SUPPLEMENT TO "POWER ENHANCEMENT IN HIGH-DIMENSIONAL CROSS-SECTIONAL TESTS"
 (Econometrica, Vol. 83, No. 4, July 2015, 1497-1541)
 By JianQing Fan, Yuan Liao, and Jiawei Yao

This supplement contains additional proofs of the main paper.

APPENDIX D: Auxiliary Lemmas for the Proof of Proposition 4.2

DEFINE $\mathbf{e}_{t}=\boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}=\left(e_{1 t}, \ldots, e_{N t}\right)^{\prime}$, which is an N-dimensional vector with mean zero and covariance $\boldsymbol{\Sigma}_{u}^{-1}$, whose entries are stochastically bounded. Let $\overline{\mathbf{w}}=\left(E \mathbf{f}_{t} \mathbf{f}_{t}\right)^{-1} E \mathbf{f}_{t}$. Also recall that

$$
\begin{aligned}
& a_{1}=\frac{T}{\sqrt{N}} \sum_{i=1}^{N}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2}\left(\widehat{\sigma}_{i i}-\sigma_{i i}\right), \\
& a_{2}=\frac{T}{\sqrt{N}} \sum_{i \neq j,(i, j) \in S_{U}}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{j}\left(\widehat{\sigma}_{i j}-\sigma_{i j}\right) .
\end{aligned}
$$

One of the key steps of proving $a_{1}=o_{P}(1), a_{2}=o_{P}(1)$ is to establish the following two convergences:
(D.1) $\quad \frac{1}{T} E\left|\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{i=1}^{T}\left(u_{i t}^{2}-E u_{i t}^{2}\right)\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{i s}\left(1-\mathbf{f}_{s}^{\prime} \overline{\mathbf{w}}\right)\right)^{2}\right|^{2}=o(1)$,
(D.2) $\quad \frac{1}{T} E \left\lvert\, \frac{1}{\sqrt{N T}} \sum_{i \neq j,(i, j) \in S_{U}} \sum_{t=1}^{T}\left(u_{i t} u_{j t}-E u_{i t} u_{j t}\right)\right.$

$$
\begin{aligned}
& \times\left.\left[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{i s}\left(1-\mathbf{f}_{s}^{\prime} \overline{\mathbf{w}}\right)\right]\left[\frac{1}{\sqrt{T}} \sum_{k=1}^{T} e_{j k}\left(1-\mathbf{f}_{k}^{\prime} \overline{\mathbf{w}}\right)\right]\right|^{2} \\
= & o(1)
\end{aligned}
$$

where $S_{U}=\left\{(i, j):\left(\boldsymbol{\Sigma}_{u}\right)_{i j} \neq 0\right\}$. The proofs of (D.1) and (D.2) are given later below.

Lemma D.1: Under $H_{0}, a_{1}=o_{P}(1)$.

Proof: We have $a_{1}=\frac{T}{\sqrt{N}} \sum_{i=1}^{N}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2} \frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}^{2}-E u_{i t}^{2}\right)$, which is

$$
\begin{aligned}
& \frac{T}{\sqrt{N}} \sum_{i=1}^{N}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2} \frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}^{2}-u_{i t}^{2}\right) \\
& \quad+\frac{T}{\sqrt{N}} \sum_{i=1}^{N}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2} \frac{1}{T} \sum_{t=1}^{T}\left(u_{i t}^{2}-E u_{i t}^{2}\right) \\
& =a_{11}+a_{12} .
\end{aligned}
$$

For a_{12}, note that

$$
\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}=\left(1-\overline{\mathbf{f}}^{\prime} \mathbf{w}\right)^{-1} \frac{1}{T} \sum_{s=1}^{T}\left(1-\mathbf{f}_{s}^{\prime} \mathbf{w}\right)\left(\mathbf{u}_{s}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}=c \frac{1}{T} \sum_{s=1}^{T}\left(1-\mathbf{f}_{s}^{\prime} \mathbf{w}\right) e_{i s},
$$

where $c=\left(1-\overline{\mathbf{f}}^{\prime} \mathbf{w}\right)^{-1}=O_{P}(1)$. Hence

$$
a_{12}=\frac{T c}{\sqrt{N}} \sum_{i=1}^{N}\left(\frac{1}{T} \sum_{s=1}^{T}\left(1-\mathbf{f}_{s}^{\prime} \mathbf{w}\right) e_{i s}\right)^{2} \frac{1}{T} \sum_{t=1}^{T}\left(u_{i t}^{2}-E u_{i t}^{2}\right)
$$

$\mathrm{By}(\mathrm{D} .1), E a_{12}^{2}=o(1)$. On the other hand,

$$
\begin{aligned}
a_{11}= & \frac{T}{\sqrt{N}} \sum_{i=1}^{N}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2} \frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right)^{2} \\
& +\frac{2 T}{\sqrt{N}} \sum_{i=1}^{N}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} u_{i t}\left(\widehat{u}_{i t}-u_{i t}\right) \\
= & a_{111}+a_{112} .
\end{aligned}
$$

Note that $\max _{i \leq N} \frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right)^{2}=O_{P}\left(\frac{\log N}{T}\right)$ by Lemma 3.1 of Fan, Liao, and Mincheva (2011). Since $\|\widehat{\boldsymbol{\theta}}\|^{2}=O_{P}\left(\frac{N \log N}{T}\right),\left\|\boldsymbol{\Sigma}_{u}^{-1}\right\|_{2}=O(1)$, and $N(\log N)^{3}=$ $o\left(T^{2}\right)$,

$$
a_{111} \leq O_{P}\left(\frac{\log N}{T}\right) \frac{T}{\sqrt{N}}\left\|\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right\|^{2}=O_{P}\left(\frac{(\log N)^{2} \sqrt{N}}{T}\right)=o_{P}(1)
$$

To bound a_{112}, note that

$$
\begin{aligned}
& \widehat{u}_{i t}-u_{i t}=\widehat{\theta}_{i}-\theta_{i}+\left(\widehat{\mathbf{b}}_{i}-\mathbf{b}_{i}\right)^{\prime} \mathbf{f}_{t}, \\
& \max _{i}\left|\widehat{\theta}_{i}-\theta_{i}\right|=O_{P}\left(\sqrt{\frac{\log N}{T}}\right)=\max _{i}\left\|\widehat{\mathbf{b}}_{i}-\mathbf{b}_{i}\right\| .
\end{aligned}
$$

Also, $\max _{i}\left|\frac{1}{T} \sum_{t=1}^{T} u_{i t}\right|=O_{P}\left(\sqrt{\frac{\log N}{T}}\right)=\max _{i}\left\|\frac{1}{T} \sum_{t=1}^{T} u_{i t} \mathbf{f}_{t}\right\|$. Hence

$$
\begin{aligned}
a_{112}= & \frac{2 T}{\sqrt{N}} \sum_{i=1}^{N}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} u_{i t}\left(\widehat{\theta}_{i}-\theta_{i}\right) \\
& +\frac{2 T}{\sqrt{N}} \sum_{i=1}^{N}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2}\left(\widehat{\mathbf{b}}_{i}-\mathbf{b}_{i}\right)^{\prime} \frac{1}{T} \sum_{t=1}^{T} \mathbf{f}_{t} u_{i t} \\
\leq & O_{P}\left(\frac{\log N}{\sqrt{N}}\right)\left\|\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right\|^{2}=o_{P}(1) .
\end{aligned}
$$

In summary, $a_{1}=a_{12}+a_{111}+a_{112}=o_{P}(1)$.
Q.E.D.

Lemma D.2: Under $H_{0}, a_{2}=o_{P}(1)$.
Proof: We have $a_{2}=\frac{T}{\sqrt{N}} \sum_{i \neq j,(i, j) \in S_{U}}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{j} \frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t} \widehat{u}_{j t}-\right.$ $\left.E u_{i t} u_{j t}\right)$, which is

$$
\begin{aligned}
& \frac{T}{\sqrt{N}} \sum_{i \neq j,(i, j) \in S_{U}}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}\left(\widehat{\boldsymbol{\theta}}^{\prime} \mathbf{\Sigma}_{u}^{-1}\right)_{j} \\
& \quad \times\left(\frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t} \widehat{u}_{j t}-u_{i t} u_{j t}\right)+\frac{1}{T} \sum_{t=1}^{T}\left(u_{i t} u_{j t}-E u_{i t} u_{j t}\right)\right) \\
& =a_{21}+a_{22}
\end{aligned}
$$

where

$$
a_{21}=\frac{T}{\sqrt{N}} \sum_{i \neq j,(i, j) \in S_{U}}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{j} \frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t} \widehat{u}_{j t}-u_{i t} u_{j t}\right)
$$

Under $H_{0}, \boldsymbol{\Sigma}_{u}^{-1} \widehat{\boldsymbol{\theta}}=\frac{1}{T}\left(1-\overline{\mathbf{f}^{\prime} \mathbf{w}}\right)^{-1} \sum_{t=1}^{T} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}\left(1-\mathbf{f}_{t}^{\prime} \mathbf{w}\right)$, and $\mathbf{e}_{t}=\boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}$, we have

$$
\begin{aligned}
a_{22}= & \frac{T}{\sqrt{N}} \sum_{i \neq j,(i, j) \in S_{U}}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}\left(\widehat{\boldsymbol{\theta}}^{\prime} \mathbf{\Sigma}_{u}^{-1}\right)_{j} \frac{1}{T} \sum_{t=1}^{T}\left(u_{i t} u_{j t}-E u_{i t} u_{j t}\right) \\
= & \frac{T c}{\sqrt{N}} \sum_{i \neq j,(i, j) \in S_{U}} \frac{1}{T} \sum_{s=1}^{T}\left(1-\mathbf{f}_{s}^{\prime} \mathbf{w}\right) e_{i s} \frac{1}{T} \sum_{k=1}^{T}\left(1-\mathbf{f}_{k}^{\prime} \mathbf{w}\right) e_{j k} \\
& \times \frac{1}{T} \sum_{t=1}^{T}\left(u_{i t} u_{j t}-E u_{i t} u_{j t}\right)
\end{aligned}
$$

$\mathrm{By}(\mathrm{D} .2), E a_{22}^{2}=o(1)$.
On the other hand, $a_{21}=a_{211}+a_{212}$, where

$$
\begin{aligned}
& a_{211}=\frac{T}{\sqrt{N}} \sum_{i \neq j,(i, j) \in S_{U}}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{j} \frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right)\left(\widehat{u}_{j t}-u_{j t}\right), \\
& a_{212}=\frac{2 T}{\sqrt{N}} \sum_{i \neq j,(i, j) \in S_{U}}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{j} \frac{1}{T} \sum_{t=1}^{T} u_{i t}\left(\widehat{u}_{j t}-u_{j t}\right) .
\end{aligned}
$$

By the Cauchy-Schwarz inequality, $\max _{i j}\left|\frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right)\left(\widehat{u}_{j t}-u_{j t}\right)\right|=$ $O_{P}\left(\frac{\log N}{T}\right)$. Hence

$$
\begin{aligned}
\left|a_{211}\right| & \leq O_{P}\left(\frac{\log N}{\sqrt{N}}\right) \sum_{i \neq j,(i, j) \in S_{U}}\left|\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}\right|\left|\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{j}\right| \\
& \leq O_{P}\left(\frac{\log N}{\sqrt{N}}\right)\left(\sum_{i \neq j,(i, j) \in S_{U}}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2}\right)^{1 / 2}\left(\sum_{i \neq j,(i, j) \in S_{U}}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{j}^{2}\right)^{1 / 2} \\
& =O_{P}\left(\frac{\log N}{\sqrt{N}}\right) \sum_{i=1}^{N}\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2} \sum_{j:\left(\boldsymbol{\Sigma}_{u}\right)_{i j} \neq 0} 1 \\
& \leq O_{P}\left(\frac{\log N}{\sqrt{N}}\right)\left\|\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right\|^{2} m_{N} \\
& =O_{P}\left(\frac{m_{N} \sqrt{N}(\log N)^{2}}{T}\right)=o_{P}(1)
\end{aligned}
$$

Similarly to the proof of term a_{112} in Lemma D.1, $\max _{i j} \left\lvert\, \frac{1}{T} \sum_{t=1}^{T} u_{i t}\left(\widehat{u}_{j t}-\right.\right.$ $\left.u_{j t}\right) \left\lvert\,=O_{P}\left(\frac{\log N}{T}\right)\right.$,

$$
\begin{aligned}
\left|a_{212}\right| & \leq O_{P}\left(\frac{\log N}{\sqrt{N}}\right) \sum_{i \neq j,(i, j) \in S_{U}}\left|\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}\right|\left|\left(\widehat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}\right)_{j}\right| \\
& =O_{P}\left(\frac{m_{N} \sqrt{N}(\log N)^{2}}{T}\right)=o_{P}(1)
\end{aligned}
$$

In summary, $a_{2}=a_{22}+a_{211}+a_{212}=o_{P}(1)$.
Q.E.D.

D.1. Proof of (D.1) and (D.2)

For any index set A, we let $|A|_{0}$ denote its number of elements.
LEmmA D.3: Recall that $\mathbf{e}_{t}=\boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t} . e_{i t}$ and $u_{j t}$ are independent if $i \neq j$.

Proof: Because \mathbf{u}_{t} is Gaussian, it suffices to show that $\operatorname{cov}\left(e_{i t}, u_{j t}\right)=0$ when $i \neq j$. Consider the vector $\left(\mathbf{u}_{t}^{\prime}, \mathbf{e}_{t}^{\prime}\right)^{\prime}=\mathbf{A}\left(\mathbf{u}_{t}^{\prime}, \mathbf{u}_{t}^{\prime}\right)^{\prime}$, where

$$
\mathbf{A}=\left(\begin{array}{cc}
\mathbf{I}_{N} & 0 \\
0 & \boldsymbol{\Sigma}_{u}^{-1}
\end{array}\right)
$$

Then $\operatorname{cov}\left(\mathbf{u}_{t}^{\prime}, \mathbf{e}_{t}^{\prime}\right)=\mathbf{A} \operatorname{cov}\left(\mathbf{u}_{t}^{\prime}, \mathbf{u}_{t}^{\prime}\right) \mathbf{A}$, which is

$$
\left(\begin{array}{cc}
\mathbf{I}_{N} & 0 \\
0 & \boldsymbol{\Sigma}_{u}^{-1}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{u} & \boldsymbol{\Sigma}_{u} \\
\boldsymbol{\Sigma}_{u} & \boldsymbol{\Sigma}_{u}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{I}_{N} & 0 \\
0 & \boldsymbol{\Sigma}_{u}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{u} & \mathbf{I}_{N} \\
\mathbf{I}_{N} & \boldsymbol{\Sigma}_{u}^{-1}
\end{array}\right)
$$

This completes the proof.
Q.E.D.

Proof of (D.1): Let $X=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=1}^{T}\left(u_{i t}^{2}-E u_{i t}^{2}\right)\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{i s}\left(1-\mathbf{f}_{s}^{\prime} \mathbf{w}\right)\right)^{2}$. The goal is to show $E X^{2}=o(T)$. We show respectively $\frac{1}{T}(E X)^{2}=o(1)$ and $\frac{1}{T} \operatorname{var}(X)=o(1)$. The proof of (D.1) is the same regardless of the type of sparsity in Assumption 4.2. For notational simplicity, let

$$
\xi_{i t}=u_{i t}^{2}-E u_{i t}^{2}, \quad \zeta_{i s}=e_{i s}\left(1-\mathbf{f}_{s}^{\prime} \mathbf{w}\right)
$$

Then $X=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=1}^{T} \xi_{i t}\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{i s}\right)^{2}$. Because of the serial independence, $\xi_{i t}$ is independent of $\zeta_{j s}$ if $t \neq s$, for any $i, j \leq N$, which implies $\operatorname{cov}\left(\xi_{i t}, \zeta_{i s} \zeta_{i k}\right)=0$ as long as either $s \neq t$ or $k \neq t$.

Expectation
For the expectation,

$$
\begin{aligned}
E X & =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=1}^{T} \operatorname{cov}\left(\xi_{i t},\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{i s}\right)^{2}\right) \\
& =\frac{1}{T \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \operatorname{cov}\left(\xi_{i t}, \zeta_{i s} \zeta_{i k}\right) \\
& =\frac{1}{T \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=1}^{T}\left(\operatorname{cov}\left(\xi_{i t}, \zeta_{i t}^{2}\right)+2 \sum_{k \neq t} \operatorname{cov}\left(\xi_{i t}, \zeta_{i t} \zeta_{i k}\right)\right) \\
& =\frac{1}{T \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=1}^{T} \operatorname{cov}\left(\xi_{i t}, \zeta_{i t}^{2}\right)=O\left(\sqrt{\frac{N}{T}}\right),
\end{aligned}
$$

where the second last equality follows since $E \xi_{i t}=E \zeta_{i t}=0$ and when $k \neq t$, $\operatorname{cov}\left(\xi_{i t}, \zeta_{i t} \zeta_{i k}\right)=E \xi_{i t} \zeta_{i t} \zeta_{i k}=E \xi_{i t} \zeta_{i t} E \zeta_{i k}=0$. It then follows that $\frac{1}{T}(E X)^{2}=$ $O\left(\frac{N}{T^{2}}\right)=o(1)$, given $N=o\left(T^{2}\right)$.

Variance

Consider the variance. We have

$$
\begin{aligned}
\operatorname{var}(X)= & \frac{1}{N} \sum_{i=1}^{N} \operatorname{var}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{i t}\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{i s}\right)^{2}\right) \\
& +\frac{1}{N T^{3}} \sum_{i \neq j} \sum_{t, s, k, l, v, p \leq T} \operatorname{cov}\left(\xi_{i t} \zeta_{i s} \zeta_{i k}, \xi_{j l} \zeta_{j v} \zeta_{j p}\right) \\
= & B_{1}+B_{2}
\end{aligned}
$$

B_{1} can be bounded by the Cauchy-Schwarz inequality. Note that $E \xi_{i t}=$ $E \zeta_{j s}=0$,

$$
\begin{aligned}
B_{1} & \leq \frac{1}{N} \sum_{i=1}^{N} E\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{i t}\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{i s}\right)^{2}\right)^{2} \\
& \leq \frac{1}{N} \sum_{i=1}^{N}\left[E\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{i t}\right)^{4}\right]^{1 / 2}\left[E\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{i s}\right)^{8}\right]^{1 / 2} .
\end{aligned}
$$

Hence $B_{1}=O(1)$.
We now show $\frac{1}{T} B_{2}=o(1)$. Once this is done, it implies $\frac{1}{T} \operatorname{var}(X)=o(1)$. The proof of (D.1) is then completed because $\frac{1}{T} E X^{2}=\frac{1}{T}(E X)^{2}+\frac{1}{T} \operatorname{var}(X)=o(1)$.

For two variables X, Y, write $X \perp Y$ if they are independent. Note that $E \xi_{i t}=E \zeta_{i s}=0$, and when $t \neq s, \xi_{i t} \perp \zeta_{j s}, \xi_{i t} \perp \xi_{j s}, \zeta_{i t} \perp \zeta_{j s}$ for any $i, j \leq N$. Therefore, it is straightforward to verify that if the set $\{t, s, k, l, v, p\}$ contains more than three distinct elements, then $\operatorname{cov}\left(\xi_{i t} \zeta_{i s} \zeta_{i k}, \xi_{j l} \zeta_{j v} \zeta_{j p}\right)=0$. Hence if we denote \boldsymbol{Z} as the set of (t, s, k, l, v, p) such that $\{t, s, k, l, v, p\}$ contains no more than three distinct elements, then its cardinality satisfies: $|\Xi|_{0} \leq C T^{3}$ for some $C>1$, and

$$
\sum_{t, s, k, l v, p \leq T} \operatorname{cov}\left(\xi_{i t} \zeta_{i s} \zeta_{i k}, \xi_{j l} \zeta_{j v} \zeta_{j p}\right)=\sum_{(t, s, k, l, v, p) \in \Xi} \operatorname{cov}\left(\xi_{i t} \zeta_{i s} \zeta_{i k}, \xi_{j i l} \zeta_{j v} \zeta_{j p}\right) .
$$

Hence

$$
B_{2}=\frac{1}{N T^{3}} \sum_{i \neq j} \sum_{(t, s, k, l, v, p) \in \Xi} \operatorname{cov}\left(\xi_{i t} \zeta_{i s} \zeta_{i k}, \xi_{j l} \zeta_{j v} \zeta_{j p}\right)
$$

Let us partition Ξ into $\Xi_{1} \cup \Xi_{2}$, where each element (t, s, k, l, v, p) in Ξ_{1} contains exactly three distinct indices, while each element in Ξ_{2} contains less
than three distinct indices. We know that

$$
\begin{aligned}
\frac{1}{N T^{3}} \sum_{i \neq j} \sum_{(t, s, k, l, v, p) \in \xi_{2}} \operatorname{cov}\left(\xi_{i t} \zeta_{i s} \zeta_{i k}, \xi_{j l} \zeta_{j v} \zeta_{j p}\right) & =O\left(\frac{1}{N T^{3}} N^{2} T^{2}\right) \\
& =O\left(\frac{N}{T}\right)
\end{aligned}
$$

which implies

$$
\frac{1}{T} B_{2}=\frac{1}{N T^{4}} \sum_{i \neq j} \sum_{(t, s, k, l, v, p) \in \xi_{1}} \operatorname{cov}\left(\xi_{i t} \zeta_{i s} \zeta_{i k}, \xi_{j l} \zeta_{j v} \zeta_{j p}\right)+O_{p}\left(\frac{N}{T^{2}}\right)
$$

The first term on the right hand side can be written as $\sum_{h=1}^{5} B_{2 h}$. Each of these five terms is defined and analyzed separately as below:

$$
\begin{aligned}
B_{21} & =\frac{1}{N T^{4}} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} E \xi_{i t} \xi_{j t} E \zeta_{i s}^{2} E \zeta_{j l}^{2} \\
& \leq O\left(\frac{1}{N T}\right) \sum_{i \neq j}\left|E \xi_{i t} \xi_{j t}\right|
\end{aligned}
$$

Note that if $\left(\boldsymbol{\Sigma}_{u}\right)_{i j}=0, u_{i t}$ and $u_{j t}$ are independent, and hence $E \xi_{i t} \xi_{j t}=0$. This implies $\sum_{i \neq j}\left|E \xi_{i t} \xi_{j t}\right| \leq O(1) \sum_{i \neq j,(i, j) \in S_{U}} 1=O(N)$. Hence $B_{21}=o(1)$.

$$
B_{22}=\frac{1}{N T^{4}} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} E \xi_{i t} \zeta_{i t} E \zeta_{i s} \xi_{j s} E \zeta_{j l}^{2}
$$

By Lemma D.3, $u_{j s}$ and $e_{i s}$ are independent for $i \neq j$. Also, $u_{j s}$ and \mathbf{f}_{s} are independent, which implies $\xi_{j s}$ and $\zeta_{i s}$ are independent. So $E \xi_{j s} \zeta_{i s}=0$. It follows that $B_{22}=0$.

$$
\begin{aligned}
B_{23} & =\frac{1}{N T^{4}} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} E \xi_{i t} \zeta_{i t} E \zeta_{i s} \zeta_{j s} E \xi_{j l} \zeta_{j l} \\
& =O\left(\frac{1}{N T}\right) \sum_{i \neq j}\left|E \zeta_{i s} \zeta_{j s}\right| \\
& =O\left(\frac{1}{N T}\right) \sum_{i \neq j}\left|E e_{i s} e_{j s} E\left(1-\mathbf{f}_{s}^{\prime} \mathbf{w}\right)^{2}\right| \\
& =O\left(\frac{1}{N T}\right) \sum_{i \neq j}\left|E e_{i s} e_{j s}\right|
\end{aligned}
$$

By the definition $\mathbf{e}_{s}=\boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{s}, \operatorname{cov}\left(\mathbf{e}_{s}\right)=\boldsymbol{\Sigma}_{u}^{-1}$. Hence $E e_{i s} e_{j s}=\left(\boldsymbol{\Sigma}_{u}^{-1}\right)_{i j}$, which implies $B_{23} \leq O\left(\frac{N}{N T}\right)\left\|\boldsymbol{\Sigma}_{u}^{-1}\right\|_{1}=o(1)$.

$$
B_{24}=\frac{1}{N T^{4}} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} E \xi_{i t} \xi_{j t} E \zeta_{i s} \zeta_{j s} E \zeta_{i l} \zeta_{j l}=O\left(\frac{1}{T}\right)
$$

which is analyzed in the same way as B_{21}.
Finally, $B_{25}=\frac{1}{N T^{4}} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} E \xi_{i t} \zeta_{j t} E \zeta_{i s} \xi_{j s} E \zeta_{i l} \zeta_{j l}=0$, because $E \zeta_{i s} \xi_{j s}=0$ when $i \neq j$, following from Lemma D.3. Therefore, $\frac{1}{T} B_{2}=o(1)+$ $O\left(\frac{N}{T^{2}}\right)=o(1)$.
Q.E.D.

Proof of (D.2): For notational simplicity, let $\xi_{i j t}=u_{i t} u_{j t}-E u_{i t} u_{j t}$. Because of the serial independence and the Gaussianity, $\operatorname{cov}\left(\xi_{i j t}, \zeta_{l s} \zeta_{n k}\right)=0$ when either $s \neq t$ or $k \neq t$, for any $i, j, l, n \leq N$. In addition, define a set

$$
H=\left\{(i, j) \in S_{U}: i \neq j\right\}
$$

Then by the sparsity assumption, $\sum_{(i, j) \in H} 1=D_{N}=O(N)$. Now let

$$
\begin{aligned}
Z= & \frac{1}{\sqrt{N T}} \sum_{(i, j) \in H} \sum_{t=1}^{T}\left(u_{i t} u_{j t}-E u_{i t} u_{j t}\right) \\
& \times\left[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{i s}\left(1-\mathbf{f}_{s}^{\prime} \mathbf{w}\right)\right]\left[\frac{1}{\sqrt{T}} \sum_{k=1}^{T} e_{j k}\left(1-\mathbf{f}_{k}^{\mathbf{f}} \mathbf{w}\right)\right] \\
= & \frac{1}{\sqrt{N T}} \sum_{(i, j) \in H} \sum_{t=1}^{T} \xi_{i j t}\left[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{i s}\right]\left[\frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{j k}\right] \\
= & \frac{1}{T \sqrt{N T}} \sum_{(i, j) \in H} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \xi_{i j t} \zeta_{i s} \zeta_{j k} .
\end{aligned}
$$

The goal is to show $\frac{1}{T} E Z^{2}=o(1)$. We respectively show $\frac{1}{T}(E Z)^{2}=o(1)=$ $\frac{1}{T} \operatorname{var}(Z)$.

Expectation
The proof for the expectation is the same regardless of the type of sparsity in Assumption 4.2, and is very similar to that of (D.1). In fact,

$$
\begin{aligned}
E Z & =\frac{1}{T \sqrt{N T}} \sum_{(i, j) \in H} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \operatorname{cov}\left(\xi_{i j t}, \zeta_{i s} \zeta_{j k}\right) \\
& =\frac{1}{T \sqrt{N T}} \sum_{(i, j) \in H} \sum_{t=1}^{T} \operatorname{cov}\left(\xi_{i j t}, \zeta_{i t}^{2}\right)
\end{aligned}
$$

Because $\sum_{(i, j) \in H} 1=O(N), E Z=O\left(\sqrt{\frac{N}{T}}\right)$. Thus $\frac{1}{T}(E Z)^{2}=o(1)$.
Variance
For the variance, we have

$$
\begin{aligned}
& \operatorname{var}(Z) \\
&= \frac{1}{T^{3} N} \sum_{(i, j) \in H} \operatorname{var}\left(\sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \xi_{i j t} \zeta_{i s} \zeta_{j k}\right) \\
&+\frac{1}{T^{3} N} \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j), t, s, k, l, v, p \leq T} \operatorname{cov}\left(\xi_{i j t} \zeta_{i s} \zeta_{j k}, \xi_{m n l} \zeta_{m v} \zeta_{n p}\right) \\
&= A_{1}+A_{2}
\end{aligned}
$$

By the Cauchy-Schwarz inequality and the serial independence of $\xi_{i j t}$,

$$
\begin{aligned}
A_{1} \leq & \frac{1}{N} \sum_{(i, j) \in H} E\left[\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{i j t} \frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{i s} \frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{j k}\right]^{2} \\
\leq & \frac{1}{N} \sum_{(i, j) \in H}\left[E\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{i j t}\right)^{4}\right]^{1 / 2} \\
& \times\left[E\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{i s}\right)^{8}\right]^{1 / 4}\left[E\left(\frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{j k}\right)^{8}\right]^{1 / 4}
\end{aligned}
$$

So $A_{1}=O(1)$.
Note that $E \xi_{i j t}=E \zeta_{i s}=0$, and when $t \neq s, \xi_{i j t} \perp \zeta_{m s}, \xi_{i j t} \perp \xi_{m n s}, \zeta_{i t} \perp \zeta_{j s}$ (independent) for any $i, j, m, n \leq N$. Therefore, it is straightforward to verify that if the set $\{t, s, k, l, v, p\}$ contains more than three distinct elements, then $\operatorname{cov}\left(\xi_{i j t} \zeta_{i s} \zeta_{j k}, \xi_{m n l} \zeta_{m v} \zeta_{n p}\right)=0$. Hence for the same set Ξ defined as before, it satisfies: $|\Xi|_{0} \leq C T^{3}$ for some $C>1$, and

$$
\begin{aligned}
& \sum_{t, s, k, l, v, p \leq T} \operatorname{cov}\left(\xi_{i j t} \zeta_{i s} \zeta_{j k}, \xi_{m n l} \zeta_{m v} \zeta_{n p}\right) \\
& =\sum_{(t, s, k, l, v, p) \in \Xi} \operatorname{cov}\left(\xi_{i j t} \zeta_{i s} \zeta_{j k}, \xi_{m n l} \zeta_{m v} \zeta_{n p}\right)
\end{aligned}
$$

We proceed by studying the two cases of Assumption 4.2 separately, and show that in both cases, $\frac{1}{T} A_{2}=o(1)$. Once this is done, because we have just shown $A_{1}=O(1)$, then $\frac{1}{T} \operatorname{var}(Z)=o(1)$. The proof is then completed because $\frac{1}{T} E Z^{2}=\frac{1}{T}(E Z)^{2}+\frac{1}{T} \operatorname{var}(Z)=o(1)$.

When $D_{N}=O(\sqrt{N})$
Because $|\Xi|_{0} \leq C T^{3}$ and $|H|_{0}=D_{N}=O(\sqrt{N})$, and $\mid \operatorname{cov}\left(\xi_{i j t} \zeta_{i s} \zeta_{j k}\right.$, $\left.\xi_{m n l} \zeta_{m v} \zeta_{n p}\right) \mid$ is bounded uniformly in $i, j, m, n \leq N$, we have

$$
\begin{aligned}
\frac{1}{T} A_{2} & =\frac{1}{T^{4} N} \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j), t, s, k, l, v, p \in \Xi} \sum \operatorname{cov}\left(\xi_{i j t} \zeta_{i s} \zeta_{j k}, \xi_{m n l} \zeta_{m v} \zeta_{n p}\right) \\
& =O\left(\frac{1}{T}\right)
\end{aligned}
$$

When $D_{n}=O(N)$, and $m_{N}=O(1)$
Similarly to the proof of the first statement, for the same set Ξ_{1} that contains exactly three distinct indices in each of its element (recall $|H|_{0}=O(N)$),

$$
\begin{aligned}
\frac{1}{T} A_{2}= & \frac{1}{N T^{4}} \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j), t, s, k, l, v, p \in \Xi_{1}} \sum \operatorname{cov}\left(\xi_{i j t} \zeta_{i s} \zeta_{j k}, \xi_{m n l} \zeta_{m v} \zeta_{n p}\right) \\
& +O\left(\frac{N}{T^{2}}\right)
\end{aligned}
$$

The first term on the right hand side can be written as $\sum_{h=1}^{5} A_{2 h}$. Each of these five terms is defined and analyzed separately as below. Before that, let us introduce a useful lemma.

The following lemma is needed when $\boldsymbol{\Sigma}_{u}$ has bounded number of nonzero entries in each row $\left(m_{N}=O(1)\right)$. Let $|S|_{0}$ denote the number of elements in a set S if S is countable. For any $i \leq N$, let

$$
A(i)=\left\{j \leq N: \operatorname{cov}\left(u_{i t}, u_{j t}\right) \neq 0\right\}=\left\{j \leq N:(i, j) \in S_{U}\right\} .
$$

Lemma D.4: Suppose $m_{N}=O(1)$. For any $i, j \leq N$, let $B(i, j)$ be a set of $k \in\{1, \ldots, N\}$ such that:
(i) $k \notin A(i) \cup A(j)$,
(ii) there is $p \in A(k)$ such that $\operatorname{cov}\left(u_{i t} u_{j t}, u_{k t} u_{p t}\right) \neq 0$.

Then $\max _{i, j \leq N}|B(i, j)|_{0}=O(1)$.

Proof: First we note that if $B(i, j)=\emptyset$, then $|B(i, j)|_{0}=0$. If it is not empty, for any $k \in B(i, j)$, by definition, $k \notin A(i) \cup A(j)$, which implies $\operatorname{cov}\left(u_{i t}, u_{k t}\right)=$ $\operatorname{cov}\left(u_{j t}, u_{k t}\right)=0$. By the Gaussianity, $u_{k t}$ is independent of $\left(u_{i t}, u_{j t}\right)$. Hence if $p \in A(k)$ is such that $\operatorname{cov}\left(u_{i t} u_{j t}, u_{k t} u_{p t}\right) \neq 0$, then $u_{p t}$ should be correlated with either $u_{i t}$ or $u_{j t}$. We thus must have $p \in A(i) \cup A(j)$. In other words, there is $p \in A(i) \cup A(j)$ such that $\operatorname{cov}\left(u_{k t}, u_{p t}\right) \neq 0$, which implies $k \in A(p)$.

Hence,

$$
k \in \bigcup_{p \in A(i) \cup A(j)} A(p) \equiv M(i, j)
$$

and thus $B(i, j) \subset M(i, j)$. Because $m_{N}=O(1), \max _{i \leq N}|A(i)|_{0}=O(1)$, which implies $\max _{i, j}|M(i, j)|_{0}=O(1)$, yielding the result.
Q.E.D.

Now we define and bound each of $A_{2 h}$. For any $(i, j) \in H=\left\{(i, j):\left(\boldsymbol{\Sigma}_{u}\right)_{i j} \neq\right.$ $0\}$, we must have $j \in A(i)$. So

$$
\begin{aligned}
A_{21}= & \frac{1}{N T^{4}} \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j),} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq t, s} E \xi_{i j t} \xi_{m n t} E \zeta_{i s} \zeta_{j s} E \zeta_{m l} \zeta_{n l} \\
\leq & O\left(\frac{1}{N T}\right) \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j)}\left|E \xi_{i j t} \xi_{m n t}\right| \\
\leq & O\left(\frac{1}{N T}\right) \\
& \times \sum_{(i, j) \in H}\left(\sum_{m \in A(i) \cup A(j)} \sum_{n \in A(m)}+\sum_{m \neq A(i) \cup A(j)} \sum_{n \in A(m)}\right)\left|\operatorname{cov}\left(u_{i t} u_{j t}, u_{m t} u_{n t}\right)\right| .
\end{aligned}
$$

The first term is $O\left(\frac{1}{T}\right)$ because $|H|_{0}=O(N)$ and $|A(i)|_{0}$ is bounded uniformly by $m_{N}=O(1)$. So the number of summands in $\sum_{m \in A(i) \cup A(j)} \sum_{n \in A(m)}$ is bounded. For the second term, if $m \notin A(i) \cup A(j), n \in A(m)$, and $\operatorname{cov}\left(u_{i t} u_{j t}, u_{m t} u_{n t}\right) \neq 0$, then $m \in B(i, j)$. Hence the second term is bounded by $O\left(\frac{1}{N T}\right) \sum_{(i, j) \in H} \sum_{m \in B(i, j)} \sum_{n \in A(m)}\left|\operatorname{cov}\left(u_{i t} u_{j t}, u_{m t} u_{n t}\right)\right|$, which is also $O\left(\frac{1}{T}\right)$ by Lemma D.4. Hence $A_{21}=o(1)$.

Similarly, applying Lemma D.4,

$$
\begin{aligned}
A_{22} & =\frac{1}{N T^{4}} \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j),} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq t, s} E \xi_{i j t} \xi_{m n t} E \zeta_{i s} \zeta_{m s} E \zeta_{j l} \zeta_{n l} \\
& =o(1)
\end{aligned}
$$

which is proved in the same lines of those of A_{21}.
Also note three simple facts: (1) $\max _{j \leq N}|A(j)|_{0}=O(1)$, (2) (m, n) $\in H$ implies $n \in A(m)$, and (3) $\xi_{m m s}=\xi_{n m s}$. The term A_{23} is defined as

$$
\begin{aligned}
A_{23} & =\frac{1}{N T^{4}} \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j),} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq t, s} E \xi_{i j t} \zeta_{i t} E \zeta_{j s} \xi_{m n s} E \zeta_{m l} \zeta_{n l} \\
& \leq O\left(\frac{1}{N T}\right) \sum_{j=1}^{N} \sum_{i \in A(j)} 1 \sum_{(m, n) \in H,(m, n) \neq(i, j)}\left|E \zeta_{j s} \xi_{m n s}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq O\left(\frac{2}{N T}\right) \sum_{j=1}^{N} \sum_{n \in A(j)}\left|E \zeta_{j s} \xi_{j n s}\right|+O\left(\frac{1}{N T}\right) \sum_{j=1}^{N} \sum_{m \neq j, n \neq j}\left|E \zeta_{j s} \xi_{m n s}\right| \\
& =a+b
\end{aligned}
$$

Term $a=O\left(\frac{1}{T}\right)$. For b, note that Lemma D. 3 implies that when $m, n \neq j, u_{m s} u_{n s}$ and $e_{j s}$ are independent because of the Gaussianity. Also because \mathbf{u}_{s} and \mathbf{f}_{s} are independent, hence $\zeta_{j s}$ and $\xi_{m m s}$ are independent, which implies that $b=0$. Hence $A_{23}=o(1)$.

The same argument as of A_{23} also implies

$$
\begin{aligned}
A_{24} & =\frac{1}{N T^{4}} \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j),} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq t, s} E \xi_{i j t} \zeta_{m t} E \zeta_{i s} \xi_{m n s} E \zeta_{i l} \zeta_{n l} \\
& =o(1) .
\end{aligned}
$$

Finally, because $\sum_{(i, j) \in H} 1 \leq \sum_{i=1}^{N} \sum_{j \in A(i)} 1 \leq m_{N} \sum_{i=1}^{N} 1$, and $m_{N}=O(1)$, we have

$$
\begin{align*}
A_{25} & =\frac{1}{N T^{4}} \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j),} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq t, s} E \xi_{i j t} \zeta_{i t} E \zeta_{i s} \zeta_{m s} E \xi_{m n l} \zeta_{n l} \\
& \leq O\left(\frac{1}{N T}\right) \sum_{(i, j) \in H,(m, n) \in H,(m, n) \neq(i, j)}\left|E \xi_{i j t} \zeta_{i t} E \zeta_{i s} \zeta_{m s} E \xi_{m n l} \zeta_{n l}\right| \\
& \leq O\left(\frac{1}{N T}\right) \sum_{i=1}^{N} \sum_{m=1}^{N}\left|E \zeta_{i s} \zeta_{m s}\right| \\
& \leq O\left(\frac{1}{N T}\right) \sum_{i=1}^{N} \sum_{m=1}^{N}\left|\left(\mathbf{\Sigma}_{u}^{-1}\right)_{i m}\right| E\left(1-\mathbf{f}_{s}^{\prime} \mathbf{w}\right)^{2} \\
& \leq O\left(\frac{N}{N T}\right)\left\|\mathbf{\Sigma}_{u}^{-1}\right\|_{1}=o(1) .
\end{align*}
$$

In summary, $\frac{1}{T} A_{2}=o(1)+O\left(\frac{N}{T^{2}}\right)=o(1)$.

APPENDIX E: Further Technical Lemmas for Section 4

We cite a lemma that will be needed throughout the proofs.
Lemma E.1: Under Assumption 4.1, there is $C>0$,
(i) $P\left(\max _{i, j \leq N}\left|\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t}-E u_{i t} u_{j t}\right|>C \sqrt{\frac{\log N}{T}}\right) \rightarrow 0$,
(ii) $P\left(\max _{i \leq K, j \leq N}\left|\frac{1}{T} \sum_{t=1}^{T} f_{i t} u_{j t}\right|>C \sqrt{\frac{\log N}{T}}\right) \rightarrow 0$,
(iii) $P\left(\max _{j \leq N}\left|\frac{1}{T} \sum_{t=1}^{T} u_{j t}\right|>C \sqrt{\frac{\log N}{T}}\right) \rightarrow 0$.

Proof: The proof follows from Lemmas A. 3 and B. 1 in Fan, Liao, and Mincheva (2011).
Q.E.D.

Lemma E.2: When the distribution of $\left(\mathbf{u}_{t}, \mathbf{f}_{t}\right)$ is independent of $\boldsymbol{\theta}$, there is $C>0$,
(i) $\sup _{\boldsymbol{\theta} \in \Theta} P\left(\left.\max _{j \leq N}\left|\widehat{\theta}_{j}-\theta_{j}\right|>C \sqrt{\frac{\log N}{T}} \right\rvert\, \boldsymbol{\theta}\right) \rightarrow 0$,
(ii) $\sup _{\theta \in \Theta} P\left(\left.\max _{i, j \leq N}\left|\widehat{\sigma}_{i j}-\sigma_{i j}\right|>C \sqrt{\frac{\log N}{T}} \right\rvert\, \boldsymbol{\theta}\right) \rightarrow 0$,
(iii) $\sup _{\boldsymbol{\theta} \in \Theta} P\left(\left.\max _{i \leq N}\left|\widehat{\sigma}_{i}-\sigma_{i}\right|>C \sqrt{\frac{\log N}{T}} \right\rvert\, \boldsymbol{\theta}\right) \rightarrow 0$.

Proof: Note that $\widehat{\theta}_{j}-\theta_{j}=\frac{1}{a_{f, T}} \sum_{t=1}^{T} u_{j t}\left(1-\mathbf{f}_{t} \mathbf{w}\right)$. Here $a_{f, T}=1-\overline{\mathbf{f}} \mathbf{w} \rightarrow p$ $1-E \mathbf{f}_{t}\left(E \mathbf{f}_{t} \mathbf{f}_{t}\right)^{-1} E \mathbf{f}_{t}>0$, hence $a_{f, T}$ is bounded away from zero with probability approaching 1 . Thus by Lemma E.1, there is $C>0$ independent of $\boldsymbol{\theta}$, such that

$$
\begin{aligned}
& \sup _{\boldsymbol{\theta} \in \Theta} P\left(\left.\max _{j \leq N}\left|\widehat{\theta}_{j}-\theta_{j}\right|>C \sqrt{\frac{\log N}{T}} \right\rvert\, \boldsymbol{\theta}\right) \\
& \quad=P\left(\max _{j}\left|\frac{1}{a_{f, T} T} \sum_{t=1}^{T} u_{j t}\left(1-\mathbf{f}_{t} \mathbf{w}\right)\right|>C \sqrt{\frac{\log N}{T}}\right) \rightarrow 0 .
\end{aligned}
$$

(ii) There is C independent of $\boldsymbol{\theta}$, such that the event

$$
A=\left\{\max _{i, j}\left|\frac{1}{T} \sum_{t=1}^{T} u_{i t} u_{j t}-\sigma_{i j}\right|<C \sqrt{\frac{\log N}{T}}, \frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{f}_{t}\right\|^{2}<C\right\}
$$

has probability approaching 1 . Also, there is C_{2} also independent of $\boldsymbol{\theta}$ such that the event $B=\left\{\max _{i} \frac{1}{T} \sum_{t} u_{i t}^{2}<C_{2}\right\}$ occurs with probability approaching 1 . Then on the event $A \cap B$, by the triangular and Cauchy-Schwarz inequalities,

$$
\begin{aligned}
\left|\widehat{\sigma}_{i j}-\sigma_{i j}\right| \leq & C \sqrt{\frac{\log N}{T}}+2 \max _{i} \sqrt{\frac{1}{T} \sum_{t}\left(\widehat{u}_{i t}-u_{i t}\right)^{2} C_{2}} \\
& +\max _{i} \frac{1}{T} \sum_{t}\left(u_{i t}-\widehat{u}_{i t}\right)^{2} .
\end{aligned}
$$

It can be shown that

$$
\begin{aligned}
& \max _{i \leq N} \frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right)^{2} \\
& \quad \leq \max _{i}\left(\left\|\widehat{\mathbf{b}}_{i}-\mathbf{b}_{i}\right\|^{2}+\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}\right)\left(\frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{f}_{t}\right\|^{2}+1\right) .
\end{aligned}
$$

Note that $\widehat{\mathbf{b}}_{i}-\mathbf{b}_{i}$ and $\widehat{\theta}_{i}-\theta_{i}$ only depend on ($\mathbf{f}_{t}, \mathbf{u}_{t}$) (independent of $\left.\boldsymbol{\theta}\right)$. By Lemma 3.1 of Fan, Liao, and Mincheva (2011), there is $C_{3}>0$ such that $\sup _{\mathbf{b}, \boldsymbol{\theta}} P\left(\max _{i \leq N}\left\|\widehat{\mathbf{b}}_{i}-\mathbf{b}_{i}\right\|^{2}+\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}>C_{3} \frac{\log N}{T}\right)=o(1)$. Combining the last two displayed inequalities yields, for $C_{4}=(C+1) C_{3}$,

$$
\sup _{\boldsymbol{\theta}} P\left(\left.\max _{i \leq N} \frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right)^{2}>C_{4} \frac{\log N}{T} \right\rvert\, \boldsymbol{\theta}\right)=o(1)
$$

which yields the desired result.
(iii) Recall $\widehat{\sigma}_{j}^{2}=\widehat{\sigma}_{j j} / a_{f, T}$, and $\sigma_{j}^{2}=\sigma_{j j} /\left(1-E \mathbf{f}_{t}^{\prime}\left(E \mathbf{f}_{t} \mathbf{f}_{t}\right)^{-1} E \mathbf{f}_{t}\right)$. Moreover, $a_{f, T}$ is independent of $\boldsymbol{\theta}$. The result follows immediately from part (ii). Q.E.D.

LEMMA E.3: For any $\varepsilon>0, \sup _{\boldsymbol{\theta}} P\left(\left\|\widehat{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|>\varepsilon \mid \boldsymbol{\theta}\right)=o(1)$.
Proof: By Lemma E.2(ii), $\sup _{\boldsymbol{\theta} \in \Theta} P\left(\left.\max _{i, j \leq N}\left|\widehat{\sigma}_{i j}-\sigma_{i j}\right|>C \sqrt{\frac{\log N}{T}} \right\rvert\, \boldsymbol{\theta}\right) \rightarrow 1$. By Fan, Liao, and Mincheva (2011), on the event $\max _{i, j \leq N}\left|\widehat{\sigma}_{i j}-\sigma_{i j}\right| \leq$ $C \sqrt{\frac{\log N}{T}}$, there is constant C^{\prime} that is independent of $\boldsymbol{\theta},\left\|\widehat{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\| \leq$ $C^{\prime} m_{N}\left(\frac{\log N}{T}\right)^{1 / 2}$. Hence the result follows due to the sparse condition $m_{N}\left(\frac{\log N}{T}\right)^{1 / 2}=o(1)$.
Q.E.D.

REFERENCE

FAN, J., Y. LiaO, And M. Mincheva (2011): "High Dimensional Covariance Matrix Estimation in Approximate Factor Models," The Annals of Statistics, 39, 3320-3356. [2,13,14]

Dept. of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, U.S.A., International School of Economics and Management, Capital University of Economics and Business, Beijing, China, and Lingnan College, Sun Yat-sen University, Guangzhou, China; jqfan@princeton.edu,

Dept. of Mathematics, University of Maryland, College Park, MD 20742, U.S.A.; yuanliao@umd.edu,

> and

Dept. of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, U.S.A.; jiaweiy@princeton.edu.

