α = 0 and any choice of instruments Zt. So, full-sample

identification breaks down completely as α → 0. Stability restrictions yield partial

identification.

Since the various test statistics are invariant to rescaling the moment vectors, con-

sider the moment conditions multiplied by α. Rescaling (εt − αεt+1) and $t (θ) by α
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yields

α%∆πt−α (1 + α%) ∆πt+1− (1− α)2 υxt +α2∆πt+2 +α (1− α)2 υxt+1− (1− α)3 υ lnµ

and

α$t (θ) = − (1− α) (1− %)
(a+ αµ)

(µ− a)
[(1− α) lnµ+ xt] + αλπ̄ (πt+1 − %πt)

+ α (1− α) (1− %)
(a+ αµ)

(µ− a)
xt+1 − α2 (1− %)

υ
(πt+2 − %πt+1)

+ α (1− α) (1− %)
[
(rt,t+1 + ∆yt+1) + (µ− 1)−1 (πt+1 − %πt)

]
.

Hence, when α→ 0, the rescaled moment vector α [ft (θ) + gt (θ) π̄t] in (S–45) becomes

− a (µ− 1)

µ− a
Z ′t (xt + lnµ)︸ ︷︷ ︸

ft(θ|α=0)

+ (1− %)
(a+ µ)

µ− a
Z ′t (xt + lnµ)︸ ︷︷ ︸

gt(θ|α=0)

π̄t.

Since ft (θ) and gt (θ) = Z ′tYπ̄,tlπ̄ are collinear, and Γ̂ZYπ̄lπ̄ = T−1
∑T

t=1 gt (θ) ,M
V̂
− 1

2
ff Γ̂ZYπ̄lπ̄

V̂
− 1

2
ff

∑T
t=1 ft (θ) = 0 for all θ ∈ Θ ∩ {α = 0}. There is still information in the stabil-

ity restrictions for µ, but not for % because ft (θ) does not depend on % in the limit

as α → 0. So, stability restrictions lead to partial identification in this case. This

discussion helps explain the empirical results.

7.3.6 Data

Real output growth (∆yt), and the nominal interest rate (it) are measured as ∆yt =

ln
(

Yt
Yt−1

)
, and it = It

400
, where Yt is real GDP non-farm business sector (Billions of

chained (2005) dollars. Seasonally adjusted at annual rates); and It is quarterly average

of Effective Federal Funds Rate (annual percentage).

7.3.7 Computational details

Note that (εt − αεt+1) can be rewritten as:

%∆πt − (1 + α%) ∆πt+1 −
(1− α)2

α
υxt + α∆πt+2 + (1− α)2 υxt+1︸ ︷︷ ︸

Ytb

− (1− α)κ︸ ︷︷ ︸
Xtc

(S–46)
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where Yt = (∆πt,∆πt+1,∆πt+2, xt, xt+1) , b =
(
%,− (1 + α%) , α,− (1−α)2

α
υ, (1− α)2 υ

)′
,

Xt = 1 and c = κ. We use the following relationships: πt+1 − %πt = (1− %) πt+1 + %

∆πt+1; πt+2−%πt+1 = ∆πt+2+(1− %)πt+1; λπ̄+γπ̄α (µ− 1)−1 =
[
υ−1 + (µ− 1)−1 (1− α)

]
(1− %); and αλπ̄ = α(1− %)υ−1 to rewrite $t (θ) as:

$t (θ) = (1− α)λπ̄ lnµ+ Ytbπ̄ + (1− α) (1− %) (rt,t+1 + ∆yt+1) + ϑπt+1︸ ︷︷ ︸
Yπ̄,tlπ̄

where:

bπ̄ =
(

0
[
υ−1 + (µ− 1)−1 (1− α)

]
(1− %) % λπ̄ −υ−1α(1− %) −αλπ̄

)′
,

ϑ =
[
υ−1 + (µ− 1)−1] (1− α) (1− %)2 ,

Yπ̄,t =
(
Xt Yt (rt,t+1 + ∆yt+1) πt+1

)
, (S–47)

lπ̄ =
(

(1− α)λπ̄ lnµ bπ̄ λπ̄ (1− α) (1− %) ϑ
)′

. (S–48)

Computation of S and CLR statistics The estimator of the asymptotic variance

of 1√
T
Z ′ (Y b−Xc) , V̂ff , is the one described in equation (S–26).

Let Y = (Y,X) and b̄ =
(
b
c

)
, such that the moment vector can be written more com-

pactly as Z ′Ȳ b̄. We eliminate the effect of trend inflation on the tests by premultiplying

the sample moments by M
V
−1/2
ff ΓZYπ̄ lπ̄

where:

M
V
−1/2
ff ΓZYπ̄ lπ̄

= Ikz − V
− 1

2
ff ΓZYπ̄ lπ̄

[
l′π̄ΓZYπ̄V

−1
ff ΓZYπ̄ lπ̄

]− 1
2 l′π̄ΓZYπ̄V

− 1
2

ff (S–49)

We replace Vff , ΓZYπ̄ with their estimators V̂ff , and Γ̂ZYπ̄ = T−1Z ′Yπ̄ to compute the

tests.

Let L be a kz× (kz − 1) matrix such that M
V̂ −

1
2 Γ̂ZYπ̄lπ̄

= LL′ and L′L =I(kz−1). The

S statistic is:

ST (θ0) =
1

T

(
Y b̄
)′
ZV̂

− 1
2

ff L︸ ︷︷ ︸
ξ̂T

L′V̂
− 1

2
ff Z

′Y b̄︸ ︷︷ ︸
ξ̂T

1√
T
ξ̂T is an asymptotically standard normal vector of dimension kz−1. Note that, in the

computing the S statistic, the use of the projection matrix M
V̂
−1/2
ff Γ̂ZYπ̄ lπ̄

to annihilate

the trend inflation effect in the limiting distribution is equivalent to first estimating cπ̄
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by solving the following minimization problem:

ĉπ̄ = arg min
cπ̄

1

T

(
Y b̄− Yπ̄lπ̄cπ̄

)′
ZV̂ −1

ff Z
′ (Y b̄− Yπ̄lπ̄cπ̄) (S–50)

and then substituting ĉπ̄ back into the objective function in (S–50). The KLM, JKLM

and CLR statistics are obtained using the formulae in Subsection 7.1.2, see eq. (S–29).

Computation of the qLL-S statistic The computation of the qLL-S under the

presence of trend inflation follows the steps described in Subsection 7.1.2, but redefining

ε̂ in equation (S–30) and F̂ in equation (S–31) as

ε̂ = Y b−Xc = Y b̄, and F̂ =
(
Ê � Z

)
V̂
− 1

2
ff M

V̂
− 1

2
ff Γ̂ZYπ̄ lπ̄

,

respectively.

Computation of the exp/ave-S and split-sample statistics Let the 2kz × 1

split-sample moment vector be defined as Z
′
Y b̄ where Z is the split-sample instrument

matrix defined in (S–32). The estimator of the asymptotic variance of 1√
T
Z
′
Y b̄ is de-

fined in (S–33). We eliminate the effect of trend inflation on the tests by premultiplying

the sample moments by the 2 (kz − 1)×2kz matrix L̄′, defined as L̄L̄′ =I2⊗M
V̂
−1/2
ff Γ̂ZYπ̄ lπ̄

where M
V̂
−1/2
ff Γ̂ZYπ̄ lπ̄

is given by (S–49). The remaining calculations are the same as in

Subsection 7.1.2.

7.3.8 Empirical results

Three-dimensional 95%-level confidence sets for (α, %, µ) in (S–42) are constructed by

inverting the various weak-identification robust tests, and they are plotted in Figures

13, 14 and 15 for the sample 1966q1-2010q4 and Figures 16, 17 and 18 for the sample

1984q1-2010q4. Table 10 shows the proportion of the confidence regions with respect

to the parallelepiped.
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S ave-S

exp-S qLL-S

Figure 13: 95%-level S and generalized S confidence sets for α, %, µ in the NKPC with
trend inflation. Instruments: constant, two lags of ∆π and three lags of xt. Period:
1966q1-2010q4.
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S ave-S̃

exp-S̃ qLL-S̃

Figure 14: 95%-level S and stability S confidence sets for α, %, µ in the NKPC with
trend inflation. Instruments: constant, two lags of ∆π and three lags of xt. Period:
1966q1-2010q4.
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S split-S

CLR split-CLR

Figure 15: 95%-level S, split-S, CLR and split-CLR confidence sets for α, %, µ in the
NKPC with trend inflation. Instruments: constant, two lags of ∆π and three lags of
xt. Period: 1966q1-2010q4.
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S ave-S

exp-S qLL-S

Figure 16: 95%-level S and generalized S confidence sets for α, %, µ in the NKPC with
trend inflation. Instruments: constant, two lags of ∆π and three lags of xt. Period:
1984q1-2010q4.
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S ave-S̃

exp-S̃ qLL-S̃

Figure 17: 95%-level S and generalized S confidence sets for α, %, µ in the NKPC with
trend inflation. Instruments: constant, two lags of ∆π and three lags of xt. Period:
1984q1-2010q4.
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S split-S

CLR split-CLR

Figure 18: 95%-level S, split-S, CLR and split-CLR confidence sets for α, %, µ in the
NKPC with trend inflation. Instruments: constant, two lags of ∆π and three lags of
xt. Period: 1984q1-2010q4.
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1966q1 - 2010q4 1984q1 - 2010q4

Confidence Regions 95% 90% 95% 90%

S 90.78 89.71 92.00 86.36
CLR 89.78 88.42 90.17 83.54
ave-S 29.78 27.90 27.55 24.33
exp-S 23.73 21.26 7.07 5.37
qLL-S 23.54 21.49 5.77 5.13

ave-S̃ 28.84 27.02 24.52 22.31

exp-S̃ 20.15 13.87 6.86 5.99

qLL-S̃ 23.27 19.92 6.82 6.21
split-S 30.73 29.03 20.32 17.82

split-CLR 26.50 24.13 15.62 12.11

Table 10: Volume of Confidence Regions as a proportion of the Volume of the Paral-
lelepiped (α, %, µ) ∈ [0.01, 0.99]× [0, 1]× [1.01, 1.40]
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