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Computation of Expected-Payoff Maximizing Bids in the part II auctions

In this memo, we describe how expected-payoff maximizing bids are computed. The

subject number is fixed for the procedures below. Hence, our notation omits

the index for the subject number. We use subject # 37 as an example, whose signal-

bid combinations in part I are shown below (also in Table 1 of the article), to illustrate the

procedure:

xi 0 1 2 3 4 5 6 7 8 9 10

bi 4 1 4 5 5 5 5 6 9 10 10

Sorting the Bids: We first sort the bids in ascending order, which produces the follow-

ing list of signal-bid combinations. For each l ∈ {1, . . . , 11}, we label each bid as oppb(l)

and the corresponding signal as oppv(l).1 Remember that the subject’s opponent in part

II (i.e., computer) receives the signal randomly for each auction, and mimics the subject’s

behavior in part I.

l 1 2 3 4 5 6 7 8 9 10 11

oppv(l) 1 0 2 3 4 5 6 7 8 9 10

oppb(l) 1 4 4 5 5 5 5 6 9 10 10

Bids in Consideration: Although the number of feasible bids is 100,000,001, we only

look at a subset of them for each subject, denoted as sb whose elements are denoted by

sb(k) for k ∈ {1, . . . , 45}.
First, the vector sb includes the elements of the vector bidsignal whose elements are

bidsignal(ξ) for ξ ∈ {1, . . . , 22}. The vector sb consists of (i) oppb (11 elements) and (ii)

1Note that the signal-bid pairs are lexicographically ordered.
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the signals (11 elements in bold in the bidsignal vector below). They are sorted in ascending

order.2

bidsignal 0 1 1 2 3 4 4 4 5 5 5 5 5 6 6 7 8 9 9 10 10 10

Second, we consider a bid between every pair of two adjoining bids in bidsignal. Consider

the current example. Given oppb shown above (which is known to the subject in part II),

consider the set of bids {1.01, . . . , 3.99}. Note that any bid in this set leads to the same

expected payoff since the cases in which these bids win are the same (and in a second-price

auction the payoff for all winning bids is the same). Hence, the examination of only one point

in this set is sufficient to see whether every bid in this set is an expected-payoff maximizing

bid. We simply include the average of every pair of adjoining elements in bidsignal (21

elements). We also add 0 (the first element) and 1000000 (the last element). Together these

bids create mid whose elements are denoted by mid(ζ) for ζ ∈ {1, . . . , 23}.3 Some elements

of mid may not be feasible bids. Nevertheless, our computation of expected payoffs (and

hence expected-payoff maximizing bids) still works.

We sort the elements in bidsignal and mid in ascending order to create sb (45 ele-

ments).4 As a consequence, each element from bidsignal has an even-numbered index in sb

while every element from mid has an odd-numbered index in sb. We use the bids in sb as

the subject’s potential bid choices to evaluate their expected payoffs. We then identify the

set of expected-payoff maximizing bids.

0 0 0.5 1 1 1 1.5 2 2.5

3 3.5 4 4 4 4 4 4.5 5

5 5 5 5 5 5 5 5 5.5

6 6 6 6.5 7 7.5 8 8.5 9

9 9 9.5 10 10 10 10 10 1000000

2The same number appears at least twice if any of the bids is an integer between 0 and 10 as the
current example suggests. We are aware that the signals could be dropped from our procedure to compute
expected-payoff maximizing bids.

3If two adjoining elements in bidsignal are equal, the corresponding element in mid is equal to both as
well.

4Since 0 enters as a signal and as the first element of mid, the first two elements of sb are always zero.
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Remark 1. For MB, any number strictly lower than xi cannot be chosen.

Remark 2. In general, we cannot exclude the possibility that there exists η ∈ {2, . . . , 11}
such that bidsignal(k)− bidsignal(k − 1) = 0.01. In this case, the corresponding element

in mid cannot be chosen by the subject.

We explicitly take these two cases into consideration below.

Computation of Expected Payoffs: Remember that oppb(l) and oppv(l) are sorted

according to oppb(l). For any l ∈ {1, . . . , 11}, oppv(l) provides the signal attached to

oppb(l) for the opponent. In addition, remember that the value of the object is max{x1, x2}.

For each j ∈ {1, . . . , 11} and l ∈ {1, . . . , 11}, we first identify the value of the object

when the subject’s signal is x(j) = j − 1 and the opponent’s signal is oppv(l), which we

denote by m(j, l) = max{x(j),oppv(l)}. For the current example, see the sheet “m” in the

excel file “example”.5

For each k ∈ {1, . . . , 45} and l ∈ {1, . . . , 11}, we construct the variable a(k, l) which

takes three possible values;

a(k, l) =


1

0.5

0

 if sb(k)


>

=

<

oppb(l).

See the sheet “a” in the excel file “example”.

For each k ∈ {1, . . . , 45} and j ∈ {1, . . . , 11}, we compute the expected payoff with sb(k)

and x(j);

u(k, j) =
11∑
l=1

a(k, l)

11
[m(j, l)− oppb(l)] .

See the sheet “u” in the file “example”.

Remark 3. To avoid rounding errors, we multiply the expected payoffs by 22 for the

identification of expected-payoff maximizing bids.

5In this excel file, we directly computed the values to confirm that the numbers in Table 1 of the manuscript
are consistent with the results obtained here.
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Remark 4. For any sb(i, k) to which Remarks 1 or 2 apply, we let u(k, j) = −1.6

We identify the highest expected payoff for each x(j); for each j ∈ {1, . . . , 11}, let

maxu(j) = max
k
{u(k, j)}.

We then construct an indicator variable for each k ∈ {1, . . . , 45} and j ∈ {1, . . . , 11}:

g(k, j) =

 1

0

 if u(k, j)

 =

<

maxu(j)

This variable indicates that for every x(j), sb(k) with g(k, j) = 1 is an expected-payoff

maximizing bid.

Identification of Expected-Payoff Maximizing Bids: We introduce the following

variables:

• noi(j): the number of the sets of expected-payoff maximizing bids for x(j). We use

the index η ∈ {1, . . . ,noi(j)},7

• inf(j, η) ∈ bidsignal and sup(j, η) ∈ bidsignal: corresponding to the inf and sup of

the set of expected-payoff maximizing bids η respectively,

• binf(j, η) ∈ {−2,−1} and bsup(j, η) ∈ {1, 2}: binf(j, η) is -2 (-1) if the correspond-

ing inf(j, η) is “closed” (“open”). Likewise, bsup(j, η) is 2 (1) if the corresponding

sup(j, η) is “closed” (“open”), and

• oneminusone ∈ {−1, 1}: 1 means “looking for inf” and -1 means “looking for sup”.

We first identify any “locally” unique expected-payoff maximizing bids by looking at

the elements of sb with even-numbered indices (the elements of bidsignal). Given j ∈
{1, . . . , 11}, for every k ∈ {2, 4, . . . , 44} with g(k, j) = 1 (i.e., sb(k) is an expected-payoff

maximizing bid for x(j)), we check whether u(k − 1, j) < maxu(j) and u(k + 1, j) <

maxu(j); i.e., whether its adjoining bids k−1 and k+1 (the elements in mid) are expected-

payoff maximizing bids for x(j). If sb(k) is a locally unique expected-payoff maximizing bid

6Bidding 0 guarantees a payoff of 0 at least. Hence, the highest expected payoff cannot be negative
(including -1), implying that assigning -1 is sufficient (i.e., such an sb cannot be a expected-payoff maximizing
bid). In addition, regarding Remark 2, our computational procedure may potentially divide a set of expected-
payoff maximizing bids into two sets, which did not happen with the current data.

7As the current example shows, it is possible to have multiple separate sets of expected-payoff maximizing
bids.
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for x(j), we treat {sb(k)} as a set of expected-payoff maximizing bids and assign an index

η ∈ {1, . . . ,noi(j)} to this set.8

Next, we look at the elements of sb with odd-numbered indices (the elements of mid).

Given j ∈ {1, . . . , 11}, for every k ∈ {1, 3, . . . , 45}, there are two possibilities; (a) none of

its two adjoining elements sb(k − 1) and sb(k + 1) (which are elements of bidsignal) is an

expected-payoff maximizing bid for x(j), or (b) at least one of them is an expected-payoff

maximizing bid for x(j).

[INF] For j ∈ {1, . . . , 11}, we first look for “inf”. Starting from sb(1)=0, we look for

k ∈ {1, 3, . . . , 45} such that g(k, j) = 1 (i.e., u(k, j) = maxu(j)).

• If k = 1, let inf(j, η) = sb(1) = 0 and binf(j, η) = −2 (closed).

• For k > 1, let inf(j, η) = sb(k − 1) (an element of bidsignal). If g(k − 1, j) = 1, let

binf(j, η) = −2 (closed). Let binf(j, η) = −1 (open) otherwise.

• If k = 45 (remember that sb(45) = 1000000), let sup(j, η) = sb(45) = 1000000 and

bsup(j, η) = 2 (closed).

For the current example, see the sheet “g1-inf” of the file “example”.

[SUP] We now look for “sup”. Starting from sb(k + 2), we check k̄ ∈ {k + 2, . . . , 45}:

• If g(k̄, j) = 1, check k̄ + 2.

• If instead g(k̄, j) = 0, let sup(j, η) = sb(k̄ − 1). If g(k̄ − 1, j) = 1, let bsup(j, η) = 2

(closed). Let bsup(j, η) = 1 (open) otherwise.

• If k̄ = 45, let sup(j, η) = sb(45) = 1000000 and bsup(j, η) = 2 (closed).

For the current example, see “g1-sup” of the file “example”.

Repeat the same procedure for higher η’s and then for higher j’s. The highest noi(j) we

found is 2. See “g2” of the file “example”.

Remark 5. Note that for our search of “sup”, we only look at k ∈ {1, 3, . . . , 45} (the

elements of mid). One may wonder we may be missing the case where for some k′ ∈
{2, 4, . . . , 44} (the elements of bidsignal), we have g(k′ − 1, j) = g(k′ + 1, j) = 1 and

8In the current example, we do not have such a case.
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g(k′, j) = 0.9 Three possible cases listed below show that we do not have to explicitly take

this into account:

• sb(k′) = sb(k′ + 1) = sb(k′ + 2): This implies g(k′, j) = g(k′ + 1, j) = g(k′ + 2, j).

• sb(k′ + 2) − sb(k′) = 0.01: u(k′ + 1, j) = −1.10 Although this produces the correct

sets of expected-payoff maximizing bids, it unnecessarily divides a set into two (which

did not occur with the current data).

• sb(k′ + 2) − sb(k′) > 0.01:11 That g(k′ − 1, j) = g(k′ + 1, j) implies that the tie at

sb(k′) (if there is one – if this is a signal, the argument does not apply) contributes

zero to u(k′, j) – otherwise, u(k′−1, j) 6= u(k′ +1, j). This implies g(k′, j) = 1 as well.

We now identify the sets of expected-payoff maximizing bids. For each set of expected-

payoff maximizing bids, we use two variables: dinf(j, η) and dsup(j, η). For each j ∈
{1, . . . , 11} and η ∈ {1, . . . ,noi(j)}, there are five possibilities:

• inf(j, η) = sup(j, sup) (i.e., “locally unique” expected-payoff maximizing bid): dinf(j, η) =

inf(j, η) and dsup(j, η) = sup(j, η).

• binf(j, η) = −2 (closed) and bsup(j, η) = 2 (closed): dinf(j, η) = inf(j, η) and

dsup(j, η) = sup(j, η).

• binf(j, η) = −1 (open) and bsup(j, η) = 2 (closed): dinf(j, η) = inf(j, η) + 0.01 and

dsup(j, η) = sup(j, η).

• binf(j, η) = −2 (closed) and bsup(j, η) = 1 (open): dinf(j, η) = inf(j, η) and

dsup(j, η) = sup(j, η)− 0.01.

• binf(j, η) = −1 (open) and bsup(j, η) = 1 (open): dinf(j, η) = inf(j, η) + 0.01 and

dsup(j, η) = sup(j, η)− 0.01.

Please compare the sheet “g2” in the file “example” and Table 1 in the manuscript.

9This implies that sb(k′ − 2) < sb(k′) and hence the opponent does not choose a bid between these two
numbers, including sb(k′ − 1).

10See Remarks 2 and 3.
11This means that the opponent does not choose a bid between these two numbers, including sb(k′ + 1).
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