SUPPLEMENT TO "COMMITMENT, FLEXIBILITY, AND OPTIMAL SCREENING OF TIME INCONSISTENCY"
 (Econometrica, Vol. 83, No. 4, July 2015, 1425-1465)

By Simone Galperti

Appendix B contains all omitted proofs of the main paper. Appendix C contains the calculations for the illustrative example. Appendix D discusses the case of outside options with type-dependent values. Appendix E discusses the case of finitely many states.

APPENDIX B: Omitted Proofs

B.1. Proof of Proposition 3.1 and Corollary 3.1

IF $\sigma>0$, (IR) MUST BIND; if $\sigma=0$, assume w.l.o.g. that (IR) holds with equality. The problem becomes

$$
\max _{\boldsymbol{\alpha}^{t}}\left\{\int_{\underline{s}}^{\bar{s}}\left[u_{1}\left(\boldsymbol{\alpha}^{t}(s) ; s\right)-c\left(\boldsymbol{\alpha}^{t}(s)\right)\right] d F\right\} \quad \text { s.t. } \quad \text { (IC). }
$$

Ignoring (IC), this problem has a unique solution (up to $\{\underline{s}, \bar{s}\}$): $\boldsymbol{\alpha}^{t} \equiv \mathbf{e}$. Since \mathbf{e} is increasing and $t>0$, by standard arguments, there is $\boldsymbol{\pi}_{\mathrm{e}}^{t}$ such that $\left(\mathbf{e}, \boldsymbol{\pi}_{\mathrm{e}}^{t}\right)$ satisfies (IC). Specifically, for every s,

$$
\boldsymbol{\pi}_{\mathbf{e}}^{t}(s)=u_{2}(\mathbf{e}(s) ; s, t)-\int_{\underline{s}}^{s} t b(\mathbf{e}(y)) d y-k
$$

where $k \in \mathbb{R}$. Since \mathbf{e} is differentiable,

$$
\frac{d \boldsymbol{\pi}_{\mathrm{e}}^{t}(s)}{d s}=\frac{\partial u_{2}(\mathbf{e}(s) ; s, t)}{\partial a} \frac{d \mathbf{e}(s)}{d s}
$$

which equals $c^{\prime}(\mathbf{e}(s)) \frac{d \mathbf{e}(s)}{d s}$ if and only if $t=1$ by the definition of \mathbf{e} and Assumption 2.1. The expression of $\frac{d q^{t}}{d s}$ follows from the definition of u_{1} and u_{2}.

B.2. Proof of Corollary 4.2

Being increasing, $\mathbf{a}_{s b}^{I}$ is differentiable a.e. on $[\underline{v}, \bar{v}]$. If $\frac{d a_{s b}^{I}}{d v}>0$ at v, then using condition (E),

$$
\frac{d \mathbf{p}_{s b}^{I} / d v}{d \mathbf{a}_{s b}^{I} / d v}=v b^{\prime}\left(\mathbf{a}_{s b}^{I}(v)\right)-1 \quad \text { and } \quad \frac{d \mathbf{p}_{f b}^{I} / d v}{d \mathbf{a}_{f b}^{I} / d v}=v b^{\prime}\left(\mathbf{a}_{f b}^{I}(v)\right)-1 .
$$

The result follows from $b^{\prime \prime}<0$ and Theorem 4.1(a).

B.3. Proof of Lemma A. 2

(Continuity in x). Suppress r^{C}. For $x \in(0,1) \backslash\left\{x^{m}\right\}, z$ is continuous, so $Z^{\prime}(x)=z(x)$. If $\Omega(x)<Z(x)$, by definition, $\omega(\cdot)$ is constant in a neighborhood of x. Suppose $\Omega(x)=Z(x)$. Since Ω is convex and $\Omega \leq Z$, their right and left derivatives satisfy $\Omega^{+}(x) \leq Z^{+}(x)$ and $\Omega^{-}(x) \geq Z^{-}(x)$. Since $\Omega^{-}(x) \leq \Omega^{+}(x)$ and Z is differentiable at $x, \Omega^{-}(x)=\Omega^{+}(x)$; so ω is continuous at x. Finally, consider x^{m}. If $v^{m}=\bar{v}^{I}$, then $x^{m}=1$ and we are done. For $x^{m} \in(0,1), \omega$ is continuous if $\Omega\left(x^{m}\right)<Z\left(x^{m}\right)$ when z jumps at x^{m}. Recall that $z\left(x^{m}-\right)=\lim _{v \uparrow v^{m}} w^{I}\left(v ; r^{C}\right)$ and $z\left(x^{m}+\right)=z\left(x^{m}\right)=\lim _{v \downarrow v^{m}} w^{I}\left(v ; r^{C}\right)$. By expression (A.8), z can only jump down at x^{m}, so $z\left(x^{m}-\right)>z\left(x^{m}\right)$. Suppose $\Omega\left(x^{m}\right)=Z\left(x^{m}\right)$. By the previous argument, $\Omega^{+}\left(x^{m}\right) \leq Z^{+}\left(x^{m}\right)=z\left(x^{m}\right)$. By convexity, $\omega(x) \leq \Omega^{-}\left(x^{m}\right)$ for $x \leq x^{m}$. So, for x close to x^{m} from the left, we get the following contradiction:

$$
\Omega(x)=\Omega\left(x^{m}\right)-\int_{x}^{x^{m}} \omega(y) d y>Z\left(x^{m}\right)-\int_{x}^{x^{m}} z(y) d y=Z(x) .
$$

(Continuity in r^{C}). Given $x, Z\left(x ; r^{C}\right)$ is continuous in r^{C}. So Ω is continuous if $x \in\{0,1\}$, since $\Omega\left(0 ; r^{C}\right)=Z\left(0 ; r^{C}\right)$ and $\Omega\left(1 ; r^{C}\right)=Z\left(1 ; r^{C}\right)$. Consider $x \in$ $(0,1)$. For $r^{C} \geq 0$, by definition, $\Omega\left(x ; r^{C}\right)=\min \left\{\tau Z\left(x_{1} ; r^{C}\right)+(1-\tau) Z\left(x_{2} ; r^{C}\right)\right\}$ over all $\tau, x_{1}, x_{2} \in[0,1]$ such that $x=\tau x_{1}+(1-\tau) x_{2}$. By continuity of $Z\left(x ; r^{C}\right)$ and the Maximum Theorem, $\Omega(x, \cdot)$ is continuous in r^{C} for every x. Moreover, $\Omega\left(\cdot ; r^{C}\right)$ is differentiable in x with derivative $\omega\left(\cdot ; r^{C}\right)$. Fix $x \in(0,1)$ and any sequence $\left\{r_{n}^{C}\right\}$ with $r_{n}^{C} \rightarrow r^{C}$. Since $\Omega\left(x ; r_{n}^{C}\right) \rightarrow \Omega\left(x ; r^{C}\right)$, Theorem 25.7, p. 248, of Rockafellar (1970) implies $\omega\left(x ; r_{n}^{C}\right) \rightarrow \omega\left(x ; r^{C}\right)$.

B.4. Proof of Lemma A. 6

Recall that $\bar{w}^{I}\left(\underline{v}^{I}\right)=\omega(0)$ and $w^{I}\left(\underline{v}^{I}\right)=z(0)$. If $\omega(0)>z(0)$, since z is continuous on $\left[0, x^{m}\right]$ and ω is increasing, there is $x>0$ such that $\omega(y)>z(y)$ for $y \leq x$. Since $Z(0)=\Omega(0)$, we get the contradiction

$$
Z(x)=Z(0)+\int_{0}^{x} z(y) d y<\Omega(0)+\int_{0}^{x} \omega(y) d y=\Omega(x)
$$

If $\omega(0)<z(0)$, let $\hat{x}=\sup \left\{x \mid \forall x^{\prime}<x, \omega\left(x^{\prime}\right)<z\left(x^{\prime}\right)\right\}$. By continuity, $\hat{x}>0$. Then, for $0<x<\hat{x}$,

$$
Z(x)=Z(0)+\int_{0}^{x} z(y) d y>\Omega(0)+\int_{0}^{x} \omega(y) d y=\Omega(x)
$$

It follows that $v_{\mathrm{b}} \geq\left(F^{I}\right)^{-1}(\hat{x})>\underline{v}^{I}$.

B.5. Proof of Corollary 4.3

Let $t^{C}=1$. Since F is uniform, $F^{i}(v)=v-\underline{v}^{i}$. Using (A.7),

$$
w^{I}\left(v ; r^{C}\right)= \begin{cases}\left(v / t^{I}\right)\left(1+r^{C}\left(1-2 t^{I}\right)\right)+r^{C} \underline{v}^{I}, & \text { if } v \in\left[\underline{v}^{I}, \underline{v}^{C}\right) \tag{B.1}\\ \left(v / t^{I}\right)\left(1+r^{C}\left(t^{I}-1\right)^{2}\right), & \text { if } v \in\left[\underline{v}^{C}, \bar{v}^{I}\right]\end{cases}
$$

The function w^{I} is continuous at \underline{v}^{C}. It is strictly increasing and greater than v / t^{I} on $\left[\underline{v}^{C}, \bar{v}^{I}\right]$, as $r^{C}>0$ and $t^{I}<1$; w^{I} is strictly increasing on $\left[\underline{v}^{I}, \underline{v}^{C}\right.$) if and only if $t^{I} \leq 1 / 2$ or $r^{C}<\left(2 t^{I}-1\right)^{-1}=\bar{r}^{C}$.

Consider first v^{b} and v_{b}, when $v^{\mathrm{b}}>v_{\mathrm{b}}$. If $t^{I} \leq 1 / 2$ or $r^{C}<\bar{r}^{C}$, then w^{I} is strictly increasing and equals \bar{w}^{I} (see the proof of Theorem 4.1); so $\overline{\mathbf{a}}^{I}$ (see (A.9)) is strictly increasing on $\left[\underline{v}^{I}, \bar{v}^{I}\right]$, and $v_{\mathrm{b}}=\underline{v}^{I}$. Otherwise, $v_{\mathrm{b}} \geq \underline{v}^{C}>\underline{v}^{I}$ and v_{b} is characterized by (A.16):
(B.2) $\quad\left(v_{\mathrm{b}}-\underline{v}^{I}\right)^{2}=\frac{r^{C}\left(t^{I}\right)^{2}}{1+r^{C}\left(t^{I}-1\right)^{2}}\left(\underline{v}^{C}-\underline{v}^{I}\right)^{2}$.

Since w^{I} is strictly increasing on $\left[v_{\mathrm{b}}, \bar{v}^{I}\right]$, it equals \bar{w}^{I}. Using (A.15), v^{b} must satisfy

$$
\begin{equation*}
\int_{v^{\mathrm{b}}}^{\bar{v}^{I}}\left[w^{I}\left(y ; r^{C}\right)-w^{I}\left(v^{\mathrm{b}} ; r^{C}\right)\right] d y=-\left(\bar{v}^{I}-\underline{v}^{I}\right) r^{C} \int_{\bar{v}^{I}}^{\bar{v}^{C}} g^{C}(y) d y . \tag{B.3}
\end{equation*}
$$

The derivative of the right-hand side of (B.3) with respect to v^{b} is $-w_{v}^{I}\left(v^{\mathrm{b}} ; r^{C}\right) \times$ $\left(\bar{v}^{I}-v^{\mathrm{b}}\right)<0$. So, for $r^{C}>0$, there is a unique $v^{\mathrm{b}}>v_{\mathrm{b}}$ that satisfies (B.3). Letting $K=\int_{\bar{v}^{I}}^{\bar{v}^{C}} g^{C}(y) d y<0$, (B.3) becomes

$$
\begin{equation*}
-r^{C}\left[2 t^{I}\left(\bar{v}^{I}-\underline{v}^{I}\right) K\right]=\left(1+r^{C}\left(t^{I}-1\right)^{2}\right)\left(\bar{v}^{I}-v^{\mathrm{b}}\right)^{2} \tag{B.4}
\end{equation*}
$$

if $v^{\mathrm{b}} \geq \underline{v}^{C}$, and

$$
-r^{C}\left[2 t^{I}\left(\bar{v}^{I}-\underline{v}^{I}\right) K\right]=r^{C}\left(t^{I}\right)^{2}\left(\bar{v}^{I}-\underline{v}^{C}\right)^{2}+\left(1+r^{C}\left(1-2 t^{I}\right)\right)\left(\bar{v}^{I}-v^{b}\right)^{2}
$$

if $v^{\mathrm{b}}<\underline{v}^{C}$. So, if $t^{I}>1 / 2$, the function $v_{\mathrm{b}}\left(r^{C}\right)$ is constant at \underline{v}^{I} for $r^{C}<\bar{r}^{C}$, and at \bar{r}^{C}, it jumps from \underline{v}^{I} to \underline{v}^{C}. Monotonicity for $r^{C}>\bar{r}^{C}$ follows by applying the Implicit Function Theorem to (B.2):

$$
\frac{d v_{\mathrm{b}}}{d r^{C}}=\frac{1}{2}\left[\frac{t^{I}}{1+r^{C}\left(t^{I}-1\right)^{2}}\right]^{2} \frac{\left(\underline{v}^{C}-\underline{v}^{I}\right)^{2}}{\left(v_{\mathrm{b}}-\underline{v}^{I}\right)}>0 .
$$

Similarly,

$$
\frac{d v^{\mathrm{b}}}{d r^{C}}= \begin{cases}-\frac{\bar{v}^{I}-v^{\mathrm{b}}}{2 r^{C}\left[1+r^{C}\left(t^{I}-1\right)^{2}\right]}<0, & \text { if } v^{\mathrm{b}} \geq \underline{v}^{C} \\ -\frac{\bar{v}^{I}-v^{\mathrm{b}}}{2 r^{C}\left(1+r^{C}\left(1-2 t^{I}\right)\right)}<0, & \text { if } v^{\mathrm{b}}<\underline{v}^{C}\end{cases}
$$

for the second inequality, recall that $v_{\mathrm{b}}<v^{\mathrm{b}}<\underline{v}^{C}$ if and only if $t^{I} \leq 1 / 2$ or $r^{C}<\bar{r}^{C}$.

Consider now the behavior of $\mathbf{b}^{I}\left(r^{C}\right)=b\left(\mathbf{a}_{s b}^{I}\right)$, which matches that of $\mathbf{a}_{s b}^{I}$ for any r^{C}. By Theorem 4.1 and Assumption 2.1, $\mathbf{b}^{I}\left(v ; r^{C}\right) \in(b(\underline{a}), b(\bar{a}))$. Also, $\mathbf{b}^{I}\left(v ; r^{C}\right)$ solves $\max _{y \in[b(a), b(\bar{a})]}\left\{y \bar{w}^{I}\left(v ; r^{C}\right)+\xi(y)\right\}$. By strict concavity of $\xi(y)$, it is enough to study how $\bar{w}^{I}\left(r^{C}\right)$ relates to v / t^{I}. The function $\bar{w}^{I}\left(\cdot ; r^{C}\right)$ crosses v / t^{I} only once at $v^{*} \in\left(\underline{v}^{I}, \bar{v}^{I}\right)$. Also, $\bar{w}^{I}\left(v ; r^{C}\right)=w^{I}\left(v ; r^{C}\right)$ on $\left[v_{\mathrm{b}}, v^{\mathrm{b}}\right]$. So, it is enough to show that, as r^{C} rises, $w^{I}\left(v^{\mathrm{b}}\left(r^{C}\right) ; r^{C}\right)$ falls and $w^{I}\left(v_{\mathrm{b}}\left(r^{C}\right) ; r^{C}\right)$ rises.

LEMMA B.1: Suppose v^{b} and v_{b} are characterized by (A.15) and (A.16). If $w_{v}^{I}\left(v^{\mathrm{b}} ; r^{C}\right)>0$ and $w_{v}^{I}\left(v_{\mathrm{b}} ; r^{C}\right)>0$, then $\frac{d}{d r^{C}} w^{I}\left(v^{\mathrm{b}}\left(r^{C}\right) ; r^{C}\right)<0$ and $\frac{d}{d r^{C}} w^{I}\left(v_{\mathrm{b}}\left(r^{C}\right)\right.$; $\left.r^{C}\right)>0$.

Proof: It follows by applying the Implicit Function Theorem to (A.15) and (A.16).
Q.E.D.

Consider $w^{I}\left(v_{\mathrm{b}}\left(r^{C}\right) ; r^{C}\right)$. If $t^{I} \leq 1 / 2$ or $r^{C}<\bar{r}^{C}$, then $v_{\mathrm{b}}\left(r^{C}\right)=\underline{v}^{I}$ and $w_{r}^{I}\left(\underline{v}^{I} ; r^{C}\right)=\left(1-t^{I}\right)\left(\underline{v}^{I} / t^{I}\right)>0$. If $t^{I}>1 / 2$, then $w^{I}\left(\underline{v}^{I} ; r^{C}\right) \uparrow w^{I}\left(\underline{v}^{I}, \bar{r}^{C}\right)=$ $w^{I}\left(\underline{v}^{C}, \bar{r}^{C}\right)$ as $r^{C} \uparrow \bar{r}^{C}$. By Lemma B.1, $w^{I}\left(v_{\mathrm{b}}\left(r^{C}\right) ; r^{C}\right)$ increases in r^{C}, for $r^{C}>\bar{r}^{C}$, because $w_{v}^{I}\left(v_{\mathrm{b}}\left(r^{C}\right) ; r^{C}\right)>0$ when $v_{\mathrm{b}}>\underline{v}^{C}$. Similarly, $w^{I}\left(v^{\mathrm{b}}\left(r^{C}\right) ; r^{C}\right)$ decreases in r^{C}, because $w_{v}^{I}\left(v^{\mathrm{b}}\left(r^{C}\right) ; r^{C}\right)>0$ when $\overline{v^{\mathrm{b}}}<v_{\mathrm{b}}$.

B.6. Proof of Corollary 4.4

Fix $\mathbf{a}_{s b}^{I}$ and recall that it minimizes $R^{C}\left(\mathbf{a}^{I}\right)$ among all increasing \mathbf{a}^{I} equal to $\mathbf{a}_{s b}^{I}$ on $\left[\underline{v}^{I}, \bar{v}^{I}\right]$. Using (A.18) and $\mathbf{a}_{u n}^{C}$ from Proposition 4.3, condition (R) becomes

$$
\begin{aligned}
& {\left[b(\underline{a})-b\left(\mathbf{a}_{f b}^{C}\left(\underline{v}^{C}\right)\right)\right] \int_{\underline{v}^{I}}^{v_{u}} g^{I}(v) d v} \\
& \quad \geq R^{C}\left(\mathbf{a}_{s b}^{I}\right)+\int_{\underline{v}^{C}}^{\bar{v}^{C}} b\left(\mathbf{a}_{f b}^{C}(v)\right) G^{C}(v) d F^{C} \\
& \quad-b\left(\mathbf{a}_{f b}^{C}\left(\underline{v}^{C}\right)\right) \int_{\underline{v}^{I}}^{\underline{v}^{C}} g^{I}(v) d v
\end{aligned}
$$

Since $\mathbf{a}_{f b}^{C}$ and $\mathbf{a}_{s b}^{I}$ are infeasible, the right-hand side is positive. $R^{C}\left(\mathbf{a}_{s b}^{I}\right)$ has been minimized. The result follows, since $\int_{\underline{v}^{I}}^{v_{u}} g^{I}(v) d v<0$.

B.7. Proof of Lemma A. 8

The proof uses $\mathbf{b} \in \mathcal{B}$ (see the proof of Lemma A.1). Suppose $r^{I}>0$. Using $\widetilde{R}^{I}(\mathbf{b})=R^{I}\left(b^{-1}(\mathbf{b})\right)$ in (A.18), write $\widetilde{W}^{C}(\mathbf{b})-r^{I} \widetilde{R}^{I}(\mathbf{b})$ as

$$
\begin{aligned}
V S^{C}\left(b^{-1}(\mathbf{b}), r^{I}\right)= & \int_{\underline{v}^{C}}^{\bar{v}^{C}}\left[\mathbf{b}(v) w^{C}\left(v, r^{I}\right)+\xi(\mathbf{b}(v))\right] d F^{C} \\
& +r^{I} \int_{\underline{v}^{I}}^{\underline{v}^{C}} \mathbf{b}(v) g^{I}(v) d v,
\end{aligned}
$$

where $w^{C}\left(v, r^{I}\right)=v / t^{C}-r^{I} G^{C}(v)$. Note that w^{C} is continuous in v, except possibly at \bar{v}^{I} if $\bar{v}^{I} \geq \underline{v}^{C}$, where it can jump up. Using the method in the proof of Theorem 4.1, let $\bar{w}^{C}\left(v ; r^{I}\right)$ be the generalized version of w^{C}. By the argument in Lemma A.2, $\bar{w}^{C}\left(v ; r^{I}\right)$ is continuous in v over $\left[\underline{v}^{C}, \bar{v}^{C}\right]$-except possibly at \bar{v}^{I}, where we can assume right- or left-continuity w.l.o.g.-and in r^{I}. Now, on $\left[\underline{v}^{C}, \bar{v}^{C}\right]$, let $\phi\left(y, v ; r^{I}\right)=y \bar{w}^{C}\left(v ; r^{I}\right)+\xi(y)$ and

$$
\overline{\mathbf{b}}^{C}\left(v ; r^{I}\right)=\arg \max _{y \in[b(a), b(\bar{a})]} \phi\left(y, v ; r^{I}\right)
$$

Since \bar{w}^{C} is increasing by construction, $\overline{\mathbf{b}}^{C}$ is increasing on $\left[\underline{v}^{C}, \bar{v}^{C}\right]$ and continuous in r^{I}. On $\left[\underline{v}^{I}, \underline{v}^{C}\right]$, let $\overline{\mathbf{b}}^{C}$ be the pointwise maximizer of the second integral in $V S^{C}$. By Proposition 4.3's proof, $\overline{\mathbf{b}}^{C}\left(v ; r^{I}\right)$ equals $b(\underline{a})$ on $\left[\underline{v}^{I}, v^{\mathrm{u}}\right)$ and $b(\bar{a})$ on $\left[v^{\mathrm{u}}, \underline{v}^{C}\right)$.

Suppose $\left[v^{u}, \underline{v}^{C}\right)=\emptyset$. Then $\overline{\mathbf{b}}^{C}$ is increasing and an argument similar to that in Lemma A. 4 establishes that $\overline{\mathbf{b}}^{C}$ maximizes $V S^{C}$. Since such a $\overline{\mathbf{b}}^{C}$ is pointwise continuous in r^{I}, so is $V S^{C}\left(b^{-1}\left(\overline{\mathbf{b}}^{C}\left(r^{I}\right)\right), r^{I}\right)$.

Suppose $\left[v^{u}, \underline{v}^{C}\right) \neq \emptyset$. Let $v_{m}=\max \left\{\bar{v}^{I}, \underline{v}^{C}\right\}$. By an argument similar to that in Lemma A.3, any optimal $\mathbf{b}^{C} \in \mathcal{B}$ can take only three forms on $\left[v^{\mathrm{u}}, \bar{v}^{C}\right]:(1)$ it is constant at $\overline{\mathbf{b}}^{C}\left(v^{\mathrm{d}}\right)$ on $\left[v^{\mathrm{u}}, v^{\mathrm{d}}\right]$, where $v^{\mathrm{d}} \in\left(\underline{v}^{C}, v_{m}\right) \cup\left(v_{m}, \bar{v}^{C}\right)$ and equals $\overline{\mathbf{b}}^{C}$ otherwise; (2) it is constant at $\bar{y} \in\left[\overline{\mathbf{b}}^{C}\left(v_{m}-\right), \overline{\mathbf{b}}^{C}\left(v_{m}+\right)\right]$ on $\left[v^{\mathrm{u}}, v^{\mathrm{d}}\right]$ with $v^{\mathrm{d}}=v_{m}$ and equals $\overline{\mathbf{b}}^{C}$ otherwise; (3) it is constant on $\left[v^{\mathrm{u}}, \bar{v}^{C}\right]$. We can first find an opti$\mathrm{mal} \mathbf{b}^{C}$ within each class and then pick an overall maximizer. Note that in both case (1) and (2), \mathbf{b}^{C} has to maximize

$$
\begin{equation*}
\mathbf{b}^{C}\left(v^{\mathrm{d}}\right) H\left(v^{\mathrm{d}}, r^{I}\right)+\xi\left(\mathbf{b}^{C}\left(v^{\mathrm{d}}\right)\right) F^{C}\left(v^{\mathrm{d}}\right)+\int_{v^{\mathrm{d}}}^{\bar{v}^{C}} \phi\left(\overline{\mathbf{b}}^{C}(v), v ; r^{I}\right) d F^{C} \tag{B.5}
\end{equation*}
$$

where

$$
H\left(v^{\mathrm{d}}, r^{I}\right)=r^{I} \int_{v^{\mathrm{u}}}^{\underline{v}^{C}} g^{I}(v) d v+\int_{\underline{v}^{C}}^{v^{\mathrm{d}}} \bar{w}^{C}\left(v, r^{I}\right) d F^{C}
$$

Note that, since $\bar{w}^{C}\left(v, r^{I}\right)$ is continuous in r^{I}, so is (B.5).
Case 1: Let $\overline{\mathbf{b}}^{C}\left(v_{m}\right)=\overline{\mathbf{b}}^{C}\left(v_{m}-\right)$, so that $\overline{\mathbf{b}}^{C}$ is continuous on $\left[\underline{v}^{C}, v_{m}\right]$. Then, (B.5) is continuous in v^{d} for $v^{\mathrm{d}} \in\left[\underline{v}^{C}, v_{m}\right]$. Hence, there is an optimal v^{d}. By an argument similar to that in Lemma A.4, there is a unique optimal \mathbf{b}_{1}^{C} within this case. Let $\Phi\left(\mathbf{b}_{1}^{C} ; r^{I}\right)$ be the value of (B.5) at \mathbf{b}_{1}^{C}, which is continuous in r^{I}.

Case 2: Let $\overline{\mathbf{b}}^{C}\left(v_{m}\right)=\overline{\mathbf{b}}^{C}\left(v_{m}+\right)$, so that $\overline{\mathbf{b}}^{C}$ is continuous on $\left[v_{m}, \bar{v}^{C}\right]$. Then, (B.5) is continuous in v^{d} for $v^{\mathrm{d}} \in\left[v_{m}, \bar{v}^{C}\right]$. As before, there is an optimal v^{d} and a unique optimal \mathbf{b}_{2}^{C} within this case. Let $\Phi\left(\mathbf{b}_{2}^{C} ; r^{I}\right)$ be the value of (B.5) at \mathbf{b}_{2}^{C}, which is continuous in r^{I}.

Case 3: Let $v^{\mathrm{d}}=v_{m}$. Then, there is a unique $\mathbf{b}^{C}\left(v^{\mathrm{d}}\right) \in\left[\overline{\mathbf{b}}^{C}\left(v_{m}-\right), \overline{\mathbf{b}}^{C}\left(v_{m}+\right)\right]$ which maximizes (B.5). This identifies a function \mathbf{b}_{3}^{C} and value $\Phi\left(\mathbf{b}_{3}^{C} ; r^{I}\right)$. Since $\overline{\mathbf{b}}^{C}\left(v_{m}-; r^{I}\right)$ and $\overline{\mathbf{b}}^{C}\left(v_{m}+; r^{I}\right)$ are continuous in r^{I}, so is $\Phi\left(\mathbf{b}_{3}^{C} ; r^{I}\right)$.

Case 4: \mathbf{b}^{C} is constant at \bar{y} on $\left[v^{u}, \bar{v}^{C}\right]$. Then $\bar{y} \in[b(\underline{a}), b(\bar{a})]$ has to maximize

$$
\bar{y}\left[r^{I} \int_{v^{\mathrm{u}}}^{\underline{v}^{C}} g^{I}(v) d v+\int_{\underline{v}^{C}}^{\bar{v}^{C}} \bar{w}^{C}\left(v, r^{I}\right) d F^{C}\right]+\xi(\bar{y}) .
$$

The unique solution to this problem identifies a unique constant \mathbf{b}_{4}^{C} and value $\Phi\left(\mathbf{b}_{4}^{C} ; r^{I}\right)$, which is again continuous in r^{I}.

Now, let $\hat{\mathbf{b}}^{C}$ be the function that solves $\max _{j=1,2,3,4} \Phi\left(\mathbf{b}_{j}^{C} ; r^{I}\right)$. An argument similar to that in Lemma A. 5 establishes that

$$
\max _{\mathbf{b} \in \mathcal{B}} V S^{C}\left(b^{-1}(\mathbf{b}), r^{I}\right)=\Phi\left(\hat{\mathbf{b}}^{C} ; r^{I}\right)+b(\underline{a}) r^{I} \int_{\underline{v}^{I}}^{v^{\mathrm{u}}} g^{I}(v) d v,
$$

which is therefore continuous in r^{I}.
Now, let $\mathbf{b}_{u n}^{C}=b\left(\mathbf{a}_{u n}^{C}\right)$ and let \mathcal{B}^{*} be the set of $\mathbf{b}^{C} \in \mathcal{B}$ that equal $\mathbf{b}_{u n}^{C}$ on $\left[\underline{v}^{C}, \bar{v}^{C}\right]$. By construction, $V S^{C}\left(b^{-1}\left(\mathbf{b}_{u n}^{C}\right), r^{I}\right)=\max _{\mathbf{b} \in \mathcal{B}^{*}} V S^{C}\left(b^{-1}(\mathbf{b}), r^{I}\right)$. I claim that there is $\hat{\mathbf{b}}^{C} \in \mathcal{B} \backslash \mathcal{B}^{*}$ such that $V S^{C}\left(b^{-1}\left(\hat{\mathbf{b}}^{C}\right), r^{I}\right)>V S^{C}\left(b^{-1}\left(\mathbf{b}_{u n}^{C}\right), r^{I}\right)$. Focus on [v_{m}, \bar{v}^{C}] and recall that (w.l.o.g.) \bar{w}^{C} is continuous on [v_{m}, \bar{v}^{C}]. Since $r^{I}>0, G^{C}$ implies $w^{C}\left(v, r^{I}\right)>v / t^{C}$ for $v \in\left[v_{m}, \bar{v}^{C}\right)$. I claim that $\bar{w}^{C}\left(v_{m}, r^{I}\right)>$ v_{m} / t^{C}. By the logic in Lemma A.6, $\bar{w}^{C}\left(v_{m}, r^{I}\right) \leq w^{C}\left(v_{m}, r^{I}\right)$. If $\bar{w}^{C}\left(v_{m}, r^{I}\right)=$ $w^{C}\left(v_{m}, r^{I}\right)$, the claim follows. If $\bar{w}^{C}\left(v_{m}, r^{I}\right)<w^{C}\left(v_{m}, r^{I}\right)$, then there is $v_{0}>v_{m}$ such that $\bar{w}^{C}\left(v, r^{I}\right)=w^{C}\left(v_{0}, r^{I}\right)$ on $\left[v_{m}, v_{0}\right]$; so, $\bar{w}^{C}\left(v_{m}, r^{I}\right)=w^{C}\left(v_{0}, r^{I}\right) \geq$ $v_{0} / t^{C}>v_{m} / t^{C}$. Since \bar{w}^{C} is continuous and increasing, in either case there is
$v_{1}>v_{m}$ such that $\bar{w}^{C}\left(v, r^{I}\right)>v / t^{C}$ on $\left[v_{m}, v_{1}\right]$. Construct $\hat{\mathbf{b}}^{C}$ by letting $\hat{\mathbf{b}}^{C}(v)=$ $\arg \max _{y \in[b(a), b(\bar{a}]]} \phi\left(y, v ; r^{I}\right)$ if $v \in\left[v_{m}, \bar{v}^{C}\right]$, and $\mathbf{b}_{u n}^{C}(v)$ if $v \in\left[\underline{v}^{I}, v_{m}\right)$. Then, $\hat{\mathbf{b}}^{C} \in \mathcal{B}$, but $\hat{\mathbf{b}}^{C}(v)>\mathbf{b}_{u n}^{C}(v)$ on $\left[v_{m}, v_{1}\right]$; so $\hat{\mathbf{b}}^{C} \notin \mathcal{B}^{*}$. Finally, $V S^{C}\left(b^{-1}\left(\hat{\mathbf{b}}^{C}\right), r^{I}\right)-$ $V S^{C}\left(b^{-1}\left(\mathbf{b}_{u n}^{C}\right), r^{I}\right)$ equals

$$
\begin{aligned}
& \int_{v_{m}}^{\bar{v}^{C}}\left\{\left[\hat{\mathbf{b}}^{C}(v) w^{C}\left(v, r^{I}\right)+\xi\left(\hat{\mathbf{b}}^{C}(v)\right)\right]\right. \\
& \left.\quad-\left[\mathbf{b}_{u n}^{C}(v) w^{C}\left(v, r^{I}\right)+\xi\left(\mathbf{b}_{u n}^{C}(v)\right)\right]\right\} d F^{C}>0 .
\end{aligned}
$$

B.8. Proof of Proposition 4.5

Recall that, by (E), the j-device is fully defined by \mathbf{a}^{j} up to k^{j}. Given \mathbf{a}^{j}, define $h^{j}=U^{j}\left(\mathbf{a}^{j}, \mathbf{p}^{j}\right)$. Then, $\mathrm{IC}_{1}^{j i}$ becomes $h^{j} \geq h^{i}+R^{j}\left(\mathbf{a}^{i}\right)$ and $\left(\mathrm{IR}^{j}\right)$ becomes $h^{j} \geq 0$. Since $\Pi^{j}\left(\mathbf{a}^{j}, \mathbf{p}^{j}\right)=W^{j}\left(\mathbf{a}^{j}\right)-U^{j}\left(\mathbf{a}^{j}, \mathbf{p}^{j}\right)$, the provider solves

$$
\mathcal{P}^{N}=\left\{\begin{array}{l}
\left.\max _{\left(\mathbf{a}^{j}, h^{j}\right)_{j=1}^{N}}(1-\sigma) \sum_{j=1}^{N} \gamma^{j} W^{j}\left(\mathbf{a}^{j}\right)+\sigma \sum_{j=1}^{N} \gamma^{j}\left[W^{j}\left(\mathbf{a}^{j}\right)-h^{j}\right)\right] \\
\text { s.t. } \quad \mathbf{a}^{i} \text { increasing, } \quad h^{j} \geq h^{i}+R^{j}\left(\mathbf{a}^{i}\right), \quad \text { and } \\
h^{j} \geq 0, \quad \text { for all } j, i .
\end{array}\right.
$$

As in the proof of Lemma A. 1 and Theorem 4.1, it is convenient to work with the functions $\mathbf{b} \in \mathcal{B}$. Recall that $\widetilde{W}^{j}\left(\mathbf{b}^{j}\right)=W^{j}\left(b^{-1}\left(\mathbf{b}^{j}\right)\right)$ and $\widetilde{R}^{j}\left(\mathbf{b}^{i}\right)=$ $R^{j}\left(b^{-1}\left(\mathbf{b}^{i}\right)\right)$.

Step 1: There is $b(\underline{a})$ low enough so that unused options suffice to satisfy $\mathrm{IC}_{1}^{\mathrm{ji}}$ for $j>i$. If $j>i, \bar{v}^{j}<\bar{v}^{i}$ and

$$
\widetilde{R}^{i}\left(\mathbf{b}^{j}\right)=-\int_{\bar{v}^{j}}^{\bar{v}^{i}} \mathbf{b}^{j}(v) g^{i}(v) d v-\int_{\underline{v}^{j}}^{\bar{v}^{j}} \mathbf{b}^{j}(v) G^{j i}(v) d F^{j}
$$

where

$$
\begin{aligned}
& g^{i}(v)=\frac{t^{i}-1}{t^{i}} v f^{i}(v)-\left(1-F^{i}(v)\right) \quad \text { and } \\
& G^{j i}(v)=q^{j}(v)-\frac{f^{i}(v)}{f^{j}(v)} q^{i}(v)
\end{aligned}
$$

if $i>j, \underline{v}^{j}>\underline{v}^{i}$ and

$$
\widetilde{R}^{i}\left(\mathbf{b}^{j}\right)=-\int_{\underline{v}^{i}}^{\underline{v}^{j}} \mathbf{b}^{j}(v) \widehat{g}^{i}(v) d v+\int_{\underline{w}^{j}}^{\bar{v}^{j}} \mathbf{b}^{j}(v) \widehat{G}^{j i}(v) d F^{j}
$$

where

$$
\begin{aligned}
& \widehat{g}^{i}(v)=\frac{t^{i}-1}{t^{i}} v f^{i}(v)+F^{i}(v) \\
& \widehat{G}^{j i}(v)=\frac{t^{j}-1}{t^{j}} v-\frac{1-F^{j}(v)}{f^{j}(v)}-\frac{f^{i}(v)}{f^{j}(v)}\left[\frac{t^{i}-1}{t^{i}} v-\frac{1-F^{i}(v)}{f^{i}(v)}\right] .
\end{aligned}
$$

Take $j>i$. Suppose $\mathrm{IC}_{1}^{j i}$ is violated (and all other constraints hold): $h^{j}<$ $h^{i}+\widetilde{R}^{j}\left(\mathbf{b}^{i}\right)$. Fix \mathbf{b}^{i} for $v \geq \underline{v}^{i}$, and let $\mathbf{b}^{i}(v)=b(\underline{a})$ for $v<\underline{v}^{i}$. Then,

$$
R^{j}\left(\mathbf{b}^{i}\right)=-b(\underline{a}) \int_{\underline{v}^{j}}^{\underline{v}^{i}} \widehat{g}^{j}(v) d v+\int_{\underline{v}^{i}}^{\bar{v}^{i}} \mathbf{b}^{i}(v) \widehat{G}^{i j}(v) d F^{i} .
$$

LEmmA B.2: $\int_{\underline{v}^{j}}^{v^{i}} \widehat{g}^{j}(v) d v<0$.
PROOF: Integrating by parts,

$$
\begin{aligned}
\int_{\underline{v}^{j}}^{\underline{v}^{i}} \widehat{g}^{j}(v) d v & =-\int_{\underline{v}^{j}}^{\underline{v}^{i}}\left(v / t^{j}\right) f^{j}(v) d v+F^{j}\left(\underline{v}^{i}\right) \underline{v}^{i} \\
& =\int_{\underline{\underline{v}}^{j}}^{\underline{v}^{i}}\left(\underline{v}^{i}-\left(v / t^{j}\right)\right) f^{j}(v) d v .
\end{aligned}
$$

Note that $\underline{v}^{i} \leq \underline{s} \leq v / t^{j}$, with strict inequality for $v \in\left(\underline{v}^{j}, \underline{v}^{i}\right)$.
So there is $b(\underline{a})$ small enough so that the $\widetilde{\mathbf{b}}^{i}$ just constructed satisfies $h^{j} \geq$ $h^{i}+\widetilde{R}^{j}\left(\widetilde{\mathbf{b}}^{i}\right)$. We need to check the other constraints. For $j^{\prime}<i$, the values $\overline{\mathbf{b}^{i}}$ takes for $v<\underline{v}^{i}$ are irrelevant; so, $\mathrm{IC}_{1}^{j^{\prime} i}$ are unchanged. For $\hat{\jmath}>i$ and $\hat{\jmath} \neq j$, it could be that $\bar{R}^{\hat{j}}\left(\widetilde{\mathbf{b}}^{i}\right)>R^{\hat{i}}\left(\mathbf{b}^{i}\right)$, and $\widetilde{\mathbf{b}}^{i}$ may violate $\mathrm{IC}_{1}^{\hat{j} i}$ while \mathbf{b}^{i} did not. But since Lemma B. 2 holds for every $j>i$ and N is finite, there is $b(\underline{a})$ small enough so that $\mathrm{IC}_{1}^{j i}$ for all $j>i$.

Step 2: As usual, $\left(\operatorname{IR}^{N}\right)$ and $\mathrm{IC}_{1}^{j N}$ imply $\left(\mathrm{IR}^{j}\right)$ for $j<N$. Let $\mathcal{Y}=(\mathcal{B} \times \mathbb{R})^{N}$ be the subspace of $(\mathcal{X} \times \mathbb{R})^{N}$, where $\mathcal{X}=\{\mathbf{b} \mid \mathbf{b}:[\underline{v}, \bar{v}] \rightarrow \mathbb{R}\}$. Now, let $\widetilde{\Pi}(\mathbf{B}, \mathbf{h})=$ $\sum_{j=1}^{N} \gamma^{j}\left[\widetilde{W}^{j}\left(\mathbf{b}^{j}\right)-h^{j}\right]$ and $\widetilde{W}(\mathbf{B})=\sum_{j=1}^{N} \gamma^{j} \widetilde{W}^{j}\left(\mathbf{b}^{j}\right) . \mathcal{P}^{N}$ is equivalent to

$$
\widetilde{\mathcal{P}}^{N}=\left\{\begin{array}{l}
\max _{\{\mathbf{B}, \mathbf{h}\} \in \mathcal{Y}}(1-\sigma) \widetilde{W}(\mathbf{B})+\sigma \widetilde{\Pi}(\mathbf{B}, \mathbf{h}) \\
\text { s.t. } \quad \Gamma(\mathbf{B}, \mathbf{h}) \leq \mathbf{0}
\end{array}\right.
$$

where $\Gamma:(\mathcal{X} \times \mathbb{R})^{N} \rightarrow \mathbb{R}^{r}\left(r=1+\frac{N(N-1)}{2}\right)$ is given by $\Gamma^{1}(\mathbf{B}, \mathbf{h})=-h^{N}$ and, for $j=2, \ldots, r, \Gamma^{j}(\mathbf{B}, \mathbf{h})=\widetilde{R}^{i}\left(\mathbf{b}^{j}\right)+h^{j}-h^{i}$ for $i<j$.

Step 3: Existence of interior points.

Lemma B.3: In $\widetilde{\mathcal{P}}^{N}$, there is $\{\mathbf{B}, \mathbf{h}\} \in \mathcal{Y}$ such that $\Gamma(\mathbf{B}, \mathbf{h})<0$.
Proof: $\Gamma(\mathbf{B}, \mathbf{h})<0$ if and only if $h^{N}>0$ and $h^{i}>h^{j}+\widetilde{R}^{i}\left(\mathbf{b}^{j}\right)$ for $i<j$. For $i=1, \ldots, N$, let $\mathbf{b}^{i}=\mathbf{b}_{f b}^{i}=b\left(\mathbf{a}_{f b}^{i}\right)$ on $\left[\underline{v}^{i}, \bar{v}\right]$ and possibly extend it on $\left[\underline{v}, \underline{v}^{i}\right)$ to include appropriate unused options. Note that these extensions are irrelevant for $\widetilde{R}^{j}\left(\mathbf{b}^{i}\right)$ if $j<i$. Recall that $\widetilde{R}^{j}\left(\mathbf{b}^{i}\right) \geq 0$ for $j<i$, and it can be easily shown that $\widetilde{R}^{1}\left(\mathbf{b}^{i}\right) \geq \widetilde{R}^{j}\left(\mathbf{b}^{i}\right)$ for $1<j<i$. Thus, let $h^{N}=1$, and for $i<N$, let $h^{i}=$ $h^{i+1}+\widetilde{R}^{1}\left(\mathbf{b}^{i+1}\right)+1$. Now, fix $i<N$ and consider any $j>i$. We have

$$
h^{i}=h^{j}+\sum_{n=1}^{j-i} \widetilde{R}^{1}\left(\mathbf{b}^{i+n}\right)+(j-i) \geq h^{j}+\widetilde{R}^{i}\left(\mathbf{b}^{j}\right)+(j-i)>h^{j}+\widetilde{R}^{i}\left(\mathbf{b}^{j}\right) .
$$

Since $\widetilde{R}^{i}\left(\mathbf{b}^{j}\right)$ are bounded and N is finite, the vector \mathbf{h} so constructed is well defined.
Q.E.D.

Step 4: We can now use Corollary 1, p. 219, and Theorem 2, p. 221, of Luenberger (1969) to characterize solutions of $\widetilde{\mathcal{P}}^{N}$. Note that $(\mathcal{X} \times \mathbb{R})^{N}$ is a linear vector space and \mathcal{Y} is a convex subset of it. By Lemma B.3, Γ has interior points. Since $\widetilde{\Pi}$ and \widetilde{W} are concave ($b^{\prime \prime}<0$ and $c^{\prime \prime} \geq 0$), the objective is concave and $\Gamma(\mathbf{B}, \mathbf{h})$ is convex. For $\boldsymbol{\lambda} \in \mathbb{R}_{+}^{r}$, define $L(\mathbf{B}, \mathbf{h} ; \boldsymbol{\lambda})$ as

$$
\begin{aligned}
& (1-\sigma) \widetilde{W}(\mathbf{B})+\sigma \widetilde{\Pi}(\mathbf{B}, \mathbf{h})+\lambda^{N} h^{N}-\sum_{i=1}^{N} \sum_{j<i} \lambda^{j i}\left[\widetilde{R}^{j}\left(\mathbf{b}^{i}\right)+h^{i}-h^{j}\right] \\
& \quad=\sum_{i=1}^{N} \gamma^{i}\left[\widetilde{W}^{i}\left(\mathbf{b}^{i}\right)-\sum_{j<i} \frac{\lambda^{j i}}{\gamma^{i}} \widetilde{R}^{j}\left(\mathbf{b}^{i}\right)\right]+\sum_{i=1}^{N} h^{i} \mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma)
\end{aligned}
$$

where

$$
\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma)= \begin{cases}\sum_{j>i} \lambda^{i j}-\sum_{j<i} \lambda^{j i}-\sigma \gamma^{i}, & \text { if } i<N \\ \lambda^{N}-\sum_{j<N} \lambda^{j N}-\sigma \gamma_{N}, & \text { if } i=N\end{cases}
$$

Then, $\{\mathbf{B}, \mathbf{h}\}$ solves $\widetilde{\mathcal{P}}^{N}$ if and only if there is $\boldsymbol{\lambda} \geq \mathbf{0}$ such that $L(\mathbf{B}, \mathbf{h} ; \boldsymbol{\lambda}) \geq$ $L\left(\mathbf{B}^{\prime}, \mathbf{h}^{\prime} ; \boldsymbol{\lambda}\right)$ and $L\left(\mathbf{B}, \mathbf{h} ; \boldsymbol{\lambda}^{\prime}\right) \geq L(\mathbf{B}, \mathbf{h} ; \boldsymbol{\lambda})$ for all $\left\{\mathbf{B}^{\prime}, \mathbf{h}^{\prime}\right\} \in \mathcal{Y}, \boldsymbol{\lambda}^{\prime} \geq \mathbf{0}$. The first inequality is equivalent to

$$
\begin{equation*}
\mathbf{b}^{i} \in \arg \max _{\mathbf{b} \in \mathcal{B}} \widetilde{W}^{i}(\mathbf{b})-\sum_{j<i} \frac{\lambda^{j i}}{\gamma^{i}} \widetilde{R}^{j}(\mathbf{b}) \tag{B.6}
\end{equation*}
$$

and
(B.7) $\quad h^{i} \in \arg \max _{h \in \mathbb{R}} \mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma) h$.

The second is equivalent to
(B.8) $\quad-h^{N} \leq 0 \quad$ and $\quad \lambda^{N} h^{N}=0$,
and, for $j>i$,

$$
\begin{equation*}
\widetilde{R}^{i}\left(\mathbf{b}^{j}\right)+h^{j}-h^{i} \leq 0 \quad \text { and } \quad \lambda^{i j}\left[R^{i}\left(\mathbf{b}^{j}\right)+h^{j}-h^{i}\right]=0 . \tag{B.9}
\end{equation*}
$$

LEmmA B.4: If $(\mathbf{B}, \mathbf{h}, \boldsymbol{\lambda})$ satisfies (B.6)-(B.9), then $\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma)=0$ for all i.
Proof: $\operatorname{By}\left(\operatorname{IR}^{N}\right)$ and $\mathrm{IC}^{i N}, h^{i} \geq 0$ for all i; so, $\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma) \geq 0$ for all i. Since $(1-\sigma) \widetilde{W}(\mathbf{B})+\sigma \widetilde{\Pi}(\mathbf{B}, \mathbf{h})$ is bounded below by $\mathbb{E}\left(u_{1}\left(a^{\mathrm{nf}} ; s\right)\right)-c\left(a^{\mathrm{nf}}\right)>0$, then $\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma) \leq 0$ for all i.
Q.E.D.

COROLLARY B.5: If $\sigma=0$, then $\boldsymbol{\lambda}=\mathbf{0}$. If $\sigma>0, \mathrm{IR}^{N}$ binds and, for every $i<N$, there is $j>i$ such that $\mathrm{IC}^{i j}$ binds.

Proof: Lemma B. 4 implies the second part. For the first part, since $\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma)=0$ for all i,

$$
\begin{aligned}
0 & =\sum_{i=1}^{N} \mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma) \\
& =\sum_{i=1}^{N-1}\left[\sum_{j>i} \lambda^{i j}-\sum_{j<i} \lambda^{j i}\right]+\lambda^{N}-\sum_{j<N} \lambda^{j N}-\sigma=\lambda^{N}-\sigma .
\end{aligned}
$$

So, if $\sigma=0=\lambda^{N}$, then $\mu^{N}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma)=0$ implies $\sum_{j<N} \lambda^{j N}=0$. Hence, $\lambda^{j N}=0$ for $j<N$. Suppose for all $j \geq i+1, \lambda^{n j}=0$ for all $n<j$. Then, $\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma)=0$ implies $\sum_{j<i} \lambda^{j i}=\sum_{j>i} \lambda^{i j}=0$. Hence, $\lambda^{j i}=0$ for all $j<i$. \quad Q.E.D.

So, although by $\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma)=0$ any $h^{i} \in \mathbb{R}$ solves (B.7), the upward binding constraints pin down \mathbf{h}, once \mathbf{B} has been chosen.

Thus, $\widetilde{\mathcal{P}}^{N}$ has a solution if there is $(\mathbf{B}, \boldsymbol{\lambda})$ so that, for every i, \mathbf{b}^{i} solves (B.6), $\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma)=0$, and (B.8) and (B.9) hold. By the arguments in the proof of Theorem 4.1 (see Step 5 below), for $\boldsymbol{\lambda} \geq \mathbf{0}$, a solution \mathbf{b}^{i} to (B.6) always exists and is unique on $\left(\underline{v}^{i}, \bar{v}^{i}\right)$ and is pointwise continuous in $\boldsymbol{\lambda}$. Moreover, if $\lambda^{j i} \rightarrow+\infty$ for some $j<i$, then $\mathbf{b}^{i} \rightarrow b\left(a^{\text {nf }}\right)$ on $\left(\underline{v}^{j}, \bar{v}^{i}\right)$, and $\widetilde{R}^{j}\left(\mathbf{b}^{i}\right) \rightarrow 0$. And since $\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma)=0, \lambda^{i j^{\prime}} \rightarrow+\infty$ for some $j^{\prime}>i$, so that $\widetilde{R}^{i}\left(\mathbf{b}^{\mathbf{b}^{\prime}}\right) \rightarrow 0$ and
$h^{i} \rightarrow 0$ (using the binding $\mathrm{IC}_{1}^{i j^{\prime}}$). So there is $\lambda^{j i}$ large enough to make (B.9) hold. Finally, (B.8) always holds with $h^{N}=0$.

Step 5: Fix $i>1$. Using (B.6), the expression of $\widetilde{R}^{n}\left(\mathbf{b}^{i}\right)$, and $\xi(\cdot)=-b^{-1}(\cdot)-$ $c\left(b^{-1}(\cdot)\right), \mathbf{b}^{i}$ must maximize within \mathcal{B}

$$
\begin{aligned}
V S^{i}\left(\mathbf{b}^{i} ; \boldsymbol{\lambda}^{i}\right)= & \sum_{n=1}^{i-1} \lambda^{n i} \int_{\bar{v}^{i}}^{\bar{v}^{n}} \mathbf{b}^{i}(v) g^{n}(v) d v \\
& +\int_{\underline{v}^{i}}^{\bar{v}^{i}}\left[\mathbf{b}^{i}(v) w^{i}\left(v, \boldsymbol{\lambda}^{i}\right)+\xi\left(\mathbf{b}^{i}(v)\right)\right] d F^{i}
\end{aligned}
$$

where $\boldsymbol{\lambda}^{i} \in \mathbb{R}_{+}^{i-1}$ and

$$
w^{i}\left(v ; \boldsymbol{\lambda}^{i}\right)=\frac{v}{t^{i}}+\sum_{n=1}^{i-1} \lambda^{n i} q^{i}(v)-\sum_{n=1}^{i-1} \lambda^{n i} \frac{f^{n}(v)}{f^{i}(v)} q^{n}(v)
$$

We can apply to $V S^{i}\left(\mathbf{b}^{i} ; \boldsymbol{\lambda}^{i}\right)$ the method used in the two-type case to characterize \mathbf{b}^{I} (Theorem 4.1). If $\boldsymbol{\lambda}^{i}=\mathbf{0}, V \boldsymbol{S}^{i}\left(\mathbf{b}^{i} ; \mathbf{0}\right)=\widetilde{W}^{i}\left(\mathbf{b}^{i}\right)$ and $\mathbf{b}^{i}=\mathbf{b}_{f b}^{i}=b\left(\mathbf{a}_{f b}^{i}\right)$ on $\left(\underline{v}^{i}, \bar{v}^{i}\right)$. For $v>\bar{v}^{i}$, let $\mathbf{b}^{i}(v)=\mathbf{b}^{i}\left(\bar{v}^{i}\right)$. For $v<\underline{v}^{i}, \mathbf{b}^{i}(v)$ may be strictly smaller than $\mathbf{b}^{i}\left(\underline{v}^{i}\right)$ to satisfy $\mathrm{IC}_{1}^{j i}$ for $j>i$.

Suppose $\lambda^{n i}>0$ for some $n<i$. Apply the Myerson-Toikka ironing method on $\left(\underline{v}^{i}, \bar{v}^{i}\right)$, by letting $z^{i}\left(x ; \boldsymbol{\lambda}^{i}\right)=w^{i}\left(\left(F^{i}\right)^{-1}(x) ; \boldsymbol{\lambda}^{i}\right)$ and $Z^{i}\left(x ; \boldsymbol{\lambda}^{i}\right)=$ $\int_{0}^{x} z^{i}\left(y ; \boldsymbol{\lambda}^{i}\right) d y$. Let $\Omega^{i}\left(x ; \boldsymbol{\lambda}^{i}\right)=\operatorname{conv}\left(Z^{i}\left(x ; \boldsymbol{\lambda}^{i}\right)\right)$, and $\omega^{i}\left(x ; \boldsymbol{\lambda}^{i}\right)=\Omega_{x}^{i}\left(x ; \boldsymbol{\lambda}^{i}\right)$ wherever defined. Extend ω^{i} by right-continuity, and at 1 by left-continuity. For ω^{i} to be continuous, it is enough to show that, if z^{i} is discontinuous at x, then z^{i} jumps down at x. To see this, note that w^{i} can be discontinuous only at points like \underline{v}^{j} for $j<i$ and such that $\underline{v}^{j} \in\left(\underline{v}^{i}, \bar{v}^{i}\right)$. At such a point, let $w^{i}\left(\underline{v}^{j}+; \boldsymbol{\lambda}^{i}\right)=\lim _{v \downarrow \underline{v}^{j}} \overline{w^{i}}\left(v ; \boldsymbol{\lambda}^{i}\right)$ and $w^{i}\left(\underline{v}^{j}-; \boldsymbol{\lambda}^{i}\right)=\lim _{v \uparrow \underline{v}^{j}} w^{i}\left(v ; \boldsymbol{\lambda}^{i}\right)$. For $n<j$, $\underline{v}^{n}>\underline{v}^{j}$ and hence $f^{n}\left(\underline{v}^{j}\right)=0$. So

$$
\begin{aligned}
& w^{i}\left(\underline{v}^{j}+; \boldsymbol{\lambda}^{i}\right)=\frac{\underline{v}^{j}}{t^{i}}+\sum_{n=1}^{i-1} \lambda^{n i} q^{i}\left(\underline{v}^{j}\right)-\sum_{n=j}^{i-1} \lambda^{n i} \frac{f^{n}\left(\underline{v}^{j}\right)}{f^{i}\left(\underline{v}^{j}\right)} q^{n}\left(\underline{v}^{j}\right), \\
& w^{i}\left(\underline{v}^{j}-; \boldsymbol{\lambda}^{i}\right)=\frac{v^{j}}{t^{i}}+\sum_{n=1}^{i-1} \lambda^{n i} q^{i}\left(\underline{v}^{j}\right)-\sum_{n=j+1}^{i-1} \lambda^{n i} \frac{f^{n}\left(\underline{v}^{j}\right)}{f^{i}\left(\underline{v}^{j}\right)} q^{n}\left(\underline{v}^{j}\right) .
\end{aligned}
$$

Then,

$$
w^{i}\left(\underline{v}^{j}-; \boldsymbol{\lambda}^{i}\right)-w^{i}\left(\underline{v}^{j}+; \boldsymbol{\lambda}^{i}\right)=\lambda^{j i} \frac{f^{j}\left(\underline{v}^{j}\right)}{f^{i}\left(\underline{v}^{j}\right)} q^{j}\left(\underline{v}^{j}\right) \geq 0
$$

since $q^{j}\left(\underline{v}^{j}\right)=\left(1-t^{j}\right)\left(\underline{v}^{j} / t^{j}\right) \geq 0$. Letting $\bar{w}^{i}\left(v ; \boldsymbol{\lambda}^{i}\right)=\omega^{i}\left(F^{i}(v) ; \boldsymbol{\lambda}^{i}\right)$ for $v \in$ ($\underline{v}^{i}, \bar{v}^{i}$), construct $\overline{V S}^{i}$ as in the proof of Theorem 4.1.

Note that $g^{n}(v)<0$ for $v \in\left(\bar{v}^{i}, \bar{v}^{n}\right)$. So, since $\lambda^{n i}>0$ for some $n<i$, the first term in $V S^{i}$ is strictly negative. Let $\underline{n}=\min \left\{n: \lambda^{n i}>0\right\}$. Then, on $\left(\underline{v}^{i}, \bar{v}^{\underline{n}}\right)$, the characterization of Lemma A. 3 extends to $\overline{V S}^{i}$. So \mathbf{b}^{i} must be constant at $y^{\text {ib }}$ on $\left(v^{i b}, \bar{v}^{n}\right)$, where $v^{i \mathrm{~b}} \leq \bar{v}^{i}$ and $y^{i \mathrm{~b}} \leq \overline{\mathbf{b}}^{i}\left(\bar{v}^{i}\right)$. Moreover, $y^{i \mathrm{~b}}=\overline{\mathbf{b}}^{i}\left(v^{i \mathrm{~b}}\right)$, if $v^{i \mathrm{~b}}>\underline{v}^{i}$; and $\mathbf{b}^{i}(v)=\overline{\mathbf{b}}^{i}(v)$ for $v \in\left[\underline{v}^{i}, v^{i b}\right]$. The argument in Lemma A. 4 yields that there is a (unique) maximizer of $\overline{V S}^{i}$. The argument in Lemma A. 5 implies that the (unique) maximizer of $\overline{V S}^{i}$ is also the (unique) maximizer of $V S^{i}$.

Step 6: Properties of the solutions to (B.6). Suppose $\lambda^{n i}>0$ for some $n<i$ and define \underline{n} as before. The analog of the ironing condition for v^{b} applies to v^{b} :

$$
\int_{v^{\mathrm{ib}}}^{\bar{v}^{i}}\left[w^{i}\left(y ; \boldsymbol{\lambda}^{i}\right)-w^{i}\left(v^{\mathrm{ib}} ; \boldsymbol{\lambda}^{i}\right)\right] d F^{i}=-\sum_{n=\underline{n}}^{i-1} \lambda^{n i} \int_{\bar{v}^{i}}^{\bar{v}^{n}} g^{n}(v) d v .
$$

Since the sum is negative, $v^{i \mathrm{~b}}<\bar{v}^{i}$. This condition can be written as

$$
\begin{aligned}
& \int_{v^{i b}}^{\bar{v}^{i}}\left[w^{i}\left(v^{i \mathrm{~b}} ; \boldsymbol{\lambda}^{i}\right)-\left(v / t^{i}\right)\right] d F^{i} \\
& \quad=\sum_{n=\underline{n}}^{i-1} \lambda^{n i}\left[\int_{v^{i b}}^{\bar{v}^{i}} G^{i n}(v) d F^{i}+\int_{\bar{v}^{i}}^{\bar{v}^{n}} g^{n}(v) d v\right] .
\end{aligned}
$$

To prove that $w^{i}\left(v^{i b} ; \boldsymbol{\lambda}^{i}\right)<\bar{v}^{i} / t^{i}$, it is enough to observe that the right-hand side is negative by (A.14). So, \mathbf{b}^{i} exhibits bunching on $\left[v^{i \mathrm{~b}}, \bar{v}^{\underline{n}}\right]$ at value $y^{i \mathrm{~b}}<\mathbf{b}_{f b}^{i}\left(\bar{v}^{i}\right)$.

Now consider the bottom of $\left[\underline{v}^{i}, \bar{v}^{i}\right]$. By the logic in Lemma A.6, $\bar{w}^{i}\left(\underline{v}^{i} ; \boldsymbol{\lambda}^{i}\right) \leq$ $w^{i}\left(\underline{v}^{i} ; \boldsymbol{\lambda}^{i}\right)$, with strict inequality if $v_{\mathrm{b}}^{i}>\underline{v}^{i}$. Moreover, for $v<\underline{v}^{i-1}, w^{i}\left(v, \boldsymbol{\lambda}^{i}\right)=$ $v / t^{i}+\sum_{n=1}^{i-1} \lambda^{n i} q^{i}(v)$ and $w^{i}\left(\underline{v}^{i} ; \boldsymbol{\lambda}^{i}\right)=\left(\underline{v}^{i} / t^{i}\right)\left[1+\left(1-t^{i}\right) \sum_{n=1}^{i-1} \lambda^{n i}\right]>\underline{v}^{i} / t^{i}$. So, if $\bar{w}^{i}\left(\underline{v}^{i} ; \boldsymbol{\lambda}^{i}\right)=w^{i}\left(\underline{v}^{i} ; \boldsymbol{\lambda}^{i}\right)$, then $\mathbf{b}^{i}\left(\underline{v}^{i} ; \boldsymbol{\lambda}^{i}\right)>\mathbf{b}_{f b}^{i}\left(\underline{v}^{i}\right)$. Otherwise, ironing occurs on $\left[\underline{v}^{i}, v_{\mathrm{b}}^{i}\right] \neq \emptyset$ and

$$
\int_{\underline{v}^{i}}^{v_{\mathrm{b}}^{i}}\left[w^{i}\left(y ; \boldsymbol{\lambda}^{i}\right)-\bar{w}^{i}\left(v_{\mathrm{b}}^{i} ; \boldsymbol{\lambda}^{i}\right)\right] d F^{i}=0
$$

which corresponds to

$$
\int_{\underline{v}^{i}}^{v_{\mathrm{b}}^{i}}\left[y / t^{i}-\bar{w}^{i}\left(v_{\mathrm{b}}^{i} ; \boldsymbol{\lambda}^{i}\right)\right] d F^{i}=-\sum_{n=1}^{i-1} \lambda^{n i} \int_{\underline{v}^{i}}^{v_{\mathrm{b}}^{i}} G^{i n}(y) d F^{i}
$$

Now, for $n<i$,

$$
\begin{aligned}
\int_{\underline{v}^{i}}^{v_{\mathrm{b}}^{i}} G^{i n}(y) d F^{i} & =\int_{\underline{v}^{i}}^{v_{\mathrm{b}}^{i}} q^{i}(y) d F^{i}-\int_{\underline{v}^{i}}^{v_{\mathrm{b}}^{i}} q^{n}(y) d F^{n} \\
& =\int_{v_{\mathrm{b}}^{i} / t^{n}}^{v_{\mathrm{b}}^{i} / t^{i}}\left(s-v_{\mathrm{b}}^{i}\right) d F>0 .
\end{aligned}
$$

So $\bar{w}^{i}\left(v_{\mathrm{b}}^{i} ; \boldsymbol{\lambda}^{i}\right)>\underline{v}^{i} / t^{i}$, and $\mathbf{b}^{i}\left(\underline{v}^{i} ; \boldsymbol{\lambda}^{i}\right)>\mathbf{b}_{f b}^{i}\left(\underline{v}^{i}\right)$.
Finally, note that for $v<v^{\prime}<\underline{v}^{i-1}$,

$$
\begin{aligned}
w^{i}\left(v^{\prime} ; \boldsymbol{\lambda}^{i}\right)-w^{i}\left(v ; \boldsymbol{\lambda}^{i}\right)= & \frac{v^{\prime}-v}{t^{i}}\left[1+\sum_{n=1}^{i-1} \lambda^{n i}\left(1-t^{i}\right)\right] \\
& +\sum_{n=1}^{i-1} \lambda^{n i}\left[\frac{F^{i}\left(v^{\prime}\right)}{f^{i}\left(v^{\prime}\right)}-\frac{F^{i}(v)}{f^{i}(v)}\right]
\end{aligned}
$$

So, $w^{i}\left(\cdot ; \boldsymbol{\lambda}^{i}\right)$ will be decreasing in a neighborhood of \underline{v}^{i} if, for $s^{\prime}>s$ in $\left[\underline{s}, s^{\dagger}\right]$,

$$
\frac{F\left(s^{\prime}\right) / f\left(s^{\prime}\right)-F(s) / f(s)}{s^{\prime}-s} \geq \frac{1}{t^{i}}\left[\left(1-t^{i}\right)+\left(\sum_{n=1}^{i-1} \lambda^{n i}\right)^{-1}\right]
$$

Hence, bunching at the bottom is more likely if t^{i} is closer to 1 and $\sum_{n=1}^{i-1} \lambda^{n i}$ is large, that is, if the provider assigns large shadow value to not increasing the rents of types below i.

APPENDIX C: ILLUSTRATIVE Example's Calculations

Let $\underline{s}=10, \bar{s}=15$, and $t=0.9$. We first characterize the first-best C - and I-device. By Corollary 3.1, p_{e}^{C} must be constant; by Proposition 3.1, it must extract the entire surplus that C derives from the C-device, thereby leaving C with expected utility m. With regard to the I-device, again by Corollary 3.1, for $a \in[100,225]$ we have $p_{\mathbf{e}}^{I}(a)=p_{\mathrm{e}}^{C}+q^{I}(a)$ such that $q^{I}(\mathbf{e}(s))=\mathbf{q}^{0.9}(s)$ for every $s \in[\underline{s}, \bar{s}]$. Therefore, using the formula in Corollary 3.1,

$$
\frac{d q^{I}(a)}{d a}=\frac{d \mathbf{q}^{0.9}(s) / d s}{d \mathbf{e}(s) / d s}=-0.1
$$

So $q^{I}(a)=k-0.1 a$, where k is set so that I expects to pay p_{e}^{C} (Proposition 3.1).
Consider now the difference between C 's and I 's expected utility from the efficient I-device (i.e., $\left.R^{C}\left(a_{f b}^{I}\right)\right)$. Recall that $p_{\mathrm{e}}^{I}(a)=+\infty$ for $a \notin[100,225]$.

Under this I-device, at time 2 type C chooses $\boldsymbol{\alpha}^{C}(s)=\frac{s^{2}}{t^{2}}$ for $s<\frac{\bar{s}}{t}$ and $\boldsymbol{\alpha}^{C}(s)=\bar{s}$ otherwise. Thus

$$
\begin{aligned}
R^{C}\left(a_{f b}^{I}\right)= & m-p_{\mathbf{e}}^{C}-k+\int_{\underline{s}}^{\bar{s}}\left[2 s \sqrt{\boldsymbol{\alpha}^{C}(s)}-t \boldsymbol{\alpha}^{C}(s)\right] \frac{d s}{\bar{s}-\underline{s}} \\
& -\left\{m-p_{\mathbf{e}}^{C}-k+\int_{\underline{s}}^{\bar{s}}[2 s \sqrt{\mathbf{e}(s)}-t \mathbf{e}(s)] \frac{d s}{\bar{s}-\underline{s}}\right\} \\
= & \frac{1-t}{3 t(\bar{s}-\underline{s})}\left[\bar{s}^{3}(3-t) t-(1+t) \underline{s}^{3}\right] .
\end{aligned}
$$

Substituting the values of \underline{s}, \bar{s}, and t, we get $R^{C}\left(a_{f b}^{I}\right) \approx 33.18$.
To compute the difference between I 's and C 's expected utilities from the efficient C-device (i.e., $R^{I}\left(a_{f b}^{C}\right)$), recall that $p_{\mathrm{e}}^{C}(a)=+\infty$ for $a \notin[100,225]$. Given this, at time 2 type I chooses $\boldsymbol{\alpha}^{I}(s)=t^{2} s^{2}$ for $s>\frac{s}{t}$ and $\boldsymbol{\alpha}^{I}(s)=\underline{s}$ otherwise. Thus

$$
\begin{aligned}
R^{I}\left(a_{f b}^{C}\right)= & m-p_{\mathbf{e}}^{C}+\int_{\underline{s}}^{\bar{s}}\left[2 s \sqrt{\boldsymbol{\alpha}^{I}(s)}-\boldsymbol{\alpha}^{I}(s)\right] \frac{d s}{\bar{s}-\underline{s}} \\
& -\left\{m-p_{\mathbf{e}}^{C}+\int_{\underline{s}}^{\bar{s}}[2 s \sqrt{\mathbf{e}(s)}-\mathbf{e}(s)] \frac{d s}{\bar{s}-\underline{s}}\right\} \\
= & \frac{(1-t)^{2}}{3(\bar{s}-\underline{s})}\left[\underline{s}^{3} t^{-2}-\bar{s}^{3}\right] .
\end{aligned}
$$

Substituting \underline{s}, \bar{s}, and t, we get $R^{I}\left(a_{f b}^{C}\right) \approx-1.43$.
The properties of the screening I-device follow from the argument in the proof of Corollary 4.3 above. The thresholds s_{b} and s^{b} can be computed using formulas (B.2) and (B.4) for v_{b} and v^{b}. Regarding the range $\left[a_{\mathrm{b}}, a^{\mathrm{b}}\right]$, we have that $a_{\mathrm{b}}=\left[w^{I}\left(v_{\mathrm{b}} ; r^{C}\right)\right]^{2}$ and $a^{\mathrm{b}}=\left[w^{I}\left(v^{\mathrm{b}} ; r^{C}\right)\right]^{2}$, where $w^{I}\left(v ; r^{C}\right)$ is given in (B.1). These formulas depend on $r^{C}=\frac{\gamma}{1-\gamma}+\frac{\mu}{1-\gamma}$, but in this example $\mu=0$ because unused options are always enough to deter I from taking the C device (see below). Varying $\gamma \in(0,1)$ delivers the values in Figure 1 of the main text. By Proposition 4.2, when the provider completely removes flexibility from the I-device, she induces I to choose the ex ante efficient action $a^{\text {nf }}=\left(\frac{\bar{s}+\underline{s}}{2}\right)^{2}=156.25$.

The most deterring unused option for the C-device depends on v_{u} in Proposition 4.3. As shown in its proof, $v_{\mathrm{u}}=\sup \left\{v \in\left[\underline{v}^{I}, \underline{v}^{C}\right] \mid g^{I}(v)<0\right\}$ where

$$
g^{I}(v)=\frac{t-1}{t} v f^{I}(v)+F^{I}(v)=\frac{1}{t(\bar{s}-\underline{s})}\left[(2 t-1) s-\frac{s}{t}\right],
$$

which is strictly increasing since $t>1 / 2$. Since $\underline{v}^{C}=\underline{s}$ and $g^{I}(\underline{s})=\frac{2(t-1) s}{t^{2}(\bar{s}-\underline{s})}<0$, we have $v_{\mathrm{u}}=\underline{s}$. That is, the most deterring C-device induces I to choose the
unused option with $\underline{a}=0$ whenever $s<\frac{s}{\tilde{t}}$. The associated payment must render I indifferent at time 2 between saving $\boldsymbol{\alpha}^{I}(\underline{s} / t)=\underline{s}^{2}$ and zero in state $\frac{s}{\tilde{s}}$:

$$
m-p^{c}(0)=m-p^{c}\left(\underline{s}^{2}\right)-\underline{s}^{2}+2 t\left(\frac{\underline{s}}{\bar{t}}\right) \sqrt{\underline{s}^{2}} .
$$

Substituting and rearranging, we get $p^{C}(0)=p^{C}(100)-100$.
We can now compute the difference in I 's expected utility between the C device with and without the unused option. This depends only on I's different choices for states in $[\underline{s}, \underline{s} / t)$, and hence it equals

$$
\int_{\underline{s}}^{\underline{s} / t}\left[-p^{c}(0)\right] \frac{d s}{\bar{s}-\underline{s}}-\int_{\underline{s}}^{\underline{s} / t}\left[-p^{c}\left(\underline{s}^{2}\right)-\underline{s}^{2}+2 s \sqrt{s^{2}}\right] \frac{d s}{\bar{s}-\underline{s}}=\frac{s^{3}\left(1-t^{2}\right)}{t^{2}(\bar{s}-\underline{s})} .
$$

Using the parameters' values, this difference is -46.91 . Since it exceeds $R^{C}\left(a_{f b}^{I}\right) \approx 33.18, I$ would never choose the C-device that contains unused option ($0, p^{c}(0)$).

APPENDIX D: Outside Option With Type-Dependent Values

After rejecting all the provider's devices at time 1, the agent will make certain state-contingent choices at time 2 , which can be described with ($\mathbf{a}_{0}, \mathbf{p}_{0}$) using the formalism of Section 4.1. For simplicity, consider the two-type model. By Proposition 4.1, $U^{C}\left(\mathbf{a}_{0}, \mathbf{p}_{0}\right) \geq U^{I}\left(\mathbf{a}_{0}, \mathbf{p}_{0}\right)$ with equality if and only if \mathbf{a}_{0} is constant over (\underline{v}, \bar{v}). So C and I value the outside option differently, unless they always end up making the same choice.
When $U^{C}\left(\mathbf{a}_{0}, \mathbf{p}_{0}\right)>U^{I}\left(\mathbf{a}_{0}, \mathbf{p}_{0}\right)$, the analysis in Section 4 can be adjusted without changing its thrust. The constraints $\left(\mathrm{IR}^{C}\right)$ and $\left(\mathrm{IC}_{1}^{C}\right)$ set two lower bounds on $C^{\text {'s }}$ payoff from the C-device: one endogenous (i.e., $U^{C}\left(\mathbf{a}^{I}, \mathbf{p}^{I}\right)=$ $\left.U^{I}\left(\mathbf{a}^{I}, \mathbf{p}^{I}\right)+R^{C}\left(\mathbf{a}^{I}\right)\right)$ and one exogenous (i.e., $U^{C}\left(\mathbf{a}_{0}, \mathbf{p}_{0}\right)=U^{I}\left(\mathbf{a}_{0}, \mathbf{p}_{0}\right)+$ $R^{C}\left(\mathbf{a}_{0}\right)$). The question is which binds first. In Section $4,\left(\mathrm{IC}_{1}^{C}\right)$ always binds first, for $\left(\mathrm{IR}^{I}\right)$ and $\left(\mathrm{IC}_{1}^{C}\right)$ imply $\left(\mathrm{IR}^{C}\right)$. Now this is no longer true. Intuitively, if $\left(\mathrm{IC}_{1}^{C}\right)$ binds first, then we are in a situation similar to Section 4 ; so the provider will distort the I-device as shown in Section 4.2. ${ }^{1}$ If $\left(\operatorname{IR}^{C}\right)$ binds first, then obviously the provider has no reason to distort the I-device. For example, she will never distort the I-device, if the outside option sustains the efficient outcome with I-that is, $\mathbf{a}_{0}=\mathbf{a}_{f b}^{I}$ over $\left[\underline{v}^{t}, \bar{v}^{I}\right]$. In this case, she must grant C at least the rent $R^{c}\left(\mathbf{a}_{0}\right)$, which already exceeds $R^{C}\left(\mathbf{a}_{f b}^{I}\right)$. Finally, if $\left(\mathrm{IC}_{1}^{I}\right)$ binds, then the provider will design the C-device as shown in Section 4.3. ${ }^{2}$

[^0]
APPENDIX E: Finitely Many States and Irrelevance of Asymmetric Information

This section shows that if the set of states S is finite, then the provider may be able to always sustain the efficient outcome \mathbf{e}, even if she cannot observe the agent's degree of inconsistency. To see the intuition, consider a two-state case with $s_{2}>s_{1}$. If the provider can observe t, she sustains $\alpha_{2}^{*}=\mathbf{e}\left(s_{2}\right)>\mathbf{e}\left(s_{1}\right)=\alpha_{1}^{*}$, with payments $\pi_{1}=\boldsymbol{\pi}^{t}\left(s_{1}\right)$ and $\pi_{2}=\boldsymbol{\pi}^{t}\left(s_{2}\right)$ that satisfy

$$
\begin{equation*}
u_{2}\left(\alpha_{2}^{*} ; s_{2}, t\right)-u_{2}\left(\alpha_{1}^{*} ; s_{2}, t\right) \geq \pi_{2}-\pi_{1} \geq u_{2}\left(\alpha_{2}^{*} ; s_{1}, t\right)-u_{2}\left(\alpha_{1}^{*} ; s_{1}, t\right) \tag{E.1}
\end{equation*}
$$

which follows from (IC). Since $u_{2}(a ; s, t)$ has strictly increasing differences in (a, s), having a discrete S creates some slack in (IC) at e: For any t, (E.1) does not pin down π_{1} and π_{2} uniquely. Suppose t^{I} is close to t^{C}. Intuitively, to sustain e with each type, the provider should be able to use incentive schemes that are sufficiently alike; also, since discrete states leave some leeway in the payments, she may be able to find one scheme that works for both types. If instead t^{I} is far from t^{C}, the provider must use different schemes to sustain e with each type. Since $t^{I}<t^{C}, I$ is tempted to pick α_{1}^{*} also in s_{2}, and the more so, the lower is t^{I}. So, for I not to choose α_{1}^{*} in s_{2}, α_{1}^{*} must be sufficiently more expensive than α_{2}^{*}, and this gap must rise as t^{I} falls. At some point, this gap must exceed C 's willingness to pay for switching from α_{2}^{*} to α_{1}^{*} in s_{1}.

Proposition E. 1 formalizes this intuition. Consider a finite set T of types, which may include both $t>1$ and $t<1$; let $\bar{t}=\max T$ and $\underline{t}=\min T$.

Proposition E.1: Suppose S is finite and $s_{N}>s_{N-1}>\cdots>s_{1}$. There is a single commitment device that sustains \mathbf{e} with each $t \in T$ if and only if $\bar{t} / \underline{t} \leq \min _{i} s_{i+1} / s_{i}$.

Proof: With N states, (IC) becomes

$$
u_{2}\left(\alpha_{i} ; s_{i}, t\right)-\pi_{i} \geq u_{2}\left(\alpha_{j} ; s_{i}, t\right)-\pi_{j}
$$

for all i, j, where $\alpha_{i}=\boldsymbol{\alpha}\left(s_{i}\right)$ and $\pi_{i}=\boldsymbol{\pi}\left(s_{i}\right)$. By standard arguments, it is enough to focus on adjacent constraints. For $i=2, \ldots, N$, let $\Delta_{i}=\pi_{i}-\pi_{i-1}$. If $\boldsymbol{\alpha}^{*}=\mathbf{e}$ for all i, then $\alpha_{N}^{*}>\alpha_{N-1}^{*}>\cdots>\alpha_{1}^{*}$ (Assumption 2.1). To sustain \mathbf{e} with t, Δ_{i} must satisfy

$$
\left(\mathrm{CIC}_{i, i-1}\right) \quad u_{2}\left(\alpha_{i}^{*} ; s_{i}, t\right)-u_{2}\left(\alpha_{i-1}^{*} ; s_{i}, t\right) \geq \Delta_{i} \geq u_{2}\left(\alpha_{i}^{*} ; s_{i-1}, t\right)-u_{2}\left(\alpha_{i-1}^{*} ; s_{i-1}, t\right),
$$

for $i=2, \ldots, N$. For any s and $t, u_{2}\left(a^{\prime} ; s, t\right)-u_{2}(a ; s, t)=t s\left(b\left(a^{\prime}\right)-b(a)\right)-$ $a^{\prime}+a$. Let $s_{k} / s_{k-1}=\min _{i} s_{i} / s_{i-1}$, and suppose $\bar{t} s_{k-1}>s_{k} \underline{t}$. Then,

$$
u_{2}\left(\alpha_{k}^{*} ; s_{k-1}, \bar{t}\right)-u_{2}\left(\alpha_{k-1}^{*} ; s_{k-1}, \bar{t}\right)>u_{2}\left(\alpha_{k}^{*} ; s_{k}, \underline{t}\right)-u_{2}\left(\alpha_{k-1}^{*} ; s_{k}, \underline{t}\right)
$$

and no Δ_{k} satisfies $\left(\mathrm{CIC}_{k, k-1}\right)$ for both \underline{t} and \bar{t}. If instead $\underline{\underline{t}} s_{i} \geq \bar{t} s_{i-1}$ for $i=$ $2, \ldots, N$, then for every t and i,

$$
\begin{aligned}
u_{2}\left(\alpha_{i}^{*} ; s_{i}, t\right)-u_{2}\left(\alpha_{i-1}^{*} ; s_{i}, t\right) & \geq u_{2}\left(\alpha_{i}^{*} ; s_{i-1}, \bar{t}\right)-u_{2}\left(\alpha_{i-1}^{*} ; s_{i-1}, \bar{t}\right) \\
& \geq u_{2}\left(\alpha_{i}^{*} ; s_{i-1}, t\right)-u_{2}\left(\alpha_{i-1}^{*} ; s_{i-1}, t\right) .
\end{aligned}
$$

Set $\Delta_{i}^{*}=u_{2}\left(a_{i}^{*} ; s_{i-1}, \bar{t}\right)-u_{2}\left(a_{i-1}^{*} ; s_{i-1}, \bar{t}\right)$. Then $\left\{\Delta_{i}^{*}\right\}_{i=2}^{N}$ satisfies all $\left(\mathrm{CIC}_{i, i-1}\right)$ for every t. The payment rule $\pi_{i}^{*}=\pi_{1}^{*}+\sum_{j=2}^{i} \Delta_{j}^{*}$-with π_{1}^{*} small to satisfy (IR)sustains \mathbf{e} with each t.
Q.E.D.

So, if the heterogeneity across types (measured by $\bar{t} / \underline{\text { t }}$) is small, the provider can sustain \mathbf{e} without worrying about time-1 incentive constraints.
The condition in Proposition E.1, however, is not necessary for the unobservability of t to be irrelevant when sustaining e. Even if \bar{t} / \underline{t} is large, the provider may be able to design different devices such that each sustains \mathbf{e} with one t, and each t chooses the device for himself ($' t$-device'). To see why, consider an example with two types, $t^{h}>t^{l}$, and two states, $s_{2}>s_{1}$. Suppose $t^{h}>1>t^{l}$, $t^{h} s_{1}>t^{l} s_{2}$, but $s_{2}>s_{1} t^{h}$ and $s_{2} t^{l}>s_{1}$. Consider all (π_{1}, π_{2}) that satisfy (E.1) and (IR) with equality:

$$
(1-f) \pi_{2}+f \pi_{1}=(1-f) u_{1}\left(\alpha_{2}^{*} ; s_{2}\right)+f u_{1}\left(\alpha_{1}^{*} ; s_{1}\right)
$$

where $f=F\left(s_{1}\right)$. Finally, choose $\left(\pi_{1}^{h}, \pi_{2}^{h}\right)$ so that h 's self-1 strictly prefers α_{2}^{*} in s_{2}-i.e., $u_{1}\left(\alpha_{2}^{*} ; s_{2}\right)-\pi_{2}^{h}>u_{1}\left(\alpha_{1}^{*} ; s_{2}\right)-\pi_{1}^{h}$-and ($\left.\pi_{1}^{l}, \pi_{2}^{l}\right)$ so that l 's self- 1 strictly prefers α_{1}^{*} in $s_{1}-$ that is, $u_{1}\left(\alpha_{1}^{*} ; s_{1}\right)-\pi_{1}^{l}>u_{1}\left(\alpha_{2}^{*} ; s_{1}\right)-\pi_{2}^{l}$. Then, the l-device (respectively, h-device) sustains \mathbf{e} and gives zero expected payoffs to the agent if and only if $l(h)$ chooses it. Moreover, l strictly prefers the l-device and h the h-device. To see this, note that if self-1 of either type had to choose at time 2, under either device he would strictly prefer to implement \mathbf{e}. So, by choosing the 'wrong' device, either type can only lower his payoff below zero.

Proposition E. 2 gives a necessary condition for the unobservability of t to be irrelevant when sustaining e. Let $T^{1}=T \cap[0,1]$ and $T^{2}=T \cap[1,+\infty)$. For $k=1,2$, let $\bar{t}^{k}=\max T^{k}$ and $\underline{t}^{k}=\min T^{k}$.

Proposition E.2: Suppose S is finite and $s_{N}>s_{N-1}>\cdots>s_{1}$. If $\max \left\{\left[\bar{t}^{1} / \underline{t}^{1}\right.\right.$, $\left.\bar{t}^{2} / \underline{t}^{2}\right\}>\min _{i} s_{i+1} / s_{i}$, then there is no set of devices, each designed for a $t \in T$, such that (i) t chooses the t-device, (ii) the t-device sustains \mathbf{e} with t, and (iii) all t get the same expected payoff.

Proof: Suppose max $\left\{t^{1} / \underline{t}^{1}, \bar{t}^{2} / \underline{t}^{2}\right\}=\bar{t}^{1} / \underline{t^{1}}$-the other case is similar-and that there exist devices that satisfy (i)-(iii). Let U be each t 's expected payoff and $\underline{\mathbf{p}}$ be the payment rule in the \underline{t}^{1}-device. Given $\underline{\mathbf{p}}$, let $\underline{g}_{i}(t)$ be an optimal choice of $t \in T^{1}$ in s_{i}. For $\underline{t}^{1}, \underline{a}_{i}\left(\underline{t}^{1}\right)=\alpha_{i}^{*}$ for every \bar{i}. Let $\bar{S}=\left\{i: s_{i+1} / s_{i}<\right.$
$\left.\bar{t}^{1} / \underline{t}^{1}\right\} \neq \emptyset$. Then, (a) for every $i, \bar{t}^{1} s_{i}>\underline{t}^{1} s_{i}$ and hence $\underline{a}_{i}\left(\bar{t}^{1}\right) \geq \alpha_{i}^{*}$; (b) for $i \in \bar{S}$, $\bar{t}^{1} s_{i}>\underline{t}^{1} s_{i+1}$, and so $\underline{a}_{i}\left(\bar{t}^{1}\right) \geq \alpha_{i+1}^{*}>\alpha_{i}^{*}$. Since $t \leq 1$, (a) and (b) imply

$$
\begin{aligned}
\underline{\mathbf{p}}\left(\underline{a}_{i}\left(\bar{t}^{1}\right)\right)-\underline{\mathbf{p}}\left(\alpha_{i}^{*}\right) & \leq u_{2}\left(\underline{a}_{i}\left(\bar{t}^{1}\right) ; s_{i}, \bar{t}^{1}\right)-u_{2}\left(\alpha_{i}^{*} ; s_{i}, \bar{t}^{1}\right) \\
& \leq u_{1}\left(\underline{a}_{i}\left(\bar{t}^{1}\right) ; s_{i}\right)-u_{1}\left(\alpha_{i}^{*} ; s_{i}\right)
\end{aligned}
$$

where the first inequality is strict for $i \in \bar{S}$. The expected payoff of \bar{t}^{1} from $\underline{\mathbf{p}}$ is then

$$
\sum_{i=1}^{N}\left[u_{1}\left(\underline{a}_{i}\left(\bar{t}^{1}\right) ; s_{i}\right)-\underline{\mathbf{p}}\left(\underline{a}_{i}\left(\bar{t}^{1}\right)\right)\right] f_{i}>\sum_{i=1}^{N}\left[u_{1}\left(\alpha_{i}^{*} ; s_{i}\right)-\underline{\mathbf{p}}\left(\alpha_{i}^{*}\right)\right] f_{i}=U
$$

where $f_{i}=F\left(s_{i}\right)-F\left(s_{i-1}\right)$ for $i=2, \ldots, N$ and $f_{1}=F\left(s_{1}\right)$. Q.E.D.

So, if $T^{1} \backslash\{1\}=\emptyset$ or $T^{2} \backslash\{1\}=\emptyset$, the condition in Proposition E. 1 is also necessary for the provider to be able to sustain \mathbf{e}, even if she cannot observe t.

REFERENCES

Luenberger, D. G. (1969): Optimization by Vector Space Methods. New York: Wiley. [9] Rockafellar, R. T. (1970): Convex Analysis. Princeton: Princeton University Press. [2]

Dept. of Economics, UCSD, La Jolla, CA 92093, U.S.A.; sgalperti@ucsd.edu. Manuscript received August, 2013; final revision received March, 2015.

[^0]: ${ }^{1}$ This case is more likely when the outside option involves little flexibility, so that $R^{C}\left(\mathbf{a}_{0}\right)$ is small.
 ${ }^{2}$ We can extend this argument to settings in which, at time 1, the agent has access to other devices if he rejects the provider's ones. In these settings, ($\left.\mathbf{a}_{0}, \mathbf{p}_{0}\right)$ can be type-dependent.

