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A. INTRODUCTION

THIS SUPPLEMENT CONTAINS proofs of the theoretical results stated in
Cavaliere, Nielsen, and Rahbek (2015), and also contains the bootstrap the-
ory (as well as some additional asymptotic results) for the co-integrated VAR
model with an intercept. In addition, extended details and discussions (also
covering models with intercept) are given for the Monte Carlo results reported
in Section 4 of Cavaliere, Nielsen, and Rahbek (2015).

The supplement is organized as follows. Section B contains the extended
Monte Carlo results for processes of different dimensions p, and different val-
ues of the co-integration rank r and of the lag length k. Section C contains
proofs of Lemma 1, Proposition 1, and Theorem 1 of Cavaliere, Nielsen, and
Rahbek (2015). Section D reports the additional theoretical results and proofs
for the bootstrap test in the case of an intercept.

B. EXTENDED NUMERICAL RESULTS

In this section, we give a full presentation of the Monte Carlo results and
comparisons introduced in Section 4 of Cavaliere, Nielsen, and Rahbek (2015).
Accordingly, we consider the bootstrap test based on restricted parameter es-
timates (bootstrap in the following), the asymptotic likelihood ratio (LR) test
(asymptotic), the Bartlett-corrected test (Bartlett), and the bootstrap test based
on unrestricted parameter estimates (unrestricted bootstrap); see Cavaliere,
Nielsen, and Rahbek (2015) for further details.

Together with the VAR(k) considered in Cavaliere, Nielsen, and Rahbek
(2015), where the p-dimensional data generating process (DGP) and the sta-
tistical model are both given by

k—1
(B1) AX,=of X, + ) LAX,_ +s,

i=1
with g, ~ N (0, £2), we also present results for the model with an intercept,

k—1
(B2) AX,=af X, 1+) LAX_i+p+e,.

i=1
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We consider cases with lag length k € {1, 2}, co-integration rank r € {1, 2}, and
parameter values o, B, I3 (i=1, ...,k — 1), and u varying as specified in Sec-
tions B.1, B.2, and B.3 below. Moreover, so as to evaluate how the dimension
p of the system affects the finite-sample properties of the tests, in addition
to p =4, cases where p = 2 are also discussed. All results are reported for a
10% nominal significance level. For further details on the simulation design,
see Cavaliere, Nielsen, and Rahbek (2015).

This section is organized as follows. Section B.1 considers the case of r =1
and k£ =1 in the VAR model with and without an intercept. Next, Section B.2
considers the case with » =2 and explores the role of the pseudo-true rank r*
with r* € {0, 1} so as to assess the behavior of the test when the null hypothesis
is not true. Section B.3 considers cases with more general dynamic structures.
Finally, in Section B.4, we summarize the results, compare them with what
was reported in previous literature, and briefly discuss two further bootstrap
implementations.

B.1. Model With k =1and r=1

The design considered here is identical to Section 4 of Cavaliere, Nielsen,
and Rahbek (2015), except that here models with an intercept term and mod-
els of dimension p = 2 are also covered. Accordingly, we set a = (a;, a5, 0, 0),
B=(1,b,0,0), and 2 =1, for p =4, and « = (a;,a,), B = (1, b,), and
0 =1, for p=2. In all cases, a,, a,, and b; are chosen such that process is
1(1) and co-integrated. Tests are considered for the hypothesis H, : 8 = 7, with
7=(1,0,0,0) for p=4and 7= (1,0) for p=2.

We initially take the case where p =4 and an intercept is added in the es-
timation of the model (see (B.2)), while u = 0 in the DGP, such that the gen-
erated time series do not contain linear deterministic trends; see Section 5 of
Cavaliere, Nielsen, and Rahbek (2015). The results are reported in Figure B.1.
We note that the problem of severe size distortions of the asymptotic test is
marginally worse than for the test in the basic model (B.1) with no intercept
reported in Section 4 of Cavaliere, Nielsen, and Rahbek (2015), but the rela-
tive performance of the two bootstrap tests and the Bartlett-corrected test are
unchanged. That is, as for the case of no intercept, in terms of empirical size,
the bootstrap test based on restricted parameter estimates is the only method
that allows for a proper size control, with the other approaches showing severe
size distortions. We also considered DGPs that generate linear deterministic
trends in the data, using u = (0, 0, ¢, ¢)’ with ¢ > 0 such that o/, u # 0. We re-
port here the results obtained for ¢ = 1, such that the simulated series contain
pronounced linear trends. The results are very similar to the results in Fig-
ure B.1, hence showing that the presence of a deterministic linear trend in the
DGP does not deteriorate the finite-sample size of the bootstrap test, provided
an intercept is included in estimation. The same conclusion was reached when
other values of ¢ were considered.
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(A) Bootstrap (B) Asymptotic

FIGURE B.1.—Empirical rejection frequencies under the null hypothesis for the different tests
with T = 100 observations. Results are based on a 10% nominal level. The model has p =4 and
includes an intercept.

In terms of finite-sample power, we also report, in addition to the usual em-
pirical rejection frequencies (ERFs), ERFs obtained after size-adjusting the
tests pointwise; see Cavaliere, Nielsen, and Rahbek (2015) for further details.
Figure B.2 shows the rejection frequencies for tests of the hypothesis H, against
a sequence of DGPs (of dimension p = 4) with b; > 0, for three different com-
binations of (a;, a,, T'): Graphs A and B for (a,, a,, T) = (—0.4, 0, 60), Graphs
Cand D for (—0.8, 0.8, 60), and Graphs E and F for (—0.4, 0, 100). As before,
an intercept is included in estimation. The left hand column reports the ERF
of the tests for a nominal level of 10%, while the right hand column shows the
pointwise size-adjusted ERFs. The results illustrate that the suggested boot-
strap test is very close, in terms of ERFs under the alternative, to the infeasi-
ble size-adjusted asymptotic test. As for the case of no intercept discussed in
Cavaliere, Nielsen, and Rahbek (2015), the reason for marginally lower (size-
adjusted) ERFs of the bootstrap test under the alternative seems to be that the
distribution of Q% (7) under the alternative is shifted to the right with respect
to the asymptotic (x*) null distribution; see Theorem 1 and Remark 3.4. Fi-
nally, it is worth noting that the size-adjusted power in the case of an intercept
is overall lower than for the basic model discussed in Cavaliere, Nielsen, and
Rahbek (2015), but the relative performance of the proposed bootstrap test,
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FIGURE B.2.—Rejection frequencies for the hypothesis Hy : B = 7 := (1,0,0,0)" for a se-
quence of DGPs defined by 8 = (1, by, 0, 0)’, with b; > 0. (A), (C), and (E) show empirical rejec-
tion frequencies for a nominal level of 10%, whereas (B), (D), and (F) show rejection frequencies
that are pointwise size corrected. The model has p =4 and includes an intercept.

as compared to the other approaches, is unchanged. Almost identical results
prevail for the trending case where ¢ > 0.

BEHAVIOR AS A FUNCTION OF T To illustrate the finite-sample behavior as
a function of the number of observations 7', Figure B.3(A) shows the ERFs of
the four tests under the null hypothesis for 7" ranging from 40 to 1000. We con-
sider the case (a4, a,, b1) = (—0.4,0,0). As before, we report the case of p =4
and intercept included in estimation (see (B.2)), but not in the DGP (u = 0);
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FIGURE B.3.—Empirical rejection frequencies as a function of 7" under the null and un-
der the alternative hypotheses. (A) shows rejection frequencies under the null. (B), (C), and
(D) show pointwise size-corrected rejection frequencies under the alternative. In all simulations
(a1, az) = (—0.4,0.0) and T varies between 40 and 1000. The model has p =4 and includes an
intercept.

results for the case u # 0 are identical. As before, the proposed bootstrap dis-
plays excellent size control, while the asymptotic test, the Bartlett-corrected
test, and the unrestricted bootstrap are all subject to severe size distortions for
samples of small and even moderate sizes.

Figure B.3(B)—(D) shows rejection frequencies under H,, that is, when the
DGP has B = (1, b,0,0) for b, € {0.04,0.1,0.2} (as before, the ERFs are
pointwise size adjusted). For small deviations from the null, the rejection fre-
quencies of the proposed bootstrap are indistinguishable from the asymptotic
test, while they are only marginally lower for larger deviations from the null.

IMPACT OF THE VAR DIMENSION: Results obtained for p =2 do not con-
trast with those obtained for p = 4 discussed above. In terms of ERF under the
null hypothesis (not reported), size distortions for p =2 are less pronounced
than for p =4, as expected. Despite this, our bootstrap allows for a proper
size control over the entire parameter space, with the other approaches still
showing large size distortions.

So as to evaluate the implication for power of the VAR dimension p, we
show in Figure B.4 the same results reported earlier in Figure B.2, Graphs
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FIGURE B.4.—Rejection frequencies for the case with p = 2, for the hypothesis Hy : B =
7:= (1,0) for a sequence of DGPs defined by B = (1, b;)’, with b; > 0. (A) shows empirical
rejection frequencies for a nominal level of 10%. (B) shows rejection frequencies that are point-
wise size corrected. The model includes an intercept.

A and B, but now setting p = 2. In this case, the power loss is smaller than
for p =4, and the power of the proposed bootstrap test virtually coincides
with the infeasible size-corrected power of the asymptotic test. Given this evi-
dence, we may conjecture that under the alternative, the distribution of Q7%.(7)
is more shifted to the right for large values of p relative to small values of p.
Nonetheless, in both cases considered, the effect on power of such shifts seems
negligible.

B.2. Model With k=1andr =2

To discuss the case with r = 2, and the importance of r* in particular, we
consider the DGP in (B.1) with k =1,

, (fa 0 0 0 , (1 0 0 b _
(B3) “‘(0 w 0 0)’ B—(o 10 b2>’ =1L,
and investigate the hypothesis

, 1 0 0 O
(B4) Hy: B=71= (7, T2), T=(O 10 0).

Letting T = 100, we first consider the case (a1, a,, b1, b,) = (—0.1, —0.1, 0, b)
for various values of b. The null is true if b = 0, while b # 0 corresponds to a
point in the alternative. In this case, 7; € span(8) and r* = 1. The ERFs and the
corresponding pointwise size-corrected rejections are shown in Figure B.5(A)
and (B). First, note that the size properties of the asymptotic test are unreli-
able, with ERFs around 50%. The proposed bootstrap test offers an excellent
size control, whereas the Bartlett correction and the unrestricted bootstrap are
also unreliable, having ERFs around 25%. As for the case with r = 1, the size-
corrected results for ERFs under the alternative hypotheses in Figure B.5(B)
indicate only a minor loss of power.
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FIGURE B.5.—Empirical rejection frequencies for the case r = 2. (A) and (C) show rejection
frequencies for a nominal level of 10%. (B) and (D) show pointwise size-corrected rejection
frequencies. The model has p = 4.

Figure B.5(C) and (D) shows similar results for (ai, a,, by, by) = (0.1,
—0.1, b, b). Here r* equals 0 for b # 0. First, with respect to the case where
r* = 1, the power of all tests is now higher. This is reasonably expected, since
when r* =0, the true 8 is now completely orthogonal to 7. Second, the conclu-
sions regarding the power of the bootstrap test relatively to the asymptotic test
appear to be identical to the previous case of r* = 1, hence indicating that the
presence of extra (local-to-) unit roots in the bootstrap sample makes little or
no difference in the performance of the bootstrap test.

We conclude this section by noticing that the results for the case of intercept
(see (B.2)) do not substantially differ from those reported here.

B.3. Model Withk =2andr =1

We finally consider the case k = 2, with the aim of assessing the behavior
of the tests under a more general dynamic structure. We focus on the DGP
in (B.1) with p=4,r=1, and « = (a4, a,,0,0), 8/ =(1,0,0,0), and 2 = I,
with (a;, a;) = (—0.2,0.2). We consider 100 randomly chosen points in the
parameter space. Specifically, each entry in I is drawn from a uniform random
variable on [—1, 1]. If the (1, r) rank conditions are satisfied for the chosen
configuration of parameters, we proceed to examine the test behavior. Notice
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FIGURE B.6.—Empirical rejection frequencies for the case r =1 and k = 2. The horizontal
axis indexes 100 different DGPs with randomly chosen coefficients, all satistying the 7(1, r) con-
ditions. Nominal level of 10%. The model has p =4.

that, as in the previous section, the intercept term does not affect the results;
hence, we only report results for the case of no intercept.

The ERFs under the null hypothesis are reported in Figure B.6, where the
results are sorted by the ERF of the asymptotic test. We note again that the
proposed bootstrap test has an excellent size control in all cases, with ERF
close to the nominal 10%. The asymptotic test, on the other hand, shows ERFs
between 15% and 50%. The Bartlett-corrected test and the unrestricted boot-
strap test reduce the size distortion but remain oversized.

B.4. Summary of Results and Relation to Existing Literature

Previous simulation studies of bootstrap tests on co-integrating relations in
VAR models include Fachin (2000), Gredenhoff and Jacobson (2001), and
Omtzigt and Fachin (2006). Compared to these, the Monte Carlo simulation
study reported here differs substantially. First, we provide an exhaustive and
detailed systematic comparison of the bootstrap tests based on restricted pa-
rameter estimates with the bootstrap based on unrestricted estimates, with
Bartlett-corrected tests, and with the asymptotic tests. So as to discuss and
compare power or, more generally, the properties of the tests under the al-
ternative hypothesis, we also consider—in addition to the usual empirical re-
jection frequencies—size-adjusted power. Most important, with respect to the
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previous studies, our simulation design made it possible to consider a much
larger portion of the parameter space. Finally, our study is the first where a
comparison between the cases of models with no deterministic components
and models with an intercept term is considered.

More specifically, Fachin (2000) considers empirical size and power of a
bootstrap version of the Wald test, using a bootstrap generating process (BGP)
based on restricted estimates and i.i.d. resampling of unrestricted residuals.
Gredenhoff and Jacobson (2001) consider size properties for a bootstrap test
based on restricted parameter estimates, and with bootstrap innovations & not
based on i.i.d. resampling, but instead drawn from a Gaussian distribution with

covariance matrix (2. Finally, Omtzigt and Fachin (2006) compare the afore-
mentioned tests with focus on the unrestricted bootstrap.

Although the simulations are not fully comparable, partly because the boot-
strap algorithms considered differ and partly because the simulation designs
do not overlap, our findings in terms of size properties seem to reinforce previ-
ous results. In particular, (i) the bootstrap offers a clear improvement over the
asymptotic test, (ii) the size control of the bootstrap based on restricted esti-
mates is very satisfactory, and (iii) the unrestricted bootstrap and the Bartlett
correction do not correct the large finite-sample distortions documented for
the asymptotic test.

In terms of power, previous results were mostly based on very specific points
in the alternative and, moreover, did not consider size-adjusted power. Con-
versely, in our simulation study, we were able to show the key fact that the
empirical power of our bootstrap test coincides with—or is only slightly lower
than—the power of the infeasible size-adjusted asymptotic test.

Overall, these results complement the theory in Theorem 1 of Cavaliere,
Nielsen, and Rahbek (2015), where the asymptotic validity of our proposed
bootstrap is established.

We conclude this section by briefly discussing two further bootstrap algo-
rithms that were considered in this study but are not reported here (these sup-
plementary results are available from the authors upon request). The first is
the hybrid bootstrap algorithm mentioned in Remark 3.13 of Cavaliere, Nielsen,
and Rahbek (2015). Although this algorithm is not valid in general in the sense
that it may, for example, generate (limiting) explosive roots for the bootstrap
process, we investigated its finite-sample properties in those cases where the
algorithm is valid; that is, for specific regions of the parameter space where in-
deed explosive roots can be excluded. We found that this bootstrap has prop-
erties analogous to the unrestricted bootstrap (with only marginally better size
and marginally worse power).

The second algorithm combines our suggested bootstrap algorithm (based
on restricted parameter estimates) with i.i.d. resampling from the unrestricted
residuals. That is, in Step (ii) of Algorithm 1 in Cavaliere, Nielsen, and Rahbek
(2015), the T bootstrap errors &; are instead obtained by i.i.d. resampling of

. . A A _ T A~ . A
the re-centered unrestricted residuals, & := &, — T~'Y__, &, with &, as defined
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in Section 2 of Cavaliere, Nielsen, and Rahbek (2015). The idea behind this
bootstrap scheme is that the restricted residuals &, are expected to have larger
variation than the unrestricted residuals &, when the null does not hold. How-
ever, since Algorithm 1 is based on i.i.d. resampling and the likelihood ratio
statistic is invariant to scaling, one would expect the two bootstrap implemen-
tations to lead to similar results. Indeed, unreported simulations showed that
there are no discernible differences in the finite-sample properties of the two
approaches.

C. PROOFS OF LEMMA 1, PROPOSITION 1, AND THEOREM 1

Sections C.1-C.3 provide the proofs of Lemma 1, Proposition 1, and Theo-
rem 1 of Cavaliere, Nielsen, and Rahbek (2015).

ADDITIONAL NOTATION: In addition to notation introduced in Cavaliere,
Nielsen, and Rahbek (2015), the following notation is used. We use wlim and
plim to denote weak convergence and convergence in probability, respectively,
as T — oo. For any m x n matrix a, we define a® := ada’; if m = n, p(a) de-
notes its spectral radius (that is, the maximal modulus of the eigenvalues of a).
We shall also use K" := (1, Opux(n_m))’ for n > m, which acts as a selection
matrix. Finally we use the definitions 35 := plim 3,511 B0, 20 := plim Sy Bo,
and 3y := plim Sy.

C.1. Proof of Lemma 1

To prove the lemma we proceed as follows. First, we derive explicit expres-
sions for plim IT =: IT; = o 8; (showing that o} and B; are p x r*-dimensional
matrices of rank r*), plim ¥ =: ¥, and plim {2 =: (2}. Next, we show that the
DGP for X, can be rewritten as AX, = o8y X1 + V;AX,, + e,, with the
key property being that the pseudo-innovations e, are uncorrelated with both
B¢ X1 and AX,,. This is then explored further to establish that {«, 85, ¥}
satisfy the I (1, *) conditions.

Observe that as By¢ € span(7), then 7& = By¢ for some ¢ of dimension
(ro x r*). Thus the r* linear combinations &'7'X, are stationary, while the
remaining combinations, &, 7'X,, are integrated of order 1, or I(1). With
Dy :=diag(¢&, £, T~"/?), then

1
D/T’T/SH’TDT = diag(cﬂZBBd), / GG’ dl/l) + Op(l)
0
as T — oo, and where G := & 7'C,whim(T-2 Y"1 o) &,) and

(C1)  Co=PBor(e, ToBor) -
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Likewise, So; 7D 7 S (20p®, 0px(ry—r)- Collecting terms yields
(C2)  ar' = I1=SymD(D;r'StD7)” Dy’
B0y = By = Sup (' Sepd) &' B,

as desired. Since 33 = a2 under the I(1, ry) conditions, this implies that
we can choose the pseudo-true co-integration parameters as

(C3) ,83 = Bo(,b and a; = a0233¢(¢/253 ¢)_1.

Let k= 3psp(¢'2ppp) ™" and kg, := P (¢ 355¢1)7", and define the skew
projection

(C4) Iro = K(/)d)/ + (1,0 - K(l’d),) = K¢,(f), + K(I,L(f)lzgé.

Next, we show that ¥ and 02 converge, respectively, to the pseudo-true param-
eters ¥ and (2] given by

(C5)  Wy=W+apky, ¢ 355YeY5' and Q) =0+ aoky, ¢ ap,
with Yy, := plim 8, M, and Y, := plim M,,. Observe that

¥ = MpMy,' — ar'M,M;)!

DW= YoV — a3 (¢ Sed) @ VpYs,

such that (C.5) holds by using the identity ¥ = Y, Y,,' — @Y, Y5,'. Using the
pseudo-true parameters «;, B85, and ¥, we can rewrite the equation for AX,
as
(C6) AX, =a;B) X1+ VAKX, + ey,
and the pseudo-innovations e, are defined by
(C7)  ei=e+aky, & 35 (BiX 1 — YV Y5 AXy).

Observe that by definition, Var(e,) = (2; with also

T
(C8) 0= %Z(AX, —ar' X, — PAX,,)"
t=1

L0+ aod (¢, 3500.) by =
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Here it has been used that e, is uncorrelated with 8} X,_; and AX,,. To see this,
observe that by (C.7) and the definition of k,, in (C.4),

(X B7) = E((e:+ aoke, &, 35 (B X — Y Yl AX,)) X, B7)
= (IOK¢l (blEE;(YBB - YBZYZE] Yzﬁ)(;b = 0,
where Yjs = plim ;M B, and we have used 3z = Y — Y Y5,'Ysp. Like-
wise, E(e,AX),) = ag(Yg — Yp) =0.
To see that the pseudo-true parameters {«; 85, Wy} satisfy the I(1, r*) con-

ditions, observe first that, by definition, IIj = «f8; has rank r*. Next, with
ay = agke and B = By, we can set

(C9)  ap = (oL, @35501), BiL = (BoL, Bobr).
With X, := (X}, X,_,,..., X,_,,,), rewrite the system in companion form as
(C10) AX,=AB"X,_+E,

where E, := (e}, 0, ...,0), X, is fixed, and

B, I, 0 0
0 -1, I, 0
* P 0 0 - 0

A= %0 o ), B*:= g
(0 Ip<k—1)> Lo T
0 0 0 - I,
0 0 0 - I

By assumption, Y, :=B"X, = (X8}, AX],...,AX]_,,) is covariance station-
ary with covariance 3%, > 0 and solves

(C11) 35, =35, " + 3,

where @* = (I,+4,4-1, + BYA*) and 3%, := Var(BE,). Now, by definition
3% >0 and as @* satisfies (C.11), it follows that p(®*) < 1 as in Cavaliere,
Rahbek, and Taylor (2012, p. 1735). Finally, the roots of the characteris-
tic polynomial A4*(z), z € C, that correspond to (C.10) are found by solving
det(A*(z)) =0, with

A (z):=1—2)  — A'B"z.
Now B¥A* = @* — I,.,,4_1, and, hence, det(B*A*) # 0 since p(P*) < 1.

With A% = (I,, =¥;) '« , this implies that M, := (B*, A}) and, hence, My :=
(A*, BY ), have full rank, where B = (B85, ..., 85, ). Multiplying from the left
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by det(M; ) and from the right by det(Mz) shows that the roots of A4*(z) sat-
isfy

det(li pk—1) — P*z) det(I,_,+(1 — 2)) =0,
such that the 7 (1, r*) conditions apply. Q.E.D.

C.2. Proof of Proposition 1
According to Algorithm 1, the bootstrap generating process for X is given
by
AX; =ar'X] |+ II’AXZI +é&,

where AXS, = (AXY,,...,AX[ ;)" and ¥ = (I,..., I;_y). Similar to the
companion form in the proof of Lemma 1 (see (C.10)), we may write this as

(C.12) AX'=ABX' +E*

Xt

where AXY := (AX),...,AX" ., ), X = (X7,....,X} ), E;, = (&7,

.,0), and
T 1, o - 0
o -1, 1, 0
I L
0 Lpu- Do -
0 0 o - I,
0 0 o - -I,

Next, use that by (C.10) we have, from the proof of Lemma 1,
A= (I, w*)agL, B == (Bj.,---.Bi.)

with o, and Bj, as defined in (C.9). In terms of these companion form pa-
rameters we next rotate X, and define Z; by

(C13) Z;:=0X;, Q,:= (IB%*, Aj)
By (C.12), Z? satisfies, with E*, = Q_E%,,
1
AZ? = (arb, + TCTb/l>Zjl + ]E;

Here b:= K" % DP quch that b, = (0 I, ) and
€I1c O 1= pk suc a J_—( (p—r*)x(r*+(k=1)p)>» pfr*) an

ar = Q. AB A (B"AY) %CT = Q. AB'B} (AYB1) "
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Observe that arb’ is of rank r* 4+ (k — 1) p, corresponding to B*, while ¢rb’,
is of rank (p — r*), corresponding to A%. Also AYB} = of I} B;,, with I} :=
(Ip - Zf‘:ol Fofz‘)-

Moreover, as will be shown next, as T — oo, ar, cr = O,(1) with

(C.14) aT—”>a:=< BA )

0(p—r*)><(r*+(k—1)p)

€139 b= (VTP ) e ra)”

Z\ Ock—1)px(p—rvy

where N is defined below in (C.17).
Consider first ar. From Lemma 1 and by definition of 4 and B, it follows

that AB' 5 A*B* and the result follows by simple insertion.
Consider next cr. Observe initially that

AB/B*;:( o7 Bis )

O(k—l)pX (p—r*)

such that we can focus on the limiting behavior of Ta7' 85, . As B} = Bodp = 7€
and & = Sy 75!, we find with D7 := (&, &, /NT) and Bi, = (BoL, Bod.) that

(C.16) Tar'B;, = TSurDr(Dy7'SutDy) ' Dypr' B,

(¢'Speb) 0
( (/OIGG’du)I)(flTQIBSL)

= ﬁSOlTDT

+o0,(1)
- 1 -1\’
=ﬁSOITDT<O(p—r*)><r*,leTgJ_(‘/\ GG/du) >+0P(1)’
0

where the (r) — r*)-dimensional process G is defined in the proof of Lemma 1.
We thus find

1 -1
(C17)  wlim(Tar'By,) :wlim(sma)< f GG’ du) & 7B,
0
= N(BS,J_TEL)/y
where N :=wlim((S,. + @S &) ([, GG du)~" of dimension p x (ry—r*)
is well defined as & 7'X, is integrated of order 1 and classic convergence to

stochastic integrals as in Hansen (1992) applies. Observe that as By 7§, is
(p—r*) x (ry —r*), then the p x (p — r*)-dimensional wlim(7Ta7'8;,) is of
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reduced rank (ry — r*). Finally, by simple insertion, we find the desired expres-
sion for c.

Turn again to the error correction process Z* in (C.13), which, with Z =0
without loss of generality, we can write as

t

1 o
(C.18) Z'= Z(ka +arb' + TCTbl) E:,

j=1

such that with V;(-) := m E

zj?

u 1 | Tu|—|Ts]
Lir, = / (ka +arb + Tchl) dVr(s).
0

By Theorem A.14 in Johansen (1995) combined with the convergence of ar
and b established above,

1 "
(C.19) (ka +arb + TCTbl) — exp(Bcb')B

where B=b,(a' b,)'a, with a, = b,." Hence, by definition the expression
for B simplifies to B = b, b',. Also, with 7* := b/, ¢, using (C.15) and (C.17),

(C20) 7" := aOJ_N'fJ_T Bo. (a[)J_F*ﬁOJ_) = aOJ_Né:J_ 7'C;.

Moreover, by definition, &' V7 (:) = af)| tLT]J gf. As in Cavaliere, Rahbek,
T & w*

and Taylor (2012, proof of Proposition 1), we have that 7-2) "/ &* —

t P
W*(-) on DHP, which trivially implies the weak convergence in probabil-

w*

ity T7'2ay, LTIJ g —, o, W*(-) on D”". Hence, by Basawa, Mallik,
McCormlck Reeves and Taylor (1991), we find

"7, —;p/ exp(b b’ (u—$))by dogy, W*(s)
0

= bl/ exp(7* (u—s))ay, dW*(s).
0

Multiplying by &', we get
(C21) T 'PAYXY =T oy Iy X + T Pag, Wi AXS 1|

=T""b ZTTJ *p Z(-)

!Note that the proof of Theorem A.14 applies Lemma A.1 in Johansen (1995), where a mis-
print occurs in (A.23), in which the last 7" should be omitted.
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on D, with Z(u) := fou exp(7*(u — s))ag, dW*(s). That is, Z satisfies the
stochastic differential equation

dZ(u)=7"Z(u)du+ o, dW*(u).

Next, consider B*X: — B*X!, where X[ is the companion form of X defined
in (6) of Cavaliere, Nielsen, and Rahbek (2015). Using (C.13) and (C.18), we
obtain

B*X; — B'X] = b'Z; — b'Z]

t—1 i
1 i
= Zb/<(1pk + ClTb/ + TCb/l> — (ka + ab/) )Ezti'
i=0

As in the proof of Theorem 14.1 in Johansen (1995), we find, with p; :=
b'(Up+arb + %cbl)l — U +ab)') and E,, := (B*, A})'(¢),0,...,0),
t—1
Var* (B'X; — B'X]) =) " pE.E,p).
i=0
By Lemma A.1 and (A.22) in Johansen (1995), we conclude that | p,|| < p =
O,(IIT  ¢r|l) and, hence, as cr = O, (1),

T
max| Var(B"X; —B"X]) | < llpl* ) ELE. =0,(T™").

i=0
Now the result in (10) of Cavaliere, Nielsen, and Rahbek (2015) follows by ob-
serving that by definition, we have B*XY = (X8, AX}, AX},,...,AX",)".
Observe that (C.21) has the immediate implication 7~"2ag, I X7 N » Z(),
as the last term on the right hand side asymptotically vanishes.

Collecting terms, using the skew projection I, = A*(BYA*)™'B¥ +

B (AYB%)'AY, and X7 = (1,,0,...,0)X:, we find

(C22) X7 = By, (e, Iy By,) ATX; + (o, W) (BYA") BX;
= C:Z:+S!.
Finally, to show max, ||S;|| = 0% (T"/?), rewrite as
(C23) 87 =(ap, %)(B"AY) " (B'X; — B'X]) + (ag, %) (B”A*) B X,

The first part on the right hand side was just considered, and the last term
on the right hand side converges as desired from the proof of Proposition 1
in Cavaliere, Rahbek, and Taylor (2012), since the parameters for X satisfy
the 7(1,r*) conditions (see Lemma 1). This completes the proof of Proposi-
tion 1. O.E.D.
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C.3. Proof of Theorem 1

First we introduce and prove a lemma based on the results of Proposition 1
of Cavaliere, Nielsen, and Rahbek (2015), which establishes the asymptotic
behavior of bootstrap (cross-) product moment matrices. The lemma is next
used for the proof of Theorem 1.

LEMMA C.1: Consider the product moment matrices in terms of {X}. Under
Assumptions 1 and 2,as T — oo,

Pl Pl Pl
Bo'S11Bs = ZBB’ Soo = p 200> and  BySi, —, 22@05

where 3,5, ELO, and 3}, are defined after equation (C.29) below. Moreover, with
the subscript & referring to the bootstrap innovations &,

1
(C24) T7'By SHBL, =, /0 G, Gy du,
" 1
(C25) By.S: >, / Gy, dW”,
0

(C.26) B;/STS i>p Nr*xp(07 2;3[3 ® aglngagl)’

where Gy, = B, G*and G* := C;Z, with Z(-) as defined in Proposition 1 of
Cavaliere, Nielsen, and Rahbek (2015). Finally, By, S7,B5, By, St = O;(1).

PROOF: In the proof, notation and quantities introduced in the proofs of
Lemma 1 and Proposition 1 will be applied. Specifically, in the following dis-
cussion, we shall repeatedly apply the companion form X! of X; (see (C.12))
and X! of X[ defined in (6). Also we use the notation M and M, to denote
the usual product moment matrices M;; in terms of X!, AX* and X, AX], re-
spectively, and likewise for M} and M, ;

First, consider (X;'B;,AX),...,AX”, ) = B"X} and the corresponding
product moment B*Mj,B*, which can be rewritten as

B*M;,B* = (B*M;,B* — B"M{,B*) + B*M] B*.
By Lemma A.7 in Cavaliere, Rahbek, and Taylor (2010a),
. Y, Y
(C27) B'MB* %, Y= ( Fp BZ) ,

N N
YZB Y,

where Y; and, hence, Y are all well defined by Lemma 1. Next,

(C.28) B"M;,B* —B'M!,B* = Qg + Qs + Ry,
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where Qgg :=B"(+ Z;l(Xf_l — X! )X )B* and, moreover,

*/ 1 d * * 4 *
Rgs: =B (T DO =X (X, - X)) )B )
t=1
Applying Holder’s inequality, [|Qgsll> < [RggllIB*M,B*|| and, hence, as Ry
is positive semidefinite, the desired result holds by establishing E£*(Rgs) 2.
Now E*(Rgg) = = 3., Var*(B*(X;_, — X!_,)) and we find

(€29) | (g < max|var (B7(; — x))] % 0

by Proposition 1, and can, therefore, conclude B'S7,B; 2 B
Ygz Y5 Y;B- Regarding .?’30, use AX¥ = (AX? — AX() + AXT, and, as before, with
M, = (M, — M) + My, the result follows by Lemma A.7 in Cavaliere, Rah-
bek, and Taylor (2010a) and from the fact that

t=1

1 a * *
H - > Var*(AX; — AX])

tends to zero in probability. Again the latter is implied by Proposition 1, and
Sip 2> p by = Yy — Y Y4 Y], is established. Likewise, By, &>, S5y := Y, —
YY)
Next, (C.24) holds by observing first that by definition,
01811 Bos = Bo My By, — By MMy M3, B,

For the first term, we find 183, M}, B;, 5 fol G}, G, du by the continu-

1
ous mapping theorem and as by Proposition 1, B, X7, N » Gp, (). Next,
M;, = 03(1) as just established and Bj, M}, = O3 (T~"?) using Theorem 2.1
of Hansen (1992). Likewise (C.25) and 8§ 7, 8; = O, (1) hold.
Consider now B;'S;,, which by definition satisfies
VTBS;, = (I, —ByM,M3 )WTB'N,,,

— T - .
where Ny, :=T-'Y"] | X7 & Rewrite B'N, in terms of X[ | as

(C.30) B¥N;, =B"N +B"(N;, —N],).
By Lemma A.6 in Cavaliere, Rahbek, and Taylor (2010b),

VTB'N[, 5, N0, Y ® o 2iai,),
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where YT is defined in (C.27). Hence, as By M;,M," L » Yng;{l and with
ZBB = YT Ygz YZTZ’IY;B, the results follows by showing the second term in
(C.30) is op(T*“z). As for (C.28), this holds by Rgs = OZ(T*”Z). Likewise,

0181185 = Oy (1), which completes the proof. Q.E.D.

PROOF OF THEOREM 1: We here consider the bootstrap LR test statistic of
Hy : B = 7. We present the proof for the case of & = 1; extension to the general
case is straightforward and can be done exactly as for the previous proofs of
Lemma 1 and Proposition 1 using the companion form representation.

Let H; refer to estimation when B is unrestricted. On the original data, the
estimators are denoted by &, B, and Q, while on the bootstrap data gener-
ated as in (4), we denote the estimators by &*, 8*, and . Likewise, &, {2 and
a*, ()* denote the restricted ML estimators under H, : 8 = 7, computed on the
original data and on the bootstrap sample, respectively.

So as to show that O5.(7) = —2log O*(Hy|H,) is 0;(1), we introduce the aux-
iliary hypothesis H,.x : a8’ = o B¢, such that

(C31)  —2log Q*(HolH)) = —210g Q" (Hauwx[H1) — (2108 Q" (HauxHo))
= —Tlogdet((2;,! Q") — (~Tlogdet((2:,12)),

where V=8 =T &8 and O = 8§, = T'Y." && with

=AX:— &' B X and & = AXF —aX? »._1- Moreover, f)jux =8 =T
Zl cerer with ef = AX P = ogBI X A similar decomposition was applied
for the hkehhood ratio test in Nlelsen and Rahbek (2007), with the notable
difference that here the auxiliary hypothesis does not correspond to the (boot-
strap) generating process (see Proposition 1). Note in particular that, as shown
in Lemma 1 and Proposition 1 of Cavaliere, Nielsen, and Rahbek (2015), the
bootstrap sample has exactly p — r, unit roots under the null hypothesis, while
in general it has p — ry unit roots and ry — r* additional near-unit roots as
reflected in the derivations below.

The proof is structured as follows. We consider first the asymptotic behavior
of the unrestricted bootstrap estimators and next establish that the first term
in (C.31) is bounded. Thereafter, we consider the restricted bootstrap estima-
tors and show that the corresponding second term in (C.31) is also bounded.
Finally, the proof is completed by showing that the asymptotic distribution of
the bootstrap LR statistic —21og Q*(Hy|H,) is x* under the null hypothesis.

Asymptotic theory for the bootstrap unrestricted estimators.

Under H,, the eigenvalue problem to be solved, det(A*Sy, — SiSu ' Si) =
0, implies, using the basis (85, Bg fl /ﬁ ) and Lemma C.1, that in the limit
(A})iz1,. ~ are nonzero and solve

det(A"Sh, — 35,301 5,) =
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On the other hand, (/A\;‘),»zr*ﬂy_._, » tend to zero at the rate of 7. Recall that
r* € {(2ry — p)*,...,r} such that r, — r* additional near-unit roots ap-
pear asymptotically. More precisely, with p; := TX;‘ fori=r+1,...,p,
p; solve in the limit, using the results in Lemma C.1 and standard argu-

ments,
det< / G} Gy du— / G} dZ (af, Q) f dZGy )

where the convergence Bf S} o, — A » fol G}, dZ' has been used, with Z de-
fined in Proposition 1, equation (9) of Cavaliere, Nielsen, and Rahbek (2015).
To see this, observe that by definition, B; Sjja, = B St + By ST 7o o,
and, hence, by Lemma C.1 and (C.20),

o Shan, S /Gm o« dW* + 7 Z du] fG dz'.

Using the definitions of G} and Z, we may conclude

P . p
2T = >4

i=r* 41 i=r*41

1 1 -1 1
1>ptr{/ dZ*Z*”(/ Z*Z*/du) /Z*dZ*’},
0 0 0

where Z* := (a) Qs )2 Z.

To find the limiting behavior in terms of rates of convergence of T, we
begin by rewriting it in terms of the eigenvectors corresponding to the limiting
nonzero and zero eigenvalues, respectively. That is,

(C32) II'=&B" =& (bb' +b,b,)p" = IT: +IT7,

where H* =a ,8*/ H* =ak 37, and b := K(’ ) such that ﬁ; = *b is of rank
*; see also the proof of Proposmon 1. Deﬁne the normalized version ,é;’; =
,éj;([?j;//?;)*' such that
% * * * * 5% Ak A Hx) 1
(C33)  B,=B+Byurs up =B BB Bn) )
where B (B: — B;) = 0 by definition and 87, (8 — B;) = u} = 0t (T~'?). De-

fine correspondingly & := &’ ( ﬁ*’,BU), where & 2 0.

n
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At the same time, ||IAY;*||2 = 0,,(1). To see this, first observe that a* = S, ,éj
such that

(C34) & = (Sm) " (Sp0) " SuuBl < trl i) tr{ BSiu(Ss0) ' 8582)
< T tr{Sy) i pr=03(T).

Second,

(C35) || =tefSiy b ur{Brsy B} = 04D,

since tr{f.S;,8.} = p—r* and §};' = 0;(1) from Lemma C.1.
Next, from the Gaussian likelihood function, it follows that the score in the
direction of B, evaluated at B}, &, B%, and &, satisfies

(C36) 0=(a,a&) 2 (S; — & BrSt —a:BS:)-

Rewrite Sj;, as S;, = S%, + a7'S], and postmultiply by B;, such that the term on
the right hand side of (C.36) can be written as

(C37) [ Sy +(ar —aiBy)SH,
—  ———
(a) (b)
— &y By, Sty — (&, — ag) By'Siy — &BLST | Bo.-
N, e’ N —— —

(©) (d) (e)
Using (C.34), (C.35), (af — «af) = 0’;(1), and Lemma C.1, the terms (a)
and (d) are 0;(1) while (c) is O;(T) and (e) is 0;(1), in probability. For
the term (b), note that B7'S11B;, = O;(1) and, as used for (c), By, S18;, =
O(T) from I:emma C.1 and (a7 — a;B)B;, = O0,(T™"); see (C.16). Also
(at’ — oy BBy = O,(T~'/*), which holds as from (C.2) and (C.6),
(C38) NT(ar' —aiBy) By =T8S 7 By =VTSaB(BySuB;) " +0,(1).
Collecting terms, we conclude that
(C39)  up=B; (B, —By)=0;(T).

Finally, we also have JT (¢ — o) = 0;(1). To see this, rewrite as

(C40) (& — a})(BS; B
=848, + (&7’ — oy By) St By — i (B — By) S B
——
(a) (b) (c)




22 G. CAVALIERE, H. B. NIELSEN, AND A. RAHBEK

where (a) is O3 (T7'?), (b) is O;(T~"?) using (C.16) and (C.38), and, finally,
(c)is 03, (T1?).

The test statistic —21og O* (H,ux|H1).-

As —2log O*(H,u|H1) = =T log det(f):;xlfl*), rewrite (* as (0 = Qaux + ZT,
where

ZT = f)* - ‘(A)aux = Zﬂ"n' - Zerr - Zéw
= (&*B" — ITy) S, (& B — 117
— 8 (67" — ITy) — (& B — IT})S5,.
Observe first, using (C.32) and Lemma C.1, that Z,, = O;(T*]) as
TZpn =T (& — ) By S:BNT (& — )
Ak k) 1*/** Ao\
+ (TanuT) (T 0¢51130¢> (TanuT)
+ (VT&BY)S; (VTaBY) + Fr + Fy,
with
Fr = ﬁ(&,’i - ag)Bé'S;‘] IBSL(T&:L‘*T,),
+VT(&, — ;) ;S5 (VTaB.)
+VTa.B.S; By, (Tauy)

We conclude that Z,,, = O;(T™"), using (C.34), (C.35), (C.39), and (C.40) to-

gether with Lemma C.1. Next, consider Z,,,. Using Lemma C.1 and Proposi-
tion 1 of Cavaliere, Nielsen, and Rahbek (2015), as well as

e =AX; — @By X = el + (ar — 0B X,
(again see (C.40)), we have that
TZ.. =TS (&B" —1II;)
= VTS, (VT (&, — o)) + S0 B3 (T (&,u7) + ., B-4)
=0:(1).

Collecting terms, Zr = O;(T” ), and as

A* — * * */ * * *k/ * * */ * */ *
O = St +apByStiBoay — S Bocy — By Sy

p* T * N s/ F */ =y *
= p 2 o Speay — Spay — g3 = O,
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by Proposition 1, we find, by a Taylor expansion,

aux

—210g Q" (HauxlH1) = —T logdet(:,10*) = 0(1),

as desired.
Asymptotic theory for the bootstrap restricted estimators.

Using Dr = (§, ¢ L/\/T ), then as in the proof of Lemma 1 and using
Lemma C.1,

~*_~*/_* x—1 _r Q% /O =1, /p* * .k O/

II" = a7 =Sy 7857 = 857D (D}S; D) Diypr' = 11 = o By
Moreover, by direct insertion,

II" —II; = (&€ — o) By + &, &, 7,

such that we need to find the asymptotic behavior of (&*& — aj) and a*é ),
respectively. As in (C.16) and applying Lemma C.1, we find, with G} :=

&G,
Taé, =TS, ’rDT(D'TS;‘TDT)—lD,TgL
1 -1
= Syré < / G:GY du) +o(1).
0

As &,81) = &, 7S}, = &7 By, By Sty + £, 7 BBy Sio = 0,(1) by Lemma C.1,
we therefore have that a*¢, = O;(T‘l). Likewise, v/ T(&*& — ap) By = OZ(l)
and by collecting terms, we finally find

(CAl) II"'=ar =aépy +aé & v =1I;+1I; ,
with IT; — IT; = O5(T~'?) and II; = O(T ).
The test statistic —210g O* (Hau|Ho)-

Consider —2log Q*(H.x|Hy) = —T log det(.();ule)*), where f)aux is as above
and

=58

&g’

with & =AX’ —a'7X" .
Then rewrite * as O = Qaux + Z%,where
Zi=Q —0=2'_ 7 — 7"
= (@7 —II)S;, (&' — IT})’
- S (&7 —ITy) — (&7 — IT}) S5,
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Observe first that by (C.41) and Lemma C.1, it holds that Z* = O* (T, as
T2, =(VT(@&-a)BiSiBy(VT (@€ - )
+(Taé)) (%';T's;fa) (Taré,)
(VT E—a)) By St (1)
+(Ta &) (€L 7S1)B (VT (& € - ) ))-

Consider Z next. By using Lemma C.1 and Proposition 1 of Cavaliere,
Nielsen, and Rahbek (2015),

TZ: =TS (a7 —1II})
=VTSBNT (&' — a}) + S;yrE(Ta EL) = 05(1).
Collecting terms, Z% = O;;(T*1 ), and we find by a Taylor expansion that

_210g Q*(Haux“_'()) = —Tlogdet(!}:;(lué*) = 0;(1)7

as desired, which shows that Q7.(7) = O;(1).
The asymptotic distribution of the bootstrap LR statistic under the null hypoth-
esis.

To show that Q% (7) f)p x> (ro(p — 1)) when r* = ry or Hy holds, we apply
the same expansions with a few simplifications due to the fact that, under Hy,
it holds that o = a and B} = B,. Specifically, we omit the auxiliary hypothe—

sis, and consider directly the statistic —2log Q*(Hy|H;) = —T log det(.()*‘l.(l*).
Recall that 2 = S*,

£&’

where
Ak * A */ YV % * / * *
g =A0AX]—a B X7 =AX] — & B X[ | — &urBy, X7,

using the definition of u in (C.33) and we set &* = & since & = 0 by defini-
tion. Moreover, from (C.36) and (C.37), we find

1
Tuy =, u” = (agﬂolao)_laéﬂolf aw Gy </ Gy, Gy ds) ,
0

where, as r* =ry, G} (s) = Bj, Bor (@), Bor) ™ ey, W*(s). Next, similar to the
expansion used for —2log Q* (Haux|H1), write 0 = St + Zow — Zoz — 2!, Wwhere
=AX; —a*By X, . We find S}, L » {2 and

TZy =T uy By, Sy Boruya” N » U / Gy, Gp dsu” o
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Moreover,
TZ = T&'uz By, Sz = Ta up (B, Sy, + By, S Bo(@ — &)
o agu’ /1 G dW*.
0

Hence, collecting terms, we obtain that —2log Q*(Ho|H,) = T tr{;"(Z.; +
Zl. — Zoo)} + 04(1) and, finally,

Q7(7) f),, tr{()olao(abflolag)_laéﬂol

1 1 -1 1
x /0 dW*G;’L( /O GZLG;;’lds> /0 G;;LdW*/},

which is x?*(ro(p — ry)) as desired. This completes the proof of Theorem 1.
Q.E.D.

D. MODEL WITH AN INTERCEPT

In Section D.1 we state and provide the proofs of the equivalents of Lemma 1
and Proposition 1 of Cavaliere, Nielsen, and Rahbek (2015) for the model with
an intercept. Section D.2 contains additional lemmas applied in the proofs.

ADDITIONAL NOTATION: Due to the inclusion of the intercept, introduce
the following notation: with Z,, := AX,, Z;,:= X, 1, and Z,, := AX,,, for i, j =
0,1,2,set M;:=T"'Y, | Z; and M. := My — M;:M_,.

D.1. Bootstrap Asymptotic Theory

Lemma D.1 and Proposition D.1 below respectively generalize Lemma 1
and Proposition 1 of Cavaliere, Nielsen, and Rahbek (2015) to the case of an
intercept included in the model and in the DGP.

LEMMA D.1: With IT = ar/, lff, o, and Q the restricted OML estimators for
the parameters of the model in (11) of Cavaliere, Nielsen, and Rahbek (2015), it
follows that under Assumptions 1 and 2, as T — oo,

o5 my=a8), v5¥=(1,....I;), &>u, and
05 Q> 0,

where the pseudo-true parameters o, By, and Wy satisfy the I1(1, r*) conditions.
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PROPOSITION D.1: Consider the bootstrap process X as defined in Section 5
of Cavaliere, Nielsen, and Rahbek (2015). With ¢ := o s, then if ¢ # 0, X has
the representation

(D.1l) X =Ci¢.Z +Clos + S,

OZ(TUZ). Moreover, the (p — r* — 1)-dimensional Z; satisfies T~ Z;;. | gl, Z
on DP7 7' where Z is the Omnstein-Uhlenbeck process with random drift pa-
rameters defined in (D.21). If ¢ = 0, the limiting Ornstein—-Uhlenbeck process Z
is (p — r*) dimensional.

REMARK D.1: Notice that by definition, ¢ := «af, uj = 0 if and only if Cuy =
Coap, o = 0. Consequently, the deterministic trend component (of order T')
C: s, appearing in the BGP (D.1) is nonzero if and only if the original DGP
also has a deterministic trend component (of order 7). That is, if the condi-
tion Cuy = 0 holds, see Section 5 of Cavaliere, Nielsen, and Rahbek (2015).
In this respect, the BGP mimics the original DGP in terms of deterministic
components of order 7.

PROOF OF LEMMA D.1: Proceeding as in the proof of Lemma 1, observe
initially that X, in the case of an intercept has the representation

t
(D2) X[:C<Zsi+/.bof) + 7,

i=1

where 7, is a stationary linear process with exponentially decaying coefficients,
En,:=mn,and C = C,a;, , with C, as defined in (C.1). Thus, X is nonstationary
with a linear trend, which vanishes if Cuy = 0.

Assume first Cug # 0. It holds that the r* linear combinations &'7'X, are
stationary. Next, define the (r* — ry)-dimensional vector y := & 7'Cu, and its
orthogonal complement vy, , which is (r* — ry) x (r* — ry — 1) dimensional. By
(D.2), ¥'¢ 7' X, is (dominated by) a linear trend ¢, while v/ £, 7' X, is integrated
of order 1. With the basis for R’ defined by

(D3)  Dr:= diag(f, T_l/z(T/T)_lfl?’m (7/7)_1§L3_’T_3/2),

then

1
Dl;/’T,SH’TDIJ' = diag(dZB[gd),/o G;G: du) + OP(l)
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as T — oo and where G.()=G,() - fo1 G, (s)ds (thatis, G, corrected for a
constant), where

LT-]
G.():=(G(), -)/ and G(.):= y’Lfﬁ’nglim(T‘l/za{u Ze,).
t=1
Likewise, So; 7DY RS (Z0p®, 0px(ry—r)- Collecting terms yields
ar' = SyrD4 (DS, DY) ' Dy B IT; = o By,
as desired. With o, B, k4, and k4, as defined in (C.3) and (C.4), ¥, fi, and Q
converge, respectively, to the pseudo-true parameters ¥, u;, and (2; given by
(D4) 1[’; = 11’0 —+ ay K¢, (;b/LE[;[]% YBZ Y{zl ’
(D.5)  uy= o+ agky, dﬁE,};(nﬁ - YB2YZEIW2),
(D6) Qé = Qo + oKy, d)laé,

Here Y, := plim ByM .., Y2 := plim My, 7 := plim M, = EAX,,, and ng :=
plim B M. = By (see (D.2)). It follows that

¥ = My M) — ar' My My,
* — ’ -1, —
S Wy =YYy — anZpd (¢ Spd) ¢ Ya)y'
and ¥ = YpY,,' — @Yy Y,,', and (D.4) holds. Next, for f,
f= My —ar’ M. — VM, 5 EAX, — . EB; X, — W EAX,,

and the result (D.5) holds by simple rewriting, using that by (D.2), EAX, =
Cpy, as well as (C.4) and (D.4). Next, rewrite the equation for AX, in terms of
the pseudo-true parameters as

AXZ = O(SBS/Xt,l + II,JAXZI + [.LE; + e;,
where the pseudo-innovations e, are defined by

(D.7) e =g+ apky, & 35 (By(Xio — M) — Y Vi ' (AXy, — mp)).

As e, is uncorrelated with 87 X,_; and AX,,, we find again that (S (2. Specif-
ically, by (D.7),

E(e.X]_1B;) = E((&: + aoky, &) 35
X (Bé)(Xt—l -n)— YBZY{Z](AXB - ”flz)))X,’_lﬁs)
= aOKd’L (b/J_EEé(YBB — Y32Y2_21Y23)¢ = 0,
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where Yjg = plim B;M,. By and we have used gz = Y — Y Ys,' Yap. Like-
wise, E(e,(AXy —12)") = ap(Ypa — Yp2) =0.

To see that the pseudo-true parameters (o35, W) satisfy the I(1, r*) con-
ditions, it suffices to proceed as in the proof of Lemma 1 in Cavaliere,
Nielsen, and Rahbek (2015), after rewriting the system in companion form
as

AX, =AB"X, + M+ E,,

where M := (uy', 0, ...,0) and E, is defined in terms of ¢, in (D.7).
Finally, turn to the case of Cuy = 0. In this case, no linear trend is present
and the results above hold by redefining D7 as D7 := Dy and setting G, :=

G- fol G(s)ds,with Dy and G as defined in the proof of Lemma 1. Q.E.D.

PROOF OF PROPOSITION D.1: The proof mimics the proof of Proposition 1
of Cavaliere, Nielsen, and Rahbek (2015) for the case of no intercept, and we
state here the main steps and results sufficient for extending the arguments to
the bootstrap in the intercept case.

By definition, the BGP for X is given by

AX; =ar' X + VAKX, + i+ &
or, in companion form,

AX! = ABX: |+ M +E:,
where M = (@',0,...,0) and the remaining quantities are as defined in the

proof of Proposition 1. Likewise, with O, := (B*, A*) such that ZF := Q' X, it
holds that

1
(D8) AZ; = ((lrb/ + TCTbl)Z:KI +mr+ E;,

where mr := Q’ZA;I. Moreover, as T — oo, ar, cr, mry = O,(1) with

(D.9)  ar 5 a:=bB"A*) and m; 5> m:=Q.(u;,0,...,0).

Also with y = ¢ 7 Cuy as defined in the proof of Lemma D.1,

(D.lO) CTl> o Q,Z Nu(TgJ_'}’J_, 0) BOL (azl[é*ﬁa_)i],
O(k—l)pX(p—r*)

where N, is defined below in (D.11). To see that ¢ has the limit in
(D.10), then as in (C.14), consider Tar'B;, . With D% defined in (D.3)
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and Vy :=7&, (v, /NT, ¥/ T),
(D.11)  wlim(Tar'B;,) = wlim(T Sy 7D% (D4 7Sy D)~ DY~ ;)
= wnm<ﬁsmVT ( /0 1 G.GY du)l(%gm, 0)’3&)
=N, (717.,0)B;, .

Now turn to the error correction process Z; in (D.8), which, due to the accu-
mulation of my together with (C.19), satisfies

(D.12) T~ IZ’[M o (u) _/ b, exp(m*(u—s)) dsb', m = ou,
where ¢ is the (p — r*)-dimensional vector defined by
o:=ap, puo =0y Iy Cuo,
and
7= b e = ay N, (T€,71,0) By, (e, Iy BL,)
To see this, observe that b, m = o, ui = o I7Cpup as
(DA3) g =Ty Cpao — By m
by Lemma D.1. This implies #*b’ m =0, since (7&,v,,0)Cuy =,y =0 and
Cibl,m = By, (o 17 B3) e, I Chao
= B3B3 Creo = Cpao.

Note that we may equivalently state (D.12) with s, := ¢'b’| Z} as

w*

(D.14)  T7'spy =T7'¢'b 2}, >, u.
Next, consider the remaining linear directions of Z! as given by
= Q;,)Zf = (b, bMDL),Zf-

Using (b,b,¢ )0, +be@'b', =11, we find

—aCrS1tmp+E,

1
(D.15) AW = (w;b; + ?cfﬁbju)w;*_l

1
T'%/Z
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where b, = (1« p-1),0), b}, =(0,1,_.-_y),and E! = Q, E%,. Moreover,

w -zttt
(D.16) a¥=Q,ar 5 a”=Q, b(B'A*) =b,(B"A"),

w / = w w / / N T ,0 "B, */ * D% =
CT = QwCT(PL — C = QwQZ < M(TgL’YL ) BOL) (aOLI—;) BOL) lgDJJ

0pk—1yx(p—r+)
while
¢ = VTQ, cro
im0 (MO TETEL ) () e

OP(k—l)X(P—r*)

= 0,0. (N“(O’ ”).

Op(kfl)xl

With m¥ as in (D.15), consider the decomposition

~ 1
m’;f = Q;)mT = Q;)Q/ZM = bwdT + ﬁbwleﬂ

where dy :=B"M 5 d = B"(u,0,...,0) and ey := VT, A"M 5 e. To
show the latter convergence, rewrite ey as
(D.17)  er = VT, ATM =VT¢, a5 p = VT (i — ;)

= «/Tgo’l(az‘)lMOC.z — qo) — \/Tgo’lazl&T'Mlc_z

=:éir — ér,

with M., = M;. — MuMy,'M,,, i = 0,1, and where we have used ¢ =
ay I Cuo = af u§. By definition, o E(Mo..,) = of I;7Cuo = ¢ and the first
term e;7 in (D.17) is of order O, (1) by standard application of the central limit
theorem (CLT) for stationary processes. Next, use D and V7 to rewrite e,r
as

1
er = golagl (N,u/ G,u(s) ds + ﬁ(SOIBS(d)/EBBd))_l — 0[3)7]*)
0
+0,(1),

where n* := plim(B{M.>). Again, e;r is O,(1) by (D.11) and observing that
E(SuBy) (' 3pd) " =
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By the recursion in (D.15), Wi = W3, + W}, + W3, where

W = Z@’ JEL,
y 1
WZI = Z(I)w T bwd]" + ﬁbwLeT ,

1 t
W = t—=j .z
3t T3/2 E :(Dw 7CrSi-15

with @, 7 := I + a¥b,, + 1cvb,, . By (C.19) and the weak convergence in
(D.16), we find, as in the proof of Proposition 1 of Cavaliere, Nielsen, and
Rahbek (2015),

LTul
(D.18) T7*Wip, = Til/zz@g;i E;,
Jj=1

—p bwL(/ CXp(W;(M—S)) dQDLaOLW*>
0

where 7 = b/, ¢ and we have used that, by definition, b Q! Q) = ¢’ o, .
Next, using (C. 19) Lemma D.3, and the convergence of a¥, c¥, and e¥, we find

[Tu]

1
(D.19) 7"71/2VV;LTMJ = T2 Z (Dw T (bwdT + ﬁbwLeT)

5, by (/uexp(ﬂ':)(u —5)) ds)e.
0

Finally, W; ;. = 0%(T"?) by (D.14).

Consider next X, which, similarly to the case of no deterministics in (C.22),
one may decompose as
(D20) X;=Ci¢.¢ + @@ )b Zi+ S =Cip.b, Wi+ Crps, +S;.

Here S; is defined as in (C.22) in terms of B*X’ and, as argued below,
max, |S7|| = o*(Tl/z) For s, use (D.14) and note that by (D.13), Cr¢ =
B (o 5B L)oz0 ' . Finally, use (D.18) and (D.19) to see that the remain-

ing (p — r* — 1) stochastic trends satisfy 7-'/?b,, Wi, | X » Z"(-), where Z"
solves

(D21) dZ"(u)=(mZ"(u) +e)du+ ¢ oy, dW;.
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Finally, consider S;, which can be decomposed as in (C.23). Let X! denote
the companion form of X, which is as defined in (6) of Cavaliere, Nielsen, and
Rahbek (2015), with the intercept wj added on the right hand side, and define
pi=b, (D), , — D), where

1
(pr —ka 1+(lTb + b;uL and @w :—ka 1+a bw

w

By definition, B¥X* = b/ W* and simple substitution gives

w

B*/X* B*/XT gt + 6,,

where &, = Zl o pi(E:,_,+b,d) with max, || Var* &,|| = O,(T ") as in the proof
of Proposition 1. Moreover, 8, := 8, + 8y + 83, where

t—1

611 — T_1/2 Zpi(bwa + wa_eT)9

i=0

=T, Z@l bufr,

-3/2
=T, Zcprcht iy

with fr:=T"*(dr —d). As ||p;|l < p=0,(T™") and fr, er are of order O,(1),
then max, 6,, = 0,(1) since

1811l < (Tp)(er T™) = 0,(T?),

where c¢; = O,(1). Then fr = O,(1) follows by similar arguments as in (D.17).
Next, |8l = ‘0 ,(T71%) as fr = Op(1) and b, @' b, = (I + b,a”)’, which is

exponentially decreasmg Finally, |16 = O;(T~ 1/2) as T'28; = T'’W3, =
O;,(1); see also (D.19). O.E.D.

D.2. Auxiliary Lemmas

For the co-integrated VAR model with an intercept u in (11) of Cavaliere,
Nielsen, and Rahbek (2015), we show next that the LR test Qr(7) of B =7 is
asymptotically x? distributed even when Cu, = 0, that is, when no linear trend
is present, which extends Johansen (1995), where the case Cug # 0 is covered.

LEMMA D.2: Under Assumptions 1 and 2, if Cuy = 0, then as T — oo,
QT(T) i) X%O(P—fo)'
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The next technical lemma extends Theorem A.14 in Johansen (1995) so as
to deal with the model with intercept under the alternative.

LEMMA D.3: Assume that a and b are (n x m) matrices, with m < n, a'b of full
rank m,and p(b'a+1,) < 1. Moreover, let f, g € R" such that a' f = 0. Then, as
T — o0,

1 [Tu]

i Z(In +ab + %D) (f + %g) — f exp(CDs)dsCg
t=1

0
in D", where C=b,(a' b)) 'd,.

PROOF OF LEMMA D.2: The model is given by (11) and we prove the results
following the arguments outlined in Johansen (1995, proof of Lemma 13.8).
Under the hypothesis, 8y = 7, and using the coordinate system ( By, Bo. T~'/?),
it follows that the standard eigenvalue problem in the limit solves

1
det(/\ZBg — 2502501 203) det()\/ GBG% du),
0

with Gy = B — [ B,ds, B=T""B; C,;W, and W :=wlim(T~"a;, "} &,).
This establishes B{) L ( ,é —By)=o0 p(Tfl/z). Moreover, standard arguments give

1 -1 1
T, (B—Bo) = (/ GGy du) / Gs dW/leao(a{]!)glao)fl.
0

0

Next, we find similarly

Or(1) > tr { 04 oo (025 o) 710@(251

1 1 -1 1
X/ dWGB</ GBG;;dM> / GBdW/},
0 0 0

which is x{, ,_,.,, by mixed Gaussianity. Q.E.D.

PROOF OF LEMMA D.3: By Theorem A.14 in Johansen (1995),
1 T
(In +ab' + TD) — exp(CD)C

and, hence,

[ Tu)

1 t u
T‘12<I,,+ab’+TD> —>/(; exp(CDs) dsC.

t=1
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Thus, the result is implied by showing that 7-'23"\7(I + ab’' + 1D)'f — 0.

Consider first the b direction where, by Johansen (1995, equation (A.22)), with
K a positive (generic) constant,

t
'b’ (1,, +ab' + %D) —b/(I, +ab)

<k/T
and, hence,
T 1 t
T2y b <In +ab + —D)
2 )

T
<k/T+T 2> (I, +ba)bf|—0

t=1
as p(b'a+ 1I,) < 1. Next, by Johansen (1995, equation (A.23)),

t

1\ 1 _
a, (In +ab + 7D) - (1,,,n + 7, Dby (a,b.) 1) a,

Hence, since a', f =0,

<k/T.

T

1 t
T'? Z a, (In +ab' + TD> f

t=1

T t
<k/T+T7'? Z(”’”+ anL(aLbl) )alf =k/T— 0,
as required. Q.E.D.
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