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APPENDIX B CONTAINS A DISCUSSION on an alternative form of conditioning
for feasible set probabilities. Appendix C replaces IFO with a condition which
restricts the support of π to sets of at most two elements. Appendix D exam-
ines differences between the regular Perception Adjusted Luce Model and an
RCCSR.

APPENDIX B: ALTERNATIVE CONDITIONING

Recall that throughout our analysis, we have considered a model where the
probability of obtaining a feasible set is given by

Pr
(
F(A) = B

) = π(B)∑
C⊆A

π(C)
�

However, there are other ways that one could condition to obtain a feasible
set. In particular, one could consider the model given by

Pr
(
F(A) = B

) =
∑

C∈D:C∩A=B

π(C)�

where the default option is chosen if B = ∅. This alternative conditioning for-
mula is used in Barberà and Grodal (2011) to characterize a preference for
flexibility over menus.

We prefer the conditioning formula used in an RCCSR for two main reasons.
First, suppose that a feasible set is generated by what items an agent consid-
ers from a menu. In this case, an RCCSR says an agent first looks at the menu,
then considers a set of alternatives from the menu, and lastly makes a choice. If
we use the alternative conditioning formula, it will change the timing of these
actions. In particular, the alternative formulation says an agent first considers a
set of alternatives, then looks at the menu and further restricts the considered
objects, and finally makes a choice.1 Therefore, in this alternative formulation,
an agent could be thinking of a better/worse alternative when choosing from

1Using the “in the mood” interpretation, an RCCSR conditioning says a consumer sees the
menu and draws a random mood which is consistent with the offered alternatives. In the alterna-
tive formulation, the consumer receives a mood before looking at the offered menu.
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the menu. The alternative formulation also seems ill suited for the case of gen-
eral feasibility. For example, it would seem surprising that the probability that
an alternative is out of stock in a menu depends on alternatives not offered.

Second, we prefer the formulation used in an RCCSR for its identifiabil-
ity and flexibility. The alternative formulation makes it difficult to identify π
completely. In addition, this alternative conditioning formula produces choice
probabilities consistent with a random utility model.

APPENDIX C: BINARY SUPPORT

We can also characterize some models which have limited support by replac-
ing IFO with other conditions. Here, we still assume that D is rich.

BIFO—Binary Increasing Feasible Odds: For all distinct a�b ∈X ,

�a�bO{a�b} > 0�

This condition restricts IFO to binary menus. In a consideration set frame-
work, this would mean that adding acceptable alternatives draws consideration
away from the default option.

CMD—Constant Marginal Differences: For all distinct a�b ∈ X and A�B ∈
D with a�b ∈ A∩B, then

P(a�A)

P
(
x∗�A

) − P
(
a�A \ {b})

P
(
x∗�A \ {b}) = P(a�B)

P
(
x∗�B

) − P
(
a�B \ {b})

P
(
x∗�B \ {b}) �

This condition states that the marginal effect on the odds ratio with respect
to the default option of removing an alternative is constant across menus. Re-
placing IFO with these conditions, we get a model with |X| + (|X|

2

)
parameters.

We now define a binary random choice set rule.

DEFINITION C.1: A binary random choice set rule (BRCSR) is a random
choice rule P��α for which there exists a pair (��α), where � is a strict pref-
erence ordering on X and α : D → [0�1) a distribution with α(A) > 0 for sets
A ∈ D with |A| ≤ 2 and zero otherwise, such that for all A ∈ D and for all
a ∈ A,

P��α(a�A)=
α
({a}) +

∑
b∈A|a�b

α
({a�b})

∑
C⊆A:|C|≤2

α(C)
�



MENU-DEPENDENT STOCHASTIC FEASIBILITY 3

THEOREM C.1: A random choice rule satisfies ASI, TSI, ESI, BIFO, and CMD
if and only if it is a BRCSR P��α. Moreover, both � and α are unique, that is, for
any BRCSR with P��α = P�′�α′ , we have that (��α)= (�′�α′).

PROOF: That a BRCSR satisfies ASI, TSI, ESI, BIFO, and CMD is simple
to check and is omitted here.

Now, suppose |X| = N ≥ 1 and P is a random choice rule that satisfies ASI,
TSI, ESI, BIFO, and CMD. By Lemma A.1 and D rich, we can define an order-
ing � on X which is a total order. Let M = maxA∈D |A| be the largest order of
sets in D. Let DM = arg maxA∈D |A| be the elements of D with maximal order.
We want to show that the P(·� ·) has the BRCSR representation. We prove the
representation inductively on menu size.

First, define λ :D → R such that, for A ∈D, we have that

λA = λ(A)=
∑
B⊆A

(−1)|A\B| 1
P

(
x∗�B

) �

This is related to a Möbius inversion formula. Theorem A.1 gives us that

1
P

(
x∗�A

) =
∑
B⊆A

λB�

First, note that for singleton menus {a} ∈D,

λ{a} = 1
P

(
x∗� {a}) − 1 > 0�

since P(x∗� {a}) < 1 by definition of a random choice rule. Next, for binary
menus {a�b} ∈ D, assume without loss of generality that a � b. Then BIFO
implies

�a�bO{a�b} =
∑

B⊆{a�b}:B �=∅
(−1)|{a�b}\B| P(B�B)

P
(
x∗�B

)

=
∑

B⊆{a�b}
(−1)|{a�b}\B| +

∑
B⊆{a�b}:B �=∅

(−1)|{a�b}\B| P(B�B)

P
(
x∗�B

)

=
∑

B⊆{a�b}
(−1)|{a�b}\B|

(
1 + P(B�B)

P
(
x∗�B

)
)

=
∑

B⊆{a�b}
(−1)|{a�b}\B| 1

P
(
x∗�B

) > 0�

where we used that
∑

B⊆{a�b}(−1)|{a�b}\B| = ∑2
i=0(−1)i

(2
i

) = 0.
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Therefore, we have

P
(
x∗� {a�b})−1 − P

(
x∗� {b})−1 − P

(
x∗� {a})−1 + 1 > 0�

Thus we have

λ{a�b} =
∑

B⊆{a�b}
(−1)|{a�b}\B| 1

P
(
x∗�B

) > 0�

Now, we show a result on how the λ terms relate to P(·� ·) under CMD and
then show, for all A ∈D such that |A| ≥ 3, that λA = 0. Note, for A = {a�b� c}
such that a� b and a� c, then we have by CMD that

P(a�A)

P
(
x∗�A

) − P
(
a� {a� c})

P
(
x∗� {a� c}) = P

(
a� {a�b})

P
(
x∗� {a�b}) − P

(
a� {a})

P
(
x∗� {a}) �

First, looking at the left side of the equality and using Lemma 3.1,

P(a�A)

P
(
x∗�A

) − P
(
a� {a� c})

P
(
x∗� {a� c})

= 1 − P
((
A \ {a})∗

�A
)

P
(
x∗�A

) − 1 − P
({
c�x∗}� {a� c})

P
(
x∗� {a� c})

= P
(
x∗�A

)−1 − P
(
x∗� {b� c})−1 − P

(
x∗� {a� c})−1 + P

(
x∗� {c})−1

�

Similarly, looking at the right side of the equality and using Lemma 3.1,

P
(
a� {a�b})

P
(
x∗� {a�b}) − P

(
a� {a})

P
(
x∗� {a})

= P
(
x∗� {a�b})−1 − P

(
x∗� {b})−1 − P

(
x∗� {a})−1 + 1

= λ{a�b}�

Rearranging the equality, we see that

P
(
x∗�A

)−1

= λ{a�b} + P
(
x∗� {b� c})−1 + P

(
x∗� {a� c})−1 − P

(
x∗� {c})−1

= λ{a�b} + (
P

(
x∗� {b� c})−1 − P

(
x∗� {b})−1 − P

(
x∗� {c})−1 + 1

)
+ P

(
x∗� {a� c})−1 + (

P
(
x∗� {b})−1 − 1

)
= λ{a�b} + λ{b�c} + λ{b} + P

(
x∗� {a� c})−1



MENU-DEPENDENT STOCHASTIC FEASIBILITY 5

= λ{a�b} + λ{b�c} + λ{b} + (
P

(
x∗� {a� c})−1

− P
(
x∗� {a})−1 − P

(
x∗� {c})−1 + 1

)
+ (

P
(
x∗� {a})−1 − 1

) + (
P

(
x∗� {c})−1 − 1

) + 1

=
∑
B�A

λB�

Therefore, we have that 1
P(x∗�A)

= ∑
B�A λB for all |A| = 3. However, using the

Möbius inversion result, we know that

∑
B�A

λB = 1
P

(
x∗�A

) =
∑
B⊆A

λB ⇒ λA = 0�

Now, suppose that 1
P(x∗�A)

= ∑
B�A λB holds for sets A ∈ D with |A| = m − 1

and 3 ≤ m− 1 <M . For A ∈D such that |A| =m and ∀c ∈ A \ {a�b} such that
a� b � c, we have

P(a�A)

P
(
x∗�A

) − P
(
a�A \ {b})

P
(
x∗�A \ {b}) = P

(
a� {a�b})

P
(
x∗� {a�b}) − P

(
a� {a})

P
(
x∗� {a}) �

We can perform the same substitutions using Lemma 3.1 as in the three ele-
ment case so

P
(
x∗�A

)−1 − P
(
x∗�A \ {a})−1

− P
(
x∗�A \ {b})−1 + P

(
x∗�A \ {a�b})−1 = λ{a�b}�

Since A \ {a} and A \ {b} are m− 1 element sets, we can use our induction step
and then rearrange so

P
(
x∗�A

)−1 = λ{a�b} +
∑

B⊆A\{a}:|B|≤2

λB +
∑

B⊆A\{b}:|B|≤2

λB −
∑

B⊆A\{a�b}:|B|≤2

λB

= λ{a�b} +
∑

B⊆A\{a}:|B|≤2

λB +
∑

B⊆A\{b}:|B|=2 and a∈B
λB + λ{a}

=
∑

B⊆A:|B|≤2

λB�

We restrict looking at weights λB with |B| ≤ 2 since the inductive step makes
other λ terms zero. Performing subtraction of the rightmost terms leads to the
second equality. The third equality comes by collecting all terms. Thus, we have
that 1

P(x∗�A)
= ∑

B⊆A:|B|≤2 λB = ∑
B�A λB since λB = 0 for all B � A with |B| ≥
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3 by induction. Using the Möbius inversion formula,
∑

B�A λB = ∑
B⊆A λB so

that λA = 0. Therefore, we have shown by induction that λA = 0 for all A ∈ D
with |A| ≥ 3. The representation now holds immediately from the proof of
Theorem 3.1 and letting α= λ̃. Q.E.D.

APPENDIX D: COMPARISON TO PALM

The regular perception-adjusted Luce model (rPALM) of Echenique, Saito,
and Tserenjigmid (2014) is described by a pair (�P�u), where �P is a weak
order on X and u : 2X → R is a function such that

P�P �u(a�A)= μ(a�A)
∏

α∈A/�P :α�Pa

(
1 −

∑
c∈A:c∈α

μ(c�A)

)
�

where

μ(a�A)= u(a)∑
b∈A

u(b)+ u(A)

and

u(c)≥ u
({a�b}) − u

({a�b� c})
for all a�b� c ∈X with strict inequality if b�P c.

The notation A/�P is for the set of equivalence classes according to �P that
partition A, so the product is over all classes of alternatives that are ordered
ahead of a. In rPALM, �P is interpreted as a perception priority relation, and
the authors attribute all violations of IIA to perception priority. More specifi-
cally, when a�b ∈ X do not violate IIA, then we have a∼P b.

One of the distinguishing features of an RCCSR relative to an rPALM is that
the choice frequency of the default alternative must obey monotonicity with re-
spect to set inclusion under an RCCSR: B ⊂ A ⇒ P(x∗�B) > P(x∗�A). In the
context of availability, this restriction is logical in that larger menus are more
likely to have an alternative available. An rPALM places no such consistency
restrictions on choice frequency of the default alternative. This is one potential
way in which the two models can be distinguished from choice data.

Another feature of rPALM is the hazard rate the authors define as

q(a�A) = P�P �u(a�A)

1 − P�P �u

(
Aa�A

) �
where Aa = {b ∈ A : b �P a}. The authors impose that the hazard rate obeys
both IIA ( q(a�{a�b})

q(b�{a�b}) = q(a�A)

q(b�A)
for all a�b ∈ X and A ⊆ X such that a�b ∈ A) and
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regularity (q(a� {a�b}) ≥ q(a� {a�b� c}) for all a�b� c ∈ X and with strict in-
equality only when b �P c). We will use this to show that an RCCSR is not
a special case of rPALM. It is easy to see that an RCCSR can violate hazard
rate IIA (in Example 1, it is violated for a�b). Now consider the choice fre-
quencies in Example 1 and note that we have P(a� {a�b� c}) > P(a� {a�b}) and
P(b� {a�b� c}) > P(b� {a�b}). An rPALM is unable to generate these choice
frequencies. In what follows, let A = {a�b� c}.

Case 1: a �P b�a �P c�b �P c. By regularity, we have P�P �u(a�A) =
q(a�A) < q(a� {a�b})= P�P �u(a� {a�b}).

Case 2: a �P b ∼P c. By regularity, we have P�P �u(a�A) = q(a�A) =
q(a� {a�b}) = P�P �u(a� {a�b}).

Case 3: b �P a�b �P c�a �P c. By regularity, we have P�P �u(b�A) =
q(b�A) < q(b� {a�b}) = P�P �u(b� {a�b}).

Case 4: b �P a ∼P c. By regularity, we have P�P �u(b�A) = q(b�A) =
q(b� {a�b}) = P�P �u(b� {a�b}).

Case 5: c �P a �P b. By regularity, we have P�P �u(a�A) = q(a�A)(1 −
P�P �u(c�A)) < q(a�A) ≤ q(a� {a�b}) = P�P �u(a� {a�b}).

Case 6: c �P b �P a. By regularity, we have P�P �u(b�A) = q(b�A)(1 −
P�P �u(c�A)) < q(b�A)≤ q(b� {a�b}) = P�P �u(b� {a�b}).

Case 7: a ∼P b ∼P c. rPALM cannot violate IIA in this case, but

P(a�A)

P(b�A)
= 7

11
�= 2

3
= P

(
a� {a�b})

P
(
b� {a�b})

in Example 1.
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