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THIS SUPPLEMENT HAS TWO PARTS. Appendix B provides proofs of the techni-
cal lemmas and other results in the paper. Appendix C provides some practical
guidance on implementing the testing procedures proposed in the paper. It
also applies the proposed test procedures to make inference in a stochastic
volatility model.

APPENDIX B: PROOFS

B.1. Proofs of Technical Lemmas

PROOF OF LEMMA A.2: Since (ξ1T �η1T ) converges weakly, we can ap-
ply Lemma A.1 with s(T) = T . It follows from the condition in (A.1) that
Ef(ξ1T �η1T )−Ef(ξ2T �η2T )→ 0 for any f ∈ BC. But Ef(ξ1T �η1T )→Ef(ξ�η)
and so Ef(ξ2T �η2T )→ Ef(ξ�η) for any f ∈ BC. That is, (ξ2T �η2T ) also con-
verges weakly to (ξ�η). Using the same proof for proving the continuous map-
ping theorem, we have Ef(g(ξ1T �η1T ))−Ef(g(ξ2T �η2T ))→ 0 for any f ∈ BC.
Therefore, g(ξ1T �η1T )

a
∼ g(ξ2T �η2T ). Q.E.D.

PROOF OF LEMMA A.3: Let ε > 0 and ξ ∈ R. Under condition (iii), we can
find a δ := δ(ε) > 0 such that for some integer Tmin > 0,

P(ξ− δ≤ ξT < ξ+ δ)≤ ε

for all T ≥ Tmin. Here Tmin does not depend on δ or ε. Under condition (iv), we
can find a Jmin := Jmin(ε) that does not depend on T such that

P
(|ηT�J|> δ) ≤ ε

for all J ≥ Jmin and all T . From condition (ii), we can find a J ′
min ≥ Jmin and a

T ′
min ≥ Tmin such that∣∣P(

ξ∗
T�J < ξ

) − P(ξT < ξ)
∣∣ ≤ ε

for all J ≥ J ′
min and all T ≥ T ′

min. It follows from condition (i) that for any finite
J0 ≥ J ′

min, there exists a T ′′
min(J0)≥ T ′

min ≥ Tmin such that∣∣P(ξT�J0 < ξ+ δ)− P
(
ξ∗
T�J0

< ξ+ δ
)∣∣ ≤ ε�∣∣P(ξT�J0 < ξ− δ)− P

(
ξ∗
T�J0

< ξ− δ
)∣∣ ≤ ε
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for T ≥ T ′′
min(J0).

When T ≥ T ′′
min(J0), we have

P(ωT ≤ ξ)= P(ξT�J0 +ηT�J0 ≤ ξ)≤ P(ξT�J0 ≤ ξ+ δ)+ P
(|ηT�J0 |> δ

)
≤ P

(
ξ∗
T�J0

≤ ξ+ δ
) + 2ε≤ P(ξT < ξ+ δ)+ 3ε

≤ P(ξT < ξ)+ 4ε�

Similarly,

P(ωT ≤ ξ)= P(ξT�J0 +ηT�J0 ≤ ξ)≥ P(ξT�J0 ≤ ξ− δ)− P
(|ηT�J0 | ≥ δ

)
≥ P

(
ξ∗
T�J0

≤ ξ− δ
) − 2ε≥ P(ξT ≤ ξ− δ)− 3ε

≥ P(ξT ≤ ξ)− 4ε�

Since the above two inequalities hold for all ε > 0, we must have P(ωT < ξ)=
P(ξT < ξ)+ o(1) as T → ∞. Q.E.D.

B.2. Proofs of Other Results

PROOF OF THEOREM 2: Let λT be the p× 1 vector of Lagrange multipliers
for the constrained GMM estimation. The first order conditions for θ̂T�R are

∂g′
T (θ̂T�R)

∂θ
W −1
T (θ̃T )gT (θ̂T�R)+R′λT = 0 and Rθ̂T�R = r�(B.1)

Linearizing the first set of conditions and using Assumption 4, we have the
system of equations

(
Ψ̃ R′

R 0p×p

)(√
T(θ̂T�R − θ0)√

TλT

)

=
(−G′W −1

T (θ̃T )
√
TgT(θ0)

0p×1

)
+ op(1)�

where Ψ̃ := Ψ̃ (θ̃T )=G′W −1
T (θ̃T )G. From this, we get

√
T(θ̂T�R − θ0)(B.2)

= −Ψ̃−1G′W −1
T (θ̃T )

√
TgT(θ0)

− Ψ̃−1R′{RΨ̃−1R′}−1
RΨ̃−1G′W −1

T (θ̃T )
√
TgT(θ0)+ op(1)

and
√
TλT = −{

RΨ̃−1R′}−1
RΨ̃−1G′W −1

T (θ̃T )
√
TgT(θ0)+ op(1)�(B.3)
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Combining (5) with (B.2), we have
√
T(θ̂T�R − θ̂T )(B.4)

= −Ψ̃−1R′{RΨ̃−1R′}−1
RΨ̃−1G′W −1

T (θ̃T )
√
TgT(θ0)+ op(1)�

which implies that
√
T(θ̂T�R − θ̂T )=Op(1). So

gT (θ̂T�R)= gT (θ̂T )+GT(θ̂T )(θ̂T�R − θ̂T )+ op(1/
√
T)�

Plugging this into the definition of DT , we obtain

DT = T(θ̂T�R − θ̂T )
′G′

T (θ̂T )W
−1
T (θ̆T )GT(θ̂T )(θ̂T�R − θ̂T )/p(B.5)

− 2Tg′
T (θ̂T )W

−1
T (θ̆T )G(θ̂T )(θ̂T�R − θ̂T )/p+ op(1)�

Using the first order conditions for θ̂T : g′
T (θ̂T )W

−1
T (θ̃T )GT(θ̂T ) = 0 and

Lemma 1(a), (b), we obtain

DT = T(θ̂T�R − θ̂T )
′Ψ̃ (θ̂T�R − θ̂T )/p+ op(1)�(B.6)

Plugging (B.4) into (B.6) and simplifying the resulting expression, we have

DT = [
R′{RΨ̃−1R′}−1

RΨ̃−1G′W −1
T (θ̃T )

√
TgT(θ0)

]′
(B.7)

× Ψ̃−1
[
R′{RΨ̃−1R′}−1

RΨ̃−1G′W −1
T (θ̃T )

√
TgT(θ0)

]
/p+ op(1)

= [
RΨ̃−1G′W −1

T (θ̃T )
√
TgT(θ0)

]′[
RΨ̃−1R′]−1

× [
RΨ̃−1G′W −1

T (θ̃T )
√
TgT(θ0)

]
/p+ op(1)

= [√
TR(θ̂T − θ0)

]′[
RΨ̃−1R′]−1[√

TR(θ̂T − θ0)
]
/p+ op(1)

= WT + op(1)�

Next, we prove the second result in the theorem. In view of the first order
conditions in (B.1) and equation (B.3), we have

√
TΔT(θ̂T�R)= ∂g′

T (θ̂T�R)

∂θ
W −1
T (θ̃T )

√
TgT(θ̂T�R)+ op(1)

= −√
TR′λT + op(1)

= R′{RΨ̃−1R′}−1
RΨ̃−1G′W −1

T (θ̃T )
√
TgT(θ0)+ op(1)

= Ψ̃
√
T(θ̂T − θ̂T�R)+ op(1)�
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and so

ST = T(θ̂T − θ̂T�R)
′Ψ̃ (θ̂T − θ̂T�R)/p+ op(1)

= DT + op(1)= WT + op(1)� Q.E.D.

PROOF OF THEOREM 3: Part (a). Let

H =
(
Bp(1)−CpqC

−1
qq Bq(1)

‖Bp(1)−CpqC
−1
qq Bq(1)‖

� H̄

)

be an orthonormal matrix. Then

F∞
d= ∥∥Bp(1)−CpqC

−1
qq Bq(1)

∥∥2
[
Bp(1)−CpqC

−1
qq Bq(1)

‖Bp(1)−CpqC
−1
qq Bq(1)‖

]′
H

×H ′D−1
ppHH

′
[
Bp(1)−CpqC

−1
qq Bq(1)

‖Bp(1)−CpqC
−1
qq Bq(1)‖

]/
p

= ∥∥Bp(1)−CpqC
−1
qq Bq(1)

∥∥2
e′
p

[
H ′D−1

ppH
]
ep/p�

where ep = (1�0�0� � � � �0)′ ∈R
p. ButH ′D−1

ppH has the same distribution asD−1
pp

and Dpp is independent of Bp(1)−CpqC
−1
qq Bq(1). So

F∞
d= ‖Bp(1)−CpqC

−1
qq Bq(1)‖2/p

[e′
pD

−1
ppep]−1 �(B.8)

That is, F∞ is equal in distribution to a ratio of two independent random vari-
ables.

It is easy to see that

[
e′
pD

−1
ppep

]−1 d=
[
e′
p+q

[∫ 1

0

∫ 1

0
Q∗
h(r� s)dBp+q(r)dB′

p+q(s)
]−1

ep+q

]−1

d= 1
K
χ2
K−p−q+1�

where ep+q = (1�0� � � � �0)′ ∈R
p+q. With this, we can now represent F∞ as

F∞
d= χ2

p(Δ
2)/p

χ2
K−p−q+1/K

(B.9)
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and so

κ−1F∞
d= χ2

p(Δ
2)/p

χ2
K−p−q+1/(K −p− q+ 1)

d=Fp�K−p−q+1

(
Δ2

)
�(B.10)

Part (b). Since the numerator and the denominator in (B.10) are indepen-
dent, κ−1F∞ is distributed as a noncentral F distribution, conditional on Δ2.
More specifically, we have

P
(
κ−1F∞ < z

) = P
(
Fp�K−p−q+1

(
Δ2

)
< z

) =EFp�K−p−q+1

(
z�Δ2

)
�

where Fp�K−p−q+1(z�λ) is the CDF of the noncentral F distribution with de-
grees of freedom (p�K − p − q + 1) and noncentrality parameter λ, and
Fp�K−p−q+1(λ) is a random variable with CDF Fp�K−p−q+1(z�λ).

We proceed to compute the mean of Δ2. Let

ξj =
∫ 1

0
�j(r)dBp(r)∼ i.i.d. N(0� Ip) and

ηj =
∫ 1

0
�j(r)dBq(r)∼ i.i.d. N(0� Iq)�

Note that {ξj} are independent of {ηj}. We can represent Cpq and Cqq as

Cpq =K−1
K∑
j=1

ξjη
′
j and Cqq =K−1

K∑
j=1

ηjη
′
j�(B.11)

So

EΔ2 = EBq(1)′C−1
qq C

′
pqCpqC

−1
qq Bq(1)=E tr

(
C−1
qq C

′
pqCpqC

−1
qq

)

= E tr

[(
1
K

K∑
j=1

ηjη
′
j

)−1(
1
K

K∑
j=1

ηjξ
′
j

)

×
(

1
K

K∑
j=1

ξjη
′
j

)(
1
K

K∑
j=1

ηjη
′
j

)−1]

= p trE(Π)�

where Π := (
∑K

j=1ηjη
′
j)

−1 follows an inverse Wishart distribution and

E(Π)= Iq

K − q− 1

for K large enough. Therefore, EΔ2 = pq

K−q−1 = δ2.
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Next we compute the variance of Δ2. It follows from the law of total variance
that

var
(
Δ2

) =E
[
var

(
Δ2|C−1

qq C
′
pqCpqC

−1
qq

)] + var
([

tr
(
C−1
qq C

′
pqCpqC

−1
qq

)])
�

Note that Bq(1) is independent of C−1
qq C

′
pqCpqC

−1
qq . So conditional on C−1

qq C
′
pq ×

CpqC
−1
qq , Δ2 is a quadratic form in standard normals. Hence, the conditional

variance of Δ2 is

var
(
Δ2|C−1

qq C
′
pqCpqC

−1
qq

) = 2 tr
(
C−1
qq C

′
pqCpqC

−1
qq C

−1
qq C

′
pqCpqC

−1
qq

)
�

Using the representation in (B.11), we have

E tr
(
C−1
qq C

′
pqCpqC

−1
qq C

−1
qq C

′
pqCpqC

−1
qq

)
=E tr

(
1
K

K∑
j=1

ηjξ
′
j

)(
1
K

K∑
j=1

ξjη
′
j

)
C−2
qq

×
(

1
K

K∑
j=1

ηjξ
′
j

)(
1
K

K∑
j=1

ξjη
′
j

)
C−2
qq

=E tr

[
1
K4

K∑
j1=1

K∑
i1=1

ηj1
(
ξ′
j1
ξi1

)
η′
i1
C−2
qq

K∑
j2=1

K∑
i2=1

ηj2
(
ξ′
j2
ξi2

)
η′
i2
C−2
qq

]

=E tr

[
1
K4

K∑
j1=1

K∑
i1=1

K∑
j2=1

K∑
i2=1

ηj1η
′
i1
C−2
qq ηj2η

′
i2
C−2
qq E

(
ξ′
j1
ξi1

)(
ξ′
j2
ξi2

)]
�

Since

E
(
ξ′
j1
ξi1

)(
ξ′
j2
ξi2

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p2� j1 = i1� j2 = i2� and j1 �= j2�
p� j1 = j2� i1 = i2� and j1 �= i1�
p� j1 = i2� i1 = j2� and j1 �= i1�
p2 + 2p� j1 = j2 = i1 = i2�
0� otherwise,

we have

E tr
(
C−1
qq C

′
pqCpqC

−1
qq C

−1
qq C

′
pqCpqC

−1
qq

)
=E tr

[
1
K4

K∑
j1=1

K∑
j2=1

ηj1η
′
j1
C−2
qq ηj2η

′
j2
C−2
qq

]
p2

+E tr

[
1
K4

K∑
j1=1

K∑
i1=1

ηj1
(
η′
i1
C−2
qq ηj1

)
η′
i1
C−2
qq

]
p
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+E tr

[
1
K4

K∑
j1=1

K∑
i1=1

ηj1
(
η′
i1
C−2
qq ηi1

)
η′
j1
C−2
qq

]
p

=E tr

(
K∑

�1=1

η�1η
′
�1

)−2(
p2 +p

)

+E tr

[
1
K2

K∑
j1=1

ηj1η
′
j1
C−2
qq

]
tr

[
1
K2

K∑
i1=1

η′
i1
C−2
qq ηi1

]
p

=E
[
tr

(
Π2

)](
p2 +p

) +E
[
tr(Π)

]2
p

=
(

q∑
i=1

q∑
j=1

EΠ2
ij

)(
p2 +p

) +E

(
q∑
i=1

Πii

)2

p�

It follows from Theorem 5.2.2 of Press (2005, p. 119, using the notation here)
that

EΠ2
ij =

(K − q+ 1)δij + (K − q− 1)
(K − q)(K − q− 1)2(K − q− 3)

+ δij

[K − q− 1]2 =O

(
1
K2

)
�

and for i �= j,

EΠiiΠjj = 2
(K − q)(K − q− 1)2(K − q− 3)

+ 1
[K − q− 1]2

= O

(
1
K2

)
�

Hence,

E tr
(
C−1
qq C

′
pqCpqC

−1
qq C

−1
qq C

′
pqCpqC

−1
qq

) =O

(
1
K2

)
�(B.12)

Next

var
([

tr
(
C−1
qq C

′
pqCpqC

−1
qq

)])
≤E

[
tr

(
C−1
qq C

′
pqCpqC

−1
qq

)
tr

(
C−1
qq C

′
pqCpqC

−1
qq

)]
=E tr

[(
1
K

K∑
j=1

ηjξ
′
j

)(
1
K

K∑
j=1

ξjη
′
j

)
C−2
qq

]

× tr

[(
1
K

K∑
j=1

ηjξ
′
j

)(
1
K

K∑
j=1

ξjη
′
j

)
C−2
qq

]



8 YIXIAO SUN

=E tr

[
1
K

K∑
i1=1

K∑
j1=1

ηi1
(
ξ′
i1
ξj1

)
η′
j1
C−2
qq

]

× tr

[
1
K

K∑
i2=1

K∑
j2=1

ηi2
(
ξ′
i2
ξj2

)
η′
j2
C−2
qq

]

=E
1
K2

K∑
i1=1

K∑
j1=1

K∑
i2=1

K∑
j2=1

tr
(
ηi1η

′
j1
C−2
qq

)

× tr
(
ηi2η

′
j2
C−2
qq

)
E

[(
ξ′
i1
ξj1

)(
ξ′
i2
ξj2

)]
=E

[
tr(Π)

]2
p2 +E

1
K2

K∑
i1=1

K∑
j1=1

tr
[
C−2
qq ηj1η

′
j1
C−2
qq ηi1η

′
i1

]
2p

=E
[
tr(Π)

]2
p2 +E tr

[
Π2

]
2p�

Using the same formulae from Press (2005), we can show that the last term is
of O(K−2). This, combined with (B.12), leads to var(Δ2)=O(K−2).

Taking a Taylor expansion and using the mean and variance of Δ2, we have

P
(
κ−1F∞ < z

)
(B.13)

=EFp�K−p−q+1

(
z�Δ2

)
=EFp�K−p−q+1

(
z�δ2

) +E
∂Fp�K−p−q+1(z�δ

2)

∂λ

(
Δ2 − δ2

)

+E
∂2Fp�K−p−q+1(z� Δ̃

2)

∂λ2

(
Δ2 − δ2

)2

=EFp�K−p−q+1

(
z�δ2

) +E
∂2Fp�K−p−q+1(z� Δ̃

2)

∂λ2

(
Δ2 − δ2

)2

for some Δ̃2 between Δ2 and δ2. By definition,

Fp�K−p−q+1(z�λ)= P

(
χ2
p(λ)

p

[
χ2
K−p−q+1

K −p− q+ 1

]−1

< z

)

= EGp
(
pz

[
χ2
K−p−q+1

K −p− q+ 1

]
�λ

)
�

where Gp(z�λ) is the CDF of the noncentral chi-squared distribution χ2
p(λ)

with noncentrality parameter λ. In view of the relationship Gp(z�λ) =
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exp(− λ
2 )× ∑∞

j=0
(λ/2)j

j! Gp+2j(z), we have

∂Fp�K−p−q+1(z�λ)

∂λ

=
∞∑
j=0

∂

∂λ

[
exp

(
−λ

2

)
(λ/2)j

j!
]
EGp+2j

(
pz

[
χ2
K−p−q+1

K −p− q+ 1

])

= −1
2

exp
(

−λ
2

) ∞∑
j=0

(λ/2)j

j! EGp+2j

(
pz

[
χ2
K−p−q+1

K −p− q+ 1

])

+ 1
2

exp
(

−λ
2

) ∞∑
j=0

(λ/2)j

j! EGp+2+2j

(
pz

[
χ2
K−p−q+1

K −p− q+ 1

])

= 1
2

∞∑
j=0

exp
(

−λ
2

)
(λ/2)j

j! E

[
Gp+2+2j

(
pz

[
χ2
K−p−q+1

K −p− q+ 1

])

− Gp+2j

(
pz

[
χ2
K−p−q+1

K −p− q+ 1

])]

and so ∣∣∣∣∂2Fp�K−p−q+1(z�λ)

∂λ2

∣∣∣∣
≤ 1

2

∞∑
j=0

∣∣∣∣ ∂∂λ
[

exp
(

−λ
2

)
(λ/2)j

j!
]∣∣∣∣

≤ 1
4

∞∑
j=0

exp
(

−λ
2

)
(λ/2)j

j! + 1
4

∞∑
j=1

exp
(

−λ
2

)
(λ/2)(j−1)

(j − 1)!

≤ 1
4

+ 1
4

= 1
2

for all z and λ. Combining the boundedness of ∂2Fp�K−p−q+1(z�λ)/∂λ
2 with

(B.13) yields

P
(
κ−1F∞ < z

) = Fp�K−p−q+1

(
z�δ2

) +O
[
var

(
Δ2

)]
= Fp�K−p−q+1

(
z�δ2

) +O

(
1
K2

)

= Fp�K−p−q+1

(
z�δ2

) + o

(
1
K

)
�
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Part (c). It follows from part (b) that

P(pF∞ < z)(B.14)

=EGp
(
zχ2

K−p−q+1

K
�δ2

)
+ o

(
1
K

)

=EGp
(
zχ2

K−p−q+1

K
�0

)
+E

∂

∂λ
Gp

(
zχ2

K−p−q+1

K
�0

)
δ2 + o

(
1
K

)

+E

[
∂2

∂λ2Gp
(
zχ2

K−p−q+1

K
� δ̄2

)]
δ4�

where δ̄2 is between 0 and δ2. As in the proof of part (b), we can show that
| ∂2

∂λ2Gp(z�λ)| ≤ 1. As a result,

E

[
∂2

∂λ2Gp
(
zχ2

K−p−q+1

K
� δ̄2

)]
δ4 =O

(
1
K2

)
= o

(
1
K

)
�(B.15)

Consequently,

P(pF∞ < z)= EGp
(
zχ2

K−p−q+1

K
�0

)

+E
∂

∂λ
Gp

(
zχ2

K−p−q+1

K
�0

)
δ2 + o

(
1
K

)
�

By direct calculations, it is easy to show that

∂

∂λ
Gp(z�0)= −1

2
[
Gp(z)− Gp+2(z)

] = − 1
p

zp/2e−z/2

2p/2�
(
p

2

) = − 1
p
G ′
p(z)z�(B.16)

Therefore,

P(pF∞ < z)

=EGp
(
zχ2

K−p−q+1

K

)

− 1
p
EG ′

p

(
zχ2

K−p−q+1

K

)
zχ2

K−p−q+1

K
δ2 + o

(
1
K

)

= Gp(z)+ G ′
p(z)zE

(
χ2
K−p−q+1

K
− 1

)
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+ 1
2
G ′′
p(z)z

2 var
(
χ2
K−p−q+1

K

)
− δ2

p
G ′
p(z)z+ o

(
1
K

)

= Gp(z)+ G ′
p(z)z

−p− q+ 1
K

+ G ′′
p(z)z

2K −p− q+ 1
K2

− q

K − q− 1
G ′
p(z)z

= Gp(z)− G ′
p(z)z

(
p+ 2q− 1

K

)
+ G ′′

p(z)z
2 1
K

+ o

(
1
K

)
� Q.E.D.

PROOF OF THEOREM 4: Part (a). Using the same argument for proving The-
orem 3(a), we have

t∞
d= B1(1)−C1qC

−1
qq Bq(1)√

χ2
K−q/K

(B.17)

and so

t∞√
κ

d= B1(1)−C1qC
−1
qq Bq(1)√

χ2
K−q/(K − q)

d= tK−q(Δ)�

Part (b). Since the distribution of t∞ is symmetric about 0, we have for any
z ∈R

+,

P

(
t∞√
κ
< z

)

= 1
2

+ 1
2
P

(|t∞/√κ|< |z|) = 1
2

+ 1
2
P

(
t2
∞/κ < z

2
)

= 1
2

+ 1
2
F1�K−q

(
z2� δ2

) + o

(
1
K

)
�

where the last equality follows from Theorem 3(b). When z ∈R
−, we have

P

(
t∞√
κ
< z

)

= 1
2

− 1
2
P

(|t∞/√κ|< |z|) = 1
2

− 1
2
P

(
t2
∞/κ < z

2
)

= 1
2

− 1
2
F1�K−q

(
z2� δ2

) + o

(
1
K

)
�
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Therefore,

P

(
t∞√
κ
< z

)
= 1

2
+ 1

2
sgn(z)F1�K−q

(
z2� δ2

) + o

(
1
K

)
�

Part (c). Using Theorem 3(c) and the symmetry of the distribution of t∞
about 0, we have for any z ∈R

+,

P(t∞ < z)= 1
2

+ 1
2
P

(|t∞|< |z|) = 1
2

+ 1
2
P

(
t2
∞ < z

2
)

= 1
2

+ 1
2
G

(
z2

) − G ′(z2
)
z2

(
q

K

)
+ 1

2
G ′′(z2

)
z4 1
K

+ o

(
1
K

)
�

Using the relationships that

1
2

+ 1
2
G

(
z2

) =�(z)

and

−G ′(z2
)
z2

(
q

K

)
+ 1

2
G ′′(z2

)
z4 1
K

= − 1
4K

φ(z)
[
z3 + z(4q+ 1)

]
�

we have

P(t∞ < z)=�(z)− 1
4K

zφ(z)
[
z2 + (4q+ 1)

] + o

(
1
K

)
�

Similarly, when z ∈ R
−, we have

P(t∞ < z)=�(z)+ 1
4K

zφ(z)
[
z2 + (4q+ 1)

] + o

(
1
K

)
�

Therefore,

P(t∞ < z)=�(z)− 1
4K

|z|φ(z)[z2 + (4q+ 1)
] + o

(
1
K

)
� Q.E.D.

Before proving Theorem 5, we present a technical lemma. Part (i) of the
lemma is proved in Sun (2014). Parts (ii) and (iii) of the lemma are proved in
Sun, Phillips, and Jin (2011).

Define g0 = limx→0[1 − k(x)]/xq0 , q0 is the Parzen exponent of the kernel
function, c1 = ∫ ∞

−∞ k(x)dx, and c2 = ∫ ∞
−∞ k

2(x)dx. Recall the definitions of μ1

and μ2 in (8).
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LEMMA B.1:
(i) For the conventional kernel HAR variance estimators, we have, as

h→ ∞,
(a) μ1 = 1 − bc1 +O(b2),
(b) μ2 = bc2 +O(b2).
(ii) For the sharp kernel HAR variance estimator, we have, as h→ ∞,
(a) μ1 = 1 − 2

ρ+2 ,
(b) μ2 = 1

ρ+1 +O( 1
ρ2 ).

(iii) For the steep kernel HAR variance estimators, we have, as h→ ∞,
(a) μ1 = 1 − ( π

ρg0
)1/2 +O( 1

ρ
),

(b) μ2 = ( π
2ρg0

)1/2 +O( 1
ρ
).

PROOF OF THEOREM 5: Part (a). Recall that

pF∞ = [
Bp(1)−CpqC

−1
qq Bq(1)

]′
D−1
pp

[
Bp(1)−CpqC

−1
qq Bq(1)

]
�

Conditional on (Cpq�Cqq�Cpp), Bp(1)−CpqC−1
qq Bq(1) is normal with mean zero

and variance Ip + CpqC
−1
qq C

−1
qq C

′
pq. Let L be the lower triangular matrix such

that LL′ is the Choleski decomposition of Ip + CpqC
−1
qq C

−1
qq C

′
pq. Then the con-

ditional distribution of ζ := L−1[Bp(1)− CpqC
−1
qq Bq(1)] is N(0� Ip). Since the

conditional distribution does not depend on (Cpq�Cqq�Cpp), we can conclude
that ζ is independent of (Cpq�Cqq�Cpp). So we can write

pF∞
d= ζ ′Aζ�

whereA=L′D−1
ppL. Given thatA is a function of (Cpq�Cqq�Cpp), we know that

ζ and A are independent. As a result, ζ ′Aζ d= ζ ′(OAO′)ζ for any orthonormal
matrix O that is independent of ζ.

Let H = (ζ/‖ζ‖� H̃) be an orthonormal matrix with first column ζ/‖ζ‖. We
chooseH to be independent ofA. This is possible as ζ andA are independent.
Then

pF∞
d= ‖ζ‖2 ζ

′

‖ζ‖
(
OAO′) ζ

‖ζ‖ = ‖ζ‖2

[
ζ ′

‖ζ‖H
]
H ′(OAO′)H[

H ′ ζ
‖ζ‖

]

= ‖ζ‖2e′
p

(
H ′OAO′H

)
ep�

where ep = (1�0� � � � �0)′ is the first basis vector in R
p. Since ‖ζ‖2, H, and A

are mutually independent from each other, we can write

pF∞
d= ‖ζ‖2e′

p

(
H′O′AOH

)
ep
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for any orthonormal matrix H that is independent of both ζ and A. Letting
O =H′, we obtain

pF∞
d= ‖ζ‖2

(
e′
pAep

) = ‖ζ‖2

[e′
pAep]−1

d= ‖ζ‖2

[e′
pL′D−1

ppLep]−1 �

Since Lep is the first column of L, we have, using the definition of the
Choleski decomposition,

Lep = [Ip +CpqC
−1
qq C

−1
qq C

′
pq]ep√

e′
p[Ip +CpqC−1

qq C
−1
qq C

′
pq]ep

�

As a result,

pF∞
d= ‖ζ‖2

η2 �

where

η2 = [
e′
pL′D−1

ppLep
]−1

= e′
p[Ip +CpqC

−1
qq C

−1
qq C

′
pq]ep

e′
p[Ip +CpqC

−1
qq C

−1
qq C

′
pq]D−1

pp[Ip +CpqC
−1
qq C

−1
qq C

′
pq]ep

�

Part (b). It is easy to show that

ECqq = μ1Iq and var
[
vec(Cqq)

] = μ2(Iqq +Kqq)�

where μ1 and μ2 are defined in (8), Iqq is the q2 × q2 identity matrix, and Kqq

is the q2 × q2 commutation matrix. So Cqq = μ1Iq + op(1) and C−1
qq = μ−1

1 Iq +
op(1) as h → ∞. Similarly, Cpp = μ1Ip + op(1) and C−1

pp = μ−1
1 Ip + op(1) as

h→ ∞. In addition, using the same argument, we can show that Cpq = op(1).
Therefore,

η2 = e′
p[Ip +CpqC

′
pq/μ

2
1]ep

e′
p[Ip +CpqC

′
pq/μ

2
1][Ip −CpqC

′
pq/μ

2
1]−1[Ip +CpqC

′
pq/μ

2
1]ep

× (
1 + op(1)

)
= 1 + op(1)�

That is, η2 →p 1 as h→ ∞.
We proceed to prove the distributional expansion. The (i� j)th elements

Cpp(i� j), Cpq(i� j), and Cqq(i� j) of Cpp, Cpq, and Cqq are equal to either
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∫ 1
0

∫ 1
0 Q

∗
h(r� s)dB(r)dB(s) or

∫ 1
0

∫ 1
0 Q

∗
h(r� s)dB(r)dB̃(s), where B(·) and B̃(·)

are independent standard Brownian motion processes. By direct calculations,
we have, for any ς ∈ (0�3/8),

P
(∣∣Cef (i� j)−ECef (i� j)

∣∣>μς2)
≤ E|Cef (i� j)−ECef (i� j)|8

μ8ς
2

=O

(
μ4

2

μ8ς
2

)
= o(μ2)�

where e� f = p or q. Define the event E as

E = {
ω :

∣∣Cef (i� j)−ECef (i� j)
∣∣ ≤ μς2 for all i� j and all e and f

}
�

Then the complement E c of E satisfies P(E c) = o(μ2) as h → ∞. Let Ẽ be
another event. Then

P(Ẽ)= P(Ẽ ∩ E)+ P
(
Ẽ ∩ E c

) = P(Ẽ ∩ E)+ o(μ2)

= P(Ẽ |E)P(E)+ o(μ2)= P(Ẽ |E)(1 − o(μ2)
) + o(μ2)

= P(Ẽ |E)+ o(μ2)�

That is, up to an error of o(μ2), P(Ẽ), P(Ẽ ∩ E), and P(Ẽ |E) are asymptoti-
cally equivalent. So for the purpose of proving the theorem, it is innocuous to
condition on E or to remove the conditioning, if needed.

Now conditioning E , the numerator of η2 satisfies

e′
p

[
Ip +CpqC

−1
qq C

−1
qq C

′
pq

]
ep

= 1 + 1
μ2

1

e′
pCpq

[
Iq + Cqq −ECqq

μ1

]−1[
Iq + Cqq −ECqq

μ1

]−1

C ′
pqep

= 1 + 1
μ2

1

e′
pCpq(Iq −Mqq)(Iq −Mqq)C

′
pqep

= 1 + 1
μ2

1

e′
pCpqM̃qqC

′
pqep�

where Mqq is a matrix with elements Mqq(i� j) satisfying |Mqq(i� j)| = O(μς2)

conditional on E , and M̃qq is a matrix satisfying |M̃qq(i� j)− 1{i = j}| = O(μς2)
conditional on E .

Let

Cp+q�p+q =
(
Cpp Cpq
C ′
pq Cqq

)
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and let eq+q�p be the matrix consisting of the first p columns of the identity
matrix Ip+q. To evaluate the denominator of η2, we note that

D−1
pp = 1

μ1
e′
q+q�p

(
Ip+q + Cp+q�p+q −ECp+q�p+q

μ1

)−1

eq+q�p

= 1
μ1
e′
q+q�p

(
Ip+q − Cp+q�p+q −ECp+q�p+q

μ1

)
eq+q�p

+ e′
q+q�p

( [Cp+q�p+q −ECp+q�p+q][Cp+q�p+q −ECp+q�p+q]
μ2

1

)

× eq+q�p +Mpp

= 1
μ1

(
Ip − Cpp −ECpp

μ1

+ [Cpp −ECpp][Cpp −ECpp] +CpqC
′
pq

μ2
1

)
+Mpp�

whereMpp is a matrix with elementsMpp(i� j) satisfying |Mpp(i� j)| =O(μ3ς
2 )=

o(μ2) for ς > 1/3 conditional on E .
For the purpose of proving our result, Mpp can be ignored as its presence

generates an approximation error of o(μ2), which is the same as the order of
the approximation error given in the theorem. More specifically, let

C̃pp = CpqM̃qqC
′
pq

μ2
1

�

D̃−
pp =

(
Ip − Cpp −ECpp

μ1
+ [Cpp −ECpp][Cpp −ECpp] +CpqC

′
pq

μ2
1

)

and

η̃2 := η̃2
(
C̃pp� D̃

−
pp

) = μ1(1 + e′
pC̃ppep)

e′
p(Ip + C̃pp)D̃

−
pp(Ip + C̃pp)ep

�

Then

P(pF∞ < z)=EGp
(
η2z

) = EGp
(
η̃2z

) + o(μ2)�

Note that for any q× q matrix Lqq, we have

ECpqLqqC
′
pq = E

∫ 1

0

∫ 1

0
Q∗
h(r1� s1)Q

∗
h(r2� s2)dBp(r1)dBq(s1)

′(B.18)

×Lqq dBq(s2)dBp(r1)
′
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= E

∫ 1

0

∫ 1

0
Q∗
h(r1� s1)Q

∗
h(r2� s2)dBp(r1)dBp(r1)

′

× tr
(
dBq(s2)dBq(s1)

′Lqq

)
= tr(Lqq)

∫ 1

0

∫ 1

0

[
Q∗
h(r� s)

]2
dr drIp = tr(Lqq)μ2Ip�

Taking an expansion of η̃2(C̃pp� D̃
−
pp) around C̃pp = qμ2/μ

2
1Ip and D̃−

pp = Ip, we
obtain

η̃2 = η2
0 + err�

where err is the approximation error and

η2
0 = μ1 − 2qμ2

μ1
+ e′

p[Cpp −ECpp]ep

− e′
p[Cpp −ECpp][Cpp −ECpp]ep

μ1
+ {e′

p[Cpp −ECpp]ep}2

μ1
�

We keep enough terms in η2
0 so that EGp(η̃2z)= EGp(η2

0z)+ o(μ2).
Now we write

P(pF∞ < z)= EGp
(
η2

0z
) + o(μ2)

= Gp(z)+ G ′
p(z)z

(
Eη2

0 − 1
)

+ 1
2
G ′′
p(z)z

2E
(
η2

0 − 1
)2 + o(μ2)�

In view of

Eη2
0 − 1 = (μ1 − 1)− 2qμ2

μ1
− 1
μ1
Ee′

p[Cpp −ECpp][Cpp −ECpp]ep

+E
{e′

p[Cpp −ECpp]ep}2

μ1

= (μ1 − 1)− 2qμ2

μ1
− μ2

μ1
(p+ 1)+ 2μ2

μ1

= (μ1 − 1)− 2qμ2

μ1
− μ2

μ1
(p− 1)

and

E
(
η2

0 − 1
)2

=E

[
μ1 − 1 − 2qμ2

μ1
+ e′

p[Cpp −ECpp]ep
]2

+ o(μ2)
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=E
{
e′
p[Cpp −ECpp]ep

}2 + (μ1 − 1)2 + o(μ2)

= 2μ2 + (μ1 − 1)2 + o(μ2)�

we have

P(pF∞ < z)(B.19)

= Gp(z)+ G ′
p(z)z

[
(μ1 − 1)− 2qμ2

μ1
− μ2

μ1
(p− 1)

]

+ G ′′
p(z)z

2μ2 + o(μ2)

= Gp(z)+ G ′
p(z)z

[
(μ1 − 1)− μ2

μ1
(p+ 2q− 1)

]

+ G ′′
p(z)z

2μ2 + o(μ2)� Q.E.D.

PROOF OF THEOREM 6: We prove part (a) only, as the proof for part (b) is
similar. Using the same arguments and the notation as in the proof of Theo-
rem 1, we have

R
[
G′W −1

∞ G
]−1
G′W −1

∞ ΛBm(1)+ δ0

d=RV A−1
(
Id� −C12C

−1
22

)
Bm(1)+ δ0

and

R
[
G′W −1

∞ G
]−1
R′ d=RV A−1

(
C11

)−1(
A′)−1

V ′R′�

So

F∞�δ0

d= [
RV A−1

(
Id� −C12C

−1
22

)
Bm(1)+ δ0

]′

× [
RV A−1

(
C11

)−1(
A′)−1

V ′R′]−1

× [
RV A−1

(
Id� −C12C

−1
22

)
Bm(1)+ δ0

]
/p�

Let Bm(1) = [B′
d(1)�B

′
q(1)]′ and RV A−1 = ŨΣ̃Ṽ ′ be a SVD of RV A−1,

where Σ̃= (Ã� Õ ). Then

F∞�δ0

d= {
ŨΣ̃Ṽ ′[Bd(1)−C12C

−1
22 Bq(1)

] + δ0

}′(
ŨΣ̃Ṽ ′(C11

)−1
Ṽ Σ̃′Ũ ′)−1

× {
ŨΣ̃Ṽ ′[Bd(1)−C12C

−1
22 Bq(1)

] + δ0

}
/p

= {
Σ̃Ṽ ′[Bd(1)−C12C

−1
22 Bq(1)

] + Ũ ′δ0

}′(
Σ̃Ṽ ′C−1

11 Ṽ Σ̃
′)−1

× {
Σ̃Ṽ ′[Bd(1)−C12C

−1
22 Bq(1)

] + Ũ ′δ0

}
/p�
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The above distribution does not depend on the orthonormal matrix Ṽ . So

F∞�δ0

d= {
Σ̃

[
Bd(1)−C12C

−1
22 Bq(1)

] + Ũ ′δ0

}′(
Σ̃C−1

11 Σ̃
′)−1

× {
Σ̃

[
Bd(1)−C12C

−1
22 Bq(1)

] + Ũ ′δ0

}
/p

= {
Ã

[
Bp(1)−CpqC

−1
qq Bq(1)

] + Ũ ′δ0

}′
(ÃDppÃ)

−1

× {
Ã

[
Bp(1)−CpqC

−1
qq Bq(1)

] + Ũ ′δ0

}
= [

Bp(1)−CpqC
−1
qq Bq(1)+ Ã−1Ũ ′δ0

]′

×D−1
pp

[
Bp(1)−CpqC

−1
qq Bq(1)+ Ã−1Ũ ′δ0

]
�

Let H = ( Ã−1U ′δ0
‖Ã−1U ′δ0‖ � H̃) be a p×p orthonormal matrix. Then

F∞�δ0

d= [
H ′Bp(1)−H ′CpqC−1

qq Bq(1)+H ′Ã−1Ũ ′δ0

]′

×H ′D−1
ppH

[
H ′Bp(1)−H ′CpqC−1

qq Bq(1)+H ′Ã−1Ũ ′δ0

]
= [

H ′Bp(1)−H ′CpqC−1
qq Bq(1)+ ep

∥∥Ã−1Ũ ′δ0

∥∥]′

×H ′D−1
ppH

[
H ′Bp(1)−H ′CpqC−1

qq Bq(1)+ ep
∥∥Ã−1Ũ ′δ0

∥∥]
�

But the joint distribution of (H ′Bp(1)�H ′Cpq�H ′D−1
ppH) is invariant to H.

Hence, we can write

F∞�δ0

d= [
Bp(1)−CpqC

−1
qq Bq(1)+ ep

∥∥Ã−1Ũ ′δ0

∥∥]′

×D−1
pp

[
Bp(1)−CpqC

−1
qq Bq(1)+ ep

∥∥Ã−1Ũ ′δ0

∥∥]
/p�

That is, the distribution of F∞�δ0 depends on δ0 only through ‖Ã−1Ũ ′δ0‖. Note
that ŨÃÃ′Ũ ′ = ŨΣ̃Ṽ ′(ŨΣ̃Ṽ ′)′ =RV A−1(RV A−1)′ and

∥∥Ã−1Ũ ′δ0

∥∥2 = δ′
0Ũ

(
Ã−1

)′
Ã−1Ũ ′δ0 = δ′

0

[
ŨÃÃ′Ũ ′]−1

δ0

= δ′
0

[
RV A−1

(
A−1

)′
V ′R′]−1

δ0

= δ′
0

[
R

(
V A′AV ′)−1

R′]−1
δ0

= δ′
0

{
R

[(
Λ−1G

)′
Λ−1G

]−1
R′}−1

δ0

= δ′
0

{
R

[
G′Ω−1G

]−1
R′}−1

δ0

= ∥∥V−1/2δ0

∥∥2 = ‖δ̌‖2�
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so we have

F∞�δ0

d= [
Bp(1)−CpqC

−1
qq Bq(1)+ δ̌

]′

×D−1
pp

[
Bp(1)−CpqC

−1
qq Bq(1)+ δ̌

]
/p

= F∞
(‖δ̌‖2

)
� Q.E.D.

APPENDIX C: PRACTICAL GUIDANCE AND EMPIRICAL APPLICATION

C.1. Practical Guidance

C.1.1. GMM Estimation and Optimal Weighting Matrix Estimation

Let vt ∈ R
dv be a vector of observations at time t for t = 1� � � � �T . In the

GMM framework, we specify a vector of moment conditions,

Ef(vt� θ0)= 0� t = 1�2� � � � �T�(C.1)

where θ0 ∈ R
d is the unknown parameter vector of interest and f (vt� ·) is an

m× 1 vector of continuously differentiable functions with m ≥ d. To achieve
identification, we assume that on the parameter space Θ, Ef(vt� θ)= 0 if and
only if θ = θ0. The model is possibly overidentified with the degree of overi-
dentification q=m− d.

Let

gT (θ)= 1
T

T∑
t=1

f (vt� θ)�

Then the GMM estimator of θ0 is given by

θ̂GMM = arg min
θ∈Θ

gT (θ)
′W −1

T gT (θ)�

where WT is a positive definite weighting matrix.
To obtain an initial first step estimator, we choose a simple weighting matrix

Wo that does not depend on model parameters, leading to

θ̃T = arg min
θ∈Θ

gT (θ)
′W −1

o gT (θ)�

Wo may depend on the sample size T , in which case the dependence has been
suppressed. As an example, we may set Wo = Im in the general GMM setting.
In the IV regression, we may set Wo = Z′Z/T , where Z is the data matrix for
the instruments.

According to Hansen (1982), the optimal weighting matrix is the long run
variance (LRV) matrix of the moment process {f (vt� θ0)}. Since θ0 is not
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known, the moment process {f (vt� θ0)} is not directly observable but it can
be estimated by {ũt := f (vt� θ̃T )}. On the basis of {ũt}, we estimate the optimal
weighting matrix by

WT(θ̃T ;h)= 1
T

T∑
t=1

T∑
s=1

Qh

(
t

T
�
s

T

)(
ũt − 1

T

T∑
τ=1

ũτ

)(
ũs− 1

T

T∑
τ=1

ũτ

)′

�(C.2)

where Qh(r� s) is a symmetric weighting function that depends on the smooth-
ing parameter h. There are several choices of Qh in the literature. We list two
here.

• Conventional kernel estimators: Qh(r� s) = k((r − s)/b) with b = 1/h,
where k(·) is the kernel function.

• Orthonormal series (OS) estimators: Qh(r� s)=K−1
∑K

j=1φj(r)φj(s) with
K = h, where {φj(r)} are orthonormal basis functions on L2[0�1] satisfying∫ 1

0 φj(r)dr = 0.
In the case of kernel estimation, we can take k(·) to be the Bartlett kernel,

the Parzen kernel, or the QS kernel, the three commonly used positive definite
kernels. In this case, bT is usually referred to as the truncation lag or band-
width. Andrews (1991) shows that the AMSE-optimal smoothing parameter h
is1

Bartlett kernel: h∗
T = 0�8736

[
α(q0)

]−1/(2q0+1)
T 2q0/(2q0+1) for q0 = 1�

Parzen kernel: h∗
T = 0�3757

[
α(q0)

]−1/(2q0+1)
T 2q0/(2q0+1) for q0 = 2�

QS kernel: h∗
T = 0�7564

[
α(q0)

]−1/(2q0+1)
T 2q0/(2q0+1) for q0 = 2�

where

α(q0)= 2 vec(Bq0)
′ vec(Bq0)

tr[(Im2 +Kmm)(Ω⊗Ω)]
and

Bq0 =
∞∑

j=−∞
|j|q0Ef(vt� θ0)f (vt−j� θ0)

′ and

Ω=
∞∑

j=−∞
Ef(vt� θ0)f (vt−j� θ0)

′�

In the above expression, Im2 is the m2 × m2 identity matrix and Kmm is the
m2 ×m2 commutation matrix.

1Andrews (1991) gives the AMSE-optimal smoothing parameter in terms of the “truncation
lag” ST . In our notation, h∗

T = T/S∗
T .
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In the case of OS estimation, we can assume that h is even and take φj(·)
to be φ2j−1(x)= √

2 cos 2jπx, φ2j(x)= √
2 sin 2jπx, j = 1� � � � �h/2. It follows

from Phillips (2005) that the AMSE-optimal and even h is given by

h∗
T = 2 × ⌈

0�3567
[
α(q0)

]−1/(2q0+1)
T 2q0/(2q0+1)

⌉
for q0 = 2�

where �·� is the ceiling function.
To obtain a data-driven h∗, we employ the standard plug-in procedure. The

VAR(1) plug-in procedure employs a VAR(1) as the parametric model to ap-
proximate the dynamics in {f (vt� θ0)}. It involves the following steps:

(i) Fit a VAR(1) by ordinary least squares to the estimated process {ũt :=
f (vt� θ̃T )} to obtain an estimate Ã of the autoregressive matrix and an estimate
Σ̃ of the error variance matrix.

(ii) Use the formulae on page 835 of Andrews (1991) to obtain estimates
B̃q0 and Ω̃.2

(iii) Plug B̃q0 and Ω̃ into the definition of h∗
T to obtain the data-driven h̃T .

In the plug-in procedure, we can also use other approximating parametric
models such as univariate AR(1)models, higher order AR models, and moving
average models (univariate or multivariate). For more details, see Andrews
(1991).

Our inference procedure below treats h̃T as if it is deterministic. To minimize
the undue influence from the randomness of h̃T , we could discretize the set of
possible scaling constants in h∗

T , replacing h̃T with the closest value, h̃†
T , in some

finite set. The estimation uncertainty in h̃†
T is small enough that it will not affect

our asymptotic results. This remedy is more of theoretical interest. To maintain
the automated nature of our testing procedures, we recommend skipping the
remedy and treating h̃T as a deterministic sequence in practice.

C.1.2. Two-Step Test Statistics

With the variance estimator WT(θ̃T ; h̃T ), the two-step GMM estimator is

θ̂T = arg min
θ∈Θ

gT (θ)
′WT(θ̃T ; h̃T )gT (θ)�

Our two-step inference is based on the above two-step estimator θ̂T .
Suppose we want to test the linear null hypothesis H0 :Rθ0 = r against

H0 :Rθ0 �= r, where R is a p× d matrix with full row rank.3 We consider three

2In terms of the notation here, B̃q0 = 2πf̂ (q0) and Ω̃ = 2πf̂ , where f̂ (q0) and f̂ are given on

page 835 of Andrews (1991) with Â replaced by Ã and Σ̂ replaced by Σ̃.
3For the Wald and t types of tests, nonlinear restrictions can be transformed into linear ones

using the delta method.
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types of test statistics. The first type is the conventional Wald statistic. The
(normalized) Wald statistic is

WT := WT (θ̂T )

= T(Rθ̂T − r)′
{
R

[
GT(θ̂T )

′W −1
T (θ̃T ; h̃T )GT(θ̂T )

]−1
R′}−1

× (Rθ̂T − r)/p�

where GT(θ) = ∂gT (θ)

∂θ′ . When p = 1 and for one-sided alternative hypotheses,
we can construct the t statistic

tT := tT (θ̂T )=
√
T(Rθ̂T − r)

{R[GT(θ̂T )
′W −1

T (θ̃T ; h̃T )GT(θ̂T )]−1R′}1/2
�

The second type of test statistic is based on the likelihood ratio principle.
Let θ̂T�R be the restricted second-step GMM estimator:4

θ̂T�R = arg min
θ∈Θ

gT (θ)
′W −1

T (θ̃T ; h̃T )gT (θ) s.t. Rθ= r�

The likelihood ratio principle suggests the GMM distance statistic (or GMM
criterion function statistic) given by

DT = [
TgT (θ̂T )

′W −1
T (θ̃T ; h̃T )gT (θ̂T )

− TgT(θ̂T�R)
′W −1

T (θ̃T ; h̃T )gT (θ̂T�R)
]
/p�

The third type of test statistic is the GMM counterpart of the score statis-
tic or Lagrange multiplier statistic. It is based on the score or gradient of the
GMM criterion function, that is, ΔT(θ) = G′

T (θ)W
−1
T (θ̃T � h̃T )gT (θ). The test

statistic is given by

ST = T
[
ΔT(θ̂T�R)

]′[
G′
T (θ̂T�R)W

−1
T (θ̃T � h̃T )GT(θ̂T�R)

]−1
ΔT(θ̂T�R)/p�

C.1.3. Approximating Distributions

It is shown that WT �DT , and ST have the same limiting distribution. To de-
scribe the approximating distributions for the test statistics WT , DT , ST , and tT ,
we let et := (e′

t�p, e′
t�d−p, e′

t�q)
′
∼ i.i.d. N(0� Im). The subscripts p, d − p, and q

on e indicate not only the dimensions of the random vectors, but also distin-

4The constraints imposed are the restrictions under the null hypothesis. Linearization is not
necessary if the null restrictions are nonlinear.
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guish them so that, for example, et�p is different and independent from et�q for
all values of p and q. Denote

Cp�T = 1√
T

T∑
t=1

et�p� Cq�T = 1√
T

T∑
t=1

et�q

and

Cpp�T = 1
T

T∑
t=1

T∑
τ=1

Qh̃T

(
t

T
�
τ

T

)
ẽt�pẽ

′
τ�p�(C.3)

Cpq�T = 1
T

T∑
t=1

T∑
τ=1

Qh̃T

(
t

T
�
τ

T

)
ẽt�pẽ

′
τ�q�

Cqq�T = 1
T

T∑
t=1

T∑
τ=1

Qh̃T

(
t

T
�
τ

T

)
ẽt�qẽ

′
τ�q�

Dpp�T = Cpp�T −Cpq�TC
−1
qq�TC

′
pq�T �

where ẽi�j = ei�j − 1
T

∑T

s=1 es�j for i= t� τ and j = p�q.
Define

FeT := [
Cp�T −Cpq�TC

−1
qq�TCq�T

]′
D−1
pp�T

[
Cp�T −Cpq�TC

−1
qq�TCq�T

]
/p;

teT := [
Cp�T −Cpq�TC

−1
qq�TCq�T

]
/
√
Dpp�T for p= 1�

Then the distributions of WT , DT , and ST can be approximated by that of FeT
and the distribution of tT can be approximated by that of teT . The distributions
of FeT and teT can be easily simulated, as they involve only T i.i.d. standard
normal vectors.

In the special case of OS variance estimation, we can approximate the dis-
tributions of WT , DT , and ST by a noncentral F distribution. More specifically,
let

δ̃2
T = pq

h̃T − q− 1

and let F 1−α
p�h̃T−p−q+1

(δ̃2
T ) be the (1−α) quantile of the noncentral F distribution

Fp�h̃T−p−q+1(δ̃
2
T ) with degrees of freedom (p� h̃T −p−q+ 1) and noncentrality

parameter δ̃2
T . Then we can use

h̃T −p− q+ 1

h̃T
F 1−α
p�h̃T−p−q+1

(
δ̃2
T

)
(C.4)
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as the α-level critical value for the tests based on the statistics WT , DT , and ST .
Similarly, in the case of OS variance estimation, the (1 − α) quantile of the

finite sample distribution of tT can be approximated by√
(h̃T − q+ 1)

h̃T
F 1−2α

1�h̃T−q
(
δ̃2
T

)
� if α< 0�5�

(C.5)

−
√
(h̃T − q+ 1)

h̃T
F 2α−1

1�h̃T−q
(
δ̃2
T

)
� if α≥ 0�5�

For a two-sided t test, the (1 − α) quantile of |tT | can be approximated by√
(h̃T − q+ 1)

h̃T
F 1−α

1�K−q
(
δ̃2
T

)
�(C.6)

In essence, we construct the test statistics in the usual way. The difference
between the newly proposed testing procedure and existing ones lies in the
critical value used. In the case of kernel HAR variance estimation, we simulate
FeT and teT and use their quantiles as the critical values. In the case of OS HAR
variance estimation, we can either use the simulated critical values from FeT /teT
or use noncentral F critical values given in (C.4)–(C.6).

C.2. Empirical Application

To illustrate the fixed-smoothing approximations, we consider the log-
normal stochastic volatility model of the form

rt = σtZt�

logσ2
t =ω+β

(
logσ2

t−1 −ω
) + σuut�

where rt is the rate of return and (Zt�ut) is i.i.d. N(0� I2). The first equation
specifies the distribution of the return as heteroscedastic normal. The second
equation specifies the dynamics of the log volatility as an AR(1). The param-
eter vector is θ = (ω�β�σu). We impose the restriction that β ∈ (0�1), which
is an empirically relevant range. The model and the parameter restriction are
the same as those considered by Andersen and Sorensen (1996), which gives
a detailed discussion on the motivation of the stochastic volatility models and
the GMM approach. For more discussions, see Ghysels, Harvey, and Renault
(1996) and references therein.

We employ the GMM to estimate the log-normal stochastic volatility model.
The data are weekly returns of Standard & Poor’s 500 stocks, which are con-
structed by compounding daily returns with dividends from a Center for Re-
search in Security Prices index file. We consider both value-weighted returns



26 YIXIAO SUN

(vwretd) and equal-weighted returns (ewretd). The weekly returns range from
the first week of 2001 to the last week of 2012 with sample size T = 627. We
use weekly data so as to minimize problems associated with daily data such
as asynchronous trading and bid–ask bounce. This is consistent with Jacquier,
Polson, and Rossi (1994).

The GMM approach relies on functions of the time series {rt} to identify the
parameters of the model. For the log-normal stochastic volatility model, we
can obtain the moment conditions

E|rt |� = c�E
(
σ�
t

)
for �= 1�2�3�4

with (c1� c2� c3� c4)= (
√

2/π�1�2
√

2/π�3)�

E|rtrt−j| = 2π−1E(σtσt−j) and

Er2
t r

2
t−j =E

(
σ2
t σ

2
t−j

)
for j = 1�2� � � � �

where

E
(
σ�
t

) = exp
[
ω�

2
+ �2σ2

u

8(1 −β2)

]
�

E
(
σ
�1
t σ

�2
t−j

) =E
(
σ
�1
t

)
E

(
σ
�2
t

)
exp

[
σ2
u�1�2β

j

4(1 −β2)

]
�

Higher order moments can be computed, but we choose to focus on a sub-
set of lower order moments. Andersen and Sorensen (1996) point out that
it is generally not optimal to include too many moment conditions when the
sample is limited. On the other hand, it is not advisable to include just as
many moment conditions as the number of parameters. When T = 500 and
θ= (−7�36�0�90�0�363), which is an empirically relevant parameter vector, Ta-
ble 1 in Andersen and Sorensen (1996) shows that it is MSE-optimal to employ
nine moment conditions. For this reason, we employ two sets of nine moment
conditions given in the Appendix of Andersen and Sorensen (1996). The base-
line set of the nine moment conditions are Efi(rt� θ)= 0 for i= 1� � � � �9 with

fi(rt� θ)= |rt |i − c�E
(
σ�
t

)
� i= 1� � � � �4�(C.7)

f5(rt� θ)= |rtrt−1| − 2π−1E(σtσt−1)�

f6(rt� θ)= |rtrt−3| − 2π−1E(σtσt−3)�

f7(rt� θ)= |rtrt−5| − 2π−1E(σtσt−5)�

f8(rt� θ)= r2
t r

2
t−2 −E

(
σ2
t σ

2
t−2

)
�

f9(rt� θ)= r2
t r

2
t−4 −E

(
σ2
t σ

2
t−4

)
�
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The alternative set of the nine moment conditions are Efi(rt� θ) = 0 for i =
1� � � � �9 with

fi(rt� θ)= |rt |i − c�E
(
σ�
t

)
� i= 1� � � � �4�

f5(rt� θ)= |rtrt−2| − 2π−1E(σtσt−2)�

f6(rt� θ)= |rtrt−4| − 2π−1E(σtσt−4)�

f7(rt� θ)= |rtrt−6| − 2π−1E(σtσt−6)�

f8(rt� θ)= r2
t r

2
t−1 −E

(
σ2
t σ

2
t−1

)
�

f9(rt� θ)= r2
t r

2
t−3 −E

(
σ2
t σ

2
t−3

)
�

In each case m = 9 and d = 3, and so the degree of overidentification is q =
m− d = 6.

We focus on constructing 90% and 95% confidence intervals (CIs) for β.
Given the high nonlinearity of the moment conditions, we invert the GMM
distance statistic to obtain the CIs. The CIs so obtained are invariant to the
reparametrization of model parameters. For example, a 95% confidence inter-
val is the set of β values in (0�1) that the DT test does not reject at the 5% level.
We search over the grid from 0.01 to 0.99 with increments of 0.01 to invert the
DT test. As in the simulation study, we employ three different critical values:
χ1−α
p /p, F 1−α

∞ [0], and F 1−α
∞ [q], which correspond to three different asymptotic

approximations. For the series LRV estimator, F 1−α
∞ [0] is a critical value from

the corresponding F approximation. Before presenting the empirical results,
we notice that there is no “hole” in the CIs we obtain—the values of β that
are not rejected form an arithmetic sequence. Given this, we report only the
minimum and maximum values of β over the grid that are not rejected. It turns
out that the maximum value is always equal to the upper bound 0.99. It thus
suffices to report the minimum value, which we take as the lower limit of the
CI.

Table C.I presents the lower limits for different 95% CIs together with the
smoothing parameters used. The smoothing parameters are selected in the
same ways as in the simulation study. Since the selected K values are rela-
tively large and the selected b values are relatively small, the CIs based on
the χ2 approximation and the F∞[0] approximation are close to each other.
However, there is still a noticeable difference between the CIs based on the χ2

approximation and the nonstandard F∞[q] approximation. This is especially
true for the case with baseline moment conditions, the Bartlett kernel, and
equally-weighted returns. Taking into account the randomness of the estimated
weighting matrix leads to wider CIs. The log volatility may not be as persistent
as previously thought.
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TABLE C.I

LOWER LIMITS OF DIFFERENT 95% CIS FOR β AND DATA-DRIVEN SMOOTHING PARAMETERS
IN THE LOG-NORMAL STOCHASTIC VOLATILITY MODELa

Equally-Weighted Return Value-Weighted Return

Baseline Alternative Baseline Alternative

Series χ2 0.74 0.58 0.78 0.62
Series F∞[0] 0.73 0.57 0.78 0.62
Series F∞[q] 0.70 0.53 0.76 0.57
K (140) (138) (140) (140)

Bartlett χ2 0.56 0.52 0.78 0.60
Bartlett F∞[0] 0.54 0.52 0.77 0.60
Bartlett F∞[q] 0.35 0.42 0.75 0.53
b (0.0155) (0.0157) (0.155) (0.0155)

Parzen χ2 0.72 0.52 0.78 0.50
Parzen F∞[0] 0.73 0.52 0.78 0.50
Parzen F∞[q] 0.69 0.47 0.77 0.43
b (0.0136) (0.0139) (0.0136) (0.0136)

QS χ2 0.74 0.52 0.78 0.52
QS F∞[0] 0.74 0.52 0.78 0.52
QS F∞[q] 0.71 0.48 0.77 0.46
b (0.0068) (0.0069) (0.0067) (0.0067)

aBaseline: CI using the baseline nine moment conditions given in (C.7). Alternative: CI using the alternative nine
moment conditions given in (C.8). Series χ2: the CI constructed based on the OS HAR variance estimator and using
χ2

1 as the reference distribution. Other row titles are similarly defined.
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