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By CAROLINA CAETANO

This supplement provides details of the implementation of the test statistic described
in Section 3.1 in “A Test of Exogeneity Without Instrumental Variables in Models With
Bunching.” It also develops the theorems that describe the test statistic’s asymptotic
behavior. Finally, it presents a Monte Carlo study of the small sample behavior of the
test statistic using real data (the same data set used in the paper’s Section 3).

S1. A TEST STATISTIC BASED ON ¢

AS DESCRIBED IN THE PAPER in Section 3.2, the empirical application is based
on the parameter

(S1) 6= 1ig)1E[E[Y|X =0,Z]-Y|X =x].

In order to estimate 6, a simple two-step process is suggested, which consists
of first estimating the term E[Y|X =0, Z] and then estimating the outer limit
as x |, 0. The requirements of the approach are the following.

ASSUMPTION S1: Suppose that

1. 0<P(X=0)<1.

2. E[Y|X=0,Z]1=Z"y.

3. The sample {(Y;, X;, Z)};— is independent.

4. Var[Y|X =0, Z] is finite and uniformly bounded.

The first requirement permits that the sample be divided between observa-
tions such that X =0, and X # 0. This requirement can be relaxed so that
the test can still be applied to cases in which there is no bunching (see Re-
mark S1.1). The other requirements are there to guarantee that E[Y|X =0, Z]
is estimable at the /7 rate, but they have an effect on the null hypothesis (see
Remark S1.5).

If Assumption S1(2) holds, then 6 = lim, (E[Z"y — Y|X = x]. The estima-
tion of vy is done with an OLS regression of Y onto Z using only observations
such that X = 0. The outer limit in 6 is a boundary quantity, and so the limit es-
timator needs to take this into account. The issues with nonparametric bound-
ary estimation are well known and addressed extensively in the Regresson Dis-
continuity Design (RDD) literature (e.g., Hahn, Todd, and Van der Klaauw
(2001), Porter (2003), and Imbens and Lemieux (2008)). The quantity in (S1)
is of the same nature as that in the RDD, with the only difference being that
the dependent variable in the regression, Z'y — Y, has to be estimated. How-
ever, Assumption S1 guarantees that vy is estimated at the rate of \/n, whereas
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the fastest rate possible for the nonparametric estimation of the outer limit is
n*? (see Theorem 5 in Porter (2003)). Therefore, asymptotically it is irrelevant
whether the estimate ¥ or the true y was used, and so it is possible to proceed
identically to the RDD literature by simply substituting Z’y — Y in place of the
dependent variable.

The recommended approach is to do a local linear regression of the terms
Z'y — Y onto X at X =0, using only observations such that X > 0. A detailed
description of the procedure can be seen in Fan and Gijbels (1992), though
practitioners may benefit from the exposition in Imbens and Lemieux (2008).
The practitioner must choose a kernel K' and a bandwidth /4.> The procedure
is equivalent to the estimation of the constant in a weighted least squares re-
gression:

N = . 2
0= argm@le(Xi > O)K(Xi/h)(Zi)’ -Y —-0- BXi) .

i=1

For convenience, the following assumption reproduces the assumptions of
Hahn, Todd, and Van der Klaauw (2001) for the convergence of the boundary
local linear estimator in the context of this paper.

ASSUMPTION S2: Suppose that there exists an interval I := (0, 8] for some
0 > 0 such that

1. X is continuously distributed in 1. Its density f is twice continuously differ-
entiable and bounded away from zero. The limit fy, = lim,, f(x) exists and is
positive.

2. E[Var[Y|X, Z1|X = x] and Var[A(x, Z)|X = x] are continuous in I, and
oi :=lim,  E[Var[Y|X, Z]|X = x] and o3, :=lim,, Var[A(x, Z)|X = x] are
finite.

3. Forsome { > 0,E[|Y —E[Y|X =0, Z])*|X = x] is uniformly bounded in I,
with bounded right-limit at zero.

4, The kernel K(-) is continuous, symmetric, nonnegative-valued, and with
compact Support.

5. The bandwidth h <n=*, with 1/5 < s < 2/5.

The assumptions of the local linear estimator are well known. In this paper,
item (1) deserves special notice. It indirectly requires that there cannot be any
bunching points in /. This can be an excessive imposition in certain examples
(such as in the case of labor supply discussed in Section 2.2 in the paper).

'Imbens and Lemieux (2008) recommended the use of the rectangular kernel K(u) =
11(Jul < 1), although the Epanechnikov kernel K = (1 — u?)1(Ju| < 1) possesses a few opti-
mality advantages. In any case, the choice of the kernel is not very influential, except perhaps
when the curve is excessively convex or concave near the boundary.

2See Remark S1.3.
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Remark S1.2 discusses how this condition can be relaxed. The faster bandwidth
requirement (5) allows the bias term to vanish. The following result establishes

the asymptotic behavior of b

THEOREM S1: Suppose that Assumptions S1 and S2 hold. Then

Vah(6—6) 5 N, Q),
where Q= [ K(u)*du- (o3, + 03,)/ fxr

PROOF: 6 can be written as a linear combination Y wi(Zy —Y;) (see
Heckman, Ichimura, and Todd (1998, p. 284)). Thus,

i=1 i=1 i=1

6 = |:Z w,:|(’§’ -+ ZwiA(Xi, Z)+ Zwi(Yi — E[Y;| X, Zl.])_

>, w; is bounded in probability (see Porter (2003, p. 45)). Assumption S1

guarantees that ¥ —y = 0,(v/nh). The second and third terms are typical local
linear estimators and are also uncorrelated. The result is then a straightforward
application of Theorem 4 in Hahn, Todd, and Van der Klaauw (2001). Q.E.D.

The variance term (2 can be estimated with a plug-in method. Under H,
o3, = 0. Both fy, and o3, can be estimated directly (see Imbens and Lemieux
(2008, p. 630)). The test statistic that uses this variance estimator can be easily
implemented using a well-known software package.’ The convergence in prob-
ability of this estimator is a simple application of Theorem 4 in Porter (2003).

The test statistic is thus 7}, := 6/4/ 0 /nh, which should be compared to the
critical values of the standard normal distribution.

THEOREM S2: Suppose that Assumptions 2.1 and 2.2 in the paper hold. Addi-

tionally suppose that Assumptions S1 and S2 hold, and that V % V. Then under
Hy (i.e., X is exogenous),

lim ]P)(|Tn| > Cl—a/Z) = .

Suppose additionally that Assumption 2.3 in the paper holds with positive proba-
bility, so that under H, (i.e., X is endogenous), 6 # 0. Then

lim ]P)(|Tn| > Cl—a/Z) =1.

3Command “Ipoly” in Stata. Alternatively, the author can provide the ready-to-use Stata code
of the test upon request.
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And if there exists a constant & such that ~/nh6 — §,* then
lim P(|T,| > ¢1-ap2) = 1 — D(c1_ap2 — /1),

where ® denotes the standard normal cumulative distribution function and c¢,_,),
its (1 — «/2) - 100th critical value.

PROOF: Follows directly from Theorem S1. Q.E.D.

REMARK S1.1—No Bunching Point: In cases where there is no bunching
but the discontinuity happens at an interior point (see the working hours
example in Section 2.2 in the paper), the test can still be performed with
minimum modifications. In such cases, E[Y|X = 0, Z] can be substituted by
the limit lim,,, E[Y|X = x, Z]. Unfortunately, without further assumptions
about the shape of E[Y|X = x, Z] when x < 0, this estimation step may af-
fect the asymptotic variance. If it is possible to assume, for example, that
E[Y|X,Z]=Xa+ Z'y for X <0, then y can be estimated with an OLS re-
gression of Y onto X and Z using only observations such that X < 0, and all
the results hold the same.

REMARK S1.2—Bunching Inside /: If this is the case, the bunching points
can simply be eliminated from the estimation. For example, in the working
hours example in the paper Section 2.2, if the bandwidth is /& = 16, one could
eliminate the data such that X = 25, 30, and 35 on the left side. Accounting
for this generalization in the theory does burden the notation, but the results
hold exactly the same provided the distribution of X is differentiable outside
the bunching points.

REMARK S1.3—Bandwidth Selection: In practice, if E[Z'y — Y|X = x] is
very concave or convex near the boundary, the choice of the bandwidth is of
paramount importance. In order to optimize this procedure, it is advisable to
apply a method of bandwidth selection that is appropriate for boundary estima-
tion. The method developed in Imbens and Kalyanaraman (2012) for the RDD
can be transplanted to this test, but it yields the optimal bandwidth. Assump-
tion S2(5) requires undersmoothing, and thus one should choose a bandwidth
which is at least slightly smaller than the one given by that method. Neverthe-
less, it is still advisable to report results for several bandwidths.

REMARK S1.4—A Simplified Test: If K is the rectangular kernel, 6 has a
very simple interpretation. Restricting the sample to observations such that

4A data generating process which generates this is, for example, if E[U|X =x,Z = z] =

Ai(x)a, + Ay(z), where there exists a constant C such that v/nha, — C. Then 6 = a,(A(0) —
lim, o A;(x)), and 6 = C(A1(0) — lim, o A (X)).
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0 < X; < h, 6 can be understood as the intercept of an OLS regression of
the Z!y — Y, onto X;. Therefore, T, is the t-statistic of the intercept of the
OLS regression described above. If the assumptions are relaxed to allow for
heteroskedasticity, the robust variance estimator should be used instead.

REMARK S1.5—Effect of Assumption S1 on Hy: One should keep in mind
that Assumption S1(2) becomes part of Hy. Hence, the test is now a test both
of exogeneity and of the validity of this assumption (both with respect to the
linearity and to the correct covariate specification). If the researcher intends to
estimate a model which assumes linearity in covariates, this is in fact desirable.
For example, if the model is Y = m(X) + U, with E[U|X, Z] = Z'A (which
could be estimated using a method such as in Robinson (1988)), then in this
case Hy: E[U|X, Z]=Z'A.

S2. MONTE CARLO STUDY

This section studies the test statistic presented in the previous section in the
context of Monte Carlo simulations using real data. Consider the following
model:

Y=BX+Zy+U,

where Y is the baby’s birth weight, X is the average daily number of cigarettes
smoked during pregnancy, Z is the covariate specification used in the applica-
tion Section 3, and U is unobservable. Suppose that

U=60+c¢,

where

(s2) (@‘Z“N((g)’(? £)>

Assume that E[¢|X, Z] = 0. The variable Q is the source of the endogeneity
of X, because it determines the optimal smoking choice X* in the equation

($3) X =Zm+0.

Though the optimal choice X* could be negative, the actual smoking amount
X cannot. Therefore, the actual smoking choice is subject to a corner restric-
tion

(S4) X = max{X",0}.

Notice that this is not a censoring model in the strictest sense. The structural
equation is not a function of the latent intended smoking amount, X*, but of
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the observed actual smoking amount X. If there is no endogeneity (6 = 0),
B and vy can be estimated even if the censoring is ignored.
The expected birth weight conditional on observables is

(S5) E[Y|X,Z]=(B+ &)X + Z'(y—md) + 8(Z'm — 0o M Z))1(X =0),

where MZ) = ¢p(—Z'7/0y)/P(—Z'7/0yp) is the inverse Mills ratio. When
6 # 0, the endogeneity generates a discontinuity in birth weight as a function
of smoking.

This model completely specifies the endogeneity. Although it does not ex-
plain the essence of Q, it establishes how this “black box™ interacts with X. If
the objective is the identification of B, this model may be arguably sensible.

The simulations use the same data set as in the application Section 3 in the
paper. The parameters 7 and ¢} are estimated using a Tobit regression on
equation (S3). The estimates are then plugged into equation (S5), where a
simple OLS regression yields estimates for B, y, 8, and 2.5 It is interesting
to observe that, under this model, the estimate of B8 is 0.0073, with a 95%
confidence interval of [—0.57, 0.71]. The average smoker mother smokes 12.9
cigarettes. If the model is true, then smoking causes an average loss of at most
7.3 grams (—0.57 x 12.9), which is not an important amount under any circum-
stances.

Disregarding endogeneity has severe consequences. Conditional on covari-
ates, the difference in birth weight between mothers that smoke X = x and
those that do not smoke is (8 + 8)x — SE[Z'7m — oo A(Z)| X = x]. If the entire
difference is erroneously attributed to the causal effect of smoking, the bias
of endogeneity is 6(x — E[Z'm — 0pA(Z)|X = x]). In the original sample, the
average smoker has a bias of 191.7 grams, which accounts for almost all the
effect found in Almond, Chay, and Lee (2005).

The experiments study the test behavior for three sample sizes: 1000, 5000,
and 20,000. For this, three subsamples of corresponding sizes are randomly
drawn from the original population. The samples are representative, as can be
verified in Table S-1. This table shows the summary statistics of a group of the
most important covariates for each of the subsamples, which can be compared
to the values in the original data set.

In the experiments, the endogeneity levels are characterized as the correla-
tion between U and Q, and denoted p.® However, in order to give the corre-
lation level a tangible interpretation, Table S-II also reports the value of the

SThe coefficient of the discontinuity term estimates §. Then, 8 equals the coefficient of X,
minus §, and y equals the coefficient of Z, plus 7§. Obtaining the variance ¢ is more del-

&

icate, since when X > 0, Y — E[Y|X, Z] = &, but the same is not true when X = 0. Thus,
62 =YY — (B4 )X, — Z'(y — &) PL(X; > 0)]/[X, 1(X; > 0) — d — 2] is the average
of the squared residuals of the smoker observations, where d is the dimension of Z.

5The endogeneity is defined as p = Corr(U, Q) = 80p/,/8%0} + o2. For each endogeneity
level p, the equation above determines the corresponding value of &.
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TABLE S-1

DESCRIPTIVE STATISTICS OF KEY VARIABLES ACROSS SAMPLES

Original Data Set Subsamples
n=488,152 n=1000 n=>5000 n=20,000
Outcome Variables
Birth weight (in grams) 3366.17 3380.96 3371.79 3368.65
(590.25) (580.04) (603.68) (589.67)
Gestation (in weeks) 39.22 39.25 39.26 39.24
(2.63) (2.52) (2.62) (2.63)
APGAR (5 minutes) 9.03 9.03 9.02 9.03
(0.79) (0.75) (0.80) (0.80)
Mother’s Variables
Proportion of smokers 19.69 19.84 18.89 19.74
Avg. cigarettes per smoker 12.93 12.10 12.94 13.06
(8.00) (6.89) (8.18) (8.09)
Age 26.79 26.50 26.77 26.82
(5.65) (5.70) (5.63) (5.63)
Proportion of blacks 0.152 0.154 0.153 0.152
(0.359) (0.361) (0.360) (0.359)
Years of education 12.79 12.84 12.81 12.79
(2.18) (2.24) (2.20) (2.19)
Proportion of unmarried 0.293 0.292 0.288 0.293
(0.455) (0.455) (0.453) (0.455)
Prenatal visits 2.64 2.60 2.62 2.62
(1.52) (1.46) (1.52) (1.50)
Father’s Variables
Age 29.42 29.12 29.34 29.46
(6.38) (6.36) (6.33) (6.35)
Proportion of blacks 0.154 0.153 0.154 0.152
(0.361) (0.360) (0.361) (0.359)
Years of education 12.98 13.08 12.99 12.96
(2.28) (2.39) (2.27) (2.29)

average bias in the identified effect which corresponds to each endogeneity
level p: 6E[X — Z'm — 0pA(Z)]. The values can be seen in the second row
of Table S-II. This is a best case scenario bias, because it assumes that the re-
searcher has the correct specification of the functional form of equation (S5).
If the researcher misspecifies the functional form in any way, for example by
running a simple OLS regression of Y on X and Z, then the resulting effects
will be biased not only because of the endogeneity, but also because of the

misspecification.
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TABLE S-11
PERCENTAGE OF REJECTIONS (5% SIGNIFICANCE, 10,000 REPETITIONS)

Size Power

Endogeneity (p): 0 -0.1 -0.25 -0.5 -0.75 —0.90
Bias (in grams): 0 =73 —187 —418 —822 —1,497

n h
1000 3 5.6 5.8 71 13.1 25.4 39.0
(~ 200 with X > 0) 7 4.6 6.0 8.9 213 41.9 55.5
13 9.3 10.4 15.4 34.5 54.4 62.9
5000 3 4.7 9.4 31.7 82.6 93.3 95.9
(~ 1000 with X > 0) 7 4.6 13.5 58.6 92.3 96.2 97.7
13 6.6 222 76.4 94.4 97.2 98.5
20,000 3 5.1 26.2 89.0 98.7 99.7 99.9
(~ 4000 with X > 0) 7 5.5 50.9 96.8 99.2 99.8 100.0

13 5.5 71.6 98.3 99.5 100.0 100.0

Each experiment is characterized by a sample size n, an endogeneity level
p, and a bandwidth %, and consists of 10,000 repetitions of the same proce-
dure. For instance, take the case of n = 1000. For each repetition, 1000 vectors
(Q;, &;) are drawn from the distribution in (S2). Then the corresponding triad
(Zi, i, &) generates X; from equations (S3) and (S4). Y; is generated using
the structural equation with the 6 which corresponds to the endogeneity level
p. After the entire sample {(Y;, X;, Z;); i =1, ..., 1000} is generated, the test is
performed at the 5% significance level, using the Epanechnikov kernel, band-
width A, and polynomial degree p = 1.” The reported numbers in Table S-II
are the percentages of rejections out of the 10,000 repetitions.

It is important to notice that only around 20% of the observations are smok-
ers. Hence, when the sample has 1000 observations, only somewhere around
200 of those can be counted for the estimation of the nonparametric compo-
nent of the test. Therefore, the first set of results reflects a very small sample
even for the standards of parametric estimators. The test has no severe size
distortion at the smaller bandwidths, but the bias due to the use of the larger
bandwidth causes the test to be oversized when 2 = 13. The 5000 observation
experiments count with about 1000 smoker observations to be used in the non-
parametric component of estimation, which is a quantity much better aligned

"The experiments were also run for p = 3, with qualitatively similar results. For the combina-
tion of n = 1000 and bandwidth 4 = 13, p = 3 helped decrease the bias. In other respects, p =3
proved inferior to p = 1. The cubic polynomial is more unstable at the boundary, since it can
react rather harshly to outliers at the end of the support of the kernel. This is a consequence of
Runge’s phenomenon that higher order polynomial fits have very large variability at the bound-
ary. Although in essence a local polynomial estimator is not a polynomial fit, it behaves like that
in finite samples. Monte Carlo results for p = 3 are available by request from the author.
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with the types of data requirements in nonparametric estimation. As expected,
there are still size distortions for the higher bandwidths, though the distortion
decreases. The 20,000 observation samples have around 4000 smoker observa-
tions, and perform significantly better. The smallest bandwidth has almost no
size distortion at all.

For the smallest samples, the test has power, although it is not large unless
the endogeneity is very high. The 5000 observation experiments show that the
test performs excellently when the endogeneity generates a bias of —418 grams.
The 20,000 observation sample has excellent power for a much smaller endo-
geneity bias of —187 grams. To put these numbers in perspective, observe that
the average birth weight among nonsmoker mothers is 3428 grams, and the
consensus in the medical literature is that the baby should not weigh less than
2500 grams. Another way to understand the power of the test is to consider that
Almond, Chay, and Lee (2005) found that smoking causes a loss of around 200
grams. However, if smoking has no effect, and the number they found is due
entirely to endogeneity (as is indeed the case if the simulation model is cor-
rect), then with 20,000 observations, this test would detect this problem over
90% of the times.

REFERENCES

ALMOND, D., K. Y. CHAY, AND D. S. LEE (2005): “The Costs of Low Birth Weight,” Quarterly
Journal of Economics, 120 (3), 1031-1083. [6,9]

FAN, J., AND 1. GUBELS (1992): “Variable Bandwidth and Local Linear Regression Smoothers,”
The Annals of Statistics, 20 (4), 2008-2036. [2]
HARN, J., P. TODD, AND W. VAN DER KLAAUW (2001): “Identification and Estimation of Treat-
ment Effects With a Regression-Discontinuity Design,” Econometrica, 69 (1), 201-209. [1-3]
HECKMAN, J. J., H. ICHIMURA, AND P. TODD (1998): “Matching as an Econometric Evaluation
Estimator,” Review of Economic Studies, 65 (2), 261-294. [3]

IMBENS, G. W,, AND K. KALYANARAMAN (2012): “Optimal Bandwidth Choice for the Regression
Discontinuity Estimator,” Review of Economic Studies, 79 (3), 933-959. [4]

IMBENS, G. W., AND T. LEMIEUX (2008): “Regression Discontinuity Designs: A Guide to Prac-
tice,” Journal of Econometrics, 142 (2), 615-635. [1-3]

PORTER, J. (2003): “Estimation in the Regression Discontinuity Model,” Report, Department of
Economics, University of Wisconsin. [1-3]

ROBINSON, P. M. (1988): “Root-N-Consistent Semiparametric Regression,” Econometrica, 56 (4),
931-954. [5]

Dept. of Economics, University of Rochester, 280 Hutchison Road, Box 270156,
Rochester, NY 14627, U.S.A.; carol.caetano@rochester.edu.

Manuscript received November, 2012; final revision received February, 2015.


http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AlmondChay05&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/fan1992&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/hahn2001identification&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/heckmanichimura98&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/Imbens01072012&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/imbens2008regression&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/Robinson88&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
mailto:carol.caetano@rochester.edu
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AlmondChay05&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/fan1992&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/hahn2001identification&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/heckmanichimura98&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/Imbens01072012&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/imbens2008regression&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/Robinson88&rfe_id=urn:sici%2F0012-9682%28201507%2983%3A4%2B%3C1%3ASTATOE%3E2.0.CO%3B2-P

	A Test Statistic Based on theta
	Monte Carlo Study
	References
	Author's Addresses

